
Reusable Graph Transformation Templates

Juan de Lara and Esther Guerra

Department of Computer Science
Universidad Autónoma de Madrid (Spain)
{Juan.deLara,Esther.Guerra}@uam.es

Abstract. Model-Driven Engineering promotes models as the principal
artefacts of the development, hence model transformation techniques –
like graph transformation – become key enablers for this development
paradigm. In order to increase the adoption of Model-Driven Engineer-
ing in industrial practice, techniques aimed at raising the quality and
productivity in model transformation development are needed.
In this paper we bring elements from generic programming into graph
transformation in order to define generic graph transformations that can
be reused in different contexts. In particular, we propose the definition
and instantiation of graph transformation templates whose requirements
from generic types are specified through so-called concepts, as well as
mixin layers that extend meta-models with the extra auxiliary elements
needed by templates.

1 Introduction

Model-Driven Engineering (MDE) is a software development paradigm that pro-
motes the use of models as the principal assets of the development. Hence, model
manipulation techniques – like graph transformation (GT) [4] – become enabling
technologies for this approach.

In order to foster the use of MDE in industry, techniques aimed at raising the
quality of the generated software and to speed up the productivity of engineers
are needed. One way to improve productivity is to increase the reusability of
model transformations, so that they can be applied in different contexts. Unfor-
tunately, building transformations in MDE is a type-centric activity, in the sense
that transformations are defined over the specific types of concrete meta-models,
and it is difficult to reuse them for other meta-models even if they share charac-
teristics. For example, even if many languages share the semantics of Petri nets,
like activity diagrams or process modelling languages, such semantics is nor-
mally defined over some specific meta-model (a concrete realization of a Petri
net meta-model) and cannot be easily reused for other meta-models.

The present work aims at providing mechanisms to enable the correct reuse
of GT systems across different meta-models. For this purpose, we build upon
some ideas from generic programming [7] to define generic GT systems that we
call GT templates. These generic GT systems are not defined over the types of
concrete meta-models, but over variable types that need to be bound to types

2

of some specific meta-model. However, not every meta-model qualifies as a valid
binding for the variable types used in a GT template. Hence, in order to ensure
a correct reuse, we specify the requirements that meta-models need to satisfy
using a so-called concept [3, 8]. A concept gathers the structural requirements
that need to be found in a meta-model to be able to instantiate a GT template
on the meta-model types and apply the template to the meta-model instances.

In addition, GTs sometimes need auxiliary model elements to perform some
computations. For example, in order to define the semantics of Petri nets, we
may need an edge referencing the transition that is currently being fired, or in
object-oriented systems we may need to introduce an auxiliary edge to flatten
the inheritance hierarchy. These extra elements do not belong to the meta-model
of the language, but are auxiliary devices needed by the transformation. Hence, a
GT template cannot demand specific meta-models to include such extra devices
as part of its requirements. Instead, we define so-calledmixin layers [3, 15]. These
are meta-models with parameters, that are applied to specific meta-models, in-
creasing them with extra elements by a gluing construction. Mixins are generic,
and hence applicable to any meta-model that satisfies the requirements given by
a set of concepts. In this way, a GT template can be defined over the types of
the mixin and the types of the concepts such mixin needs.

This paper continues our research on model transformation reuse by means
of genericity [3, 13]. While in [13] we added genericity to model-to-model trans-
formations expressed in the ATL language, here we focus on in-place transforma-
tions expressed using GT. The use of a formal framework helps in formulating
template instantiations (i.e. bindings) precisely, identifying the needed condi-
tions for correct template reuse, and understanding the composition mechanism
of mixins. The formal semantics of DPO graph transformation yields tighter
conditions for correct template reuse than we obtained in previous works [3, 13].
Paper organization. First, Section 2 introduces our approach. Then, Section 3
defines meta-models algebraically. Section 4 explains how to bind concepts to
meta-models, providing a mechanism to instantiate GT templates. Section 5
shows how to define and apply mixins. Section 6 provides further examples.
Finally, Section 7 compares with related work and Section 8 concludes.

2 Overview of the Approach

Frequently, very similar transformations are developed for different meta-models.
The reason is that although similar, each transformation is developed to work
with the types of a particular meta-model, so that its use with types of other
unrelated meta-models is not possible. This results in a waste of effort as the
same problems and solutions have to be tackled repeatedly. For example, there is
a catalogue of well-known refactorings for object-oriented systems [6]; however,
if we encode them as GT rules, we need a different encoding for each meta-
model we use. In this way, we need to encode a different transformation for
the UML meta-model, the Java meta-model, or the meta-model of any other
object-oriented notation we may like to work with.

3

Analogously, there are languages with similar semantics. For example, many
languages share the semantics of Petri nets, such as activity diagrams or domain-
specific languages for manufacturing (parts are produced and consumed at ma-
chines) and networking (packets are sent and received by computers). However,
if we specify their semantics through a GT system, we need to encode a different
system for the meta-model of each language.

