
Meta-Model Validation and Verification with MetaBest

Jesús J. López-Fernández, Esther Guerra, Juan de Lara
Universidad Autónoma de Madrid (Spain)

{Jesusj.Lopez, Esther.Guerra, Juan.deLara}@uam.es

ABSTRACT
Meta-models play a cornerstone role in Model-Driven En-
gineering as they are used to define the abstract syntax of
Domain-Specific Modelling Languages, and so models and
all sorts of model transformations depend on them. How-
ever, there are scarce tools and methods supporting their
validation and verification, which are essential activities for
the proper engineering of meta-models.
In this paper we present an Eclipse-based tool that aims

to fill this gap by providing two complementary meta-model
testing languages. The first one has similar philosophy to
the xUnit framework, enabling the definition of meta-model
unit test suites comprising model fragments and assertions
on their (in-)correctness. The second one is directed to verify
expected properties of the meta-model, including domain
and design properties, quality criteria and platform-specific
requirements. Both tools are integrated within a framework
for example-based, incremental meta-model development.

Categories and Subject Descriptors
D.2.4 [Software]: Model checking; I.6.4 [Computing Me-
thodologies]: Model Validation and Analysis

Keywords
Meta-modelling; Validation and verification (V&V); Meta-
model testing; Example-based meta-modelling

1. INTRODUCTION
Model-Driven Engineering (MDE) promotes the use of

models and transformations throughout all phases of soft-
ware development. Models are frequently defined using Do-
main-Specific Languages (DSLs), which previously need to
be constructed in collaboration with domain experts. The
abstract syntax of DSLs is described by a meta-model that
includes the relevant abstractions, primitives and relations
within the domain. Hence, it is important to validate the
DSLs w.r.t. specifications of the domain, or with the help of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’14, September 15-19, 2014, Vasteras, Sweden
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2648617.

domain experts who can provide meaningful examples of cor-
rect and incorrect uses of the DSL. Moreover, meta-models
are normally defined using an object-oriented approach, and
implemented in specific platforms like the EMF [13]. Hence,
they should adhere to accepted object-oriented quality cri-
teria and style guidelines in conceptual schemas [1], as well
as to framework-specific rules and conventions.

Unfortunately, while meta-models play a central role in
MDE, they are often built in an ad-hoc way, without follow-
ing a sound engineering process [8]. This lack of systematic
means for their construction may lead to unreliable results,
with the aggravating factor that errors in meta-models may
be propagated to all artefacts developed for them, like model
transformations and code generators. Part of this situation
is due to the fact that there are scarce methods and tools
to validate and verify meta-models against domain require-
ments, quality guidelines and platform-specific rules.

In order to fill this gap, we deliver metaBest, an Eclipse-
based tool that facilitates the integral testing of meta-models
by making available two dedicated testing languages. The
first one, called mmUnit, is inspired by the xUnit frame-
work [2], as it enables writing conforming and non-conforming
model fragments to check whether the meta-model accepts
the former and rejects the latter. The language, which was
initially proposed in [7], has been recently extended with
an assertion language tailored for meta-models. The second
language, mmSpec, is conceived to test expected meta-model
properties that may arise from the domain, the implemen-
tation platform, quality criteria and style conventions.

metaBest is integrated with an example-based meta-model
construction framework [7], which facilitates the involve-
ment of domain experts in the DSL construction process.
Although our tool is directed primarily to DSL designers,
the tool is kept independent from the meta-modelling plat-
form, so that it can also be used within the wider scope of
software design, e.g., to validate and test UML conceptual
schemas for information systems.
Paper organization. Sec. 2 analyses the state of the art,
motivating the need for metaBest. Sec. 3 shows the tool with
an example and Sec. 4 poses conclusions and future work.

2. METABEST CONTRIBUTION TO V&V
The classical view of V&V [3] poses validation as the an-

swer to the question“are we building the rightmeta-model?”,
while verification is set to address“are we building the meta-
model right?”. The literature reports on three main ap-
proaches to meta-model V&V, which we classify as unit test-
ing, specification-based testing and reverse testing.

