
Automating the Measurement of Heterogeneous Chatbot
Designs

Pablo C. Cañizares
Universidad Autónoma de Madrid

Madrid, Spain
pablo.cerro@uam.es

Sara Pérez-Soler
Universidad Autónoma de Madrid

Madrid, Spain
sara.perezs@uam.es

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain
esther.guerra@uam.es

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
juan.delara@uam.es

ABSTRACT

Chatbots are being increasingly used to provide a natural language
interface to all kinds of software services. However, while there are
many platforms and tools for chatbot development, they typically
lack support to statically measure properties of the designed chat-
bots, as indicators of their size, complexity, quality or usability, and
facilitating comparison.

To attack this problem, in this paper we propose a suite of 20
metrics for chatbot designs. The metrics are defined on a neutral
chatbot design language, becoming independent of the implemen-
tation platform. We have developed a tool, called Asymob, which
supports the translation of chatbots defined in several platforms
into this neutral format to perform the measurements. As a proof-
of-concept, we evaluate the metrics over a collection of Dialogflow
and Rasa chatbots from several sources and open-source reposi-
tories. Our metrics helped detecting quality issues statically, and
served as a basis for comparing chatbots from different origins and
built using different technologies.

CCS CONCEPTS

• Human-centered computing → Natural language inter-

faces; • General and reference → Metrics; • Social and pro-

fessional topics→ Quality assurance;

KEYWORDS

Chatbot design, metrics, quality assurance

ACM Reference Format:

Pablo C. Cañizares, Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2022.
Automating the Measurement of Heterogeneous Chatbot Designs. In Pro-
ceedings of ACM SAC Conference (SAC’22). ACM, New York, NY, USA, Arti-
cle 4, 8 pages. https://doi.org/xx.xxx/xxx_x

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’22, April 25 - April 29, 2022, Brno, Czech Republic
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION

Chatbots are becoming popular to access all sorts of services (e.g.,
banking, shopping, tourism, health) using conversation in natural
language [36], and they are being increasingly used to assist in
software engineering activities [17]. For this reason, many plat-
forms are available for their construction [29], like Google’s Di-
alogflow [12], Amazon Lex [18], IBM’s Watson [38], the Microsoft
bot framework [21], and many others by smaller companies and
communities like Rasa [32], Pandorabots [26], or FlowXO [15].

While there are many chatbot implementation platforms, their
support for chatbot quality assurance is limited [29]. Since chatbots
are a kind of software, their construction should follow sound engi-
neering principles. Some recent approaches [4, 5, 13] and tools [3]
propose methods for testing chatbots. Dynamic testing is essential
to ensure the quality of the resulting chatbot, but it requires having
a functional, deployed chatbot; it demands high effort for creating
testing phrases and oracles; and it is time-consuming.

In this paper, we propose the use of metrics as a tool to guide and
control the quality of the chatbot throughout its development, be-
coming a complement to dynamic testing. Metrics are an accepted
mechanism for assessing and controlling properties of software
products and processes [14]. They are complementary to dynamic
testing as they can be used at design time, even when the chatbot
is not yet functional. They can discover issues (e.g., regarding the
design complexity and size) which are not the target of dynamic
testing, and can be used to trigger recommendations for the im-
provement of the chatbot design. However, to our knowledge, there
is hardly any proposal for the practical application of metrics to
chatbot designs.

We argue that static metrics for chatbots can be useful to detect
potential problems related to user experience (e.g., complex conver-
sation flows, hard-to-read chatbot answers); as indicators of chatbot
complexity; to compare properties of heterogeneous chatbots; to
discover chatbot commonalities and cluster similar chatbots; and
to understand how different implementation platforms can impact
on the chatbot design. Ultimately, the availability of metrics may
have a notable impact on current bot development practices and
tools, helping to increase the quality of chatbots.

To pursue this goal, we propose a suite of 20 static metrics for
chatbot designs, and an accompanying tool called Asymob that sup-
ports their evaluation over heterogeneous chatbot implementations.

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

SAC’22, April 25 - April 29, 2022, Brno, Czech Republic P. C. Cañizares et al.

To avoid reimplementing the metrics for every chatbot implemen-
tation platform, Asymob defines the metrics over a neutral design
notation called Conga [28], and provides importers from several
platforms into Conga. We report on an evaluation applying the
metrics over Dialogflow and Rasa chatbots from public repositories,
and over predefined chatbots provided by the implementation plat-
forms. Our experiment reveals quality issues in some chatbots, and
shows that the metrics can serve as a basis for comparing chatbots
from different sources and built using different technologies.

The rest of the paper is organized as follows. Section 2 explains
the basics about chatbots. Section 3 revises related work. Section 4
proposes a suite of chatbot metrics over a neutral chatbot design
notation. Section 5 describes tool support, and Section 6 evaluates
the metrics over chatbots from several sources (predefined, open-
source repositories) and technologies (Rasa, Dialogflow). Finally,
Section 7 concludes and outlines lines for future work.

2 AN OVERVIEW OF CHATBOTS

Chatbots are conversational software systems with a natural lan-
guage interface to existing services, like those in banking or shop-
ping. Figure 1 shows a diagram with their typical working scheme.
Normally, the user starts the interaction by providing an utterance –
a phrase in natural language – (step 1) which the chatbot processes
to give a proper response (step 6). The interaction can be using text
(e.g., if the chatbot is embedded in a social network like Telegram1)
or voice (e.g., if the chatbot is deployed on smart speakers like
Amazon echo2). The processing of the user utterance involves a
number of steps, which we detail next.

user

utterance
(NL)

intent1

chatbot match
intent

…

intenti
…

chatbot
response

2

4
external
service

build
response
extract
params

5

3

1

6

Figure 1: Chatbot working scheme.

Most chatbots are designed around a set of intents. These are
conversation topics the chatbot aims at recognizing (step 2 in the
figure), related to the offered functionality. Depending on the im-
plementation platform, intents are defined either using regular
expressions (e.g., as in Pandorabots [26]) or with training phrases
that become interpreted using natural language processing (NLP).
Additionally, intents can include parameters identifying relevant
information pieces to be extracted from user utterances (step 3).