Therefore, a mechanism to define GT systems for families of meta-models
sharing some requirements would promote the reutilization of transformations.
For this purpose, we use so-called concepts [3, 8] to gather the requirements
of a family of meta-models, needed by a reusable GT system to work. These
requirements are structural, and hence a concept has the form of a meta-model as
well. However its elements (nodes, edges, attributes) are interpreted as variables
to be bound to elements of specific meta-models. The rules of a GT template use
the variables in the concept instead of the types of a specific meta-model. As
a result we obtain reusability because the concept can be bound to a family of
meta-models, and the GT template becomes applicable to any of them.

This situation is illustrated in Fig. 1, where a GT template has been defined
over the variable types of a concept C. As an example, C may define the core
structural elements that characterize Petri net-like languages, and the transfor-
mation may include rules (defined over the type variables in C) to refactor Petri
net-like models, according to the catalogue in [12]. The concept can be bound to
a set L(C) of meta-models sharing the structure required by the concept. In this
way, the rules can be applied on instances of any meta-model MM ∈ L(C). We
have depicted the set of models conformant to a meta-model MM as L(MM).

Concept C

Meta-model n

binding

Meta-model 1

binding

…

L(C)

typed on

Model-1Model-1Model1 1

L(meta-model 1)

Model-1Model-1Modeln 1

L(meta-model n)

conforms to

…

conforms to

applicable to

Holder Process*

*

Token

tokens
1

in

out

:Process

LHS

:Holder :Process:Holder

:Token

RHS

GT Template

Fig. 1. Scheme of the approach: concept, GT template and binding.

In addition, oftentimes, GTs make use of auxiliary graph elements to imple-
ment some model manipulations. For example, when defining the semantics of
Petri nets, we need an auxiliary node to mark which transition is being fired, as
well as the processed input and output places, in order to add/remove tokens
to/from the appropriate places. The types of these auxiliary elements do not be-
long to the meta-model of the language (Petri nets), but are auxiliary elements

4

needed just for the simulation. If this simulator is built as a GT template over a
concept, then this concept cannot include the auxiliary elements (and no bind-
ing will be provided for them) because the meta-models will hardly ever include
such extra devices.

In order to solve this problem, we define so-calledmixin layers as an extension
mechanism for meta-models. A mixin is a generic meta-model defining all extra
elements needed by a GT template but which are not present in a concept. In
addition, it includes some formal parameters acting as gluing points between
the mixin and the concept. Thus, the GT template can use the variable types
defined on both the mixin and the concept. Once we bind the concept into a
specific meta-model, this is extended with the new types defined by the mixin,
and the template can be applied on instances of this extended meta-model.

This scheme is shown in Fig. 2. In particular, the mixin adds some auxiliary
elements to simulate Petri net-like languages (a pointer to the process being
fired and to the processed holders of tokens). The mixin defines as gluing points
the nodes Holder and Process, whose requirements are given by a concept C
(structure of Petri net-like languages). Binding the concept to a specific meta-
model will increase the meta-model with the elements of the mixin. The GT
template is defined over the types resulting from gluing C and the mixin, and is
applicable to instances of meta-models to which we can bind C.

Concept C

mixin layer ML

typed on

applicable to

MM n

MM 1

…

L(C)

MM n’

MM 1’

…

L(ML)

applyML

M1 1

L(MM 1)

L(MM n)

Mn 1

…

Holder Process*

*

Token

tokens
1

in

out

defined over

requirements

for ext. points

extension

points Holder Process

Current
inp

out

** 0..1

Holder Process

conforms

conform
s

ty
ped

typed

binding

binding

active: boolean

:Process

RHS

:Current

active=true

:Process

LHS

GT Template

Fig. 2. Scheme of the approach: adding auxiliary elements through a mixin layer.

3 An Algebraic Setting for Models and Meta-Models

In our setting, we consider attributed1, typed graphs [4] of the form G = ⟨V ;E;
A;D; srcE , tarE : E → V ; srcA : A → V ; tarA : A → D⟩, made of a set V of

1 For simplicity, we do not consider abstract nodes or attributes in edges.

5

vertices, a set E of edges, a set A of attributes, a set D of data nodes, and
functions src and tar that return the source and target vertices of an edge, and
the owning vertex and data value of an attribute.

In order to represent meta-models, we consider type graphs with inheritance
and with cardinality constraints in associations, in the style of [16]. In this way, a
meta-model MM = ⟨G; I ⊆ V ×V ; card : E → N×(N∪{∗})⟩ is made of a graph
G, together with a set I of inheritance relations, and a function card that returns
the cardinality of target ends of edges. We assume EMF-like references for edges
(i.e. with cardinality only in the target end) so that UML-like associations (i.e.
with cardinality in both ends) should be modelled as a pair of edges in both
directions. Given a node n ∈ V , we define its clan as the set of its direct and
indirect children, including itself. Formally, clan(n) = {n′ ∈ V |(n′, n) ∈ I∗},
where I∗ is the reflexive and transitive closure of I. For simplicity, we avoid
adding an algebra to MM .

