
A Graph Transformation-Based Semantics
for Deep Metamodelling

Alessandro Rossini1, Juan de Lara2, Esther Guerra2, Adrian Rutle3, and Yngve Lamo3

1 University of Bergen, Norway
rossini@ii.uib.no

2 Universidad Autónoma de Madrid, Spain
{Juan.deLara,Esther.Guerra}@uam.es

3 Bergen University College, Norway
{aru,yla}@hib.no

Abstract. Metamodelling is one of the pillars of model-driven engineering, used
for language engineering and domain modelling. Even though metamodelling
is traditionally based on a two-level approach, several researchers have poin-
ted out limitations of this solution and proposed an alternative deep (also cal-
led multi-level) approach to obtain simpler system descriptions. However, deep
metamodelling currently lacks a formalisation that can be used to explain fun-
damental concepts such as deep characterisation through potency and double
linguistic/ontological typing. This paper provides different semantics for such
fundamental concepts based on graph transformation and the Diagram Predicate
Framework.

1 Introduction

Model-driven engineering (MDE) promotes the use of models as the primary assets in
software development, where they are used to specify, simulate, generate and maintain
software systems. Models can be specified using general-purpose languages like UML,
but to fully unfold the potential of MDE, models are specified using domain-specific
languages (DSLs) which are tailored to a specific domain of concern. One way to de-
fine DSLs in MDE is by specifying metamodels, which are models that describe the
concepts and define the syntax of a DSL.

The OMG has proposed MOF as the standard language to specify metamodels, and
some popular implementations exist, most notably the Eclipse Modeling Framework
(EMF) [21]. In this approach, a system is specified using models at two metalevels:
a metamodel defining allowed types and a model instantiating these types. However,
this approach may have limitations [4,5,13], in particular when the metamodel includes
the type-object pattern [4,5,13], which requires an explicit modelling of types and their
instances at the same metalevel. In this case, deep metamodelling (also called multi-
level metamodelling) using more than two metalevels yields simpler models [5].

Deep metamodelling was proposed in the seminal works of Atkinson and Kühne [4],
and several researchers and tools have subsequently adopted this approach [1,2,16]. Ho-
wever, there is still a lack of formalisation of the main concepts of deep metamodel-
ling like deep characterisation through potency and double linguistic/ontological typing.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 19–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 A. Rossini et al.

Such a formalisation is needed in order to explain the main aspects of the approach,
study the different semantic variation points and their consequences, as well as to clas-
sify the different semantics found in the tools implementing them [1,2,3,16,15].

In this paper, we present a formal approach to deep metamodelling based on the
Diagram Predicate Framework (DPF) [19,20], a diagrammatic specification framework
founded on category theory and graph transformation. DPF has been adopted up to now
to formalise several concepts in MDE, such as (MOF-based) metamodelling, model
transformation and model versioning. The proposed formalisation helps in reasoning
about the different semantic variation points in the realisation of deep metamodelling
as well as in classifying the existing tools according to these options.

Paper Organisation. Section 2 introduces deep metamodelling through an example in
the domain of component-based web applications. Section 3 presents the basic concepts
of DPF. Section 4 explains different concepts of deep metamodelling through its forma-
lisation in DPF. Section 5 compares with related research, and Section 6 concludes.

2 Deep Metamodelling

This section introduces deep metamodelling through an example, illustrating the limi-
tations of two metalevels when defining DSLs which incorporate the type-object pat-
tern [4,5,13]. Moreover, it discusses some open questions that are tackled in this paper.

2.1 Overview of Deep Metamodelling

The MeTEOriC project aims at the model-driven engineering of web applications. Here
we describe a small excerpt of one of the modelling problems encountered in this pro-
ject. A full description of this case study is outside the scope of this paper, but is des-
cribed at: http://astreo.ii.uam.es/~jlara/metaDepth/Collab.html.

In MeTEOriC, a DSL is adopted to define the mash-up of components (like Google
Maps and Google Fusion Tables) to provide the functionality of a web application. A
simplified version of this language can be defined using two metalevels (see Fig. 1(a)).
The metamodel corresponds to the DSL for component-based web applications. In this
metamodel, the metaclass Component defines component types having a type identifier,
whereas the metaclass CInstance defines component instances having a variable name
and a flag indicating whether it should be visualised. Moreover, the metaassociation
type defines the typing of each component instance. The model at the adjacent meta-
level below represents a component-based web application which shows the position
of professors’ offices on a map. In this model, the classes Map and Table are instances
of the metaclass Component and represent component types, whereas the classes UAM-
Camp and UAMProfs are instances of the metaclass CInstance and represent component
instances of Map and Table, respectively.

