
An algebraic instantiation technique
illustrated by multilevel design patterns

Zoltan Theisz1 and Gergely Mezei2

1 Huawei Design Centre, Ireland,
zoltan.theisz@huawei.com

2 Budapest University of Technology and Economics, Budapest, Hungary,
gmezei@aut.bme.hu

Abstract. Multi-level meta-modeling hinges on the precise conceptual-
ization of the instantiation relation between elements of the meta-model
and the model. In this paper, we propose a new algebraic instantiation
approach, the Dynamic Multi-Layer Algebra. The approach aims to pro-
vide a solid algebraic foundation for multi-level meta-modeling, which is
easily customizable through different bootstrap elements and a dynamic
instantiation procedure. The paper describes the major parts of the ap-
proach and also demonstrates their modeling capabilities by covering
some of the most-often used design patterns for multi-level modeling.

Keywords: multi-level meta-modeling, dynamic instantiation, design
patterns

1 Introduction

Multi-level meta-modeling is enjoying a renaissance thanks to the dynamic mod-
eling needs of contemporary complex software systems. For example, next gen-
eration telecom management systems set new challenges towards centralized,
model-based extendable network element repositories that must be able to be
used both in design- and run-time. The model repository must be open-ended
with respect to complex types: both through gradual extension and the introduc-
tion of new elements. Therefore, many well-known meta-modeling patterns such
as type-object, dynamic features or the dynamic auxiliary domain concepts [5]
frequently reappear there. Although potency-based meta-modeling can handle
these situations, alternative formalisms may simplify their modeling by allowing
more dynamism in the instantiation.

In this paper, we aim to illustrate how such an alternative multi-level meta-
modelling approach, referred to as Dynamic Multi-Layer Algebra (DLMA) [7],
can be applied equally well to those multi-level meta-modelling patterns. The
paper is structured as follows: Section 2 introduces the technical background
of multi-level modeling, then, in Section 3, we introduce our DLMA approach
in some detail. Next, in Section 4, the approach is illustrated by its targeted
application to those three well-know multi-level meta-modeling design patterns
that are often observed in real-life applications as analyzed in [5]. Finally, Section
5 concludes the paper with our future research directions.



2 Background

Instantiation lies at the heart of any metamodel-based model development tech-
nique. Instantiation is the key operation that defines the semantic linkage be-
tween the meta-model and the model level. This linkage can be ontological or
linguistic, or even both at the same time, depending on the actual methodol-
ogy and the available tools used for meta-modelling. Standard approaches prefer
the linguistic interpretation which results in a two level architecture, where the
metamodel is built first and then it is instantiated into models. This archi-
tecture has been implemented, for example, in Eclipse Modelling Framework
(EMF) [1], which enforces the definition of the meta-model within one single
meta-level by relying on natively available meta-modeling facilities such as type
definition, inheritance, data types, attributes and operations. However, it is hard
to modify the meta-model once instance models have been built, thus explicit
meta-modeling of an ontological interpretation of instantiation is also necessary.

With only linguistic interpretation enforced, the resulting multi-level models
may become ad-hoc and usually involve accidental complexity. In order to avoid
mixed ontological and linguistic instantiation and to overcome the limits set
by the two-meta-level architecture, pure multi-level meta-modeling approaches
have been put in action. These techniques can distinguish between two kinds of
instantiation: shallow instantiation means that information is used at the imme-
diate instantiation level, while deep instantiation allows to define information on
the deeper modeling levels as well. If we need each meta-level to be instantiable,
there must be some means to add new attributes and operations to the existing
models. There are two options: one can either bring the source of the informa-
tion along through all model levels (and use it where it may be needed), or one
can add the source of that information directly to the model element where it is
actually used. The concept of potency notion and dual field notion [3] [2] were
introduced as solutions of the problem. Here, elements within a model may not
only be instances of some element in the meta-model above, but, at the same
time, they may also serve as types to some other elements in the meta-level
below. In other words, one assumes the existence of an unrestricted meta-model
building facility that is controlled only by the explicit definition of potency limits
allowing a preset number of meta-levels an element can be instantiated at. In
effect, there are non-negative numbers attached to all model elements that are
decremented by each instantiation until they reach 0. In some sense, this solution
is both too liberal and too restrictive at the same time: too liberal because at
each meta-level the full potential of meta-model building facilities is available,
but it is also too restrictive because the modeler must know in advance on which
level the information will be needed and set a potency value accordingly.