Similar to [16], we give semantics to cardinality constraints by means of
positive and negative atomic graph constraints [4] of the form PC(a : P → Q)
and ¬PC(a : P → Q). The former require that for each occurrence of P in a
graph G, we find a commuting occurrence of Q. Formally, for each m : P → G
we need m′ : Q → G s.t. m = m′ ◦ a. Negative atomic constraints demand that
for each occurrence of P in a graph, there is no commuting occurrence of Q. If
G satisfies a constraint a, we write G |= a.

In particular, we generate graph constraints regulating the minimum and
maximum number of instances at association ends. Thus, for each edge e in the
meta-model with card(e) = [l, h], if l > 0 we generate a positive graph constraint
as shown to the left of Fig. 3, and if h ̸= ∗ we generate a negative graph constraint
as shown to the right of the same figure.

A

B

e

meta-model

fragment

:A

:B

:A

:B

…

P Q

negative constraint due to upper bound

:A

:B

:A

:B

…

P Q

positive constraint due to lower bound

Fig. 3. Graph constraints generated from cardinality constraints.

Next we define morphisms between meta-models as a graph morphism with
some extra constraints given by the inheritance hierarchy. We will use this notion
later to define the binding between a concept and a meta-model.

A morphismMM →MM ′ between two meta-models (named MM-morphism)
is given by a clan morphism [2] f : GMM → MM ′ from the graph GMM of the
first meta-model to the second meta-model, preserving the inheritance hierar-
chy. A clan morphism is similar to a standard E-Graph morphism [4], but it
also takes into account the semantics of inheritance. Hence, for each edge e
of GMM that is mapped to an edge e′ of GMM ′ , we allow the source node

6

of e to be mapped to any node in the clan of the source node of e′. Formally,
fV (srcE(e)) ∈ clan(src′E(fE(e))), and similar for the target of edges. In addition,
we allow mapping an attribute of a node to an attribute of a supertype the node
is mapped into. Formally, fA(srcA(a)) ∈ clan(src′A(fA(a))). As in [9], the mor-
phism has to preserve the inheritance hierarchy as well, hence if (u, v) ∈ IMM ,
then (f(u), f(v)) ∈ I∗MM ′ . Please note that we purposely neglect cardinality
constraints in MM-morphisms because the semantics of these is given by graph
constraints. We will deal with this issue when defining the binding between a
concept and a meta-model.

A model M can be seen as a meta-model with empty inheritance hierarchy
and no cardinality constraints. Therefore, we can represent the typing function

M
type−→MM as an MM-morphism. In addition, we say that M conforms to MM

(written M |=type MM) if there is a typing M
type−→ MM and M satisfies all

graph constraints derived from the cardinality constraints in MM .

A

Be
[0,*]

int f

MM

A’

EC’ e’
[2,3]

MM’

B’

[1,*]

d

C

int
a a’

:B
:e

3

M

:C
:a

type

Fig. 4. MM-morphisms.

Example. Fig. 4 shows an MM-morphism
f between two meta-models, where we
have represented attributes as arrows to
a datatype (see a) and mapped elements
with primas (e.g. node A is mapped to
node A’). The attribute in node B is
mapped to an attribute defined in E,
which is a supertype of the node mapped
to B, and the same for the edge e. Regard-
ing the preservation of the inheritance hi-
erarchy, MM-morphisms permit introduc-
ing intermediate nodes in the hierarchy of
the target meta-model (like node E which is between the image nodes A’ and B’)
as well as mapping several nodes in an inheritance relation into a single node.

The figure also shows a typing MM-morphism type : M → MM using the
UML notation for typing. We can compose MM-morphisms, hence M is also
typed by f ◦ type : M → MM ′. However, conformance is not compositional in
general, as M conforms to MM (M |=type MM) but not to MM ′ due to its
cardinality constraints (M 2f◦type MM ′). Finally, given M ′ |=type MM ′, we
have that the pullback object of MM → MM ′ ← M ′ is typed by MM , but
need not be conformant to MM .

4 Graph Transformation Templates

GT templates are standard GT systems specified over the variable types of a
concept, which has the form of a meta-model. As an example, Fig. 5 shows to
the left the concept TokenHolder, which describes the structural requirements
that we ask from Petri net-like languages, namely the existence of classes playing
the roles of token, holder (places in Petri nets) and process (transitions). We can
use this concept to define generic GT systems for the simulation and refactoring
of models in languages with this semantics. For instance, the right of the same

7

figure shows one of the behaviour-preserving refactoring rules proposed in [12]
expressed in a generic way, using the types of the concept. The rule removes
self-loop holders with one token provided they are connected to a single process.