As an example, a chatbot for a cafeteria would define an intent
to recognize the users’ orders. This intent would be matched by
phrases like “I’d like a medium cappuccino”, from which the chatbot
would extract two parameters: the type of drink (cappuccino) and
1https://telegram.org/
2https://en.wikipedia.org/wiki/Amazon_Echo

its size (medium). Parameters are typed by entities, which can be
pre-existing in the platform (e.g., dates or numbers) or user-defined
for a specific domain (e.g., the type and size of drinks). User-defined
entities declare a list of literals (e.g., medium and large for the size
of drinks) with their synonyms.

Upon receiving a user utterance, the chatbot matches the more
likely intent, performs some predefined actions to handle the intent,
such as accessing an external service (step 4), and composes a
text/voice response (step 5) which may incorporate media elements
(e.g., images, links) or widgets supported by the social network
(e.g., buttons in Telegram). For example, the cafeteria chatbot may
need to access an information system to check the availability of
discounts and annotate the order, and the response may report
the final price. If the chatbot lacks a matching intent for a user
utterance, it can trigger a fallback intent to ask for clarification.

Typically, conversations are structured into flows that intertwine
user utterances and chatbot responses. As an example, upon the
user utterance “I’d like a medium cappuccino”, the chatbot may
answer “Would you like something to eat?”, leading to a new user
interaction (e.g., “No thanks”), and so on, according to the defined
conversation flow within the chatbot design.

Moore and Arar [23] propose a classification of chatbots depend-
ing on their conversation style. System-centric chatbots answer
user queries or interpret commands by means of 2-turn conversa-
tions (i.e., each user turn starts a new conversation and the chatbot
lacks state). Content-centric chatbots act as an interface for FAQs,
typically providing long document-like responses that may not
be appropriate for voice-based interfaces or mobile devices with
small screens. Visual-centric chatbots present buttons and other wid-
gets to facilitate user interaction, in a style borrowed from mobile
phones. Finally, conversation-centric chatbots mimic human conver-
sations, offering conversation management utterances (e.g., “What
do you mean?”) and short responses. This latter type of chatbots are
normally preferred because their conversation style suits a wider
variety of devices and engages better in natural conversations.

3 RELATEDWORKS ON CHATBOT QUALITY

ASSESSMENT

Since the early days of conversational systems [39], researchers
have proposed ways for evaluating their quality. For example, PAR-
ADISE [37] is an early framework based on the correlation of per-
formance and user satisfaction.

Recently, the popularity of chatbots has raised concerns on
proper conversational design. For example, IBM’s Natural Con-
versation Framework [24] proposes conversation patterns [25] and
design principles [23, 34]. The latter include guidelines like recipi-
ent design (i.e., allow multiple conversation paths for different user
types), minimization (i.e., use concise chatbot answers), and repair
(i.e., provide support for clarifications). In this line, Chatbottest [9]
defines guidelines for chatbot design issues in categories like an-
swering, error management, intelligence, navigation, personality
and understanding. However, the burden is on the developer to
manually test whether the chatbot fulfils the guidelines.

Literature reviews [27, 31] have also identified chatbot quality
properties and ways to assess them. Radziwill and Benton align

https://telegram.org/
https://en.wikipedia.org/wiki/Amazon_Echo

Automating the Measurement of Heterogeneous Chatbot Designs SAC’22, April 25 - April 29, 2022, Brno, Czech Republic

bot quality attributes with the ISO-9241 notion of usability [1] (effi-
ciency, effectiveness and satisfaction), while Peras [27] adds further
categories (e.g., information retrieval, affect). Generally, the assess-
ment of these quality properties relies on the dynamic execution
of the chatbot, on collecting statistical data, or on subjective evalu-
ations [10, 16, 22, 33]. Instead, our goal is to provide metrics that
can be calculated automatically and statically on chatbot designs.

Other approaches assess quality via testing [7]. For instance,
tools like Botium [3] or OggyBug [13] support test automation.
Still, the developer has to provide a set of user utterances and ex-
pected chatbot answers within the envisioned conversation flows.
To alleviate this burden, some works focus on the generation of
challenging test user utterances [4, 5], e.g., via mutation of the train-
ing phrases defined for the intents. ChatEval [35] targets testing
readability, which can be done statically by applying metrics (e.g.,
BLEU2 and average cosine similarity [19]) to the chatbot responses,
and interactively by requiring the user to complete evaluation tasks.
Instead, our goal is to provide complementary assessment mecha-
nisms to testing in the form of metrics, which can be applied prior to
deploying the chatbot and can reveal defects in the chatbot design.

As we will see in Section 4.2, some of our metrics profit from the
work of the NLP community, which has developed useful readability
metrics [19, 30]. For example, Pitler and Nenkova [30] combine
lexical, syntactic and discourse features in a highly predictive model
of human judgements of text readability. In this model, several
linguistic features correlate best with readability judgments. In
particular, the average number of verb phrases per sentence, the
number of words in the text, and the vocabulary, among others, are
associated with human assessments of how well a text is written.
More specific to chatbots, Liu et al. [19] identify some weaknesses
of metrics for chatbot responses, and provide recommendations for
future chatbot evaluation systems.

Overall, we observe a lack of metrics to evaluate statically and
automatically quality aspects of chatbot designs, independently of
the chatbot implementation platform. Our goal is to fill this gap.

4 CHATBOT DESIGN METRICS

In order to provide a suite of metrics independent from the chatbot
implementation technology, we propose using a neutral design
notation to represent chatbots, over which the metrics can be com-
puted. In this section, firstly, Section 4.1 introduces the chatbot
design notation, and then, Section 4.2 details our proposed metrics.