Although potency allocation at end-points can be consistently extended to
connections as well [6], next generation telecom management systems often re-
quire more flexibility vis-a-vis setting in advance the allowed number of multi-
levels and less universality with respect to the permitted modeling facilities avail-
able at each modeling level. In other words, scheduled and gradual instantiation
of information modeling is necessary. Under gradual instantiation we mean the



instantiation of some attributes and operations of the meta definitions, and not
necessarily all of them in one single go. This added dynamicity in the instanti-
ation is the main driver of our approach. Although our ASM formalism differs
from the set theoretical foundation of potency based approaches we believe that
it is at least so expressive for practical multi-level meta-modelling and simplifies
the implementation of the solution. In order to prop up this conjecture three
of the most frequent design patterns for multi-level meta-modelling [5] will be
rewritten in DMLA.

3 Dynamic Multi-Layer Algebra

In this section, we shortly introduce our Abstract State Machines (ASM, [4])
based multi-level instantiation technique. Dynamic Multi-Layer Algebra (DMLA)
consists of three major parts: The first part defines the modeling structure and
defines the ASM functions operating on this structure. In essence, the ASM for-
malism defines an abstract state machine and a set of connected functions that
specify the transition logic between the states. The second part is the initial
set of modeling constructs, built-in model elements (e.g. built-in types) that are
necessary to make use of the modeling structure in practice. This second part is
also referred to as the bootstrap of the algebra. Finally, the third part defines
the instantiation mechanism. We have decided to separate the first two parts
because the algebra itself is structurally self-contained and it can also work with
different bootstraps. Moreover, the a concrete bootstrap selection seeds the con-
crete meta-modeling capability of the generic DMLA, which we consider as an
additional benefit compared to the unlimited and universal modeling capability
potency supports at all meta-levels. In effect, the proper selection of the boot-
strap elements determines the later expressibility of DMLA’s modeling capability
on the lower meta-levels.

3.1 Data representation

In DMLA, the model is represented as a Labeled Directed Graph. Each model
element such as nodes and edges can have labels. Attributes of the model ele-
ments are represented by these labels. Since the attribute structure of the edges
follows the same rules applied to nodes, the same labeling method is used for
both nodes and edges. Moreover, for the sake of simplicity, we use a dual field
notation in labeling that represents Name/Value pairs. In the following, we refer
to a label with the name N of the model item X as XN .

We define the following labels: (i) XName (the name of the model element),
(ii) XID (a globally unique ID of the model element), (iii) XMeta (the ID of the
metamodel definition), (iv) XCardinality (the cardinality of the model element,
which is applied during the instantiation as an explicit constraint imposed on
the number of instances the model element may exist in within the instance
model), (v) XV alue (the value of the model element is only used in the case of
attributes!), (vi) XAttributes (a list of attributes)



Due to the complex structure of attributes, we do not represent them as
atomic data, but as a hierarchical tree, where the root of the tree is always
the model item itself. Nevertheless, we handle attributes as if they were model
elements. More precisely, we create virtual nodes from them. Virtual here means
that these nodes do not appear as real (modeling) nodes in diagrams but – from
the algebra’s formal point of view – they behave just like usual model elements.
This solution allows us to handle attributes and model elements uniformly and
avoid multiplication of labeling and ASM functions. Since we use virtual nodes,
all the aforementioned labels are also used for them: attributes have a name,
an ID, a reference to their meta definition, a cardinality and they may have
attributes as well. Moreover, they may also have a value. By the way, this is the
reason why we have defined the Value label.

