
Practical Multi-level Modeling on
MOF-compliant Modeling Frameworks

Kosaku Kimura, Yoshihide Nomura, Yuka Tanaka,
Hidetoshi Kurihara, and Rieko Yamamoto

Fujitsu Laboratories, Kawasaki, Japan
{kimura.kosaku,y.nomura,tanaka.yuka,kurihara.hide,r.yamamoto}

@jp.fujitsu.com

Abstract. This paper describes practices for multi-level modeling by
only using existing modeling frameworks that comply Meta-Object Fa-
cility (MOF). We design modeling patterns for achieving the multi-level
modeling methodologies on Eclipse Modeling Framework, and implement
the dataflow model by applying the patterns. Moreover, we attempt
to compare the patterns regarding the facilitation of developing both
our tool and plugins. We found Orthogonal Classification Architecture
(OCA) pattern is easier to develop our tool than powertypes pattern,
but regarding plugins for our tool, powertypes pattern can define model-
to-text transformation templates more simply than OCA pattern.

1 Introduction

Model-driven engineering (MDE) gains productivity of software developments
providing several powerful tools for designing, developing or verifying software.
Especially, model transformation technologies (i.e., model-to-model and model-
to-text) are important for facilitating agile software developments. For the model-
to-text transformation enables to generate executable source codes from a model,
developers can develop complex applications by using graphical editors.

There are various kinds of graphical editing tools for developing and exe-
cuting applications, e.g., Extract-Transform-Load [2, 5], Business Analytics [3]
and Workflow Management [4]. We also have been developing a graphical edit-
ing tool on a cloud platform for facilitating developments of big data processing
applications [18]. Figure 1 shows the web interface of our tool.

Many of the tools are based on modeling frameworks and provide automatic
generation features for executable source codes. However, extending models of
the tools tends to be difficult for third-party developers, and therefore, there have
been a few plugins published from developer communities. Nowadays, the meta-
models of graphical editing tools have to be easily extensible so that developers
can develop more plugins [16].

Meta-Object Facility (MOF)1 is a standard for MDE provided by Object
Management Group (OMG), and Eclipse Modeling Framework (EMF)2 is one

1 http://www.omg.org/mof/
2 https://eclipse.org/modeling/emf/



Fig. 1. EMF-based graphical editing tool for developing and executing big data pro-
cessing.

of mature MOF-compliant modeling frameworks, and there are various toolkits
in the EMF community, such as Acceleo3, Query/View/Transformation (QVT)
Operational4 and ATL Transformation Language5. Those toolkits also conform
to or follow the OMG’s standards. In this paper, we attempt to achieve multi-
level modeling on EMF. EMF provides the Ecore metamodel, which is compati-
ble with Essential MOF, and tools for creating models that conform to the Ecore
metamodel.

One of the major drawbacks of EMF is that it is hard to define and use
a new metamodel located at the same level as the Ecore metamodel, because
EMF is basically adequate to create models and objects just based on the Ecore
metamodel. If we use our own metamodel, although it is obviously possible to
develop a proprietary tool based on it by using the code generation feature
of EMF [1, 19], the tool tends to force an unusual manner to developers, and
eventually, most of them may feel that “I do not want to use it.” This issue is
crucial for developing the ecosystem and the community of our tool.

In order to overcome the drawbacks of existing modeling frameworks, various
methodologies of multi-level modeling have been proposed such as Orthogonal
Classification Architecture (OCA) [6, 7, 9, 11], powertype-based meta-
modeling [13, 14] and deep instantiation [12, 17]. The methodologies can
provide simple solutions to design metamodels along with models and objects.
However, there is little consensus in the literature on fundamental multi-level
modeling concepts [10], and therefore, it is still difficult to determine to apply
them to industries. For now, multi-level models must be defined by only using ex-
isting MOF-compliant modeling frameworks, so we have to clarify a workaround
for that.

