
Experimenting with Multi-Level Models in a
Two-Level Modeling Tool

martin gogolla
University of Bremen

Motivation

- talk presents two proposals for handling different metamodel levels
 in a uniform way

- in technical terms: represent different metamodel levels
 in ONE model, i.e. one class diagram including OCL constraints

- establish the connection between levels with
 + associations and generalizations
 + special OCL(?) operations

- in first approach, instanceOf relationship
 (usually between metamodel levels) becomes a simple association
 with precise meaning

- advantage: uniform employment of OCL
 - within each metamodel level,
 - for restricting the connection between the metamodel levels, and
 - for navigation between the metamodel levels

Structure of the talk

- Our context: USE (Uml-based Specification Environment)

- First approach: Metamodel level connection with
 associations and generalizations

- Second approach: Metamodel level connection with
 special OCL(?) operations

- A touch of related work

- Conclusion

Structure of the talk

- Our context: USE (Uml-based Specification Environment)

- First approach: Metamodel level connection with
 associations and generalizations

- Second approach: Metamodel level connection with
 special OCL(?) operations

- A touch of related work

- Conclusion

Tool USE (UML-based Specification Environment)
● google: "use ocl bremen" -> Sourceforge USE project page

● Validation and verification tool for UML and OCL models

● UML class, statechart, object, sequence, and communication diagrams

● OCL support for
+ class invariants and operation pre- and postconditions
+ query operations and ad-hoc queries
+ derivation rules for attributes and associations
+ state invariants, transition guards and transition postconditions

● Imperative action language for implementing non-query operations on the
model level: SOIL (Simple Ocl-based Imperative Language)

● Model validation by executing test scenarios

● Automatic generation of object diagrams through a model validator based on a
translation of UML and OCL into relational logic (realized in Kodkod/Alloy)
starting from a class diagram and invariants

● Verification of model properties like model consistency,
model minimality (invariant independence) or model state reachability

context p:Person inv balancedBinaryTree:
 (p.child->size=0 or p.child->size=2) and
 Person.allInstances->one(r | r.parent->size=0 and -- root
 Person.allInstances->excluding(r)->forAll(p | p.parent->size=1)) and
 p.child->forAll(c1,c2 | -- balance
 c1.child->closure(child)->size = c2.child->closure(child)->size)

Person_min = 15; Person_max = 15

Person_fName = Set{'Ada','Bob','Cyd','Dan','Eve'}
Person_lName = Set{'Alewife','Baker','Cook','Digger','Eggler'}
Person_yearB = Set{1905,1920,1935,1950,1965,1980,1995}

Parenthood_min = 0; Parenthood_max = *

Structure of the talk

- Our context: USE (Uml-based Specification Environment)

- First approach: Metamodel level connection with
 associations and generalizations

- Second approach: Metamodel level connection with
 special OCL(?) operations

- A touch of related work

- Conclusion

Example 1

Ada is a Person, Person is a Class, Class is MetaClass

abstract class Thing
operations
 instantiatedPlus():Set(Thing)=
 self.instantiated->closure(t|t.instantiated)
 instantiaterPlus():Set(Thing)= ...

constraints
 inv acyclicInstantiation: self.instantiatedPlus()->excludes(self)
end

Example 2: Relational data model

Metamodel level 1 - Database schemata (Syntax)

Metamodel level 0 - Database states (Semantics)

Different metamodel structures

Structure of the talk

- Our context: USE (Uml-based Specification Environment)

- First approach: Metamodel level connection with
 associations and generalizations

- Second approach: Metamodel level connection with
 special OCL(?) operations

- A touch of related work

- Conclusion

parameter[rs:RelSchema]
let relSchemaClass = $rs.name$ in
let keyAttr = $rs.attr->any(a|a.isKey=true).name$ in
context relSchemaClass inv keyAttrUnique:
 relSchemaClass.allInstances->forAll(x,y |
 x<>y implies x.keyAttr<>y.keyAttr)

 context Town inv keyAttrUnique:
 Town.allInstances->forAll(x,y |
 x<>y implies x.name<>y.name)

new OCL features:
- OCL clauses with parameters that are variables for model elements
- special expressions for model elements (e.g., for class or attribute)
- an operation accessing a model element through its String-valued name
 $_$: String -> ModelElement
- an operation returning the String-valued name of a model element
 #_# : ModelElement -> String

parameter[rs:RelSchema]
let relSchemaClass = $rs.name$ in
let keyAttr = $rs.attr->any(a|a.isKey=true).name$ in
context x,y:relSchemaClass inv 'keyAttrUniqueIn' + #rs#:
 x<>y implies x.keyAttr<>y.keyAttr

 context x,y:Town inv keyAttrUniqueInTown:
 x<>y implies x.name<>y.name

Structure of the talk

- Our context: USE (Uml-based Specification Environment)

- First approach: Metamodel level connection with
 associations and generalizations

- Second approach: Metamodel level connection with
 special OCL(?) operations

- A touch of related work

- Conclusion

A touch of related work

- Guerra / de Lara (MULTI WS 2014)

 Towards Automating the Analysis of Integrity Constraints
 in Multi-Level Models

- Igamberdiev / Grossmann / Stumptner (MULTI WS 2014)

 An Implementation of Multi-Level Modelling in F-logic

- Clark / Gonzalez-Perez / Henderson-Sellers (MULTI WS 2014)

 A Foundation for Multi-Level Modelling

- Atkinson / Gerbig / Kühne (OCL WS 2015)

 Opportunities and Challenges for Deep Constraint Languages

- Atkinson / Gerbig / Kühne (MODELS 2015)

 A Unifying Approach to Connections for
 Multi-Level Modeling Foundations

... [my apologies to the many good works that i did not mention]

Structure of the talk

- Our context: USE (Uml-based Specification Environment)

- First approach: Metamodel level connection with
 associations and generalizations

- Second approach: Metamodel level connection with
 special OCL(?) operations

- A touch of related work

- Conclusion

Summary

- presented approaches for incorporating
 different metamodel levels into a single model

- employed
 + associations, generalizations and OCL
 for restricting the connection between metamodel levels
 + special OCL(?) operations

Future work

- discover connections to and formalize notions like
 clabject, potency, powertype

- build more case studies in order to obtain more insights
 into advantages and drawbacks

- extend our tool USE to cope with
 (at least) three modeling levels
 - class diagram
 - object diagram = class diagram
 - object diagram

...

Thanks for your attention!

context t1,t2:Tupel inv keyMapUnique:
t1<>t2 and t1.relSchema=t2.relSchema
 implies
 t1.relDBState->intersection(t2.relDBState)->forAll(s |
 t1.relSchema.key()->exists(ka |
 t1.applyAttr(s,ka)<>t2.applyAttr(s,ka)))