After the structure of the modeling elements has been briefly introduced, we
now define the Dynamic Multi-Layer Algebra itself.

Definition 1. The superuniverse |A| of a state A of the Dynamic Multi-Layer
Algebra consists of the following universes: (i) UBool (containing logical values
{true/false}), (ii) UNumber (containing rational numbers {Q} and a special sym-
bol representing infinity), (iii) UString (containing character sequences of finite
length), (iv) UID (containing all the possible entity IDs), (v) UBasic (containing
elements from {UBool ∪ UNumber ∪UString ∪UID}).

Additionally, all universes contain a special element, undef, which refers to an un-
defined value. The labels of the entities take their values from the following uni-
verses: (i) XName (UString), (ii) XID (UID), (iii) XMeta (UID), (iv) XCardinality

([UNumber,UNumber]), (v) XV alue (UBasic), (vi) XAttrib (UID[]).
Note that we modeled cardinality as a pair of lower and upper limits. Ob-

viously, this representation could be extended to support ranges (e.g. “1..3”) as
well. The label Attrib is an indexed list of IDs, which refers to other entities.

Now, let us have an example: BookID = 42, BookMeta= 123, BookCardinality

= {0, inf}, BookV alue = undef , BookAttrib = [] The definition formalizes the
entity Book with its ID of 42 and the ID of its metamodel being 123. Note that
in the algebra, we do not require that the universe of IDs uses the universe of
natural numbers, this is only one possible implementation we use for illustration.
In effect, the only requirement imposed on the universe is that it must be able
to identify its elements uniquely. Now, one can instantiate any number of the
Book entities in the instance model, which will have no components and values
defined. For the sake of legibility, we will use a more compact notation from now
on without loosing the original semantics:

{"Book", 42, 123, [0, inf], undef, []}.

3.2 ASM functions

Functions are used to define rules to change states in ASM. In DMLA, we rely on
shared and derived functions. The current attribute configuration of a model item
is represented using shared functions. The values of these functions are modified
either by the algebra itself, or by the environment of the algebra (for example



by the user). Derived functions represent calculations, they cannot change the
model, they are only used to obtain and restructure existing information. Thus,
derived functions are used to simplify the description of the abstract state ma-
chine. The vocabulary

∑
of the Dynamic Multi-Layer Algebra formalism is as-

sumed to contain the following characteristic shared functions: (i) Name(UID):
UString, (ii) Meta(UID): UID, (iii) Card(UID): [UNumber,UNumber], (iv) At-
trib(UID, UNumber): UID, (v) Value(UID): UBasic.

The functions are used to access the values stored in the corresponding
label. Note that the functions are not only able to query the requested in-
formation, but they can also update the information. For example, one can
update the meta definition of an entity by simply assigning a value to the
Meta function: Meta(IDConcreteObject) : = IDNewMetaDefinition. Moreover, there
are two derived functions: (i) Contains(UID,UID): UBool and (ii) Derive-
From(UID,UID): UBool. The first function takes an ID of an entity and the
ID of an attribute and checks if the entity contains the attribute. The second
function checks whether the entity identified by the first parameter is an instan-
tiation, also transitively, of the entity specified by the second parameter. The
detailed, precise definition of the above functions are reported in [7].

3.3 Bootstrap mechanism

The aforementioned functions make it possible to query and change the model.
However by only these constructs, it is very hard to use the algebra since it
lacks the basic, built-in modeling constructs. For example, entities are required
to represent the basic types, otherwise one cannot use the label Meta when it
refers to a string because the label is supposed to take its value from UID and not
from UString. To draw a parallel, functions are like empty hardware components.
They are useless unless an operation system to invigorates the system.

