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A B S T R A C T  

Model driven Engineering (MDE) advocates the active use of models throughout the different software 

development phases. In MDE, models are described using meta-models, one meta-level above. This 

approach effectively leaves developers with one single meta-level to create their models. However, there 

are scenarios where the use of multiple meta-levels results in simpler models with less accidental 

complexity. Hence, to simplify modelling in these cases, several multi-level modelling approaches and 

tools have recently emerged to increase the flexibility in modelling. While they provide advanced 

primitives to simplify modelling, there are possibilities to improve interoperability with mainstream two-

level modelling approaches based on the Meta-Object Facility (MOF) standard of the Object Management 

Group (OMG), and achieve wider adoption.  

For this purpose, we first characterize the design space of multi-level modelling approaches using a 

feature model. On such a basis, we provide a detailed comparison of existing multi-level modelling tools, 

identifying gaps and research opportunities. As a result of this gap analysis, we propose a new approach to 

multi-level modelling that embeds multiple meta-levels within one meta-model (i.e., encoding objects as 

classes, and instantiation as inheritance), and a tool – called TOTEM – which implements these concepts. 

The tool capabilities and its benefits in terms of interoperability with mainstream, standard modelling 

frameworks are illustrated through an example, as well as with empirical and analytical evaluations.   

1. Introduction  

Model Driven Engineering (MDE) promotes an active use of models throughout all development phases (Da Silva, 2015; Schmidt, 2006). In MDE, 

models conform to a meta-model describing the elements that can be used to create the model, and the constraints that models should obey. The 

mainstream approach to modelling in MDE is based on a two meta-level approach, where language engineers create meta-models, which then can be 

instantiated by developers to create models one level below. This approach is supported by standards, like the Meta-Object Facility (MOF) of the Object 

Management Group (OMG) (MOF, 2016), and widely used by de-facto standard implementations like the Eclipse Modelling Framework (EMF) 

(Steinberg, Budinsky, Merks, & Paternostro, 2008). 

Even though the two-level approach has been very successful in practice, and is the dominant approach nowadays, some modelling scenarios benefit from 

the use of more than two meta-levels (de Lara, Guerra, & Sánchez, 2014). These cases appear when the type-object pattern or some of its variants arise (de 

Lara et al., 2014; Martin, Riehle, & Buschmann, 1997). In these cases, the use of two-level modelling requires workarounds, like emulating classes using 

objects, or performing so called promotion model transformations (which transform models into meta-models). These workarounds are different ways to 

http://www.elsevier.com/locate/cl
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emulate a multi-level architecture with more than two meta-levels, within two, and as a consequence obscure the core of the ideas underlying the model. 

Therefore, for these cases, the use of multi-level modelling results in reduced accidental complexity, and allows focusing on the essence of the problem 

being modelled (Atkinson & Kühne, 2008; de Lara et al., 2014; Macías, Guerra, & de Lara, 2017). 

These limitations of the two-level modelling approach have sparked a big interest in multi-level modelling technologies within the MDE community. This 

interest is witnesses by the MULTI series of workshops dedicated to multi-level modelling (MULTI, 2014), a Dagstuhl seminar (Almeida, Frank, & 

Kühne, 2018) and the plethora of multi-level modelling tools recently proposed, like DeepTelos (Jeusfeld & Neumayr, 2016), DeepJava (Thomas Kühne 

& Schreiber, 2007), Deep-Ruby (Neumayr, Schuetz, Horner, & Schrefl, 2017), the DPF Workbench (Lamo et al., 2013), Dual Deep Modelling (Neumayr, 

Schuetz, Jeusfeld, & Schrefl, 2018), FMMLx (Clark, Sammut, & Willans, 2015b; Frank, 2014), Kite (Guerra & de Lara, 2018), Melanee (Atkinson, 

Gerbig, & Kühne, 2015), MetaDepth (de Lara & Guerra, 2010), ML2 (Carvalho & Almeida, 2018; Claudenir M Fonseca, 2017), MultEcore  (Macías, 

Rutle, & Stolz, 2016), NMF (Hinkel, 2018), OMLM (Igamberdiev, Grossmann, Selway, & Stumptner, 2018), and SLICER (Selway et al., 2017), among 

others.  

Many of these tools offer sophisticated capabilities for modelling in multiple meta-levels, like attribute mutability and durability (Gerbig, Atkinson, de 

Lara, & Guerra, 2016), deep references (de Lara, Guerra, Cobos, & Moreno-Llorena, 2012), dual potencies (Neumayr et al., 2018), or refactoring support 

(de Lara & Guerra, 2018). Others propose specialized model management languages for them, like multi-level coupled transformations (Macías, Wolter, 

Rutle, Durán, & Rodríguez-Echeverría, 2019). However, there is currently an interoperability gap between multi-level modelling tools and mainstream 

two-level modelling. Just like other members of the multi-level community, it is also our belief that for a wider adoption of multi-level modelling within 

the MDE community, interoperability with de-facto standard two-level frameworks, like EMF, should be improved, enabling an easy migration of both 

two-level solutions into multi-level and vice versa. This will facilitate reuse of existing meta-models as a basis to create multi-level models, and enable the 

use of tooling developed for two-level modelling, for multi-level models. 

In order to improve this situation, in this paper we characterize the design space for multi-level modelling solutions using a feature model (Kang, Cohen, 

Hess, Novak, & Peterson, 1990). We use this feature model as a foundation for a detailed comparison of existing multi-level modelling tools, charting the 

different approaches used, and performing a gap analysis to identify strengths and limitations. At the practical level, we observe that interoperability with 

two-level modelling is one of the factors that need improvement. Hence, with this goal in mind, we propose a new approach to multi-level modelling, 

which emulates objects at the meta-model level, and where instantiation is emulated with inheritance. While other approaches are based on emulating 

classes with objects (Rossini, de Lara, Guerra, & Nikolov, 2015), on dedicated multi-level meta-models (Atkinson, Gerbig, & Fritzsche, 2015; de Lara & 

Guerra, 2010), or on promotion transformations (Macías et al., 2016), to the best of our knowledge, this way of multi-level modelling has not been 

explored up to now.  