4.1 A neutral notation for chatbot designs

Since our aim is to develop metrics for chatbot designs, we need a
concrete notation over which to define the metrics. For this purpose,
we rely on the chatbot neutral notation we proposed in [28], called
Conga. We opt for this neutral notation because, as reported in [28],
its definition is based on a thorough revision of 15 widely used chat-
bot development platforms. This means that the design concepts in
Conga can be mapped from and to all these platforms. Hence, by
defining the metrics over Conga, they become platform-agnostic as
well as significant for many chatbot development platforms. As we
will show in Section 5, another practical implication is that one can
build importers from different platforms into Conga to perform
the measurement of existing chatbots.

Figure 2 depicts the meta-model of Conga. It permits represent-
ing a chatbot by a Chatbot object, which contains a set of Intents,
Entities, Actions performed by the bot, and conversation Flows. The
notation supports multi-language chatbots, and so, each intent can
declare a number of TrainingPhrases per definition language. The
phrases may refer to Parameters, which are defined at the level of
the intent. Parameters are typed either by predefined entities (enu-
meration PredefinedEntity) or user-defined Entity objects. Entities
can be Simple, Regex (regular expressions, a change in this new
version of the meta-model) or Composite, and for each language (En-
tityLanguage), they declare the set of literals and synonyms making
up the entity. For example, a chatbot can declare a simple entity
for drink sizes with literals small, medium and large in English, and
additionally define synonyms regular for medium and big for large.

A chatbot can define one or more Actions of type Text, Image,
HttpRequest, HttpResponse and Empty. The two first types are used
to compose responses combining text and images. HttpRequest and
HttpResponse allow configuring the communication of the chatbot
with external services in the backend. The last action type Empty
is a wildcard for other platform-specific actions, added in this new
version of the meta-model to facilitate transformation between
platform-specific definition into Conga (explained in Section 5.2).

Finally, the conversation flow between the chatbot and the users
is modelled by Flow objects consisting of user and bot turns (classes
BotInteraction and UserInteraction). The user turn refers to the intent
to be recognized in the interaction (reference UserInteraction.intent).
The bot turn specifies the actions that the bot has to perform (ref-
erence BotInteraction.actions).

4.2 A metrics suite for chatbot designs

We propose the suite of metrics for chatbot designs that Table 1
shows. All metrics measure internal attributes of chatbots. We
considered three sources when designing the metrics:
• Some of them, like INT (the number of intents) or ENT (the num-
ber of user-defined entities), are calculated by taking statistics
of concepts from the meta-model in Figure 2. According to [28],
these concepts are common in chatbot development frameworks.

• Some other metrics have been adapted from the NLP litera-
ture [19, 30] to assess the readability of the chatbot responses
or the complexity of the expected user utterances.

• Finally, we use the conversation design principles proposed
in [23, 34], and Moore and Arar’s classification of chatbots [23],
to interpret the value of some metrics such as PATH (the number
of conversation paths), FLOW (the number of conversation entry
points) and WPOP (the number of words per bot output phrase).
The fourth column of Table 1 classifies the potential impact of

the metrics on usability (as defined in the ISO 9241-11) [1] in terms
of Effectiveness (i.e., accuracy and completeness with which users
achieve their goals), efficiencY (i.e., time and resources that users
expend to achieve their goals) and Satisfaction (i.e., comfort and
acceptability of use). We also classify metrics based on their target:
either global design properties, or specific aspects of intents, entities
or conversation flows. Non-global metrics can be computed per
element (intent, entity, flow) or averaged for all elements of a kind.

4.2.1 Global metrics. We start introducing global metrics. These
measure the number of intents (INT), entities (ENT) and flows (FLOW,

SAC’22, April 25 - April 29, 2022, Brno, Czech Republic P. C. Cañizares et al.

Empty

entities

Regex

Regular
Expresion

exp: String

actions

params

inputs

«enum»
PredefinedEntity

TEXT
DATE
NUMBER
FLOAT
TIME

flows
Flow

BotInteractionUserInteraction

Training
Phrase

literals: String[*]

LanguageIntent

lang: Language

Intent

name: String
fallback: boolean

Composite Simple

CompositeInput

literals: String[*]

SimpleInput

value: String
synonyms: String[*]

Input

EntityLanguage

lang: Language

Entity

name: String

Parameter

name: String
ptype: PredefinedEntity[0..1]
list: boolean
required: boolean
prompts: String[*]

LanguageText

literals: String[*]
lang: Language

Image

URL: String

HttpResponse

HttpRequest

URL: String
data: Map
headers: Map

Text

Action

name: String

Chatbot

name: String
lang: Language[1..*]

next*

next

init
1..*

1..*
intent

langs
*

phrases

*

refparams
*

*

intents
1..*

1..*

1..*

 entities *

type
0..1

langs
1..*

refparams
*

request

text

1..*

actions
1..*

Figure 2: Meta-model for chatbot design (adapted from [28]).

Table 1:Metrics for chatbot designs. Columndimension uses

abbreviations for Effectiveness, efficiencY and Satisfaction.

Metric Description Type Dim

Global metrics

INT # intents design size E
ENT # user-defined entities vocabulary size S
FLOW # conversation entry points conversation diversity E
PATH # different conversation flow paths conversation complexity S,Y
CNF # confusing phrases [8] bot understanding E,S
SNT # positive, neutral, negative output phrases [33] user experience S

Intent metrics

TPI # training phrases per intent topic complexity E,S
WPTP # words per training phrase topic complexity Y
VPTP # verbs per training phrase topic complexity S,Y
PPTP # parameters per training phrase topic complexity E
WPOP # words per output phrase readability S,Y
VPOP # verbs per output phrase readability S
CPOP # characters per output phrase readability S,Y
READ reading time of the output phrases [6] readability Y

Entity metrics

LPE # literals per entity vocabulary complexity S
SPL # synonyms per literal vocabulary complexity S
WL word length readability Y,S

Flow metrics

FACT # actions per flow bot response complexity E,S
FPATH # conversation flow paths conversation complexity S,Y
CL conversation length conversation complexity Y

PATH), and include understanding and user experience metrics (CNF,
SNT).