In DMLA, there is no universal setup for this initial set of modeling con-
structs. For example, one can restrict the usage of basic types to an absolute
minimum, or one can extend them by allowing technology domain or meta-
modeling specific types. Also, meta-modeling constructs such as attribute injec-
tion or inheritance may be defined explicitly here. Using our previous analogy:
we can install different operating systems on our hardware for different purposes.
It is worth mentioning that the bootstrap and the instantiation mechanism can-
not be defined independently of each other. When an entity is being instantiated
there are constructs to be handled in a special way. For example, we can check
whether the value of an attribute violates the type constraints of the meta-model
only if the algorithm can find and use the basic type definitions. The bootstrap
presented in this paper provides a practically useful minimal set of constructs,
however that can be freely modified if needed without changing the foundational
algebra. The bootstrap has two main parts: basic types and principal modeling
entities.

The built-in types of the DMLA are the following: Basic, Bool, Number,
String, ID. All types refer to a value in the corresponding universe. In the boot-
strap, we define an entity for each of these types, for example we create an



entity called Bool, which will be used to represent Boolean type expressions.
Types Bool, Number, String and ID are inherited from Basic. Besides the basic
types, we also define three principal entities: Attribute, Node and Edge. They act
as the root meta elements of attributes, nodes and edges, respectively. All three
principal entities refer to themselves by meta definition (more precisely, they are
self-referring among themselves). Thus, for example, the meta of Attribute is the
Attribute entity itself.

{"Attribute",IDAttr,IDAttr,[0,inf],undef,

[{"Attributes",IDAttrs,IDAttr,[0,inf],undef,[]}]

}

We should also mention here that attributes are not only used as simple data
storage units, but also for creating annotations that are to be processed by
the instantiation. Similarly to basic types, we can define special attributes with
specific meaning. By adding these annotational attributes to entities, we can fine-
tune their handling. We define three annotation attributes: AttribType, Source
and Target. AttribType is used as a type constraint to validate the value of the
attribute in the instances. The Value label of AttribType specifies the type to be
used in the instance of the referred attribute. Using AttribType and setting its
Value field are mandatory if the given attribute is to be instantiated. AttribType
is only applied for attributes.

{"AttribType",IDAttrT,IDAttr,[0,1],undef,[

{"AType",IDAType,IDAttrT,[0,1],IDID,[]}

]}

Source and Target are used both as type constraints and data storage units to
store the source and target node of an edge. The constraint part restricts which
nodes can be connected by the edge, while the data storage contains its current
value. The constraint is expressed by AttribType, while the actual data is stored
in the Value field. The complete definition of the boostrap is presented in [7].

3.4 Dynamic instantiation

Based on the structure of the algebra and the bootstrap, we can represent our
models as states of DMLA. Now, we will discuss the instantiation procedure that
takes an entity and produces a valid instance of it. During the instantiation, one
can usually create many different instances of the same type without violating
the constraints set by the meta definitions. Most functions of the algebra are
defined as shared, which means that they allow manipulation of their values
also from outside of the algebra. However, the functions do not validate these
manipulations because that would result in a considerably complex exercise.
Instead, we distinguish between valid and invalid models, where validity checking
is based on formulae describing different properties of the model. We also assume
that whenever external actors change the state of the algebra, the formulae are
evaluated. The complete definition of validation formulae is presented in [7].

The instantiation process is specified via validation rules that ensure that if
an invalid model may result from an instantiation, it is rejected and an alterna-
tive instantiation is selected and validated. The only constraint imposed on this



procedure is that at least one instantiation step (e.g. instantiating an attribute,
or model element) must succeed in each step. The procedure consists of instruc-
tions that involves a selector and an action. We model these instructions as a
tuple {λselector, λaction} with abstract functions. The function λselector takes an
ID of an entity as its parameter and returns a possibly empty list of IDs referring
to the selected entities. The function λaction takes an ID of an entity and exe-
cutes an action on it. The actions λaction must invoke only functions previously
defined for the ASM. Hence, the functions λselector and λaction can be defined
as abstract, which allows us to treat them as black boxes. Also, the operations
can be defined a priori in the bootstrap similar to attributes.