The type-object relation between component types and instances is represented ex-
plicitly in the metamodel by the metaassociation type between the metaclasses Com-
ponent and CInstance. However, the type-object relation between allowed and actual
data links is implicit since there is no explicit relation between the metaassociations
datalink and dlinstance, and this may lead to several problems. Firstly, it is not possible

http://astreo.ii.uam.es/~jlara/metaDepth/Collab.html

A Graph Transformation-Based Semantics for Deep Metamodelling 21

Model
Metamodel

name="UAMCampus"
visualise=true

UAMCamp
camptype

id="GoogleMaps"

Map

trg

o ces

src

trg

geopos

src name="UAMProfs"
visualise=false

UAMProfs
profstype

id="FusionTable"

Table

name: String
visualise: Boolean

CInstance src
*

dlinstance

*trg

*type1
id: String

Component
trg*

datalink

src
*

(a)

Model M3

Model M2

Model M1

name="UAMProfs"
visualise=false

UAMProfs

srctrg
o cesname="UAMCampus"

visualise=true

UAMCamp

id="FusionTable"

Table

srctrg
0..1geopos*

id="GoogleMaps"

Map

@2
@2

@1id: String
name: String
visualise: Boolean

@2Component src
*

@2datalink

*trg
context Component
inv:
 self.trg->
 excludes(self)

@2

(b)

Fig. 1. A simple language for component systems in two and three metalevels

to define that the data link instance offices is typed by the data link type geopos, which
could be particularly ambiguous if the model contained multiple data link types bet-
ween the component types Map and Table. Moreover, it could be possible to specify
a reflexive data link instance from the component instance UAMProfs to itself, which
should not be allowed since the component type Table does not have any reflexive data
link type. Although these errors could be detected by complementing the metamodel
with attached OCL constraints, these constraints are not enough to guide the correct
instantiation of each data link, in the same way as a built-in type system would do if
the data link types and instances belonged to two different metalevels. In the complete
definition of the DSL, the component types can define features, such as the zooming
capabilities of the map component. Again, these features would be represented using
the type-object pattern with metaclasses Feature (associated to Component) and Featu-
reInstance (associated to CInstance). These metaclasses need to be correctly instantia-
ted and associated to the component instances, which leads to complex constraints and
even more cluttered models. Hence, either one builds manually the needed machinery to
emulate two metalevels within the same one, or this two-metalevel solution eventually
becomes convoluted and hardly usable.

The DSL above can be defined in a simpler way using three metalevels (Fig. 1(b))
and deep characterisation, i.e., the ability to describe structure and express constraints
for metalevels below the adjacent one. In this work, we adopt the deep characterisation
approach described in [4], where each model element has a potency. In the original
proposal of [4], the potency is a natural number which is attached to a model element to
describe at how many subsequent metalevels this element can be instantiated. Moreover,
the potency decreases in one unit at each instantiation at a deeper metalevel. When it
reaches zero, a pure instance that cannot be instantiated further is obtained. In Section 4,
we provide a more precise definition for potency.

In deep metamodelling, the elements in the top metalevel are pure types, the elements
in the bottom metalevel are pure instances, and the elements at intermediate metalevels
retain both a type and an instance facet. Because of that, they are all called clabjects,

22 A. Rossini et al.

which is the merge of the words class and object [5]. Moreover, since in deep meta-
modelling the number of metalevels may change depending on the requirements, we
find it more convenient to number the metalevels from 1 onwards starting from the
top-most. The model M1 contains the definition of the DSL (Fig. 1(b)). In this mo-
del, clabject Component has potency 2, denoting that it can be instantiated at the two
subsequent metalevels. Its attribute id has potency 1, denoting that it can be assigned
a value when Component is instantiated at the adjacent metalevel below. Its other two
attributes name and visualise have potency 2, denoting that they can be assigned a value
only two metalevels below. The association datalink also has potency 2, denoting that
it can be instantiated at the two subsequent metalevels. The attached OCL constraint
in the model M1 forbids to reflexively connect indirect instances of Component. This
constraint has potency 2, denoting that it has to be evaluated in the model M3 only. As
elements in M2 retain a type facet, we can add cardinality constraints to geopos, while
this would need to be emulated in Fig. 1(a). The DSL in Fig. 1(b) is simpler than the
one in Fig. 1(a), as it contains less model elements to define the same DSL.

The deep characterisation is very useful in the design of this DSL. For instance, in
the model M1, the designer can specify the attributes name and visualise which should
be assigned a value in indirect instances of Component, i.e., UAMCamp and UAMProfs.
Moreover, the model M1 does not need to include a clabject CInstance or an association
dlinstance since the clabjects UAMCamp and UAMProfs are instances of the clabjects
Map and Table, respectively, which in turn are instances of the clabject Component.

The dashed grey arrows in Fig. 1(b) denote the ontological typing for the clabjects,
as they represent instantiations within a domain; e.g., the clabjects Map and Table are
ontologically typed by the clabject Component. In addition, deep metamodelling fra-
meworks usually support an orthogonal linguistic typing [5,16] which refers to the me-
tamodel of the metamodelling language used to specify the models; e.g., the clabjects
Component, Map and UAMCamp are linguistically typed by Clabject, whereas the attri-
butes id, name and visualise are linguistically typed by Attribute.

2.2 Some Open Questions in Deep Metamodelling

Deep metamodelling allows a more flexible approach to metamodelling by introducing
richer modelling mechanisms. However, their semantics have to be precisely defined in
order to obtain sound, robust models. Even if the literature (and this section) permits
grasping an intuition of how these modelling mechanisms work, there are still open
questions which require clarification.