We have implemented our approach in a tool called TOTEM (A Tool for MulTi-levEl Modelling, available at http://miso.es/tools/totem.html). The tool 

brings several benefits. First, it permits a more direct integration with two-level modelling approaches and frameworks like the EMF, as the multiple 

levels can be embedded with little modifications within a meta-model, preserving the semantics of the multi-level model. This way, exporting a multi-

level model to two-levels is more direct than other approaches, while modelling at the instance level can be done using standard EMF tools. Moreover, 

these instance-level models can be manipulated with transformation languages and tools designed for two-level modelling, like ATL (Jouault, Allilaire, 

Bézivin, & Kurtev, 2008), Epsilon (Paige, Kolovos, Rose, Drivalos, & Polack, 2009) or Acceleo, an implementation of the MOFM2T OMG standard 

(Thomas Kühne, 2018b). Second, the approach supports reusing existing EMF meta-models to build a multi-level model, facilitating migration. This is the 

case because our approach is based on standard meta-models annotated with multi-level annotations. We show the benefits of our approach using a 

running example in the component-based domain, and present empirical and analytical evaluations. 

This paper makes the following contributions: (i) A characterization of the design space for multi-level modelling solutions in the form of a feature model; 

(ii) a classification and comparison of existing multi-level modelling tools; (iii) a new conceptual approach to multi-level modelling, embedded within two 

meta-levels; (iv) a practical tool called TOTEM that implements these ideas in practice; and (v) empirical and analytical evaluations. 

The rest of this paper is organized as follows. Section 2 introduces a running example, which we will solve using several approaches that emulate or 

support multi-level modelling concepts. The section introduces the main concepts behind multi-level modelling using this case study. Section 3 proposes a 

criterion for classifying existing approaches – based on a feature model – and gives a detailed classification and comparison of existing tools. Section 4 

describes our approach to multi-level modelling, based on an embedding within a single meta-level. Section 5 describes the architecture we propose, and 

the TOTEM tool. Section 6 presents empirical and analytical evaluations. Finally, Section 7 ends with the conclusions and prospects for future work. 

2. The road to multi-level modelling, by example 

To motivate the need for multi-level modelling and its rationale, this section introduces a motivating running example. Imagine we would like to create a 

simple architectural language (Medvidovic & Taylor, 2010), so that users of the language (i.e., software architects) can define component types, made of 

port types (which can be input ports, output ports or both). Port types can define the types of messages they can handle, and be connected using connector 

types. We will assume that connectors have a configurable delay. Message types need to describe the structure of the data the messages carry. In addition 

to the defined data, all messages have a time stamp. Then, the defined types (components, ports, messages, connectors) can be used to define the run-time 

configuration of a system. Altogether, this is a typical component-based language, in the style of component-connector languages  (Garlan & Shaw, 1993), 

and languages for component-based simulation (Zhu, Lei, Alshareef, Sarjoughian, & Zhu, 2018). 

http://miso.es/tools/totem.html
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In the following, we will solve this problem using several ad-hoc approaches, which naturally lead to a solution based on native multi-level modelling. 

Then, we will use this solution to introduce the basic notions of multi-level modelling. 

2.1. The type-object pattern 

A first attempt to describe the running example is to define a meta-model that includes primitives to create both type elements and their instances. A 

possible solution using this approach is shown in Figure 1. The Figure shows that the meta-model needs to contain elements to represent component types 

and instances, port types and instances (both input and output), connector types and instances, and message types and instances, as well as the typing 

relations between types and instances (references cmpType, pType, mType, and cnType). This explicit representation of type and instance elements is 

called the type-object pattern (Martin et al., 1997). Please note that we also need to define attributes for message types (class Attribute), and give values 

for them (class Slot). This is a more specialized occurrence of the type-object pattern, which is called the dynamic features pattern (de Lara et al., 2014).  

At the model level, we use objects to represent both type-like elements (e.g., Producer, Consumer, Pin, Pout, MChannel, Packet), and object-like 

elements (e.g., p, s, m, op, ci, i1, i2, c1, c2). Hence, conceptually, the model encodes two meta-levels within one, and we have used a dashed line to 

convey such intention. 

 

Fig. 1 - Solving the example using the type-object pattern. 

Altogether, while this solution works in practice, it leads to a heavy replication of elements at the meta-model level, causing an increase of the accidental 

complexity of the meta-model (Atkinson & Kühne, 2008; Macías et al., 2017). In particular, it features six occurrences of the type-object pattern 

(ComponentType/Instance, MessageType/Instance, PortType/Instance, InputPort/Instance, OutputPort/Instance, ConnectorType/Instance), and one 

occurrence of the dynamic features pattern (classes Attribute/Slot). Moreover, should we wish to define cardinality constraints at the model level (e.g., in 

the relations between objects Producer and Pout, MChannel and Pout, etc) we would need to define additional classes and constraints in the meta-model, 

using the so called relation configurator pattern (de Lara et al., 2014). 

2.2. The meta-model extension approach 

An alternative approach consists in defining a meta-model that only includes primitives to create type-like elements, and rely on extension (through 

inheritance) to create specific component types, which then can be instantiated in models. This approach is called static in (de Lara et al., 2014). Figure 2 
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shows a solution to the example using this approach. This way, the types needed for creating the model are defined as subclasses of the component meta-

model (instead of as instances). We have separated with a dashed line the elements of the original component meta-model from the extensions. 

Fig. 2 - Solving the example using the meta-model extension approach. 

This solution supports a more natural way of modelling elements with type facets (like Producer, Consumer, etc) at the meta-model level. Moreover, it 

supports the addition of attributes to subclasses (e.g., Packet is added attribute dat, which had to be explicitly modelled in Figure 1), and the definition of 

cardinalities for relations between the extended classes (e.g., for outs, inp, from, to and carries). However, it requires mechanisms to redefine associations 

(like pTypes, which is redefined in Producer.outs and Consumer.inp) and attributes (the static feature delay is redefined in MChannel, assigning it a 

default value). Additionally, at the model level, relations like pTypes should not be instantiated, but only its redefinitions (outs and inp). Please note that 

many meta-modelling frameworks – like the EMF – do not support these redefinitions. An additional problem is that, allowing the user to modify the core 

meta-model (i.e., the component meta-model in our case) may lead to unexpected changes (e.g., like creating a class inheriting from both Component and 

Message). To solve this latter issue, some approaches support the definition of extensibility rules, governing how a meta-model can be extended (Jácome 

& de Lara, 2018). However, that approach does not support the emulation of slots at the type level (like MChannel.delay), the control of the instantiation 

depth in the model, nor the fact that none of the classes (and some of the associations) of the component meta-model should be instantiable at the lowest 

level (i.e., in the producer-consumer model we should not be able to create an instance of Component). 