4 Multi-level Modeling with DMLA

In our opinion, the most effective way to demonstrate the applicability of DMLA
to multi-level meta-modeling problems is through the reproduction of some of
the reoccurring practical meta-modeling patterns reported in [5]. DMLA is a
multi-level modeling approch, thus we focus only on the potency based formal-
ism of those design patterns without any contemplation on their structure or
benefits. Hence, the potency based definition of the those modeling patterns are
copied verbatim from [5] and their equivalent DLMA constructs are produced in
parallel. Also, the correspondence and/or potential differences between the two
multi-level modeling formalisms are briefly explained by the various examples.

4.1 Type-Object pattern

The pattern serves to dynamically add both types and instances to the model.
The pattern is broadly applied in network management systems where new de-
vice types may be added to the network on-demand, in an ad-hoc fashion, and
those types serve to facilitate the management of their instances.

The example below shows the gradual binding of attributes in both type and
object level. While potency @1 indicates that vat must take its value in the next
meta-level, @2 allows price to get its value after another meta-level jump.

The DMLA formalism defines Product as a Node instance with two Attributes
whose value types are defined both as Numbers. Then, during the first instanti-
ation Attribute vat is instantiated to 4.0, which is followed by the instantiation
of price to 35. Since no further instantiation is possible the GoF object is ready.

4.2 Dynamic features

The pattern serves to dynamically add new attributes to a type which also be-
come part of each instance of the type. The pattern is broadly applied in network
management systems where existing device types may be extended by new fea-
tures on-demand, in an ad-hoc fashion, and those features are automatically
made manageable on all the corresponding instances.



Level 2:

{"Product",IDProduct,IDNode,[0,inf],undef,

[

{"vat", IDvat,IDAttribute,[1,1],undef,

[{"vatType",IDvatT,IDAttribType,

[0,1], IDNumber,[]}]

},

{"price",IDprice,IDAttribute,[1,1],undef,

[{"priceType",IDpriceT,IDAttribType,

[0,1],IDNumber,[]}]

}

]}

Level 1:

{"Book",IDBook,IDProduct,[0,inf],undef,

[

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDpriceC,IDAttribute,[1,1],undef,

[

{"priceType",IDpriceT,IDAttribType,

[0,1],IDNumber,[]}

]}

]}

Level 0:

{"GoF",IDBookC,IDBook,[0,inf],undef,

[

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDpriceC,IDprice,[1,1],35,[]},

]}

Fig. 1. The Type-Object pattern

The example below shows the addition of attribute pages to Book and its
later instantiation within GoF. The DMLA formalism defines Product as a Node
instance and further enables the potential addition of an arbitrary number of
attributes in it. Book introduces the attribute pages and binds its type to Num-
ber. It also shuts down the possibility to append more attributes by setting the
cardinality of Attribute to zero. Finally, within GoF, the pages takes its value
as 349.

Similar to the type-object pattern, DMLA can correctly replicate the original
potency example. Moreover, it provides the possibility to remove attributes by
setting their cardinality to 0. This feature derives from the formal ASM definition
of DMLA thanks to the explicit representation of cardinalities there. Hence, even
though an attribute may be allowed at some position by its structural definition,
it cannot be instantiated if the related upper cardinality is later set to 0.