3 http://www.eclipse.org/acceleo/
4 http://www.eclipse.org/mmt/?project=qvto
5 https://eclipse.org/atl/



Dataflow Data Process

Table Model

M0

M1

M2

M3 Class (EClass)

SVMModel

Element

EventData

+Input: Process

+Output: Process

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

AddTimestamp

+Input: Data

+Output: Data

+time: string

+millis: string

+storedIn: string

Duplication

+Input: Data

+Output: Data[]

TemporaryData

+Input: Process

+Output: Process

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Output
Output

Output

Output[0]

Output[1]
Input Input

Input

Sensor data Add timestamp
temp

Copy data to datastores

time := timeStr
millis := millisStr

storedIn := timestamp

Fig. 2. Hierarchy of dataflow model.

This paper describes practices for achieving multi-level models on EMF. We
use a hierarchy of a dataflow model as an example model that is used on graphical
editing tools. We design multi-level modeling patterns on EMF, and implement
the dataflow model by applying the patterns. Moreover, we attempt to compare
the patterns regarding the facilitation of developing both our tool and plugins.

The remainder of this paper is organized as follows. Section 2 describes a
model of a graphical editing tool as our motivating example. Section 3 describes
patterns for multi-level modeling on EMF. In Sect. 4 we discuss the comparison
of the patterns, and our conclusions are presented in Sect. 5.

2 Motivating example: a dataflow model for graphical
editing tools

A typical graphical editing tool consists of a palette and a canvas as well as Fig.
1. The palette shows icons representing types of nodes, and the canvas is used
to define a diagram by putting a node of the type selected from the palette and
drawing an edge between nodes. By using such tool, we can easily develop a
data processing application as a flow diagram that consists of nodes and edges
representing icons and lines, respectively.

Figure 2 shows the hierarchy of the dataflow model that we want to design.
Layer M3 represents the original Ecore metamodel, and layer M2 represents the
metamodel of the dataflow model. Objects in layerM2 (i.e., Dataflow, Data and
Process) are instances of Class. An instance of Dataflow composes instances



Class (EClass) Element

DefinitionElement InstanceElement

Definition Instance

definition

definition

L

L

L

O O

instance-of

instance-of instance-of
OCL

0

1

2

0 1

Fig. 3. OCA pattern.

Class (EClass) Element

Definition

Instance

instance-of

instance-of

instance-of

M0

M1

M2
powertype subtype

OCL

Fig. 4. Powertypes pattern.

of Data and Process, and represents how data is processed and the order of
execution in the processing methodologies as well as the definition in [15].

Layer M1 represents definitions of types and subtypes of Data and Process

that are displayed on the palette. Classes in layer M1 are instances of the
classes in layer M2 and have definitions of type names, input ports, output ports
and owned properties. In Fig. 2, Table and Model are instances of Data, and
AddTimestamp and Duplication are instances of Process. Moreover, EventData
and TemporaryData are subclasses of Table, and SVMModel is subclasses of
Model. Those subclasses define their own properties and data schemata for stor-
ing databases. A plugin created by a third-party developer defines a new instance
of Process in layer M1, i.e., a new type of nodes in the palette.

Layer M0 represents an instance of Dataflow edited on the canvas in Fig. 1.
Objects in layer M0 are instances of the objects in layer M1. Data node Sensor
data in layer M0 represents data that is produced and sent by sensors and has
the schema defined by EventData.

3 Multi-level modeling on EMF

Several multi-level modeling methodologies introduce a new concept of objects.
A clabject is an object that is both a class and an instance of another class [8].
Clabjects sometimes have a potency feature that represents the depth to which
an attribute can be instantiated [12] and is utilized in deep instantiation. In
order to achieve multi-level model by only using EMF, we consider that it is
difficult to introduce them on EMF, because applying those concepts obviously
needs to develop a new modeling editor.

We attempt to implement the dataflow model described in Sect. 2 by ap-
plying the following two methodologies: OCA and powertype-based meta-
modeling. Figure 3 and 4 show modeling patterns as workarounds for each
methodology.