2.3. Promotion transformations 

A different approach to support the double instantiation required by the example is to introduce a transformation that converts objects into types, called a 

promotion transformation  (de Lara et al., 2014). Figure 3 shows a solution of the example using this approach. The idea is to permit the instantiation of 

the component meta-model (see (a) in the figure), and through a model-to-model transformation, synthesize a meta-model (see (c) in the figure) out of the 

created model (b). Then this meta-model can be instantiated once more to create a producer-consumer model (see (d) in the figure). Hence, while the 

previous approaches embed two meta-levels within one (either at the meta-model level or at the model level), promotion transformations split the type-

object nature of the intermediate model in two, and use a model-to-model transformation to create the type facets (c) from the object facets (b).  

Fig. 3 - Solving the example using promotion transformations. 
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An ad-hoc approach based on building a promotion transformation specifically created for the given problem has several drawbacks (Drivalos, Kolovos, 

Paige, & Fernandes, 2008; Zschaler, Kolovos, Drivalos, Paige, & Rashid, 2009). First it needs to introduce a model-to-model transformation, which adds 

complexity to the solution and moves some design decisions from the meta-model to the transformation code. For example, the fact that Message 

instances at the bottom level (e.g., object m in model (d)) carry a time stamp stime, is not declared in any way in Message, but the transformation needs to 

create an attribute stime in every instance of Message (e.g., Packet in model (c)). Second, the approach explicitly decouples the object facet of models 

(i.e., model (b)) from its type facet (model (c)), which complicates model management. For example, role names, cardinalities and possible OCL 

invariants need to be added manually to meta-model (c) once the promotion transformation is executed. If model (b) is changed afterwards, the 

regeneration of (c) may override such manual changes. Finally, it is necessary to include in the meta-model (a) elements emulating type-level facets. In 

particular, we still need to include class Attribute to emulate the definition of attributes in class Message.  

Please note also that, ad-hoc approaches using promotion require a transformation for each instantiation step, as depicted in Figure 4. In this Figure, a first 

transformation promotes instances of Component (like Producer in model (b)) into classes in model (c), adding them an attribute maxInst to control the 

maximum number of instances at level 0. Then, a second transformation promotes the objects in model (d) into classes in model (e), adding them an 

attribute uuid to store an identifier. 

Fig. 4 - Solving the example using promotion transformations. 

2.4. Multi-level modelling 

The previous approaches have shown three different ad-hoc workarounds to encode a solution that naturally spans three meta-levels, into two. The 

workarounds, and their drawbacks are summarized in Table 1.  
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Meta-model extension 
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 Good compatibility with standard two-level modelling: standard tools can be used to edit 

and manipulate models, and constraints can be defined in user-defined types like Packet. 
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 Needs to create further transformations if more than three meta-levels are used. 

 Medium compatibility with standard two-level meta-modelling: standard tools can be used to 

edit models, but integration with a transformation is needed. Constraints can be defined in 

user-defined types like Packet, but only in model (c) of Figure 3, not (b). 
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Fig. 5 - Solving the example using multi-level modelling. 

At the top-level, it is interesting for clabjects to characterize their instances beyond the next immediate meta-level. This is done with the so-called potency   

(Atkinson, 1997), a natural number (or zero) that is associated to clabjects, attributes and references (which we collectively call fields). In the following 

figures, potencies are indicated after the “@” symbol. In our example, the top-level model is assigned potency 2, which means it can be instantiated at the 

next meta-level, and then one level below. The potency of a model is sometimes called its level. If a clabject does not explicitly declare a potency, it takes 

the potency of its container model. This way, all clabjects in the component meta-model receive a potency of 2 (however, please note that in general, 

clabjects with different potency may be contained in a given level). When a clabject is instantiated, the instance receives the potency of the type minus 

one. Clabjects with potency 0 cannot be instantiated 

The rules for potency just described work in the same way for fields. Thus, in the Figure, stime in Message receives a potency of 2 from its owner clabject. 

This means that it will become a slot two levels below, and so it should receive a value in instances of instances of Message (like m at level 0). This is a 

way to control the features that indirect instances of a clabject need to have. In contrast, field delay in Connector explicitly declares a potency of 1, which 

means that it becomes a slot in instances of Connector (like MChannel).  

In multi-level modelling, elements (models, clabjects, and fields) generally retain both a type and an instance facet. This also applies to references. Hence, 

references at level 1 are instances of those at the upper level, and types for those at the level below. Therefore, being instances, they should obey the 

cardinalities of their types, and being types they can declare a cardinality, to be obeyed by their instances. For example, in the Figure, reference 

Connector.from at level 2 declares a cardinality of 1. Then, MChannel (instance of Connector) at level 1 obeys such cardinality, as it defines exactly one 

instance of from (also called from). Reference MChannel.from defines a cardinality on its own, which is then obeyed at level 0 by clabject ci. 

While potency permits a deep characterization of instances several meta-levels below, it is sometimes difficult to consider all possible features and 

primitives, especially when designing a language that is to be reused in different domains. This way, multi-level modelling allows clabjects to declare new 

fields (like Packet, which declares field stime), and also permits creating clabjects with no ontological type. Untyped fields and clabjects are called 

linguistic extensions (de Lara & Guerra, 2010). 

Linguistic extensions are possible due to the so-called Orthogonal Classification Architecture (OCA) (Atkinson & Kühne, 2002). This architecture 

distinguishes two kinds of typing: ontological and linguistic. Ontological typing refers to instantiation within a domain. For example, in Figure 5, the 

ontological type of m is Packet. Linguistic typing refers to the meta-modelling primitive used to create the element. For example, in Figure 5, the 

linguistic type of m is Clabject. Therefore, linguistic extensions do not have an ontological typing, but only a linguistic one. 