INT is an indicator of design size and functionality, since each
intent contributes to functionality offered to the user. The larger
INT is, the more functionality the bot offers, potentially impacting
effectiveness. ENT measures the size of the chatbot vocabulary and
the conversation topic diversity, which may affect satisfaction.

FLOW counts the number of conversation entry points for users,
being an indicator of conversation diversity. Since each entry point

might correspond to a functionality, FLOW may impact effective-
ness. PATH measures conversation complexity. If PATH=FLOW, all
conversations are linear, while if PATH>FLOW, some conversation
splits into several paths. As an example, Figure 3 shows two small
excerpts of chatbot designs conformant to the Conga meta-model.
The chatbot design (a) depicts a linear flow (i.e., FLOW=PATH=1).
Linear flows enable simple conversations, typically request/reply,
which may indicate a system-centric chatbot [23]. The chatbot
design (b) shows a conversation flow that splits after the bot in-
teraction (FLOW=1, PATH=2). This kind of flows permits non-linear
conversations with multiple turns and dialogue alternatives, typical
of conversation-centric chatbots [23].

c: Chatbot

f1: Flow

u1: User
Interaction

b1: Bot
Interaction

flows

init

i: Intent

intents

intent

t: Text

user> What’s the size of drinks?
bot> Small, medium and large

(a) (b)

next

c: Chatbot

f2: Flow

u2: User
Interaction

b2: Bot
Interaction

flows

init

j: Intent

intents

intent

t: Text

user> A small cappuccino
bot> Take away?
user> I’ll drink it here

next

u3: User
Interaction

u4: User
Interaction

user> A small cappuccino
bot> Take away?
user> Yes please

...

...

next
path1

path1 path2
path2 lin

ea
r

p
a

th

next

Figure 3: Chatbot design excerpts illustrating (a) a linear con-

versation flow, (b) a forked conversation flow.

The combined use of FLOW and PATH can help detecting devia-
tions of some design principles. The recipient principle [34] advices
to design for the target users, from experts (who may give all in-
formation at once) to novices (where the bot needs to prompt for
more information). In turn, the repair principle [34] recommends

Automating the Measurement of Heterogeneous Chatbot Designs SAC’22, April 25 - April 29, 2022, Brno, Czech Republic

supporting clarifications in the conversation, and multiple paths
may be an indication of this. Moreover, having several paths per
flow potentially results in more natural conversations (impacting
satisfaction) but less predictable for the user (likely impacting the
user effort or efficiency).

The CNF metric measures the semantic distance between the
training phrases of different intents, identifying similar phrases
that may confuse the bot to make it identify a wrong intent [8].
Since this may cause errors, the metric is related to effectiveness
and satisfaction.

Finally, SNT measures the sentiment of the chatbot output
phrases, classifying them into positive, negative and neutral. This
is related to satisfaction, since a bot that outputs mostly negative
phrases may cause a negative user experience [33].

4.2.2 Intent metrics. Intent metrics measure quality properties of
each intent with respect to the expected user utterances and the
bot output phrases.

Related to user utterances, TPI counts the number of training
phrases in the intent definition. The larger TPI is, the more precise
the intent recognition might be, but this also may indicate a com-
plex intent. WPTP measures the length of the training phrases in
words. Long phrases are not adequate or even possible in social
networks (e.g., Twitter restricts message length), and so, largeWPTP
values might be problematic. VPTP measures the number of verbs
per training phrase. This is an indication of interaction complexity,
since composite phrases with several verbs can be more difficult
to elaborate for the user [30]. PPTP measures the number of infor-
mation items (i.e., parameters) the user needs to provide, and the
larger PPTP is, the more complex is the intent domain concept.

Regarding chatbot outputs,WPOPmeasures the number of words
per bot output phrase. According to the minimization principle [23,
34], the bot answers should be concise. Large phrases are more
difficult to understand and can be problematic in social networks.
The latter is more concretely targeted by CPOP, as high values may
require scrolling (e.g., in mobile devices) and long reading times
(with the risk that the user does not complete the reading [23]). Long
outputs are especially problematic for voice-based chatbots, since
speaking takes longer than reading [23]. Hence, large CPOP values
may decrease user satisfaction and efficiency. Similarly, VPOP is
another indicator of the complexity of the chatbot responses, given
by the number of verbs per output phrase. Finally, READ measures
the expected reading time of the bot output responses (a metric
related to efficiency). This is calculated as the ratio between the
number of words per output phrase, and the number of words that
an average person can read per minute [6].

4.2.3 Entity metrics. Entity metrics target user-defined entities rep-
resenting domain concepts. LPE and SPL are indicators of the com-
plexity of the conceptsmanaged by a chatbot, impacting satisfaction.
High LPE and SPL values signal elaborate concepts, but since SPL
counts synonyms, a large number may improve recognition in user
utterances (better satisfaction). A narrow vocabulary (low SPL) may
constrain the way users communicate with the chatbot, and may
lead to frustration if the chatbot does not recognize important pa-
rameters within user utterances. WL measures the length of words,
and similar to CPOP, it contributes to readability and may impact
user satisfaction and efficiency.

4.2.4 Flow metrics. Flow metrics consider features of the conversa-
tion flows. FACT measures the bot actions (presenting images, text,
calling backends) in each conversation flow. The more actions, the
more sophisticated tasks can be achieved. Moreover, rich controls
help to reduce the user cognitive load and speed up the completion
of the intended task. Hence, FACT may impact effectiveness and
satisfaction. FPATH measures the number of possible paths per con-
versation flow. High values signal complex conversations (i.e., more
natural-sounding but less predictable). The PATH global metric is
calculated by adding up FPATH for each flow. Finally, CL measures
the length of each path within a flow, as the number of bot and
user turns. This is an indicator of conversation complexity. Longer
paths require more time to complete – which affects efficiency –
and are typical of conversation-centric chatbots [23].

5 ARCHITECTURE AND TOOL SUPPORT

We have developed a tool called Asymob supporting the automatic
measurement of chatbot designs specified with Conga. Next, Sec-
tion 5.1 presents the architecture of Asymob, including its main
features, underlying technologies, and steps required to compute
the metrics. Then, Section 5.2 details the conversion of chatbots
implemented in two mainstream platforms into Conga.