3.1 Model applying OCA pattern

The OCA has two dimensions of model layers: linguistic layers and ontological
layers. In Fig. 3, L and O denotes linguistic layers and ontological layers, re-
spectively. Layer L0 contains the Ecore metamodel and class Element that is an



Element

+id: string

+name: string

DefinitionElement InstanceElement

PropertyDefinition

+type: string

+defaultValue: string

Property

+value: string

DataDefinition

+category: string

PortDefinition

+multiplicity: int

ProcessDefinition

+category: string

inputoutput

property

definition

Field

+name: string

+type: string

field

Data
definition

Port

+index: int

definition

Process
definition

DataflowDataflowDefinition

process

output

data

definition

input

property

AddTimestamp

<<Definition>>

EventData

<<Definition>>
Sensor data

Add timestamp

instance-of

instance-of instance-of

instance-of

definition

definition

A data processing

instance-of

Dataflow

<<Definition>>

instance-of

definition

data

data
input

output

-- for instance objects of Data

context Data

inv DataHasDefinition: definition <> null

inv DataHasValidProperties:

definition.property->forAll(i | property->exists(definition = i))

inv DataHasValidFields:

definition.field->forAll(name <> null and type <> null)

-- for instance objects of Process

context Process

inv ProcessHasDefinition: definition <> null

inv ProcessHasValidProperties:

definition.property->forAll(i | property->exists(definition = i))

inv ProcessHasValidInputPorts:

definition.input->forAll(i | input->exists(definition = i))

inv ProcessHasValidOutputPorts:

definition.output->forAll(i | output->exists(definition = i))

...

Fig. 5. Dataflow model and excerpt of OCL constraints in OCA pattern.



Element

+id: string

+name: string

Data Process

Dataflow

data process

in

out

Model

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

Table

Duplication
AddTimestamp

+time: string

+millis: string

+storedIn: string

in
out

in
outFirst

outSecond

Sensor data Add timestamp A data processing

instance-ofinstance-of

instance-of

SVMModel

context EClass

def: isA(typeName : String) : Boolean =

name = typeName or oclIsKindOf(EClass)

and oclAsType(EClass).eAllSuperTypes->exists(name = typeName)

-- for subclasses of Data

inv DataHasNoExtraProcessRefs:

isA(’Data’) implies eReferences->forAll(

eReferenceType.isA(’Process’) implies name.matches(’in|out’)

)

-- for subclasses of Process

inv ProcessHasValidInputPorts:

isA(’Process’) implies eReferences->forAll(

name.matches(’^in.*’) implies eReferenceType.isA(’Data’)

)

inv ProcessHasValidOutputPorts:

isA(’Process’) implies eReferences->forAll(

name.matches(’^out.*’) implies eReferenceType.isA(’Data’)

)

...

Fig. 6. Dataflow model and excerpt of OCL constraints in powertypes pattern.



instance of class Class, for defining elements of ontological layers (O0 and O1)in
layer L1. Class DefinitionElement in layer O0 and class InstanceElement in
layer O1 defines the type and the instance of elements of the dataflow model,
respectively. Layer L2 contains definition objects and instance objects that are
instances of class DefinitionElement and InstanceElement, respectively.

We represent an ontological instantiation relationship by a reference to a
definition object. The instance object has a reference to the definition object,
and the correctness of the relationship between them is verified by constraints
written in Object Constraint Language (OCL).

Figure 5 shows the dataflow model that conforms to the OCA pattern. Class
Dataflow, Data, Process, Port and Property are instance classes, which are
subclasses of class InstanceElement, and all of them respectively have their
own definition classes, which are subclasses of class DefinitionElement. Ob-
ject Dataflow, EventData and AddTimestamp are definition objects, i.e., in-
stances of the definition classes. Object A data processing, Sensor data and
Add timestamp are instance objects, i.e., instances of the instance classes.

Examples of OCL constraints for instance objects of class Data and Process

are shown in the lower part of Fig. 5.

3.2 Model applying powertypes pattern

Powertype-based metamodeling introduces a powertype that is defined as
a type whose instances are types inheriting a subtype [14]. While in the original
idea, every object in layer M1 must be a clabject that is both an instance of a
powertype and a subclass of a subtype, we define an object in layer M1 of Fig.
4 just as an instance of a powertype, i.e., class Class, and use OCL constraints
for defining the relationship between the object and a subtype. We define that
the object is regarded as a genuine subclass of the subtype if it satisfies the OCL
constraints.