Some works in the literature give different semantics to the potency of associations.
In Fig. 1(b), the associations are instantiated like clabjects. In this case, the association
datalink with potency 2 in the model M1 is first instantiated as the association geopos
with potency 1 in the model M2, and then instantiated as the association offices with
potency 0 in the model M3; i.e., the instantiation of offices is mediated by geopos. In
contrast, the attributes name and visualise with potency 2 in the model M1 are assi-
gned a value directly in the model M3; i.e., the instantiation of name and visualise is
not mediated. Some frameworks such as EMF [21] represent associations as Java re-
ferences, so the associations could also be instantiated like attributes. In this case, the
association datalink would not need to be instantiated in the model M2 in order to be

A Graph Transformation-Based Semantics for Deep Metamodelling 23

able to instantiate it in the model M3. This would have the effect that one could add
an association between any two component instances in the model M3, not necessarily
between instances of Table and instances of Map.

Another ambiguity concerns constraints, since some works in the literature sup-
port potency on constraints [16] but others do not [3]. In Fig. 1(b), the attached OCL
constraint in the model M1 is evaluated in the model M3 only. In other cases, it might
be useful to have a potency which denotes that a constraint has to be evaluated at every
metalevel. In addition, it is feasible to attach potencies to multiplicity constraints as
well. In Fig. 1(b), all the multiplicity constraints are evaluated at the adjacent metalevel
below. In other cases, it might be useful to attach a potency to multiplicity constraints.
For instance, a potency 2 would have the effect that one could control the number of
data link instances in the model M3.

Finally, another research question concerns the relation between metamodelling stacks
with and without deep characterisation. One could define constructions to flatten deep
characterisation; e.g., given the three-metalevel stack of Fig. 1(b), one could obtain ano-
ther three-metalevel stack without potencies but with some elements replicated along
metalevels, making explicit the semantics of potency. This would allow the migration
of deeply characterised systems into tools that do not support potency.

Altogether, we observe a lack of consensus and precise semantics for some of the
aspects of deep metamodelling. The contribution of this work is the use of DPF to pro-
vide a neat semantics for different aspects of deep metamodelling: deep characterisation
through potency and double linguistic/ontological typing. As a distinguishing note, we
propose two possible semantics of potency for each model element, i.e., clabjects, at-
tributes, associations and constraints. To the best of our knowledge, this is the first time
that the two semantics have been recognised.

3 Diagram Predicate Framework

This section presents the basic concepts of DPF that are used in the formalisation of
deep metamodelling. The interested reader can consult [9,8,10,18,19,17,20] for a more
detailed presentation of the framework.

In DPF, a model is represented by a specification S. A specification S = (S,CS :
Σ) consists of an underlying graph S together with a set of atomic constraints CS

which are specified by means of a predicate signature Σ. A predicate signature Σ =
(ΠΣ , αΣ) consists of a collection of predicates π ∈ ΠΣ , each having an arity (or shape
graph) αΣ(π). An atomic constraint (π, δ) consists of a predicate π ∈ ΠΣ together
with a graph homomorphism δ : αΣ(π) → S from the arity of the predicate to the
underlying graph of a specification.

Fig. 2 shows a specification T which is compliant with the requirements “a com-
ponent must have exactly one identifier”, “a component may be connected to other com-
ponents” and “a component can not be connected to itself”. In T, these requirements are

enforced by the atomic constraints ([mult(1, 1)], δ1 : (1
a−→ 2) → (Component

id−→
String)) and ([irreflexive], δ2 : (1

a−→ 1) → (Component
datalink−−−−→ Component)).

Similar to E-graphs [11], attributes of nodes can be represented in DPF by edges from
these nodes to nodes representing data types. For example, the attribute id:String of the

24 A. Rossini et al.

clabject Component in Fig. 1(b) is represented in DPF by an edge Component
id−→ String

(see Fig. 2).
The semantics of graph nodes and arrows has to be chosen in a suitable way for

the corresponding modelling environment [20]. In object-oriented structural modelling,
each object may be related to a set of other objects. Hence, it is appropriate to interpret

nodes as sets and arrows X
f−→ Y as multi-valued functions f : X → ℘(Y).

The semantics of predicates of the signature Σ (see Fig 2) is described using the ma-
thematical language of set theory. In an implementation, the semantics of a predicate is
typically given by the code of a corresponding validator such that the mathematical and
the validator semantics should coincide. A semantic interpretation [[..]]Σ of a signature
Σ consists of a mapping that assigns to each predicate symbol π ∈ ΠΣ a set [[π]]Σ of
graph homomorphisms ι : O → αΣ(π), called valid instances of π, where O may vary
over all graphs. [[π]]Σ is assumed to be closed under isomorphisms.

The semantics of a specification is defined in the fibred way [8,10]; i.e., the semantics
of a specification S = (S,CS :Σ) is given by the set of its instances (I, ι). To check
that an atomic constraint is satisfied in a given instance of a specification S, it is enough
to inspect only the part of S which is affected by the atomic constraint. This kind of
restriction to a subpart is obtained by the pullback construction [6]. An instance (I, ι)
of a specification S consists of a graph I and a graph homomorphism ι : I → S such
that for each atomic constraint (π, δ) ∈ CS we have ι∗ ∈ [[π]]Σ , where the graph
homomorphism ι∗ : O∗ → αΣ(π) is given by the following pullback:

αΣ(π)
δ

S

O∗

P.B.