5.1 Overview of Asymob

We have built a Java framework called Asymob for measuring
chatbot designs. The framework is available at https://github.com/
ASYM0B/tool. Asymob has a modular architecture that facilitates
adding new metrics in multiple programming languages, like Java,
Python and Perl. To support chatbots from different platforms, it
relies on the neutral chatbot design notation Conga, introduced
in Section 4.1. Hence, Asymob computes the metrics on Conga
models, independently of any chatbot implementation platform.
To measure chatbots from a specific platform, an importer from
the platform into Conga must be provided. Currently, Asymob has
importers from Dialogflow and Rasa. Section 5.2 will provide more
details about these two importers.

To simplify the implementation of newmetrics,Asymob supports
third-party technologies such as Stanford CoreNLP [20], Tensor-
Flow [2] and Deep Java Learning [11]. Stanford CoreNLP is an NLP
library that Asymob uses to perform sentiment and syntactic analy-
sis of the chatbot training and output phrases. The implementation
of metrics SNT and VPTP make use of this library. Asymob relies on
Deep Java Learning and TensorFlow to detect confusing phrases
between intents, using the cosine similarity algorithm. The CNF
metric is based on this algorithm.

Figure 4 shows the architecture of Asymob, and the steps to
measure a chatbot design. First, the user selects a set of metrics
(label 1) and a chatbot (label 2). Then, the Asymob core configures
the metrics database with the selected metrics, and converts the
provided chatbot into a Congamodel (label 3, see Section 5.2). Next,
the metric engine applies the selected metrics to the Conga model,
and stores the results in a meta-data file (label 4). On request (label
5), the user can obtain a report with the results in several formats
like plain text, Excel and LATEX (label 6).

https://github.com/ASYM0B/tool
https://github.com/ASYM0B/tool

SAC’22, April 25 - April 29, 2022, Brno, Czech Republic P. C. Cañizares et al.

metrics

API

CONGA MODEL

chatbot

report

Convert
to CONGA

3

Select
chatbot

2

METRIC ENGINE

METRICS DB

ASYMOB

Select
metrics

1

Request
report

5

Compute
metrics

4

meta-data
file

Generate report
6

Figure 4: Architecture of Asymob.

5.2 Importing chatbots into Conga

In the following, we provide details of the importers that we have
built to convert chatbots from two representative and widely used
chatbot platforms (Dialogflow and Rasa) into Conga.

5.2.1 From Dialogflow to Conga. Dialogflow is a low-code de-
velopment platform to create chatbots using a graphical interface
within the browser. Chatbots so defined can be exported as JSON
files, which our importer is able to convert into Conga models.

In the JSON-based representation of a Dialogflow chatbot, the file
Agent.json describes global chatbot features, like its name, definition
languages, or connection data to external services (the webhook).
The latter include details such as the URL, headers, and authentica-
tion credentials. Our importer creates a Conga Chatbot object using
the agent name and languages, and an HttpRequest action with the
webhook data.

Entities in Dialogflow can be predefined or user-defined. The lat-
ter are described either by a regular expression, a list of literals with
synonyms, or a composite entity. Each user-defined entity becomes
exported as a JSON file containing the entity name and configura-
tion information (if it is a regular expression or a composite entity),
and one file per definition language with the corresponding literals.
Our importer converts these files into Conga Entity objects.

Intents in Dialogflow have a name, training phrases, responses,
parameters, and an indication of whether they are fallback or enable
a webhook, among other features. Intents are exported into JSON
files. For each intent definition file, our importer creates a Conga
Intent object with its Parameters and TrainingPhrases, as well as the
necessary Actions to compose each response. We currently support
text and image responses, and convert other custom responses into
Empty actions. Anyhow, this does not affect the defined metrics.

Finally, Dialogflow controls the conversation flow via contexts.
These can be input/output to intents, and can store relevant con-
versation state. Our importer uses the contexts and the responses
of the related intents to generate Conga Flow objects.

5.2.2 From Rasa to Conga. Rasa is a framework to develop chat-
bots using Python, markdown and YAML. The definition of a Rasa
chatbot comprises several files. The config.yml file defines con-
figuration properties, like the chatbot language or the used NL
prediction model. The data/nlu.md file contains training data to
identify the intents correctly, with its entities and synonyms or
regular expressions. As an example, the data/nlu.md file in Listing 1
defines an intent called order (lines 1–4). The parameters in the
training phrases can be defined within brackets and followed by
the entity name in parenthesis (e.g., [cappuccino](type)), or with
curly brackets (e.g., [medium]{"entity": "size", "value": "medium"}).

1 ## intent:order
2 − I'd like a [medium]{"entity": "size", "value": "medium"} [cappuccino](type)
3 − I want a [small]{"entity": "size", "value": "small"} [latte](type)
4 − Can I order a [large]{"entity": "size", "value": "large"} [black](type) coffee?
5 ## synonym:small
6 − little
7 − short
8 ## synonym:medium
9 − regular
10 − median
11 ## synonym:large
12 − big
13 − extra

Listing 1: Example of data/nlu.md Rasa file

1 ## story1
2 ∗ order
3 − utter_confirm_order

Listing 2: Example flow from data/stories.md Rasa file

The listing also declares synonyms for literals small (lines 5–7),
medium (8–10) and large (11–13).

The file domain.yml defines the chatbot intents, entities and
actions. Actions can be text, images, buttons, or custom actions
defined in the Python file actions.py. Finally, the file data/stories.md
specifies the conversation flows. Listing 2 shows a flow exam-
ple, by which matching the intent order triggers the response ut-
ter_confirm_order.

We have built an importer that reads the chatbot language from
the config.yml file and creates Conga intents and entities from
the data/nlu.md file, Conga actions from the domain.yml file, and
Conga flows from the data/stories.md file. As in the case of Di-
alogflow, our importer from Rasa supports text and image responses,
and converts Rasa custom actions into Conga empty actions.