Figure 6 shows a scheme comparing the OCA (a) with the standard meta-modelling architecture (b). The OCA uses a linguistic meta-model that defines 

meta-modelling primitives, which become available at every meta-level. This means that meta-modelling facilities like inheritance can be used at any 

level, including level 0. In contrast, in the standard meta-modelling architecture (Figure 6(b)), the meta-modelling facilities (like inheritance, fields, and 

cardinalities) are only available at the meta-model level, and so they need to be reified again in the meta-model when the type-object pattern occurs. For 

example, in the solution of Figure 1, we needed to reify the instantiation relation, as well as the notion of attribute and slot. Please note that, in the 

standard four-level architecture of the OMG (MDA, 2014), in Figure 6(b) an additional meta-level would be shown at the bottom (representing the “real 

system”), and the top-level model is defined using itself. 

Overall, for the running example, multi-level modelling yields the solution with the fewer number of elements, together with the meta-model extension 

approach. However, the meta-model extension approach would require mechanisms to emulate instance-level properties (slots, links) at the meta-model 

level, precisely define how the meta-model is allowed to be extended, and control over the (conceptual) meta-levels below. Compared with the other 

approaches, the main disadvantage of multi-level modelling is the lack of compatibility with standard two-level modelling approaches. As one of the 

advantages of the static approach is its compatibility with two-level modelling, in this paper we propose the realization and combination of multi-level 

modelling with the static approach (but solving its issues listed in Table 1), obtaining the benefits of both approaches. 
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Fig. 6 - (a) The orthogonal classification architecture; (b) The standard meta-modelling architecture. 

3. Comparing and classifying multi-level modelling approaches 

Once we have seen the benefits of multi-level modelling, and the scenarios where it applies, in this section we first explore the design space for multi-level 

modelling solutions, presenting a feature model of the different alternatives in Section 3.1. Then in Section 3.2 we perform a comparison of existing tools 

according to such criteria. Our goal is to identify gaps and opportunities for improving the current state of the art. 

3.1. The design space of multi-level modelling solutions 

Some researchers have proposed guidelines for comparing and classifying multi-level modelling approaches (Atkinson, Gerbig, & Kühne, 2014; Atkinson 

& Kühne, 2017). However, no systematic analysis of design decisions for multi-level modelling frameworks has been proposed by the multi-level 

modelling community. Such analysis could serve as a basis for comparing and classifying multi-level approaches, and identifying gaps in current research. 

Figure 7 shows a feature model (Kang et al., 1990) representing the space of possible alternatives to realize multi-level modelling solutions. 

Fig. 7 - Characterizing the design space of multi-level modelling approaches. 

 

Mechanism. In the first place, the multi-level modelling mechanism can be native, or embedded in a two-level technology. As seen in Section 2.4, native 

mechanisms do not embed multi-level modelling within a two-level framework, but instead provide primitives and artefacts specifically designed for 

multi-level modelling. For example, MetaDepth (de Lara & Guerra, 2010) provides a native mechanism supported by a linguistic meta-model that models 

the instantiation relation explicitly, and includes the notion of potency.  

Regarding embedded approaches, there are several alternatives to emulate multiple meta-levels within a two-level framework, some of which we have 

analyzed in Section 2. One possibility is to resort to promotion transformations, as seen in Section 2.3. Approaches using promotion transformations can 

be either ad-hoc, which rely on the construction of domain-specific transformations, for example, for traceability (Drivalos et al., 2008; Zschaler et al., 

2009) or general purpose (Macías et al., 2016). While ad-hoc approaches suffer from the drawbacks of Table 1, general purpose approaches may 

circumvent them, as we will see in the analysis of tools of Section 3.2.  

Another approach, seen in Sections 2.1 and 2.2, consists in emulating the type facet in objects (feature types-as-objects), or the object facet in types 

(feature objects-as-types). The former approach is known as the type-object pattern (Martin et al., 1997), while the latter is the meta-model extension 

approach, also known as the static approach (de Lara et al., 2014). Using the type-object pattern, the multi-level model is embedded at the model level, 

and the instantiation relation is modelled as a normal relation. Instead, in the static approach, the multi-level model is embedded in the meta-model, and 

instantiation is emulated with inheritance. Annotation-based approaches (feature annotation) annotate the underlying language meta-model (e.g., the 

UML) with information about the characteristics that elements in the domain model have at different levels. For example, UML stereotypes is an 

annotation based mechanism (UML, 2017). We refer to (de Lara et al., 2014) for examples of multi-level modelling using stereotypes.  
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While these are the most common idioms for embedding multi-level modelling into two-level frameworks according to (de Lara et al., 2014), the feature 

model is not closed, indicating that other mechanisms may exist as well. 

Instance characterization. Some approaches to multi-level modelling are able to characterize instances at lower meta-levels, not only the next one (as in 

standard two-level modelling). This is called deep characterization (Atkinson & Kühne, 2001). Potency is one such mechanism for deep characterization. 

In contrast, other approaches only support defining features for instances exactly one level below. We say they support shallow characterization. For 

example, multi-level approaches based on powertypes do not support deep characterization (Odell, 1994). 

Extension. As mentioned in Section 2, when designing a multi-level model, it is difficult, if not impossible, to foresee all possible primitives that are to be 

used at the level below. This is especially true when designing generic languages (e.g., process modelling languages), applicable to several domains (e.g., 

software process modelling, modelling of production processes, etc). In these cases, the different domains may introduce new primitives, or add new fields 

to objects, not foreseen by their types. In the running example, we needed to add new fields (like dat) to instances of Message. For this reason, some 

approaches permit linguistic extensions, that is, clabjects with no ontological typing, or new fields with no ontological typing. 

Typing. Often, meta-modelling approaches advocate strict typing (Atkinson, 1998), in which every element at each level (except at the top) is typed by 

exactly one element at the level above. This implies three aspects: the typing relation does not jump meta-levels (no jump), instances and their types do not 

coexist in the same level (no mix) and there are no untyped elements (no extension). Non-strict meta-modelling is sometimes termed loose meta-modelling 

(Atkinson, 1998). In the feature model, we are more precise, by identifying the cause for non-strictness, we model jump and mix as two subfeatures of 

strictness, while the support for untyped elements is modelled by the extension feature. 

Additionally, approaches may support different kinds of typing, like ontological or linguistic typings (see Section 2). While these are the most common 

dimensions, some works have proposed other ones, like the realization dimension (Igamberdiev et al., 2018). Please note that, in addition to dimensions, 

some approaches allow several typings of the same kind, typically ontological (Balaban, Khitron, Kifer, & Maraee, 2018), which are sometimes called 

supplementary dimensions (Macías, Rutle, Stolz, Rodriguez-Echeverria, & Wolter, 2018). However, we do not capture this fact in the feature model, 

because it is of lower relevance to multi-level modelling. 