δ∗

ι∗

I

ι

In DPF, two kinds of conformance relations are distinguished: typed by and conforms
to. A specification S is typed by a graph T if there exists a graph homomorphism ι :
S → T, called the typing morphism, between the underlying graph of the specification
S and T. A specification S is said to conform to a specification T if there exists a
typing morphism ι : S → T between the underlying graphs of S and T such that (S, ι)
is a valid instance of T; i.e., such that ι satisfies the atomic constraints CT .

Fig. 2 shows two specifications S and S′, both typed by T. However, only S
conforms to T, since S′ violates the atomic constraints CT . This is because the mis-

π ∈ ΠΣ αΣ(π) Proposed vis. Semantic interpretation

[irreflexive] 1
a

X
f

∀x ∈ X : x /∈ f(x)

[mult(m, n)] 1 a 2 X f Y ∀x ∈ X : m ≤ |f(x)| ≤ n,
with 0 ≤ m ≤ n and n ≥ 1

[irr]

[m..n]

S'S

Σ

T

Plotsource“Google
Maps”

idMapMap

String[1..1]idComponentdatalink
[irr]

Fig. 2. A signature Σ and specifications T, S and S′, where only S conforms to T

A Graph Transformation-Based Semantics for Deep Metamodelling 25

sing id-typed edge violates the multiplicity constraint ([mult(1, 1)], δ1), while the
edge source violates the irreflexivity constraint ([irreflexive], δ2).

4 Formalisation of Deep Metamodelling

This section formalises different concepts of deep metamodelling through DPF. Firstly,
we introduce different interpretations of potency. Secondly, we define the syntax of po-
tency in terms of DPF. Thirdly, we define models in a deep stack together with double
linguistic/ontological typing in terms of DPF. Finally, we present an operational seman-
tics of potency in terms of constraint-aware graph transformation.

4.1 Multi- and Single-Potency

As discussed in Section 2.2, different interpretations of potency are possible. In this pa-
per, two kinds of potency are distinguished, namely multi- and single-potency, denoted
by the superscripts �p and �p, respectively.

A multi-potency �p on a clabject/reference at metalevel i denotes that this clab-
ject/reference can be instantiated at all metalevels from i + 1 to i + p (see Fig. 3). A
potency �p on an atomic constraint at metalevel i denotes that this constraint is evalua-
ted at all metalevels from i + 1 to i + p. Note that attributes only retain either type or
instance facet but not both, therefore the multi-potency on attributes can not be consi-
dered. This “multi-” semantics is the usual semantics of potency on clabjects found in
the literature.

Metalevel Clabject Reference

i A�p A
a�p

N

i+ 1 B�p-1 B
b�p-1

O

...
...

...
...

...

i+ p− 1 L�1 L
l�1

Y

i+ p M�0 M
m�0

Z

Fig. 3. Intuition on the multi-semantics of potency

In contrast, a single-potency �p on a clabject/reference at metalevel i denotes that
this clabject/reference can be instantiated at metalevel i+p only, but not at the interme-
diate metalevels (see Fig. 4). A potency �p on an attribute at metalevel i denotes that
this attribute can be instantiated (i.e., can be assigned a value) at metalevel i + p only.
A potency �p on an atomic constraint at metalevel i denotes that this atomic constraint
is evaluated at metalevel i+ p only.

26 A. Rossini et al.

Metalevel Clabject Reference Attribute

i A�p A
a�p

N A
a�p

DT

...
...

...
...

...
...

...
...

i+ p B�0 M
b�0

Z M
b�0

DV

Fig. 4. Intuition on the single- semantics of potency

4.2 Syntax of Potency

The syntax of multi- and single-potencies can be represented in DPF by a tag signature,
which has the same components of a predicate signature but a different semantic coun-
terpart (see Section 4.3 and 4.4). A tag signature Ψ = (ΘΨ , αΨ) consists of a collection
of tags θ ∈ ΘΨ , each having an arity αΨ(θ) and a proposed visualisation. Table 1 shows
the tag signature Ψ for specifying potencies.

Table 1. The tag signature Ψ for specifying potencies

θ ∈ ΘΨ αΨ(θ) Proposed visual.

<multi(p)>1 1 X�p

<multi(p)>2
1

a
2 X

f�p

Y

<multi(p)>π
1

a
2 X

f

π�p
Y

θ ∈ ΘΨ αΨ(θ) Proposed visual.

<single(p)>1 1 X�p

<single(p)>2 1
a

2 X
f�p

Y

<single(p)>π
1

a
2 X

f

π�p
Y

The tags θ ∈ ΘΨ are divided into two families <multi(p)> and <single(p)> for
multi- and single-potency, respectively. They are parametrised by the (non-negative)
integer p, which represents the potency value that is attached to an element. More
specifically, the tags <multi(p)>1 and <single(p)>1 are used for attaching poten-
cies to clabjects, <multi(p)>2 and <single(p)>2 for references and attributes, and
<multi(p)>π and <single(p)>π for atomic constraints (with compatible arity).

Given the tag signature Ψ, a potency (θ, γ) consists of a tag θ ∈ ΘΨ and a graph
homomorphism γ : αΨ(θ) → Si. Note that potencies can only be attached to clabjects,
references, attributes and atomic constraints. This restriction can be defined by adopting
typed tag signatures in which each tag is typed linguistically by a specification. This
detail is omitted in this paper for brevity.