Holder Process

in*

TokenHolder (Concept)

Holder Process

Token

1 out*

tokens

Token

LHSNAC1NAC2 RHS

ESH (elimination of self-loop holders)

p:Process

i1:in o:out

LHS

p:Process

i1:in i2:in

NAC1

q:Process

i3:in

NAC2

p:Process

RHS

t:Token h:Holderh:Holderh:Holder

Fig. 5. Concept TokenHolder (left). GT template over the concept (right).

In order to use the GT template, we need to bind the concept to a specific
meta-model. This binding is an MM-morphism with some extra constraints de-
rived from the particular GT template to be reused. As an example, Fig. 6 shows
a binding attempt from the TokenHolder concept to a meta-model to define fac-
tories. Factory models contain machines interconnected by conveyors which may
carry parts. Both conveyors and machines need to be attended by operators.
Hence, our aim is to apply the rule template ESH on instances of the Factories
meta-model. However, there is a problem because this rule deletes holders, and
we have bound holders to conveyors, which are always connected to some op-
erator as required by the cardinality constraints. Thus, if we try to apply the
rule (using DPO semantics), it will always fail as we will obtain a dangling edge.
This shows that the binding should ensure some correctness conditions, which
we present in the remaining of the section.

TokenHolder (Concept)

Conveyor Machine
in*

Part
1 out*

parts

Element

name: String

Operator
1

attendedby

bind

Holder Process
in*

Token

1 out*
tokens

{ (Holder,Conveyor), (out,out),

(Token, Part), (tokens,parts),

(Process, Machine), (in,in) }

Factories

Fig. 6. Binding a concept to a meta-model: first attempt.

C
bind // MM

M ′

type′

OO

emb //

P.B.
ww

∗
��

M

type

OO

∗
��

EE

M ′
f emb′ // Mf

The general instantiation scheme of a GT template
for a given binding is shown in the diagram to the right.
The template is typed over the concept C, which needs
to be bound to a meta-model MM by a special kind of
MM-morphism bind : C → MM . The binding provides a
re-typing for the rules of the template, which then become
applicable to instance graphs of MM . In order to ensure
a correct application of the template, we must guarantee that for every model

8

M |=type MM , if we consider only the elements M ′ given by the concept C
(obtained by the pullback in the diagram), and M ′ |= C, then, for each possible
sequence of rule applications over M ′, there is a sequence of rule applications
(using the same order) applicable toM . Moreover, there should be an embedding
from the final model M ′

f into Mf .

Although this issue resembles the one handled by the embedding and ex-
tension theorems [4], there are fundamental differences. The main one is that
our goal is to discard invalid bindings and initial models that would lead to an
incorrect application of the GT template before applying it. On the contrary, the
mentioned theorems check the feasibility of each particular derivationM ′ ⇒∗ M ′

f

checking some conditions after the transformation is performed. Hence, our view
gains in efficiency. Moreover, the embedding and extension theorems do not con-
sider inheritance and cardinalities in type graphs.

In order to ensure that a GT template will behave as expected for a given
meta-model, we generate two kinds of constraints. The first kind works at the
meta-model level and forbids bindings that would always lead to an incorrect
execution of the template, as some rules of the template would be inapplicable for
any possible model due to dangling edges or violations of cardinality constraints.
However, some bindings may lead to incorrect executions only for some initial
models. Thus, our second kind of constraints detects potential incorrect template
executions for a particular instance of a meta-model. If a binding and an initial
model satisfy these constraints, then the template can be safely applied to the
model. Next we explain in detail each constraint type.

Constraints for bindings. These constraints act as application conditions
for the binding. Fig. 7(a) illustrates how they work. Assume we want to ap-
ply our refactoring GT template to models that conform to the Factory meta-
model. The first step is therefore binding the TokenHolder concept to the meta-
model, as indicated in the figure. Looking at the rule in Fig. 5 we notice that
it deletes holders. As holders are mapped to conveyors, and conveyors are al-
ways attended by one operator, applying the rule to a model with a conveyor
will always produce a dangling edge making the rule not applicable. Since this
is not the behaviour expected from the original template, this binding is not
allowed. In order to detect these situations, we attach the atomic constraint

¬PC(TokenHolder
q→MandatoryEdge) shown in the figure to the binding, in

a similar way as application conditions are attached to the LHS of a rule. This
constraint forbids a binding if the holder is connected to some node Z through an
edge with lower cardinality bigger than 0. As this is the case should we identify
e and attendedby, the binding is not allowed.