Unit testing approaches define test suites of models or
model fragments, which get validated against a meta-model.
For example, in [11], test models describe instances that the
meta-model should accept or reject. In a different style, [5]
embeds meta-modelling languages into a host programming
language like PHP, and then inject the meta-model back
into a meta-modelling technological space. While this allows
the use of existing xUnit frameworks, it resorts to a pro-
gramming language to build meta-models. Moreover, these
proposals lack an assertion language tailored to meta-model
testing which enables an intensional description of the test
models, documenting and narrowing the purpose of the test.
Specification-based testing allows expressing desired prop-

erties of a meta-model. In this line, [12] specifies meta-model
properties in EVL [6] (a variant of OCL), but as the au-
thors recognise, using EVL/OCL to check meta-model prop-
erties is cumbersome, leading to complicated assertions and
demanding expert technical knowledge of the used meta-
modelling framework. Moreover, OCL does not provide sup-
port for visualizing complex validation errors.
Reverse testing automatically generates instance models

from a meta-model, e.g., using constraint solving [4]. A do-
main expert has to evaluate the generated models to detect
errors, in which case the meta-model is deemed incorrect.
An integral approach to meta-model V&V needs to en-

compass the benefits of all mentioned approaches, and fill
the following gaps in the state of the art. First, although
there are a few specification-based testing approaches that
support the specification of requirements (validation) and
meta-model quality concerns (verification), they rely on OCL,
which is not optimal for expressing meta-level properties and
does not provide appropriate support for error visualization
(sets of problematic elements) and reporting. Second, no
meta-model unit testing proposal allows describing the in-
tension of the expected faults using an appropriate assertion
language, or supports user-friendly definitions of model frag-
ments. Additionally, even if approaches for unit testing are
suitable for test-driven development, they sometimes lack
means to construct faulty models, as frameworks like EMF
require correct models and building the meta-model upfront.
Hence, metaBest provides support for incrementally con-

structing and testing meta-models, including example-based
meta-model construction via its complementary tool meta-
Bup [7]. It currently supports specification-based testing,
meta-model unit testing, and reporting facilities, leaving re-
verse testing for future work.

3. METABEST BY EXAMPLE
Assume we are interested in modelling Data-as-a-Service

(DaaS) applications, and need to define a DSL for this. In
DaaS applications, the data is the product offered to users,
who are charged by their consumption and manipulation.
Using our metaBup tool, the domain expert can introduce

fragments of example models of the DSL as sketches, like
the one shown at the bottom-left in Fig. 1. This sketch
corresponds to a situation of interest, where a role having
access rights to a read operation on some data resource,
also provides an access right to that data resource. Sketches
can be drawn using traditional drawing tools like yEd (in
the figure) or Dia. The sketch is parsed into an internal
textual format (upper-left in Fig. 1), and the tool induces
and updates the underlying meta-model, suggesting the user
patterns and notions of quality. The domain expert also

Figure 1: Building meta-model from example model.

needs to provide a legend assigning a name to each different
kind of object appearing in the sketch, which will be used
as the name of the classes in the derived meta-model.

Fig. 1 shows a simplified meta-model for DaaS applica-
tions. A DaaSApplication contains Users who may access
data and functionality according to the Roles they have been
assigned. In particular, AccessRights grant access to users
with a certain role to some Resources (either data or services)
and Operations on data (like Read and Update). Applications
organize data and functionality in ResourceContainers, while
ServiceUnits perform operations on a DataResource.

Thus, metaBup promotes an iterative, incremental meta-
model construction, and enables domain experts to provide
sketches that cover interesting features of the system. Ad-
ditionally, our tool also allows importing existing models in
Ecore format. Independently of the meta-model construc-
tion process – either from example models or not – the meta-
model can be tested using our two testing languages. We
illustrate both languages in the next two subsections.

3.1 Example-based meta-model unit testing
Our first testing language, called mmUnit, allows the def-

inition of test cases. Each test case includes a configuration
of objects, which can be defined either using a dedicated tex-
tual syntax, or a sketching tool like yEd. In the latter case,
sketches are imported and automatically translated into this
textual format to facilitate their subsequent processing. In
order to allow building more intensional tests, for the struc-
tural part, we support both examples of full-fledged models
and model fragments. Fragments may miss certain manda-
tory objects and attributes, and violate the lower bound of
cardinalities, as their purpose is concentrating in the nearby
context of a particular situation of interest.

As an example, the upper window in Fig. 2 shows a
sketch of a model fragment that has been drawn using yEd,
and part of the equivalent textual format once the sketch
is imported in metaBest (lines 12–23). The test includes
assertions (lines 25-28) stating why the situation is incor-
rect. Once the test is ready, the tool checks it against the
meta-model in Fig. 1, and provides a report view with the
results.