6 EVALUATION

We have used Asymob to perform an empirical study to assess the
suitability of our metrics to detect quality issues and compare bots.
We aim at answering the following research questions (RQs):
RQ1 Can the definedmetrics detect quality issues in real chatbots?
RQ2 Can the defined metrics be used to compare heterogeneous

chatbots?
Next, Section 6.1 describes the experiment setting, Sections 6.2

and 6.3 answer the RQs, and Section 6.4 discusses threats to validity.

6.1 Experiment setting

We have analysed 6 Dialogflow chatbots and 6 Rasa chatbots built
by third parties, available at https://github.com/ASYM0B/evaluation.
Table 2 shows the metric results, with some extreme values marked
in bold. Chatbots are categorised depending on their implemen-
tation platform (Dialogflow or Rasa) and their source (Github or
Predefined natively on the platform). We used Asymob to import
the chatbots into the Conga format (cf. Section 5.2) and obtain the
metrics.

6.2 RQ1: Detection of quality issues

Some metric values reveal design issues. The CPOP of the FAQ-RASA-
NLU chatbot is 285 characters. This indicates poor accessibility and

https://github.com/ASYM0B/evaluation

Automating the Measurement of Heterogeneous Chatbot Designs SAC’22, April 25 - April 29, 2022, Brno, Czech Republic

Table 2: Summary of the evaluation. Columns use abbreviations for Dialogflow (DF), Rasa (RS), Github (G) and Predefined (P).

Chatbot Global metrics Intent metrics Entity metrics Flow metrics

Name Plat. Src INT ENT FLOW PATH CNF SNT (%) TPI WPTP VPTP PPTP WPOP VPOP CPOP READ LPE SPL WL FACT FPATH CL

bikeShop DF G 5 1 4 4 3 38 50 12 2.60 3.48 0.81 0.60 14.00 2.60 55.20 12.00 2.00 5.50 6.64 2.00 1.00 2
googleChallenge DF G 32 34 32 32 1442 19 59 22 6.94 9.62 1.76 0.94 19.81 3.49 105.16 16.00 3.15 4.54 11.37 1.00 1.00 1
mysteryAnimal DF G 62 37 62 62 770 0 0 0 6.52 4.34 1.30 2.27 0.00 0.00 0.00 0.00 163.84 3.89 9.21 3.00 1.00 1
Car DF P 77 14 61 117 4188 0 0 0 9.70 6.80 1.29 2.25 0.00 0.00 0.00 0.00 14.93 3.60 11.41 1.00 1.92 2
Dining-Out DF P 9 15 4 14 148 20 61 19 94.67 3.81 0.76 8.33 8.50 2.56 31.44 7.00 1255.00 2.39 11.36 1.25 3.50 3
Easter-Eggs DF P 6 0 6 6 0 10 51 39 7.17 6.23 1.31 0.00 7.46 1.63 37.54 6.00 0.00 0.00 0.00 1.00 1.00 1
05_event_bot RS G 17 0 1 20 167 40 60 0 3.82 2.05 0.12 0.00 15.00 2.75 87.00 12.00 0.00 0.00 0.00 1.02 20.00 6
FAQ-RASA-NLU RS G 8 0 7 7 4 15 34 51 3.38 4.67 1.00 0.00 54.56 3.56 285.56 46.00 0.00 0.00 0.00 1.00 1.00 1
small-talk-rasa-stack RS G 87 0 86 92 8467 24 62 14 22.51 3.82 1.13 0.00 6.66 1.81 28.48 5.00 0.00 0.00 0.00 1.00 1.07 16

concertbot RS P 6 2 1 1 0 25 75 0 0.00 0.00 0.00 0.00 2.25 0.25 12.25 1.00 0.00 0.00 0.00 3.50 1.00 2
formbot RS P 8 1 2 9 37 17 83 0 35.63 4.25 0.92 1.25 5.00 1.50 22.50 4.00 0.00 0.00 0.00 1.16 4.50 7
moodbot RS P 6 0 2 4 22 20 80 0 10.50 2.10 0.44 0.00 3.00 1.00 11.25 2.00 0.00 0.00 0.00 1.10 2.00 3

Figure 5: Large response from

FAQ-RASA-NLU in a mobile in

Telegram.

readability, as large an-
swers require scrolling in
mobile devices, long read-
ing times (46 seconds for
this bot), and cannot be
fully displayed on social
networks like Twitter due
to their message length
constraints. As an exam-
ple, Fig. 5 shows a chatbot
response deployed on
Telegram using a mobile
phone, which requires
scrolling as the response
has more than 30 lines.
This is an example of a
content-centric chatbot
to access a FAQ. How-
ever, according to [23],
conversation-centric
chatbots with short
answers and a natural
conversation style are
usable in more platforms.
The googleChallenge chat-
bot has the same problem
to a lesser extent (CPOP
is 105, READ is 16).

The flowmetrics reveal
some complex conversations. The bot 05_event_bot has a single
FLOW with 20 paths (PATH and FPATH are 20). Another indicator of
conversation complexity is the conversation length CL. The chatbot
with the highest CL value (16) is small-talk-rasa-stack.

The sentiment of the bot responses may affect the user experi-
ence. In this respect, FAQ-RASA-NLU and Easter-Eggs have 51% and
39% of negative responses (third value of column SNT). Also related
to user experience, the high CNF values in bots small-talk-rasa-stack,
Car and googleChallenge (8467, 4188 and 1442) may signal chatbot
understanding problems due to the existence of similar training
phrases in different intents, which may confuse the bots. For ex-
ample, Car has similar training phrases in different intents, such as

“turn down the heater for each seat in the car” and “turn off the heating
in my car”. Other bots with confusing training phrases are small-talk-
rasa-stack (“I am very bored” / “I’m bored of you”), googleChallenge
(“What is the time duration for completing Masters in Artificial Intel-
ligence?” / “Completion period for masters in AI?”), Dining-Out (“now
cafe” / “find cafe”), and bikeShop (“Can you fix my road bike?” / “Can
you service my bike?”). Hence, CNF provides useful information to
detect intents that a chatbot may mismatch, without resorting to
intensive dynamic testing.