The structure of the generated constraints for bindings is depicted in Fig. 7(b).
The constraints use MM-morphisms and must be satisfied by the function bind.
They are generated for each node type that is created or deleted by the GT tem-
plate. Thus, if the template creates or deletes an object of type A, we generate
a constraint that has the concept C as premise, and the concept with a class X
(existing or not in C) connected to A through an edge e with lower cardinality
bigger than 0 as consequence. We also demand that the match of the edge e

9

TokenHolder (Concept)

q

Conveyor Machine
in*

1

out*

parts

Element

name: String

Operator
1attendedby

bind

MandatoryEdge

ext { … (Z,Operator),

(e,attendedby) }

Holder
in*

Token

1 out*
tokens

Holder
*

Token

1 out*
tokens

in

Z[l..h]

e

{ (Holder,Conveyor), (out,out),

(Token, Part), (tokens,parts),

(Process, Machine), (in,in) }

with l>0

Process Process

Part

A

P

…

A X
e [l..h]

Q

…

l>0with:

Concept C

q

(a) (b)

Fig. 7. (a) Evaluating constraint in a binding. (b) Scheme of constraints for bindings.

does not belong to bind(C). If a rule deletes an A object, the intuitive meaning
is that it will produce a dangling edge because of this mandatory edge, disabling
the rule application. This breaks the correctness criteria because we could apply
the rule in a model M ′ conformant to the concept but not in a model M confor-
mant to the meta-model. Therefore we forbid such a binding. If a rule creates an
A object, we generate the same constraint because applying the grammar to a
model M typed over MM would only produce incorrect models, as the created
object would need to be connected to an object of type X through an unforeseen
edge type e. Please note that the generated constraint takes into account the
case where the edge e has been defined in an ancestor of the class bound to A,
as we use MM-morphisms. On the contrary, the constraint does not detect if
there is a subtype defining an unbounded mandatory edge and does not forbid
the binding in such a case. Indeed, in this situation, there may be initial models
where the template can be safely applied, therefore this scenario is handled by
a second set of constraints working at the model level (see below).

Regarding cardinalities, we forbid binding edges with cardinality [l..h] to
edges with cardinality [l′..h′] if both intervals do not intersect, as from a model
M |= MM we would never obtain a model M ′ |= C performing the pullback.
In addition, if a GT template creates or deletes instances of the source or target
classes of an edge e defined in a concept C, then we can map the edge to e′ =
bind(e) only if card(e) = card(e′). This condition is not required for edges whose
source and target are not created or deleted by the template; however, the initial
model must satisfy the cardinality constraints of the concept in any case (i.e.
the pullback object M ′ must satisfy M ′ |= C).

Constraints for initial models. These constraints check whether a GT tem-
plate can be safely executed on a given initial model. For instance, assume that
the cardinality of attendedby is [0..1] in the meta-model of Fig. 7(a), so that
the binding is allowed. Still, given an initial model like the one in Fig. 8(a), our
generic refactoring will not be applied to the conveyor as it has one operator,

10

hence leading to a dangling edge as discussed before. This differs from the orig-
inal template behaviour where such dangling edges do not occur. However, we
can safely apply the rule to any model where conveyors have no operator, which
we check by generating the constraint in the upper part of the figure.

:Conveyor
:out

name=“belt1” name=“press”

:in

:Operator:Part

:Conveyor

:Operator

P

Q

q

m m’=

:bind(A)

P

:bind(A) :Z

Q

with e MM\bind(C)

:e

:bind(A)

P

:bind(A) :X

Q

:d

bind(A)

Z

MM
…

e

with d MM\bind(C)

bind(A)

X

MM
…

d

(a) (b)

:Conveyor

:Machine

Fig. 8. (a) Evaluating constraint in model. (b) Scheme of constraints for initial models.

Fig. 8(b) shows the structure of the generated constraints for initial models.
These constraints restrict the instances of the meta-model MM to which the
concept C is bound. They are generated for each node type in the meta-model
that is deleted by the GT template, as well as for its subtypes, whenever the types
declare an edge not included in the binding. Formally, if a generic rule deletes an
object of type B, we generate a constraint for each A ∈ clan(bind(B)) and for
each edge e in which A participates whose type belongs to MM \bind(C). This is
a sufficient condition to avoid violating the correctness criteria (the instantiated
template could fail due to dangling edges) but it is not a necessary condition.

5 Mixin Layers

We now define mixin layers with the purpose of extending meta-models with any
auxiliary element needed to execute a GT template. A mixin layer is a meta-
model where some of its elements are identified as parameters. Parameters are
interpreted as variable types that have to be instantiated to types of the specific
meta-model where we want to apply the mixin. However, not every meta-model
is eligible to be extended by a particular mixin, and not every type is a valid
instantiation of the mixin parameters. The requirements needed by a meta-model
and its types are given by one or more concepts.

We define a mixin layer ML as ML = ⟨MM,Conc = {Ci}i∈I , Par =
{Pj}j∈J⟩, where MM is a meta-model, Conc is a set of concepts expressing
the requirements for meta-models to be extensible by the mixin, and Par is a
set of parameters identifying the mixin extension points. Each element Pj in the
set of parameters has the form Pj = ⟨GMM ← Gj → GCi⟩, a span relating the

11

graphical elements in the mixin (GMM) with the graphical elements in one of
the concepts (GCi∈Conc).