Constraints. In two-level modelling, the integrity constraints defined in meta-models apply to models exactly one level below. These constraints include 

cardinality constraints, constraints associated to constructs like compositions, and others defined in constraints in languages like OCL (OCL, 2014). In a 

multi-level setting, constraints may be defined for the next meta-level (shallow constraints), but it is also useful to define constraints for models at meta-

levels below the next one (deep constraints). Please note that deep constraints subsume shallow ones. Some approaches have extended the shallow 

semantics of elements like cardinalities to a multi-level context (making them deep) (Atkinson, Gerbig, & Fritzsche, 2015), others have extended 

constraint languages with deep semantics (Clark & Frank, 2018; de Lara & Guerra, 2010), or proposed transformation languages that can be used to 

express multi-level constraints (Macías et al., 2019). 

Meta-levels. Some notion of level is frequent in multi-level modelling approaches (as the word “level” is even within the name of the approach). These 

approaches are called level-adjuvant (Atkinson et al., 2014; Thomas Kühne, 2018b). Instead, a few approaches are level-blind, where a single level may 

contain arbitrary structures of ontological classification relations (Henderson-Sellers, Clark, & Gonzalez-Perez, 2013; Mylopoulos, Borgida, Jarke, & 

Koubarakis, 1990; Neumayr et al., 2018). The notion of level can be given a semantic or a syntactic status (Balaban et al., 2018). In the former case, a 

level emerges from the order (i.e., instantiation power) of the elements it contains (Thomas Kühne, 2018b). The latter provides just a packaging 

mechanism for related elements.  

It must be noted that most multi-level modelling approaches use the instantiation relation to relate levels. This has the advantage of enabling the use of 

mechanisms for deep characterization that work across instantiation relations, like potency. The notion of level is therefore inherent to instantiation, as 

instantiating an element is done at the level below the type. One may wonder therefore, whether other relations, like generalization (Borgida, Mylopoulos, 

& Wong, 1984; T. Kühne, 2009; Mylopoulos et al., 1980; Poo, Kiong, & Ashok, 2008) could be used to relate levels. On one hand, generalization 

provides a native solution (based on multiple inheritance) for multiple classification (where an object may have several types), while this problem is 

challenging for standard instantiation-based frameworks (de Lara & Guerra, 2017; SMOF, 2013). On the other, it complicates deep characterization. As 

one can have inheritance hierarchies of arbitrary depth within a level, a notion of potency that would work across inheritance would be challenging 

without introducing some packaging mechanism to emulate levels. Actually, in this work we propose emulating instantiation with inheritance, for which 

we introduce annotations (e.g. for potency) and use packages to emulate levels. By using a package to encapsulate models, a type model can be 

“instantiated” (i.e., extended) as many times, by creating additional “instance” packages. Just like instantiation, inheritance does not pollute the type level 

model, because the dependency is from the child model to the parent model. 

Multi-level modelling systems support modelling using more than two meta-levels. However, in some systems, the level of a model has to be decided 

when such model is constructed, and this decision cannot be changed when working with models at the lower levels. For example, this is the case if we 

assign a given potency (say 3) to a model. Other approaches are more flexible, enabling the extension of the number of meta-levels when modelling at 

lower levels. This is for example the case of approaches permitting “*” (star, or unbounded) potency (de Lara & Guerra, 2010; Kennel, 2012), the recent 

notion of characterization-potency (Thomas Kühne, 2018a), or approaches where levels can always be extended (Macías et al., 2018). The latter 

approaches have the advantage of more flexible instantiation (e.g., the developer does not need to worry about increasing the potency of a model from say 

2 to 3 if more instantiations are required), at the cost of a lower control of the maximum allowed depth. 
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3.2. Classifying multi-level modelling approaches  

Next, we analyse some prominent multi-level tools, using the feature model of Figure 7 as a basis. Table 2 summarizes the resulting classification. In 

addition to the features of the feature model, we have also included other criteria, to provide a better understanding of a tool’s aim, its target and 

capabilities. These extra criteria are: 

 Purpose: whether the aim is modelling (in the scope of model-driven engineering, or information systems), knowledge representation or 

programming, among others. This characteristic is useful to better understand the provenance of the tool and the rationale for its features. 

 Support for management languages: whether languages are provided to manage the multi-level model. In the context of MDE, management 

languages include those for model transformation or code generation. This feature helps in understanding the usefulness of the system for 

software development tasks. 

 Compatibility with two-level modelling: the degree in which the approach is compatible with tools developed for standard two-level modelling, 

like editors, transformation or constraint languages. 

Next we comment on some aspects of these tools in more detail. 

Table 2 – Classification of multi-level modelling tools. 

          Tool 

Feature 

MetaDepth Melanee MultEcore 
DPF 

Workbench 
DeepRuby DeepJava DeepTelos OMLM ML2 DDI FMMLx 

Mechanism Native-deep 

(MLM meta-

model) 

Native-deep 

(MLM meta-

model) 

Automated 

promotion 

transformations 

Native-deep  

(specifications) 

Other 

(Meta-prog. in 

Ruby) 

Other 

(Extension of 

Java) 

Native-deep 

(Telos 

propositions) 

Native-deep 

(MLM meta-

model, Flora- 2) 

Native-deep 

(powertypes) 

Native-deep 

(Telos 

propositions) 

Native-deep 

(Xcore 

extension with 

intrinsic 

feature) 

Instance 

charact. 