In the following, we adopt potencies to define models in a deep stack.

4.3 Double Linguistic/Ontological Typing

A model at metalevel i in a deep stack can be represented in DPF by a (deep) spe-
cification Si. A specification (Si, λi, ωi) = (Si, Ci : Σ,Pi : Ψ, λi, ωi) consists of an

A Graph Transformation-Based Semantics for Deep Metamodelling 27

underlying graph Si, a set of atomic constraints Ci specified by means of a predicate si-
gnature Σ and a set of potencies Pi specified by means of a tag signature Ψ (see Fig. 5).
Moreover, Si conforms linguistically to the specification LM; i.e., there exists a lin-
guistic typing morphism λi : Si → LM such that (Si, λi) is a valid instance of LM.
The specification LM corresponds to the metamodelling language used to specify all
specifications in a deep stack. Furthermore, Si conforms ontologically to the specifica-
tion Si−1; i.e., there exists an ontological typing morphism ωi : Si → Si−1 such that
(Si, ωi) is a valid instance of Si−1 and the ontological typing is compatible with the
linguistic typing, i.e., ωi;λi−1 = λi.

LM Si−1

λi−1

Σ
Ci−1

Ci

Si

ωi
λi

=

Ψ
Pi

Pi−1

Fig. 5. Double linguistic/ontological typing

A specification S1 at the top metalevel 1 of a deep stack is a special case as its
elements are pure types (see Section 2). As such, S1 conforms only linguistically to
the specification LM; i.e., there is no specification S0, hence, there is no ontological
typing morphism ω1 : S1 → S0.

Example 1 (Deep Stack). Building on the example in Section 2, Fig. 6(a) shows the
specification LM while Figs. 6(b), (c) and (d) show the specifications S1, S2 and S3

of a deep stack corresponding to a simplified version of the one in Fig. 1(b). The figure
also shows the ontological typings as dashed, grey arrows.

In S1 the potency �2 on Component and datalink is specified by (<multi(2)>1

, γ1 : 1 → Component) and (<multi(2)>2, γ2 : (1
a−→ 2) → (Component

datalink−−−−→
Component)), respectively. Similarly, the potencies �1 on id and ([mult(1, 1)], δ1)
are specified by (<single(1)>2, γ3) and (<single(1)>2, γ4; δ1), respectively.

The specifications S1, S2 and S3 conform linguistically to LM; i.e., there exist
linguistic typing morphisms λ1 : S1 → LM , λ2 : S2 → LM and λ3 : S3 → LM
such that (S1, λ1), (S2, λ2) and (S3, λ3) are valid instances of LM. For instance, λ2 is
defined as follows:

λ2(Map) = λ2(Table) = Clabject
λ2(geopos) = Reference
λ2(idMap) = λ2(idTable) = Attribute
λ2(“GoogleMaps”) = λ2(“FusionTable”) = DataType

Moreover, S2 conforms ontologically to S1; i.e., there exists an ontological typing
morphism ω2 : S2 → S1 such that (S2, ω2) is a valid instance of S1:

ω2(Map) = ω2(Table) = Component
ω2(geopos) = datalink
ω2(idMap) = ω2(idTable) = id
ω2(“GoogleMaps”) = ω2(“FusionTable”) = String

28 A. Rossini et al.

S3(d)

S2(c)

S1(b)

LM(a)

“UAM
Profs”

nameTableUAM 0
UAMProfs

0

o ces 0

“UAM
Campus”

nameMapUAM 0
UAMCamp

0

“Fusion
Table”

idTable 0
Table

1

geopos 1

“Google
Maps”

idMap 0
Map

1

String
[1..1] 2name 2

[1..1] 1id 1
Component

2

[irr] 2
datalink 2

[0..1] 2

DataType

At
tr
ib
ut
e

Clabject
Re

fe
re
nc
e

Fig. 6. The specifications LM , S1, S2 and S3

Finally, S3 should conform ontologically to S2, but this is not the case as the ontolo-
gical typing morphism ω3 is undefined for some elements of S3:

ω3(UAMCamp) = Map
ω3(UAMProfs) = Table
ω3(offices) = geopos
ω3(nameMapUAM)=ω3(nameTableUAM)=ω3(“UAMCampus”)=ω3(“UAMProfs”)=∅

In the following, we adopt constraint-aware graph transformation to define an operatio-
nal semantics of single-potency and obtain a specification S3 which conforms ontolo-
gically to S2.

4.4 Semantics of Potency through Graph Transformation

Recall that a single-potency �p on a type at metalevel i denotes that this type can be
instantiated at metalevel i + p only. Hence, there are always p metalevels between an
instance with potency 0 and its type. However, in strict metamodelling, an instance with
potency 0 at metalevel i + p should be ontologically typed by a type with potency 1 at
metalevel i + p − 1. To address this problem we define a semantics of single-potency
which transforms a deep stack into a flattened stack without deep characterisation, in
which an instance with potency 0 at metalevel i+p has its type at metalevel i+p−1. This
transformation adds to each metalevel i + 1 a replica of a type with potency decreased
to p− 1 and then deletes from metalevel i the original type, until p = 1. We specify this
transformation with constraint-aware transformation rules [11].