Overall, we can answer RQ1 positively, since our metrics could
detect issues regarding readability (CPOP), conversation complexity
(FLOW, CL), user experience (SNT) and bot understanding (CNF).

6.3 RQ2: Comparing chatbots

Metrics also serve to compare or classify chatbots based on their
design style [23]. For instance, some chatbots like Car,mysteryAnimal
and small-talk-rasa-stack are very detailed and complex according
to their number of intents (INT), flows (FLOW) and paths (PATH).
Instead, others like bikeShop and moodbot are simpler.

Interestingly, two chatbots have no output phrases, one for being
a predefined template bot that the developer needs to complete (Car),
and the other because a backend API generates the output dynami-
cally (mysteryAnimal). Likewise, chatbots Easter-Eggs, 05_event_bot,
small-talk-rasa-stack and FAQ-RASA-NLU lack a domain-specific vo-
cabulary, since ENT is 0. This might be explained as being general-
purpose (e.g., for small talk) or simple bots (e.g., 05_event_bot).

Regarding conversations, some chatbots have linear conversa-
tions where FLOW=PATH (e.g., FAQ-RASA-NLU, concertbot), while
others support complex conversations where FLOW<PATH (e.g.,
Car, Dining-Out, 05_event_bot). Additionally, the conversation length
of some bots is limited to one user-bot interaction (CL=1), and
hence, they can be classified as system-centric [23]. Within this
set, bots providing long responses (like FAQ-RASA-NLU) are likely
content-centric. Other bots allow longer, more elaborate conversa-
tions (CL>1). Bots with non-linear conversations (FLOW<PATH) and
multiple turns (CL>1) can be classified as conversation-centric [23].

Metrics are also helpful to compare implementation platforms.
First, all entity metrics of the analysed Rasa chatbots have value
0. This is so as entities in Rasa are not defined explicitly, but via
a Python method that returns whether an entity accepts a given
String. The concertbot bot has 0 training phrases because Rasa bots

SAC’22, April 25 - April 29, 2022, Brno, Czech Republic P. C. Cañizares et al.

can be trained interactively. We observe that bots in Rasa define
fewer entities (ENT) than in Dialogflow. In general, the analysed
Dialogflow bots are more detailed in terms of functionality (INT),
vocabulary (ENT) and intent recognition (TPI). Conversations in the
Dialogflow bots tend to be linear (PATH=FLOW) while in Rasa they
split in several paths (PATH>FLOW), denoting less predictability.

Finally, metrics can be used to compare open-source and prede-
fined bots. In Rasa, the predefined bots are simpler than the Github
ones, reflected on lower values of INT, FLOW and PATH. This does
not happen with the Dialogflow bots.

Overall, we can answer RQ2 affirmatively. Our metrics permit
comparing chatbot complexity and size regarding intents, flows
and paths; enable classification of chatbots along Moore and Arar’s
taxonomy [23]; and – being defined over Conga – they can be
applied to different chatbot technologies and chatbot sources.

6.4 Threats to validity

Given the limited size of the experiment, we cannot claim dif-
ferences or similarities between implementation platforms or
predefined/open-source bots, for which we would need a larger
scale experiment. Instead, our goal was to hint at the usefulness of
the defined static chatbot metrics.

Another limitation of our evaluation is that it relies on custom-
made importers from existing platforms into Conga. Since Rasa
is a framework, it permits programming some aspects of chatbots
in different ways. For example, one may train the model on the fly
instead of using training phrases, or even change the conversation
flow using Python. All these variants may affect the metric values.

7 CONCLUSIONS AND FUTUREWORK

The increasing relevance of chatbots demands support for assessing
their quality prior to testing. With this aim, we have proposed a
suite of metrics that can be evaluated statically on chatbot designs,
independently of their implementation platform. We have demon-
strated the feasibility of our proposal by building the Asymob tool,
which we have used to evaluate existing heterogeneous chatbots.

In the future, we plan to extend our evaluation to get a panorama
of the features of open-source chatbots and derive metric thresholds.
Our metrics could be correlated with development metrics like ef-
fort, and validated with usability metrics collected dynamically. We
plan to extend our tool to cluster chatbots by similarity, and enable
semantic clustering by representing chatbots using a bag-of-words
model. The latter can be useful to provide a search facility over
chatbot repositories. Technically, we aim at embedding Asymob as
a web service to let the community profit from its metrics.

ACKNOWLEDGMENTS

Work funded by the Spanish Ministry of Science (RTI2018-095255-
B-I00) and the R&D programme of Madrid (P2018/TCS-4314).

REFERENCES

[1] ISO 9241-11. 1998. Ergonomic requirements for office work with visual display
terminals (VDTs). Part II guidance on usability. (1998).

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. Gordon
Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng. 2016. Tensorflow: A system for large-scale machine learning. In OSDI.
USENIX Association, 265–283.

[3] Botium. [n. d.]. https://www.botium.ai/. ([n. d.]). last access in 2021.
[4] J. Bozic and F. Wotawa. 2019. Testing chatbots using metamorphic relations. In

ICTSS (LNCS), Vol. 11812. Springer, 41–55.
[5] S. Bravo-Santos, E. Guerra, and J. de Lara. 2020. Testing chatbots with Charm. In

QUATIC (CCIS), Vol. 1266. Springer, 426–438.
[6] M. Brysbaert. 2019. How many words do we read per minute? A review and

meta-analysis of reading rate. J. of Memory and Language 109 (2019), 104047.
[7] J. Cabot, L. Burgueño, R. Clarisó, G. Daniel, J. Perianez-Pascual, and R. Rodríguez-

Echeverría. 2021. Testing challenges for NLP-intensive bots. In BotSE. IEEE,
31–34.

[8] D. Cer, Y. Yang, S.-Y. Kong, N. Hua, N. Limtiaco, R. St. John, N. Constant, M.
Guajardo-Céspedes, S. Yuan, C. Tar, Y.-H. Sung, B. Strope, and R. Kurzweil. 2018.
Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018), 7.