Deep 

(potency, leap 

potency, star 

potency) 

Deep  

(potency, 

durability, 

mutability, star 

potency) 

Deep 

(potency, range 

potency) 

Shallow  Deep 

(dual potency) 

Deep (potency) Deep  

(most general 

instances) 

Deep 

(potency, leap-

potency) 

Deep (regularity 

attributes) 

Deep 

(dual potency) 

Deep 

(level attribute) 

Extension Yes 

(objects, fields) 

Yes 

(objects, fields) 

Yes  

(objects, fields) 

No No Yes 

(object, fields) 

Yes  

(objects, fields) 

No No No Yes 

(objects, fields) 

Typing Non-Strict 

(extension, 

jump, no-mix) 

Linguistic, 

ontological 

Non-Strict 

(extension, no-

mix, no-jump) 

Linguistic, 

ontological 

Non-Strict 

(extension, 

jump, no-mix) 

Linguistic, 

ontological 

Strict 

Ontological 

Non-strict 

Linguistic, 

ontological 

Non-strict 

Linguistic, 

ontological 

Non-strict 

Linguistic, 

ontological 

Non-strict 

Linguistic,  

Ontological, 

Realization 

Non-strict (no-

jump) 

Strict 

Linguistic, 

Ontological 

Non-Strict 

Linguistic, 

ontological 

Meta-Levels Level-adjuvant 

Syntactic 

Semantic 

Extensible 

Level-adjuvant 

Syntactic 

Semantic 

Extensible 

Level-adjuvant 

Syntactic 

Extensible 

Level-adjuvant 

Syntactic 

Extensible 

Level-blind 

 

Level-blind 

 

Level-blind 

 

Level-adjuvant 

Syntactic 

Fixed 

Level-adjuvant 

(via ordered 

types) 

 

Level-adjuvant 

Syntactic 

Semantic 

Fixed 

Level-adjuvant 

Syntactic 

Semantic 

Extensible 

Constraints Deep 

(Epsilon object 

language) 

Deep 

(Deep OCL) 

Shallow  

(only 

multiplicities) 

 

Deep 

 

Deep Deep Deep  Deep 

MULLER/ 

Flora2 

Shallow 

 

Deep 

(axioms and 

constraints in 

ConceptBase) 

Deep 

(XOCL, a 

variant of OCL) 

Purpose MDE MDE MDE MDE Programming Programming Knowledge 

Representation 

Knowledge 

Representation 

Knowledge 

Representation 

Knowledge 

Representation 

Information 

systems 

Support for 

management 

languages 

Yes 

(Epsilon 

languages, 

multi-level 

refactorings) 

Yes 

(Deep ATL) 

Yes 

(Multi-level 

coupled 

transformations) 

 

Yes 

(code 

generation with 

Xpand) 

Yes 

(Ruby) 

Yes 

(Java) 

No No No No Yes 

(XMF action 

language) 

Comp. with 

two-level 

modelling 

and tools 

No Medium 

(based on EMF) 

 

Medium 

(based on EMF) 

No N/A N/A No No 

 

No No No 
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MetaDepth (de Lara & Guerra, 2010) is a framework for multi-level modelling using a textual concrete syntax. The approach is based on a native 

embedding, using a linguistic meta-model that supports deep characterization through potency. Several variations of potency are considered, including 

leap potency and star (unbounded) potency (de Lara et al., 2012). Leap potency means that if a clabject is assigned leap potency n, it will be possible to 

create instances of the clabject n levels below, without needing to instantiate the clabject at intermediate levels. MetaDepth supports linguistic extensions, 

where both untyped clabjects and fields can be created, due to the support for a dual linguistic and ontological typing (de Lara & Guerra, 2010). Due to 

leap potency and linguistic extensions, the ontological typing is non-strict, but a clabject and its type cannot be in the same model. The tool supports an 

explicit notion of level (the potency of the model), both syntactic and semantic. The number of meta-levels is extensible, due to unbounded potency. 

Integrity constraints are expressed in EOL (Kolovos, Paige, & Polack, 2006) (a variant of OCL), and are deep, as they can be assigned a potency. The 

purpose of MetaDepth is its use for building MDE solutions, and for that purpose it has been integrated with the Epsilon languages for model 

transformation (in-place and model-to-model) and code generation (Paige et al., 2009). It also supports other advanced features, like multi-level 

refactorings (de Lara & Guerra, 2018). The tool is not directly compatible with two level modelling, and cannot use tooling from standard meta-modelling 

frameworks. 

Melanee supports modelling through deep, multi-format, multi-notation user-defined languages (Atkinson & Gerbig, 2016). The deep modelling 

component of the tool, underpinned by the orthogonal classification architecture and deep instantiation, supports an arbitrary number of meta-levels. The 

concept of deep instantiation is implemented through potencies, which are attached to clabjects (potency), features (durability) and attribute values 

(mutability). Melanee has an explicit notion of level (hence it is a level-adjuvant approach) with both syntactic and semantic support. It also defines the 

notion of star potency, which permits an unbounded number of levels, and is a means to support the representation of types having instances of different 

potencies. Melanee does not support leap potency, but, as it supports untyped clabjects and fields, its ontological typing cannot be considered strict. The 

tool supports a variant of OCL with deep semantics and has been integrated with the Atlas Transformation Language (ATL) for model transformations 

(Atkinson, Gerbig, & Tunjic, 2015). The aim of Melanee is its use in model-based software projects, and is built on the Eclipse Platform using EMF 

(Atkinson & Gerbig, 2016). However, it still needs importers and exporters for their compatibility with standard Ecore meta-models and two-level 

architectures (i.e., adaptation is required for interoperability with standard modelling tools). 

MultEcore is a novel graphical multi-level modelling framework built using EMF (Macías et al., 2017; Macías, Rutle, Stolz, Rodriguez-Echeverria, & 

Wolter, 2018). It is based on repeatable promotion transformations, which are applied each time the user needs to create a new instance model. However, 

it does not incur in any of the drawbacks mentioned in Table 1, since the approach is not ad-hoc, but generic and fully automated. MultEcore supports 

range potency, which extends leap potency with the possibility to instantiate an element within a range of meta-levels, hence its typing is not strict. 

MultEcore is level-adjuvant, having a syntactic notion of level. Even though it does not support star potency, it permits an arbitrary number of meta-levels, 

as models do not have an explicit potency, and hence can always be instantiated (hence we classify its level notion as non-semantic, since it does not carry 

an explicit potency). The approach has been formalized using category theory. MultEcore supports untyped clabjects and fields. MultEcore contains a 

dedicated transformation language, which permits expressing model transformations (Macías et al., 2019). This way, multi-level constraints, defined using 

multi-level coupled transformations could be used to define constraints which span across multiple levels. The purpose of the MultEcore is its use within 

MDE projects. However, it is not directly compatible with two-level architectures and tools, but preserving the semantics of the multi-level model would 

require an exporter accumulating all meta-models created in the applied promotion transformations. 