A transformation rule t = L K
l r

R consists of three specifications L,
K and R. L and R are the left-hand side (LHS) and right-hand side (RHS) of the
transformation rule, respectively, while K is their interface. L \K describes the part of a

A Graph Transformation-Based Semantics for Deep Metamodelling 29

specification which is to be deleted, R\K describes the part to be added andK describes
the part to be preserved by the rule. Roughly speaking, an application of transformation
rule means finding a match of the left-hand side L in a source specification S and
replacing L by R, leading to a target specification S′.

Since the transformation a specification undergoes is dependent of the potencies in
the specification at the metalevel above, the transformation rules take as input and out-
put coupled specifications. A coupled specification CSi = ((Si, λi, ωi), (Si+1, λi+1))
consists of a specification (Si, λi, ωi) coupled with the specification (Si+1, λi+1). This
means that the application of transformation rules modifies specifications at two adja-
cent metalevels i and i+ 1.

Table 2 shows some of the transformation rules which define the operational seman-
tics of single-potency. In general, all these rules follow a general pattern which adds to
metalevel i+1 a replica of an element with single-potency decreased to p− 1 and then
deletes from metalevel i the original element; i.e.:

– Rules tc0 and tdt0: add to metalevel i+ 1 a replica of a clabject/data type.
– Rules tr1 and ta1: add to metalevel i+ 1 a replica of a reference/attribute.
– Rules tacr2 and taca2: add to metalevel i+ 1 a replica of an atomic constraint.
– Rules tacr3 and taca3: delete from metalevel i the original atomic constraint.
– Rules tr4 and ta4: delete from metalevel i the original reference/attribute.
– Rule tc5: deletes from metalevel i the original clabject.

Note that the rules tc0, tc5, taca2 and taca3 are analogous to the rules tr1, tr4, tacr2
and tacr3, respectively, and are omitted from Table 2 for brevity.

The transformation uses negative application conditions (NACs) and layers [11] to
control rule application. Since non-deleting rules can be applied multiple times via the
same match, each rule has a NAC equal to its RHS. Moreover, since the rules are to be
applied only if the matched potency is greater than 1, rules have another NAC deman-
ding p ≤ 1. The subscripts from 0 to 4 denote the layer to which a rule belongs, so that
rules of layer 0 are applied as long as possible before rules of layer 1, etc.

According to this layering, the transformation adds a replica of a reference only after
it adds a replica of a clabject and before it deletes the original clabject. This ensures that
the rule which adds a replica of a reference matches both clabjects with multi-potency
and their instances as well as clabjects with single-potency and their replicas. Moreover,
this ensures that the replica of the reference has as source and target an instance of
the considered clabject with multi-potency or a replica of the considered clabject with
single-potency. The layering of rules for data types, attributes and atomic constraints
follow the same rationale.

Note that the notation A:Clabject
a:Attribute

DT:DataType in the rules denotes that
λi(A) = Clabject, λi(a) = Attribute and λi(DT) = DataType.

Example 2 (Deep Stack and Application of Transformation Rules). Building on
Example 1, Figs. 7(b), (c) and (d) show the specifications S1, S2 and S3 of the deep
stack, after the application of the transformation rules. In particular, the added elements
are shown in Fig. 7(c) in green colour while the deleted elements are shown in Fig. 7(b)
in red colour.

30 A. Rossini et al.

Table 2. The transformation rules for flattening the semantics of single-potencies

CL = CK CR = NAC

tdt0 A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωL
i

DT:DataType

A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωR
i

DT:DataType

ωR
i

ta1 A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωL
i

DT:DataType

ωL
i

A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωR
i

aB:Attribute�p-1

DT:DataType

ωR
i

ωR
i

tr1 A:Clabject
a:Reference�p

N:Clabject

B:Clabject

ωL
i

O:Clabject

ωL
i

A:Clabject
a:Reference�p

N:Clabject

B:Clabject

ωR
i

aB:Reference�p-1

O:Clabject

ωR
i

ωR
i

tacr2 A:Clabject
a:Reference

π�p

N:Clabject

B:Clabject

ωL
i

aB:Reference
O:Clabject

ωL
iωL

i

A:Clabject
a:Reference

π�p

N:Clabject

B:Clabject

ωR
i

aB:Reference

π�p-1

O:Clabject

ωR
iωR

i

CL CK = CR

tacr3 A:Clabject
a:Reference

π�p

N:Clabject

B:Clabject

ωL
i

aB:Reference

π�p-1

O:Clabject

ωL
iωL

i

A:Clabject
a:Reference

N:Clabject

B:Clabject

ωR
i

aB:Reference

π�p-1

O:Clabject

ωR
iωR

i

tr4 A:Clabject
a:Reference�p

N:Clabject

B:Clabject

ωL
i

aB:Reference�p-1

O:Clabject

ωL
i

ωL
i

A:Clabject N:Clabject

B:Clabject

ωR
i

aB:Reference�p-1

O:Clabject

ωR
i

ta4 A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωL
i

aB:Attribute�p-1

DT:DataType

ωL
i

ωL
i

A:Clabject DT:DataType

B:Clabject

ωR
i

aB:Attribute�p-1

DT:DataType

ωR
i

A Graph Transformation-Based Semantics for Deep Metamodelling 31

S3(d)