[9] Chatbottest. [n. d.]. https://chatbottest.com/. ([n. d.]). last access in 2021.
[10] D. Coniam. 2014. The linguistic accuracy of chatbots: usability from an ESL

perspective. Text & Talk 34, 5 (2014), 545–567.
[11] Deep Java Library. [n. d.]. https://djl.ai/. ([n. d.]). last access in 2021.
[12] Dialogflow. [n. d.]. https://dialogflow.com/. ([n. d.]). last access in 2021.
[13] M. B. dos Santos, A. P. C. C. Furtado, S. C. Nogueira, and D. D. Moreira. 2020.

OggyBug: A test automation tool in chatbots. In SAST. ACM, 79–87.
[14] N. E. Fenton and S. Lawrence Pfleeger. 1996. Software metrics - a practical and

rigorous approach (2. ed.). International Thomson.
[15] FlowXO. [n. d.]. https://flowxo.com/. ([n. d.]). last access in 2021.
[16] J. Jiang and N. Ahuja. 2020. Response quality in human-chatbot collaborative

systems. In SIGIR. ACM, 1545–1548.
[17] C. Lebeuf, M.-A. D. Storey, and A. Zagalsky. 2018. Software bots. IEEE Softw. 35,

1 (2018), 18–23.
[18] Lex. [n. d.]. https://aws.amazon.com/en/lex/. ([n. d.]). last access in 2021.
[19] C.-W. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. 2016.

How NOT to evaluate your dialogue system: An empirical study of unsupervised
evaluation metrics for dialogue response generation. In EMNLP. ACL, 2122–2132.

[20] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky.
2014. The Stanford CoreNLP natural language processing toolkit. In ACL: System
Demonstrations. 55–60.

[21] Microsoft Bot Framework. [n. d.]. https://dev.botframework.com/. ([n. d.]). last
access in 2021.

[22] S. Möller, R. Englert, K.-P. Engelbrecht, V. V. Hafner, A. Jameson, A. Oulasvirta, A.
Raake, and N. Reithinger. 2006. Memo: Towards automatic usability evaluation
of spoken dialogue services by user error simulations. In ICSLP. ISCA.

[23] R. J. Moore and R. Arar. 2018. Conversational UX Design: An Introduction. In
Studies in Conversational UX Design. Springer, 1–16.

[24] R. J. Moore and R. Arar. 2019. Conversational UX Design: A Practitioner’s Guide to
the Natural Conversation Framework. ACM, New York, NY, USA.

[25] R. J. Moore, E. Young Liu, S. Mishra, and G.-J. Ren. 2020. Design systems for
conversational UX. In CUI. ACM, 45:1–45:4.

[26] Pandorabots. [n. d.]. https://home.pandorabots.com/. ([n. d.]). last access in 2021.
[27] D. Peras. 2018. Chatbot evaluation metrics: Review paper. In ESD. Varazdin

Development and Entrepreneurship Agency, 89–97.
[28] S. Pérez-Soler, E. Guerra, and J. de Lara. 2020. Model-driven chatbot development.

In ER (LNCS), Vol. 12400. Springer, 207–222.
[29] S. Pérez-Soler, S. Juárez-Puerta, E. Guerra, and J. de Lara. 2021. Choosing a

chatbot development tool. IEEE Software 38, 4 (2021), 94–103.
[30] E. Pitler and A. Nenkova. 2008. Revisiting readability: A unified framework for

predicting text quality. In EMNLP. ACL, 186–195.
[31] N. M. Radziwill and M. C. Benton. 2017. Evaluating quality of chatbots and

intelligent conversational agents. (2017). http://arxiv.org/abs/1704.04579
[32] Rasa. [n. d.]. https://rasa.com/. ([n. d.]). last access in 2021.
[33] R. Ren, J. W. Castro, S. T. Acuña, and J. de Lara. 2019. Evaluation techniques for

chatbot usability: A systematic mapping study. Int. J. Softw. Eng. Knowl. Eng. 29,
11&12 (2019), 1673–1702.

[34] E. A. Schegloff. 2007. Sequence Organization in Interaction. Cambridge University
Press.

[35] J. Sedoc, D. Ippolito, A. Kirubarajan, J. Thirani, L. Ungar, and C. Callison-Burch.
2019. Chateval: A tool for chatbot evaluation. In NAACL-HLT (Demonstrations).
ACL, 60–65.

[36] A. Shevat. 2017. Designing bots: Creating conversational experiences. O’Reilly.
[37] M. A. Walker, D. J. Litman, C. A. Kamm, and A. Abella. 1997. PARADISE: A frame-

work for evaluating spoken dialogue agents. In ACL/EACL. Morgan Kaufmann
Publishers / ACL, 271–280.

[38] Watson. [n. d.]. https://www.ibm.com/cloud/watson-assistant/. ([n. d.]). last
access in 2021.

[39] J. Weizenbaum. 1966. ELIZA - A computer program for the study of natural
language communication between man and machine. Commun. ACM 9, 1 (1966),
36–45.

https://chatbottest.com/
https://dialogflow.com/
https://flowxo.com/
https://aws.amazon.com/en/lex/
https://dev.botframework.com/
https://home.pandorabots.com/
http://arxiv.org/abs/1704.04579
https://rasa.com/
https://www.ibm.com/cloud/watson-assistant/

	Abstract
	1 Introduction
	2 An Overview of Chatbots
	3 Related Works on Chatbot Quality Assessment
	4 Chatbot Design Metrics
	4.1 A neutral notation for chatbot designs
	4.2 A metrics suite for chatbot designs

	5 Architecture and Tool Support
	5.1 Overview of Asymob
	5.2 Importing chatbots into Conga

	6 Evaluation
	6.1 Experiment setting
	6.2 RQ1: Detection of quality issues
	6.3 RQ2: Comparing chatbots
	6.4 Threats to validity

	7 Conclusions and Future Work
	Acknowledgments
	References