Example. We are building a generic simulator for Petri net-like languages by
means of a GT template defined over the concept TokenHolder. However, apart
from the elements already present in this concept, the simulator must use aux-
iliary nodes and edges to model the firing of transitions. Adding these elements
to the concept is not an option because it would imply that the definition of
every language to be simulated with the template should be modified manually
to include these auxiliary elements in its meta-model. Instead, we define a mixin
which increases any meta-model to be simulated with these auxiliary elements
in a non-intrusive way. Fig. 9 shows the mixin (dotted box named “Simulation
mixin”) which declares two parameters (shaded classes Holder and Process).
Additionally, the concept TokenHolder gathers the requirements for the eligible
meta-models for the mixin. The relation between the mixin and the concept is
expressed as a span of MM-morphisms. This is used to build the meta-model
shown to the right by a gluing construction (a colimit, even though in the partic-
ular case of the figure it is also a pushout). This meta-model contains all variable
types that the GT template can use.

Holder Process
in
out

*
*

Token

tokens
1

inp

outp

** 0..1

TokenHolder

concept

Simulation mixin

Parameters

Holder Process

Holder Process
in

out
*
*

Token

tokens
1

Holder Process

inp

outp

** firing

P.O.

firing

0..1

active: boolean

Current

active: boolean

Current

Fig. 9. Specifying a mixin for the simulation of Petri net-like languages.

Fig. 10 shows some rules of the generic simulator defined over the mixin.
The rule to the left selects one enabled process to be fired, marking it with an
instance of the Current class from the mixin. Its application condition checks
the enabledness of the process (i.e. each input holder has a token). The rule to
the right removes one token from an input holder of the process being fired,
marking it as processed. Additional rules produce tokens in output holders, and
unmark the processed holders and process to allow further firings.

A mixin becomes applicable by binding its concepts to a meta-model. Fig. 11
shows the binding of concept TokenHolder to the Factory meta-model. Then,
the bound meta-model is extended with the elements defined in the mixin meta-
model but not in the concept (class Current and edges inp, outp and firing).
Thus, we can apply the GT template to instances of the resulting meta-model.

12

p:Process

RHS

c:Current

active=true

p:Process

LHS

NAC c:Current

p:Process

:in

if...

h:Holder

p:Process

:in

then

h:Holder

select transition

t:Token

:firing

RHS = NACLHS

remove token

:inp

p:Process

c:Current

active=true

:in

h:Holdert:Token

p:Process

c:Current

active=true

:in

h:Holder

:firing :firing

Fig. 10. Some rules of the GT template for the simulation of Petri net-like languages.
The template is defined over the mixin Simulation shown in Fig. 9.

Conveyor Machine
in*
out*

Element

name: String

Operator
0..1

attendedby

=

bind

meta-model

firinginp

outp

**

mixin applied to meta-model

TokenHolder

concept

Parameters

Holder Process

Holder
in

out
*
*

Token

tokens

1

0..1

Part
1

parts

Process

Conveyor Machine
in*
out*

Element

name: String

Operator
0..1

attendedby

Part
1

parts
Simulation mixin

Holder Process

inp

outp

** firing0..1

active: boolean

Current

active: boolean

Current

Fig. 11. Applying mixin Simulation to a meta-model.

The left of Fig. 12 presents formally how a mixin is applied to a meta-model.
The mixin in the figure defines a meta-model MMml, a set of concepts Ci and
parameters MMml ← Gj → Ci. The gluing of the mixin meta-model and the
concepts is obtained by calculating their colimit2, yielding object MMml. This is
the meta-model over which a GT template is defined. For instance, the template
rules shown in Fig. 10 use the meta-model to the right of Fig. 9. Next, the mixin
can be applied by binding its concepts to a particular meta-model (or in general
to a set of meta-models, as it is not necessary to bind all concepts to the same
meta-model). The colimit of the different mixin parameters MMml ← Gj → Ci

and the bound meta-models yields MM , which is used to retype the template
for its application on the bound meta-models. By the colimit universal property,
there is a unique commuting u : MMml →MM , which acts as binding between
the meta-model over which the GT template is specified and the extended specific
meta-model. The right of Fig. 12 shows this unique binding for the example.

2 in the category of MM-objects and MM-morphisms.

13

u

firinginp

outp

** 0..1

Conveyor Machine
in*
out*

Element

name: String

Operator
0..1

attendedby

Part
1

parts

active: boolean

Current

Holder Process

inp

outp

** firing0..1

active: boolean

Current

in

out
*
*Token

tokens
1

G1

~~||
||
||

// C1
bind1 //

 B
BB

BB
MM1

!!D
DD

DD

MMml ... MMml
u //_____ MM

Gj

``AAAAAA
// Ci

bindi //

>>}}}}}}
MMn

=={{{{{{

Fig. 12. Binding and applying a mixin (left). Resulting binding for the example (right).