DPF Workbench supports modelling with an arbitrary number of meta-levels (Lamo et al., 2013), but not deep characterization, or untyped elements. 

Hence, the approach is level-adjuvant, providing syntactic support for levels, but similar to MultEcore, we classify its level notion as non-semantic, since 

it does not carry an explicit potency. Typing is strict and the approach is based on the Diagram Predicate Framework (DPF), which provides a 

formalization of models/meta-models and model transformations. The DPF is an extension of the generalized framework of sketches (Diskin, 2005), based 

on category theory (Barr & Wells, 1990). This way, constraints are not specified in OCL, but using graphical signatures, with formal semantics. The tool 

is based on Eclipse, but a web version is also available. DPF is a tool for creating MDE solutions, and hence includes a code generator facility, supporting 

the Xpand language. 

DeepRuby is a Ruby implementation of the Dual Deep Instantiation (DDI) approach (Neumayr et al., 2017). For this purpose, the approach uses the meta-

programming facilities offered by Ruby, especially the notion of eigenclass. Being embedded within a programming language, it supports defining 

behavior (methods). We consider it level-blind, since the notion of level was not embedded in the language. Being a programming language, we do not 

consider compatibility with two-level modelling approaches in this case. 

DeepJava extends the capabilities of Java, supporting the definition instantiation chains of arbitrary depths (Thomas Kühne & Schreiber, 2007). DeepJava 

introduces the notion of potency into the programming language, and its working scheme is based on compilation into standard Java code. Similar to 

DeepRuby, we classify the typing of DeepJava as non-strict, because there is no explicit notion of level, and therefore we consider it a level-blind 

approach. As the goal is programming, we do not consider interoperability with two-level modelling. 

DeepTelos extends the Telos knowledge representation system with deep characterization through the notion of most general instances (MGI) and not 

with numerical potencies (Jeusfeld & Neumayr, 2016).  Several core constituents of multi-level modelling were already present in Telos (Mylopoulos et 

al., 1990), like the uniform treatment of classes and objects, unrestricted lengths of instantiation chains, and similar ideas to the OCA. We classify the 

typing in DeepTelos as non-strict, as there are no explicit modelling levels. Hence, we consider it a level-blind approach. The approach is implemented in 

ConceptBase (Jarke, Gallersdörfer, Jeusfeld, Staudt, & Eherer, 1995). The approach is directed to knowledge representation, and so it does not consider 

model management languages, and is not compatible with two level frameworks. 
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OMLM is the acronym of Open integrated framework for Multi-Level Modeling (Igamberdiev et al., 2018). This is a tool implemented in Flora-2, an 

open-source implementation of F-Logic with numerous extensions (Yang, Kifer, Zhao, & Chowdhary, 2005). The tool stems from the field of knowledge 

representation. In addition to create multi-level models (by instantiating a native multi-level meta-model), OMLM can import existing two-level models. 

In the latter case, a process of linguistic and ontological transformation is used that considers the steps of identification, mapping and transformation. 

OMLM supports single and multi-potency. The former is similar to leap potency, while the latter corresponds to standard potency. OMLM supports 

querying by using the MULti-LEvel Reasoner (MULLER) framework, which can also be used to verify if the transformation from a two-level model 

resulted in a correct multi-level model (i.e., it is conformant to the native multi-level meta-model). The approach supports a notion of level (i.e., it is level-

adjuvant), but with no semantics attached. 

ML2 is a textual modelling language supporting a theory for multi-level conceptual modelling named MLT (Carvalho & Almeida, 2018) (Claudenir M 

Fonseca, 2017; C. M. Fonseca, Almeida, Guizzardi, & Carvalho, 2018). It includes a UML profile for visualization and combines the approaches based on 

powertypes and clabjects. ML2 lacks mechanisms for deep characterization of instances. However, it supports the notion of regularity feature, which 

permits constraining the values of features at lower levels. While ML2 lacks an explicit notion of level, types have an order, which can be used to emulate 

levels. At the tool level, elements can be organized within modules, which can be used to group related elements. 

Dual Deep Instantiation (DDI) is a multi-level modelling approach that uses deep characterization through potency. DDI allows for relationships that 

connect objects at different instantiation levels (Neumayr et al., 2018). The potency may be specified separately for each end of the relationship. DDI has 

been formalized using F-logic, and implemented on top of ConceptBase (Jarke et al., 1995), a knowledge representation system based on Datalog 

semantics and the Telos data model (Mylopoulos et al., 1990).  The approach is level-adjuvant, providing both syntactic and semantic support. However, it 

does not support star potency, and hence the number of levels is fixed a priori, and does not support linguistic extensions (but this can be emulated 

creating a different clabject hierarchy). Being directed to knowledge representation, it is not integrated with model management languages, and is not 

directly compatible with two-level modelling. 

Flexible Meta-Modeling and Execution Language (FMMLx) enhances the expressivity of traditional object-oriented conceptual modelling by multi-

level capabilities. FMMLx is a multi-level modelling and execution language that extends XCore (Clark, Sammut, & Willans, 2015a).  A multi-level 

model created with FMMLx may not only include objects on different levels of classification, but also intrinsic attributes, operations, and associations 

(Frank, 2014). The approach can be classified as level-adjuvant, providing semantic and syntactic support for levels. FMMLx is supplemented by a meta-

modelling environment that extends XModeler  (LE4MM, 2018). The framework has two main components. A generic model editor enables the creation 

of (meta-) models by using a generic, UML-like notation. Second, a concrete syntax editor supports designing the symbols on which a graphical notation 

is based and additional widgets such as menus, text fields or buttons. The symbols created with this editor are mapped to their respective (meta-) model 

elements using a generic tree structure that is part of XModeler, thereby completing the definition of a DSML. The approach supports executability by 

means of the XMF action language. 

Overall, we observe a large variety of tools supporting sophisticated constructs for multi-level modelling. However, many tools lack integration with 

model management languages (e.g., for model transformations or code generation). The reason is the high cost of adapting the semantics of a two-level 

transformation language to a multi-level semantics. We also observe that, while some tools support importers (from two-level models into multi-level), 

and some tools are based on EMF, generally the multi-level models cannot be directly interpretable as valid standard models. The latter could be achieved 

by flattening all meta-levels, except level 0, within a single meta-model. This would permit treating a multi-level model as a standard two-level model, 

and hence integration with model management languages, like ATL or Acceleo, and standard model editors, would be achieved for free. For this purpose, 

next section described an approach that follows this philosophy. 