Figure 2: Definition and evaluation of test case.

A distinguishing feature ofmmUnit is that it allows declar-
ing the reasons why a test case is deemed incorrect by assert-
ing errors in meta-models. It supports the following types
of assertions:

• Multiplicity, type or nature mismatch of some feature.

• The test includes instances of abstract types.

• Missing meta-model elements (i.e., the meta-model lacks
the type of an object or a particular feature).

• Missing mandatory feature on an object.

• Missing incoming reference or container for an object.

• Constraint violation. metaBup fragments and meta-models
can be annotated to constrain the models considered
valid. For instance, any reference annotated with acyclic
in the meta-model is forced to be acyclic in every model.
This assertion kind points to violations of such annota-
tions. The complete list of supported assertions is de-
tailed in [7].

The first assertion in Fig. 2 states that the test should fail
because object dr should be contained in some object of type
ResourceContainer. The assertion does not explicitly say the
object container, which could be any in the model fragment.
The next one states that service should not have an access
fee, since its type ServiceUnit does not define it. The last
assertion identifies that the operation object lacks an access
fee. In this case, the test passes because the meta-model
rejects the model for exactly those reasons.
A video featuring this example is available at: http://

youtu.be/fC8J5YkPCHE.

3.2 Specification-based meta-model testing
While the previous language allows testing the confor-

mance of models to meta-models, our second testing lan-
guage mmSpec is targeted to express and evaluate expected
meta-model properties. These may come from several sources,
among them, the requirements elicited from domain experts.
For instance, in our running example:

Rq1 Data resources must be accessible by users with access
rights.

Rq2 Applications contain at least one chargeable element.

Rq3 All elements in an application are chargeable, or con-
tain chargeable elements.

Rq4 The access to any element with a URL needs to be
controlled.

These high-level requirements need to be interpreted by
the meta-model designer, who needs to formulate them in
terms of meta-modelling concepts, thus bridging the gap
between requirements in natural language and the meta-
modelling space. For example, for Rq3, we need to check
that the classes reachable from DaasApplication inherit from
ChargeableElement, or contain classes inheriting from it.

Moreover, the meta-modelling expert may also like to en-
sure certain quality attributes and platform-specific require-
ments in the meta-model, as well as to adhere to standard
guidelines and style conventions. For instance:

Rq5 No class is included in two containers.

Rq6 No inheritance hierarchy has a 5-level or greater depth.

Rq7 Any class name is a noun, possibly qualified, written
in upper camel-case.

Having a means to express and check all these proper-
ties is especially useful in incremental/iterative meta-model
construction processes, where the meta-model evolves, but
the properties still must be satisfied. To this aim, mmSpec
allows expressing meta-model properties in a concise, inten-
sional, declarative, platform-independent way. It provides
high-level primitives that makes checking meta-model prop-
erties easier, like first-order qualifiers for the length of nav-
igation paths or collectors of the composed cardinality in
navigation paths. Moreover, it is integrated with WordNet
[9], which allows testing the nature of words (i.e., nouns,
verbs...) and synonymy. While mmSpec properties are en-
coded by meta-modelling experts, its syntax is directed to
enhance understandability by domain experts in order to
promote their implication in the V&V process.

To favour simplicity, mmSpec properties follow a select-
filter-check style that includes:

• A selector of the type (class, attribute, reference or path)
and the amount (a quantifier like every, some, none or
an interval) of the elements that need to satisfy a given
condition.

• An optional filter over the elements in the selector.

• A condition that is checked over the filtered element.

Filters and conditions consist of qualifiers which can be
negated, combined through and/or connectives, and point
to new selectors, enabling recursive checks. The main qual-
ifiers allow expressing conditions on the existence of ele-
ments, their name (nature, synonymy, prefix, suffix, camel-
phrase), abstractness, multiplicity, type, length of naviga-
tion paths, inheritance relationships, depth and width of
hierarchies, depth and width of trees of containment re-
lationships, collectors of the composed cardinality in nav-
igation paths, reachability from/to classes, and (a)cyclicity.
Altogether, mmBest promotes first-class primitives for ele-
ments (like paths, or inheritance hierarchies) that need to
be checked in meta-models frequently.

The middle window in Fig. 3 shows the formulation of
Rq3 using our language. The property selects every class

Figure 3: Definition and evaluation of properties.