6 Additional examples

Next we show a further example illustrating the applicability of our proposal.

Software Engineers have developed a catalog of refactorings to improve the
quality of software systems without changing its functionality [6]. One of the
most well known catalogs is specially tailored for object-oriented systems [6].
This catalog describes rules applicable to any object-oriented language, but their
encoding for a particular object-oriented notation cannot be reused to refactor
other notations. Thus, a developer should encode different rule sets for the Java
meta-model, the UML meta-model, and so on.

In our approach, we can define the refactorings once over a concept and then
bind the concept to several meta-models, obtaining reuse for each bound meta-
model. Fig. 13 shows (a simplification of) the concept, together with bindings for
two meta-models. The one to the left defines simple UML class diagrams. The
right meta-model is for Rule-Based Access Control (RBAC) [14], and permits
the definition of properties and permissions for roles that can be hierarchically
arranged. Children roles inherit the properties and permissions of parent roles.

Fig. 14 shows the generic rules for the pull-up attribute refactoring [6], which
moves an attribute to a superclass when all its children classes define it. The first
rule detects the refactoring opportunity and moves the attribute from one of the
children classes to the superclass. Then, the second rule removes the attribute
from the rest of children. We can also implement a more refined version of this
refactoring by defining a mixin that declares a pointer for classes, which the rules
can use to indicate the parent class being refactored (i.e. class p in the rules).

The binding bind1 in Fig. 13 allows applying the generic refactoring to UML
models and pull-up fields. Nonetheless, using a different binding permits refac-
toring references and methods as well, mapping Attribute to Method or to
Reference. Similarly, the binding bind2 permits refactoring properties in role
hierarchies, but we can bind Attribute to Operation to pull-up operations.

14

OO (concept)

Class

name: String

atts *

Attribute

name: String

Method

name: String

methods*

bind1

{ (Class, Class), (Class.name, Element.name),

(Attribute, Field), (Attribute.name, Element.name),

(Method, Method), (Method.name, Element.name),

(parent, superclasses), (attrs, features),

(methods, features) }

Simple UML

(meta-model)

parent
*

Element

name: String

Package Class

StructuralFeature

superclasses
*

*

fe
a
tu

re
s

Field Method

Reference

Simple RBAC

(meta-model)

Role

name: String

super

*
Property

name: String
value: String

props

*

permission

*
Operation

name: String

bind2

{ (Class, Role),

(Class.name, Role.name),

(Attribute, Property),

(Attribute.name, Property.name),

(Method, Operation),

(Method.name, Operation.name),

(parent, super), (attrs, props),

(methods, permission) }

Subject

assignment *

Session
*

Fig. 13. Concept for Object-Oriented systems, and two possible bindings.

p:Class

:parent
a:Attribute

name = n

LHS

Pull-up attribute 1

p:Class

:parent
a:Attribute

name = n

RHS

p:Class

a:Attribute

name = n

NAC1

a1:Attribute

name = n

p:Class

:parent

if... then
a:Attribute

name = n p:Class

:parent
a2:Attribute

name = n

a:Attribute

name = n

c:Class c:Class

d:Classd:Class

p:Class

a:Attribute

name = n

c:Class

:parent

b:Attribute

name = n

LHS

Pull-up attribute 2

p:Class

a:Attribute

name = n

c:Class

:parent

RHS

Fig. 14. Rules of the GT template implementing refactoring pull-up attribute.

7 Related Work

In object-oriented programming, mixins and traits are classes that provide extra
functionality without being instantiated. Instead, other classes may inherit from
the mixin, which is a means to collect functionality. We have generalized this idea
to mixin layers. These are parameterised meta-models adding auxiliary elements
to a set of meta-models sharing the characteristics specified by a concept.

In previous work [3], we brought ideas from generic programming into MDE,
implementing them in the MetaDepth tool. In particular, we were able to write
generic model manipulations as EOL programs, an OCL-like language with side
effects. Here we have adapted these ideas to the algebraic framework of GT,
which presents several advantages: (i) we were able to formulate correctness
criteria for instantiation and application of GT templates; (ii) in contrast to
EOL programs, GT permits analysing the effects of transformations, and this is
useful to discard bindings leading to incorrect applications of the GT templates;
(iii) formalizing bindings as morphisms provides a more precise description of
the binding constraints, which we could not do in [3] because the behaviour of

15

EOL programs cannot be easily analysed; and (iv) the algebraic formalization of
mixins helped us in understanding how they work. Moreover, we discovered that
a pattern-based approach to genericity (like the one presented here) imposes
less restrictive conditions for the binding than one based on a scripting language
(like EOL or OCL). This is so as MM-morphisms allow defining the target of
a reference in a supertype (cf. reference e′ in Fig. 4). In EOL, a navigation
expression c.e may lead to an E object, which may not have all properties of a
B′ object (as expected by the generic operation). On the contrary, in GT one
provides a pattern with an explicit type for its objects (e.g. B which gets mapped
to B′), hence filtering the undesired E objects.