S2(c)

S1(b)

LM(a)

“UAM
Profs”

nameTableUAM 0
UAMProfs

0

o ces 0

“UAM
Campus”

nameMapUAM 0
UAMCamp

0

“Fusion
Table”

idTable 0
Table

1

geopos 1

“Google
Maps”

idMap 0
Map

1

++nameTable 1

+
+
[1
..1

]
1

++[0..1] 1

++nameMap 1
++[1..1] 1

++String

String
--[1..1] 2--name 2

[1..1] 1id 1
Component

2

[irr] 2
datalink 2

--[0..1] 2

DataType

At
tr
ib
ut
e

Clabject

Re
fe
re
nc
e

Fig. 7. The specifications S1, S2 and S3, after applying the rules

Firstly, the application of tdt0 and ta1 adds to S2 the node String and the edges na-
meMap and nameTable with potency �1. In this way, the ontological typing morphism
ω3 can be defined for all the elements of S3, which makes S3 conform ontologically
to S2:

ω3(nameMapUAM) = nameMap
ω3(nameTableUAM) = nameTable
ω3(“UAMCampus”) = ω3(“UAMProfs”) = String

Secondly, the application of tacr2 and taca2 adds to S2 the atomic constraints
([mult(0, 1)], δ1), ([mult(1, 1)], δ2) and ([mult(1, 1)], δ3) with potency �1 on
the edges geopos, nameMap and nameTable, respectively. In this way, these atomic
constraints are evaluated at metalevel 0.

Thirdly, the application of tacr3 and taca3 deletes from S1 the atomic constraints
([mult(0, 1)], δ1) and ([mult(1, 1)], δ3) on the edges datalink and name, respecti-
vely. In this way, these atomic constraints are not evaluated at metalevel 1.

Finally, the application of taca4 deletes from S1 the edge name. In this way, it is
not possible to instantiate name at metalevel 1.

The presented flattening gives the semantics of potencies, so that an equivalent multi-
level system is obtained, but without using deep characterisation. However, one can
apply further flattenings using graph transformation, as shown in Fig. 8:

1. First, one can remove the double linguistic/ontological typing, keeping just one ty-
ping. This can be done by adding the linguistic metamodel on top of the ontological
stack, and replicating such metamodel elements at all metalevels except 0 and 1.

2. Second, one can flatten a multi-level system into two metalevels. The first variant
of this flattening is to merge all models of the ontological stack into a single model,
and then consider this merged model as an instance of the linguistic metamodel.

32 A. Rossini et al.

Two-level system
with ontological on top

Two-level system
with linguistic on top

Multi-level system

Multi-level system
with dual typing

Deeply characterised
multi-level system
with dual typing

Fig. 8. Flattenings for multi-level systems

The second variant is to merge all models of the ontological stack, except the top-
most one, into a single model, and then consider this merged model as an instance
of the top-most model. In this variant, given a system like the one in Fig. 1(b), one
would obtain a two-level system like the one in Fig. 1(a).

5 Related Work

A first strand of research focuses on multi-level metamodelling. In [12], MOF is ex-
tended with multiple metalevels to enable XML-based code generation. Nivel [2] is
a double metamodelling framework based on the weighted constraint rule language
(WCRL). XMF [7] is a language-driven development framework allowing an arbitrary
number of metalevels. Another form of multi-level metamodelling can be achieved
through powertypes [13], since instances of powertypes are also subtypes of another
type and hence retain both a type and an instance facet. Multi-level metamodelling can
also be emulated through stereotypes, although this is not a general modelling technique
since it relies on UML to emulate the extension of its metamodel. The interested reader
can consult [5] for a thorough comparison of potencies, powertypes and stereotypes.

A second strand of research focuses on deep characterisation. DeepJava [15], META-
DEPTH [16], and the works of Gutheil [14], Atkinson [3], and Aschauer [1] all support
deep characterisation through potency. While these works agree on that clabjects are
instantiated using the multi-potency semantics, they differ in other design decisions.
Firstly, some works are ambiguous about the instantiation semantics for associations.
In [15], the associations can be represented as Java references; hence we interpret that
they are instantiated using the single-potency semantics. In [14], the connectors are ex-
plicitly represented as clabjects but their instantiation semantics is not discussed; hence
we interpret that they are instantiated using the multi-potency semantics. Secondly, not
all works adhere to strict ontological metamodelling. In [1], the ontological type of
an association does not need to be in the adjacent metalevel above, but several meta-
levels above. Note that our single-potency semantics makes it possible to retain strict
metamodelling for associations through a flattening construction that replicates these
associations. Finally, some works differ in how they tackle potency on constraints and
methods. Potency on constraints is not explicitly shown in [3] and not considered in [1],
whereas potency on methods is only supported by DeepJava and METADEPTH.

Table 3 shows a summary of the particular semantics for deep characterisation im-
plemented by the above mentioned works and compares it with the semantics supported
by our formalisation. It is worth noting that no tool recognises the fact that multiplicity
constraints are constraints as well and hence can have a potency.