Level 2:

{"Product",IDProduct,IDNode,[0,inf],undef, [

{"vat", IDvat,IDAttribute,[1,1],undef,

[{"vType",IDvatT,IDAttribType,[0,1],

IDNumber,[]}]

},

{"price",IDprice,IDAttribute,[1,1],undef,

[{"pType",IDpriceT,IDAttribType,[0,1],

IDNumber,[]}]

},

{"Attribs",IDAF,IDAttribute,[0,inf],undef,[]}

]}

Level 1:

{"Book",IDBook,IDProduct,[0,inf],undef,[

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDprice,IDAttribute,[1,1], undef,

[{"priceType",IDpriceT,IDAttribType,

[0,1],IDNumber,[]}]

},

{"pages",IDpage,IDAttribute,[1,1],undef,

[{"pType",IDpageT,IDAttribType,[0,1],

IDNumber,[]}]

}

]}

Level 0:

{"GoF",IDBookC,IDBook,[0,inf],undef, [

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDpriceC,IDprice,[1,1],35,[]},

{"pages",IDpageC,IDpage,[1,1],349,[]},

]}

Fig. 2. Dynamic features

4.3 Dynamic auxiliary domain concepts

The pattern serves to dynamically add new entities to a type whose instances will
be correctly related to the instance of the type. Also, the new entities may have
attributes and further related entities. The pattern is broadly applied in network
management systems where new network concepts are added to device types
based on network technology evolution, and those concepts and their instances
automatically become part of the management system. Due to the page limits
only an excerpt of the DLMA representation of the full design pattern is shown
here. In essence, this design pattern is a mixture of the previous two with the
extension that the meta-model must provide a possibility to inject new Nodes
and Edges at will. Therefore, a ”root container” element, let us call it Domain,
is to be added to the original bootstrap.



{"Domain", IDDomain, IDNode, [0, inf], undef,[

{"Nodes", IDnodes, IDNode, [0,inf], undef, [ ]},

{"Edges", IDedges, IDEdge, [0,inf], undef, [ ]}

]}

Then, arbitrary domain concepts can be introduced dynamically into Domain
until the model is ready as

... {"authors", IDauthors, IDEdge, [0,inf], undef, [

{"Source", IDautSrc, IDSrc, [1,1], undef, [

{"SType",IDSType,IDAttribType,[0,1],IDBook,[ ]}]},

{"Target", IDautTrg, IDTrg, [1,1], undef, [

{"TType",IDTType,IDAttribType,[0,1],IDAuthor,[ ]}]}, ...

5 Conclusion and Future Work

We have applied our novel multi-level meta-modeling approach, DLMA, to three
well-known design patterns for deep meta-modeling. During this exercise, our im-
mediate purpose was to illustrate the expressivity of DLMA by rewriting these
well-known design patterns that were already published [5] in a mainstream
multi-level modeling formalism. Our solution seems to allow higher level of dy-
namism in instantiation than those existing solutions do, thus it offers a more
implementation ready formalisation of instantiation. Moreover, DMLA enables
to use different bootstrap alternatives, which may ultimately recreate the full
flexibility of state-of-the-art meta-model building facilities modeling profession-
als of particular technical domains would need. Hence, our concrete goal is to
implement the presented approach and to investigate different bootstraps (e.g.
adding operations, association classes) to validate the full capability of the ap-
proach.

References

1. Eclipse modeling framework (EMF), 2015. https://eclipse.org/modeling/emf/.
2. Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In

Proceedings of the 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, pages 19–33. Springer-Verlag, 2001.

3. Colin Atkinson and Thomas Kühne. Model-driven development: A metamodeling
foundation. IEEE Softw., 20(5):36–41, September 2003.

4. E. Borger and Robert F. Stark. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag New York, Inc., 2003.

5. Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol., 24(2):12:1–12:46, 2014.

6. Bernd Neumayr, Manfred A. Jeusfeld, Michael Schrefl, and Christoph Schütz. Dual
Deep Instantiation and Its ConceptBase Implementation. In CAiSE 2014, volume
Vol. 8484 of LNCS, pages 503–517, 6 2014.

7. Zoltan Theisz and Gergely Mezei. Towards a novel meta-modeling approach for
dynamic multi-level instantiation. In Automation and Applied Computer Science
Workshop, 2015. http://vmts.aut.bme.hu - Download - Papers.