Parameterized modules were proposed in algebraic specification in the eight-
ies [5]. A parameterized module is usually represented with a morphism par : P →
M from the formal parameters to the module. In this paper, we propose using
concepts to restrict how the formal parameters can be bound to the actual param-
eters in mixins. We can also think as GT templates as parameterized models (by
a concept). In this case, the special semantics of DPO GT induce additional con-
straints in the binding. Our MM-morphisms are based on S-morphisms [9], but
we support attributes and do not require morphisms to be subtype preserving.
Our composition mechanism is also related to Aspect-Oriented Modelling [10],
which focuses on modularizing and composing crosscutting concerns.

In the context of GT, there are some proposals for adding genericity to rules.
For example, the VIATRA2 framework [1] supports generic rules where types
can be rule parameters. MOFLON has also been extended with generic and
reflective rules using the Java Metadata Interface [11]. These rules can receive
string parameters that can be composed to form attribute or class names, and
may contain nodes that match instances of any class. Still, none of these tools
provide mechanisms (like concepts and bindings) to control the correctness of rule
applications, or extension mechanism (like mixins) for meta-models. We believe
that the ideas presented in this paper can be adapted to these two approaches.

8 Conclusions and Future Work

In this paper we have adapted generic programming techniques to increase the
reusability of GTs. In particular, we have defined GT templates, which are not
typed over a specific meta-model, but over concepts specifying the structural
requirements that a meta-model should fulfil if we want to apply the template
on its instances. Hence, the GT template can be instantiated for any meta-
model satisfying the concept, obtaining reusable transformations. Besides, many
GT systems use auxiliary elements that have to be included ad-hoc in the meta-
models. We have proposed a non-intrusive solution consisting on the definition of
mixin layers declaring any extra device used by the template. The requirements
that a meta-model should fulfil to be extended through the mixin are given by
a concept. Again, we obtain reusability because a template that uses types of a
mixin can be applied to any meta-model that satisfies the mixin requirements.

16

As for future work, currently we forbid bindings that can lead to an incorrect
execution of a GT template. However, it may be sometimes possible to semi-
automatically adapt the template to make it work correctly. In addition, now
we require an exact match of the concept in the meta-models, but to increase
reusability, we plan to provide techniques to resolve some heterogeneities in the
binding, in the line of [13]. On the practical side, we plan to include the lessons
learnt regarding correct binding and correct reuse in our MetaDepth tool.
Acknowledgements.Work funded by the Spanish Ministry of Science (projects TIN2008-

02081 and TIN2011-24139) and the Region of Madrid (project S2009/TIC-1650).

References

1. A. Balogh and D. Varró. Advanced model transformation language constructs in
the VIATRA2 framework. In SAC’06, pages 1280–1287, 2006.

2. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Attributed
graph transformation with node type inheritance. TCS, 376(3):139–163, 2007.

3. J. de Lara and E. Guerra. Generic meta-modelling with concepts, templates and
mixin layers. In MoDELS’10, volume 6394 of LNCS, pages 16–30. Springer, 2010.

4. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. Springer-Verlag, 2006.

5. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints. Springer, Monographs in Theor. Comp. Sci., 1990.

6. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

7. R. Garćıa, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. A comparative study
of language support for generic programming. SIGPLAN, 38(11):115–134, 2003.

8. D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine.
Concepts: linguistic support for generic programming in C++. SIGPLAN Not.,
41(10):291–310, 2006.

9. F. Hermann, H. Ehrig, and C. Ermel. Transformation of type graphs with inher-
itance for ensuring security in e-government networks. In FASE’09, volume 5503
of LNCS, pages 325–339. Springer, 2009.

10. J. Kienzle, W. A. Abed, F. Fleurey, J.-M. Jézéquel, and J. Klein. Aspect-oriented
design with reusable aspect models. TAOSD 7, 6210:272–320, 2010.

11. E. Legros, C. Amelunxen, F. Klar, and A. Schürr. Generic and reflective graph
transformations for checking and enforcement of modeling guidelines. J. Vis. Lang.
Comput., 20(4):252–268, 2009.

12. T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE, pages 541–580, 1989.

13. J. Sánchez, E. Guerra, and J. de Lara. Generic model transformations: Write once,
reuse everywhere. In ICMT’11, volume 6707 of LNCS, pages 62–77. Springer, 2011.

14. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

15. Y. Smaragdakis and D. Batory. Mixin layers: An object-oriented implementation
technique for refinements and collaboration-based designs. ACM Trans. Softw.
Eng. Methodol., 11(2):215–255, 2002.

16. G. Taentzer and A. Rensink. Ensuring structural constraints in graph-based models
with type inheritance. In FASE, volume 3442 of LNCS, pages 64–79. Springer, 2005.