A Graph Transformation-Based Semantics for Deep Metamodelling 33

Table 3. Comparison of different deep characterisation semantics

Clabjects Associations Strictness Constraints Mult. constraints
DeepJava [15] � � yes � N.A.
Atkinson et al. [3] � � yes � �1
Aschauer et al. [1] � � no N.A. �1
METADEPTH [16] �, � �, � yes � �1
DPF formalisation �, � �, � yes �, � �, �

6 Conclusion and Future Work

In this paper, we presented a formalisation of concepts of deep metamodelling using
DPF and graph transformation. In particular, we provided a precise definition of the
double linguistic/ontological typing and two different semantics for potency on different
model elements, as well as an operational semantics of potency using a flattening based
on graph transformation.

We believe that distinction of two possible semantics for potency is important to
achieve more flexible tools, allow their comparison and their interoperability. For ins-
tance, in our case study (see Fig. 1), the multi-potency on the association datalink has
the effect that one can only add associations between instances of the component Table
and instances of the component Map in the model M3. On the contrary, a single-potency
on the association datalink would have the effect that one could add associations bet-
ween any two component instances in the model M3, not necessarily between instances
of Table and instances of Map. We found both semantics especially useful in this case
study.

To the best of our knowledge, this work is the first attempt to clarify and formalise
some aspects of the semantics of deep metamodelling. In particular, this work explains
different semantic variation points available for deep metamodelling, points out new
possible semantics, currently unexplored in practice, as well as classifies the existing
tools according to these options.

In the future, we plan to investigate the effects of combining different potency va-
lues to interdependent model elements. This includes the investigation of the effects of
overriding the potency of a clabject using inheritance, as this may lead to contradictory
combinations of potencies. We also plan to formalise the linguistic extensions propo-
sed in [16]. Finally, we will incorporate the lessons learnt from this formalisation into
the METADEPTH tool, in particular the possibility of assigning potency to multiplicity
constraints.

Acknowledgements. Work partially funded by the Spanish Ministry of Science (project
TIN2008-02081), and the R&D programme of the Madrid Region (project S2009 /TIC-
1650).

References

1. Aschauer, T., Dauenhauer, G., Pree, W.: Multi-level modeling for industrial automation sys-
tems. In: EUROMICRO 2009, pp. 490–496. IEEE Computer Society (2009)

34 A. Rossini et al.

2. Asikainen, T., Männistö, T.: Nivel: A metamodelling language with a formal semantics. Soft-
ware and Systems Modeling 8(4), 521–549 (2009)

3. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel language engi-
neering. IEEE Transactions on Software Engineering 35(6), 742–755 (2009)

4. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions on Mo-
deling and Computer Simulation 12(4), 290–321 (2002)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software and
Systems Modeling 7(3), 345–359 (2008)

6. Barr, M., Wells, C.: Category Theory for Computing Science, 2nd edn. Prentice-Hall (1995)
7. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling: A Foundation for Language Dri-

ven Development, 2nd edn., Ceteva (2008)
8. Diskin, Z.: Mathematics of Generic Specifications for Model Management I and II. In: En-

cyclopedia of Database Technologies and Applications, pp. 351–366. Information Science
Reference (2005)

9. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal Arrow Foundations for Visual
Modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI),
vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

10. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling. In: Proc. of
the 2nd Workshop on Applied and Computational Category Theory (ACCAT 2007). ENTCS,
vol. 203(6), pp. 19–41. Elsevier (2008)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Springer (March 2006)

12. Gitzel, R., Ott, I., Schader, M.: Ontological extension to the MOF metamodel as a basis for
code generation. Computer Journal 50(1), 93–115 (2007)

13. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.
Software and Systems Modeling 5(1), 72–90 (2006)

14. Gutheil, M., Kennel, B., Atkinson, C.: A Systematic Approach to Connectors in a Multi-level
Modeling Environment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 843–857. Springer, Heidelberg (2008)

15. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style? Multi-level
programming with DeepJava. In: OOPSLA 2007: 22nd Annual ACM SIGPLAN Confe-
rence on Object-Oriented Programming, Systems, Languages and Applications, pp. 229–
244. ACM (2007)

16. de Lara, J., Guerra, E.: Deep Meta-modelling with METADEPTH. In: Vitek, J. (ed.) TOOLS
2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

17. Rossini, A.: Diagram Predicate Framework Meets Model Versioning and Deep Metamodel-
ling. Ph.D. thesis, Department of Informatics, University of Bergen, Norway (2011)

18. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-merge
approach to version control in MDE. Journal of Logic and Algebraic Programming 79(7),
636–658 (2010)

19. Rutle, A.: Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. thesis, De-
partment of Informatics, University of Bergen, Norway (2010)

20. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification and
transformation of constraints in MDE. Journal of Logic and Algebraic Programming 81(4),
422–457 (2012)

21. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework
2.0., 2nd edn. Addison-Wesley Professional (2008)

	A Graph Transformation-Based Semantics for Deep Metamodelling
	Introduction
	Deep Metamodelling
	Overview of Deep Metamodelling
	Some Open Questions in Deep Metamodelling

	Diagram Predicate Framework
	Formalisation of Deep Metamodelling
	Multi- and Single-Potency
	Syntax of Potency
	Double Linguistic/Ontological Typing
	Semantics of Potency through Graph Transformation

	Related Work
	Conclusion and Future Work