(selector) contained in a DaaSApplication (filter), and then
checks whether they are subclasses of ChargeableElement or
they reach a class that is subclass of it (condition).
Properties can be assigned a name, organized in groups,

and annotated with a severity (e.g., warning). Named prop-
erties may define parameters and then be called considering
quantifiers in the parameters.
The lower window of Fig. 3 shows a summary of the eval-

uation of all properties in the meta-model, another feature
of metaBest. For each property, it is possible to obtain a
user-friendly visualization of its results over the meta-model:
the faulty elements are shown in red, the correct ones are
green-coloured, and elements that triggered a warning are
amber-coloured. In our example, the classes Role and User
do not meet Rq3, and hence they are coloured in red when
the user double-clicks that property. Notice that Resource
is not highlighted, since it actually meets the property, con-
taining one of its children (ServiceUnit) a chargeable element
(Operation).
An alternative to mmSpec would be the use of the more

general-purpose OCL [10] to express meta-model properties.
However, although OCL is richer and more expressive than
mmSpec, it was not designed for meta-model testing, and
thus lack many of the high-level primitives we provide for
this task. As a result, OCL properties tend to be more com-
plex, while our language yields more compact expressions,
closer to natural language, and more understandable by non-
meta-modelling experts. In http://goo.gl/6eVBqy, we pro-
vide a thorough comparative study of OCL and mmSpec.
Moreover, the integration with WordNet and the rich re-
porting facilities are unique in our proposal to specification-
based testing. A video featuring this example is available
at: http://youtu.be/V8t0HT-rw7k.

4. CONCLUSIONS AND FUTURE WORK
We have presented metaBest, a tool for V&V of meta-

models. The tool integrates two DSLs: mmUnit and mm-
Spec. The first one permits defining valid and invalid exam-

ples and fragments, and enables an intentional description of
the reasons why an example is invalid. Its importer of graph-
ical sketches encourages the engagement of domain experts
in the V&V process. The second language enables a succinct
expression of expected (domain, quality, style and platform)
meta-model properties and automates their checking. The
tool is integrated with metaBup, which permits a test-driven
development approach to meta-model construction.

We are working on more advanced ways to annotate graph-
ical sketches with errors, and on quick fixes suggested upon
test failures. We also plan to support reverse testing using
model generation by constraint solving.
Acknowledgements. Work supported by the Spanish Min-
istry of Economy and Competitivity with project Go-Lite
(TIN2011-24139) and the EU commission with project MONDO
(FP7-ICT-2013-10, #611125).

5. REFERENCES
[1] D. Aguilera, C. Gómez, and A. Olivé. A method for

the definition and treatment of conceptual schema
quality issues. In ER’12, volume 7532 of LNCS, pages
501–514. Springer, 2012.

[2] K. Beck. Simple smalltalk testing: with patterns.
Technical Report 4 (2), The Smalltalk Reports, 1994.

[3] B. W. Boehm. Verifying and validating software
requirements and design specifications. IEEE
Software, 1(1):75–88, 1984.

[4] J. Cabot, R. Clarisó, and D. Riera. Umltocsp: a tool
for the formal verification of uml/ocl models using
constraint programming. In ASE’07, pages 547–548.
ACM, 2007.

[5] A. Cicchetti, D. D. Ruscio, A. Pierantonio, and
D. Kolovos. A test-driven approach for metamodel
development. In Emerging Technologies for the
Evolution and Maintenance of Software Models, pages
319–342. IGI Global, 2012.

[6] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. On
the evolution of OCL for capturing structural
constraints in modelling languages. volume 5115 of
LNCS, pages 204–218. Springer, 2009.

[7] J. J. López-Fernández, J. Sánchez Cuadrado,
E. Guerra, and J. de Lara. Example-driven
meta-model development. SoSyM, in press, 2014, see
also http://www.miso.es/tools/metaBUP.html.

[8] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37:316–344, 2005.

[9] G. A. Miller. Wordnet: A lexical database for english.
Commun. ACM, 38(11):39–41, 1995.

[10] OMG. OCL 2.3.1 specification.
http://www.omg.org/spec/OCL/2.3.1/.

[11] D. A. Sadilek and S. Weißleder. Testing metamodels.
In ECMDA-FA’08, volume 5095 of LNCS, pages
294–309. Springer, 2008.

[12] S. Sobernig, B. Hoisl, and M. Strembeck.
Requirements-driven testing of domain-specific core
language models using scenarios. In QSIC, pages
163–172. IEEE, 2013.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework, 2nd

Edition. Addison-Wesley Professional, 2008.