Figure 6 shows the dataflow model that conforms to the powertypes pat-
tern. As class Dataflow, Data and Process are subclasses of class Element,
the hierarchy of all classes are represented as inheritance relationships. Class
EventData, which is a subclass of class Table, has attributes that represent
data schema. Class AddTimestamp, which is a subclass of class Process, has at-
tributes that represent parameters of the process. Class AddTimestamp also has
an input port and an output port as references to class Table, which means that
it consumes and produces Table-typed data.

Object A data processing, Sensor data and Add timestamp are instances
of class Dataflow, EventData and AddTimestamp respectively.

Examples of OCL constraints for subclasses of class Data and Process are
shown in the lower part of Fig. 6.

4 Evaluation

We attempt to compare our modeling patterns, OCA and powertypes, re-
garding the facilitation of the following developments: developing our tool by



Table 1. Definition of AddTimestamp.

Name Description

Input a single port that consumes a subclass of Table
Output a single port that produces a subclass of Table

time a formatted date string, e.g., ‘‘yyyy-MM-dd hh:mm:ss’’

millis an integer string of a millisecond value
storedIn a field name to which a timestamp value is assigned

ourselves and developing plugins for our tool by third-party developers. We con-
sider there are a lot of viewpoints regarding the facilitation, but we have not yet
completed the comprehensive evaluation from the viewpoints. In this paper, we
concentrate the following two viewpoints: model manipulation for our tool and
template description for plugins.

4.1 Model manipulation for our tool

Regarding the development of our tool, we focus on how to manipulate the
model on the methodology. The OCA pattern can utilize the code generation
features of EMF, because we do not need to extend metamodels in layer L0 of
Fig. 3. All objects that are added by plugins for new types of data or processes
are located in layer O0, and they can be manipulated by using automatically
generated codes. On the other hand, when we apply the powertypes pattern,
we have to extend the Ecore metamodel dynamically, so it is difficult to utilize
the code generation. We have to manipulate objects in layer M0 by only using
the default Ecore APIs that are not intuitive and troublesome to manipulate.

4.2 Template description for plugins

Regarding the development of plugins, we focus on the description of the model-
to-text transformation template for process AddTimestamp in Fig. 1, 2, 5 and 6.
Table 1 shows the definition of process AddTimestamp. The process produces a
record that is appended a new field named as the string value of storedIn. The
new field is assigned a string value of a timestamp that is calculated by using
time, and millis of an original record.

Now, we consider a template for producing the following SQL-like processing
query.

insert into <Output> select <Field of Input>[,<Field of Input> ...],

UDF.timestamp(<time>, <millis>) as <storedIn> from <Input>

We use Acceleo, which is an implementation of MOFM2T6, for generating
the query. By applying the OCA pattern, the template can be described as
follows.

6 http://www.omg.org/spec/MOFM2T/



[template public generate(aProcess : Process) overrides generate

? (definition.name=’AddTimestamp’)]

insert into [output->any(definition.name=’out’).data.name/]

select [for (input->any(definition.name=’in’)

.data.definition.field.name) separator(’,’)][name/][/for]

, UDF.timestamp(

[property->any(definition.name=’time’).value/],

[property->any(definition.name=’millis’).value/]

) as

[property->any(definition.name=’storedIn’).value/]

from [input->any(definition.name=’in’).data.name/]

[/template]

By applying the powertypes pattern, the template can be described as
follows.

[template public generate(aProcess : AddTimestamp) overrides generate]

insert into [out.name/]

select [for (_in.eClass().eAttributes) separator(’,’)][name/][/for]

, UDF.timestamp([time/],[millis/]) as [storedIn/] from [_in.name/];

[/template]

By contrasting those descriptions, the powertypes pattern can describe the
template more simply than the OCA pattern. This is because objects in layer
M1 of Fig. 4 are just models of the Ecore metamodel, so we can directly access
the attribute values of their instances. This advantage is valid not only Acceleo
but also other EMF-based toolkits, and the fact indicates that the powertypes
pattern is more usable by following the existing common manners of MOF-
compliant modeling frameworks.

5 Conclusion

In this paper, we described the practices for achieving multi-level modeling by
only using EMF. We defined modeling patterns of the following two method-
ologies: OCA and powertype-based metamodeling. We implemented the
dataflow model for graphical editing tools by applying the patterns. By compar-
ing the implementations on the two methodologies, We found the OCA pattern
is easier to develop our tool than the powertypes pattern, but regarding plugins
for our tool, the powertypes pattern can define model-to-text transformation
templates more simply than the OCA pattern.

We consider we have to achieve the ease of developing plugins for our tool
rather than the ease of developing our tool itself, because increasing the number
of plugins can benefit our tool and our communities. Although regarding the
simplicity of template descriptions, the powertypes pattern is a better choice
than the OCA pattern, further evaluations from other viewpoints are needed
for determining the best pattern.

We hope that the multi-level modeling methodology is standardized ade-
quately following the existing common manners of MOF-compliant modeling
frameworks.



References

1. Metamodeling with EMF: Generating concrete, reusable Java snippets, http://
www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/

2. Pentaho Data Integration, http://community.pentaho.com/projects/

data-integration/

3. RapidMiner, https://rapidminer.com/
4. RunMyProcess, https://www.runmyprocess.com/en/
5. Talend Data Integration, http://www.talend.com/products/data-integration
6. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-

guage engineering. Software Engineering, IEEE Transactions on 35(6), 742–755
(Nov 2009)

7. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
Software, IEEE 20(5), 36–41 (Sept 2003)

8. Atkinson, C.: Meta-modelling for distributed object environments. In: Enterprise
Distributed Object Computing Workshop [1997]. EDOC’97. Proceedings. First In-
ternational. pp. 90–101. IEEE (1997)

9. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering
environment. In: Proceedings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards. ACM (2012)

10. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling approaches.
In: MULTI 2014–Multi-Level Modelling Workshop Proceedings. pp. 53–61 (2014)

11. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Soft-
ware Language Engineering, pp. 266–275. Springer (2011)

12. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: UML
2001The Unified Modeling Language. Modeling Languages, Concepts, and Tools,
pp. 19–33. Springer (2001)

13. Henderson-Sellers, B., Gonzalez-Perez, C.: The rationale of powertype-based meta-
modelling to underpin software development methodologies. In: Proceedings of
the 2nd Asia-Pacific Conference on Conceptual Modelling - Volume 43. pp. 7–16.
APCCM ’05, Australian Computer Society, Inc., Darlinghurst, Australia, Australia
(2005)

14. Henderson-Sellers, B., Gonzalez-Perez, C.: On the ease of extending a powertype-
based methodology metamodel. Meta-Modelling and . WoMM 2006 pp. 11–25
(2006)

15. Kimura, K., Nomura, Y., Kurihara, H., Yamamoto, K., Yamamoto, R.: Multi-query
unification for generating efficient big data processing components from a dfd. In:
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on. pp.
260–268. IEEE (2013)

16. Kimura, K., Nomura, Y., Tanaka, Y., Kurihara, H., Yamamoto, R.: Runtime Com-
position for Extensible Big Data Processing Platforms. In: 2015 IEEE 8th Inter-
national Conference on Cloud Computing. pp. 1053–1057 (2015)

17. Neumayr, B., Schrefl, M.: Abstract vs concrete clabjects in dual deep instantiation.
In: MULTI 2014–Multi-Level Modelling Workshop Proceedings. pp. 3–12 (2014)

18. Nomura, Y., Kimura, K., Kurihara, H., Yamamoto, R., Yamamoto, K., Tokumoto,
S.: Massive event data analysis and processing service development environment
using dfd. In: Services (SERVICES), 2012 IEEE Eighth World Congress on. pp.
80–87 (2012)

19. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)