4. Meta-model extension approach to multi-level modelling 

Our approach is based on the observation that multi-level models can be embedded within two-levels by the use of inheritance instead of instantiation, as 

shown in Section 2.2. This approach has the advantage of maintaining compatibility with standards, such as EMF, because it permits starting a multi-level 

model from a standard Ecore meta-model. This also has the advantage of reusing all meta-modelling facilities of Ecore, like composition and opposite 

references, and a rich set of data types. However, to solve the issues identified in Table 1, it requires improving the control of how the extension of a meta-

model can be performed, as well as emulating instance facets in classes. By adding such control mechanisms, the creation of incorrect extensions or 

prohibited modifications of the base domain meta-model are avoided. Figure 8 shows a schematic representation of the approach. 

In the first phase, a standard domain meta-model (label 1 in Figure 8) is decorated with multi-level annotations. Such annotations are defined as a model, 

conforming to the MLM meta-model. Then (label 2), the instantiation of such a base domain meta-model is emulated via meta-model extension. The 

possible extensions are regulated by the defined multi-level annotations. Please note that, while the bottom level can also be emulated with subclassing (as 

noted by other researchers, like (Bąk, Diskin, Antkiewicz, Czarnecki, & Wąsowski, 2013)) we provide the option to “compile” the multi-level model into 

a standard meta-model (label 3). This compilation accounts for the special semantics of multi-level models, like encoding the differences between 

instantiation and inheritance, and setting as abstract those classes with potency bigger than 1. This results in a standard meta-model that can be instantiated 

using standard tools. Any instance model (label 4) of the compiled meta-model conforms to the multi-level model as well. This approach has the 

advantage that standard MDE tools (e.g., for model transformations) can be used to manipulate the bottom-level model.  

In the following, we describe each one of the steps in our approach. 
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Fig. 8 - Meta-model extension approach to multi-level modelling. 

4.1. Annotating standard meta-models with multi-level annotations 

Figure 9 shows the meta-model we use in our approach (called MLM meta-model in Figure 8) to decorate the standard domain meta-model with multi-

level modelling annotations. Overall, four types of elements can be annotated: meta-models (EPackage in EMF), classes (EClass in EMF), references 

(EReference in EMF) and attributes (EAttribute in EMF). This way, our meta-model contains classes annotating these elements. As we support deep 

characterization, all elements can be annotated with a potency (all annotation classes inherit from MLPotency). If the potency value is -1, it means that the 

potency is unbounded (star potency) 

Fig. 9 - Meta-model for multi-level modelling annotations. 

 

Domain meta-models are annotated with MLModel objects. These point to the EPackage being annotated via the metaModel reference. In addition, the 

meta-model annotations may include an optional name for the specification, and a flag open to control whether it is possible to add linguistic extensions in 

the meta-model instances.  

MLClass objects annotate EClasses via the mlmClass reference. The annotation permits controlling the potency of the class; the range of instances the 

clabject may have at the next level (interval [min..max]); whether the instances can be linguistically extended with new fields (if open is true); and 

whether these instances should be abstract, concrete or any of the two.  

EReferences can be annotated with MLReference objects. These support declaring a potency for the reference, a range of allowed instances for the 

reference (an interval [min..max]), an indication of allowed cardinality declarations for the reference instances (redefKind), and an indication of whether 

the reference instances can/should be tagged as compositions (compositionKind). Please note that EReferences carry two cardinalities: the one defined in 

the reference itself, and the one present in the annotation (min, max). The latter governs how many instances of the reference can be created at the next 

meta-level. The defined cardinality of the EReference, together with the flag redefKind, restricts the cardinality that can be assigned to the instances of the 

reference. This way, if the value of redefKind is default, the cardinality of the instance has to be the same as cardinality of the reference type. If redefKind 

is restrictive, the cardinality of the instance needs to be contained in the cardinality of the type. For example, if the cardinality of the base reference is 0..2, 

the instance reference can declare intervals like: 0..1, 0..2, 1..2, 1..1 and 2..2. Finally, if redefKind is Anything, the cardinality of the instance can be any 

value. Finally, EAttributes can be annotated with MLAttribute objects, which carry information just about the potency. 
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The meta-model also includes some integrity constraints, stating that the potency of the MLModel should be higher than or equal to the potency of their 

contained elements, or unbounded (while the potency of an element cannot be unbounded if the potency of the MLModel is not). Similarly, the potency of 

an MLClass object should be higher than or equal to the potency of the MLAttribute and MLReference objects annotating the class features. Similar to (de 

Lara et al., 2012), we also demand the potency of clabjects to be higher than or equal to the potency of the ancestor clabjects in inheritance hierarchies. 

Regarding cardinality, BoundedElement.min should be positive or zero, while BoundedElement.max should be higher than or equal to 

BoundedElement.min, or negative (to represent an unbounded cardinality). Finally, we demand the cardinality of a clabject to be wider than or equal to the 

interval made of the minimum cardinality of each subclabject (through the inheritance relation), and the sum of the maximum cardinalities of each 

subclabject (where * plus anything results in *). For example, if a clabject A has two subclabjects B and C with cardinalities [1..3] and [2..4], then the 

cardinality of A should be wider than or equal to [1..7] (e.g., it can be [1..7], [0..8], [0..*], etc). These constraints are provided in OCL in Appendix A. 

Figure 10(a) shows the domain meta-model of the running example with multi-level annotations (shown as dark boxes attached to every meta-model 

element). Figure 10(b) shows a smaller excerpt (with just the class Connector), and the multi-level annotations shown as explicit instances of the meta-

model of Figure 9. The model itself is annotated with an MLModel object stating that it has potency 2, and is open (so linguistic extensions are allowed at 

the next level below). All elements have potency 2, except attribute Connector.delay, which has potency 1. All elements have 0..* cardinality (and this is 

omitted, as it is the default) except for Component and Connector, for which we require at least one instance. Our approach supports a control of the 

composition nature of reference instances. This way, Component.pTypes instances are required to be compositions, while instances of any other reference 

cannot be compositions. The cardinalities of reference instances can be any, except for instances of Connector.from, for which cardinality equal to 

Connector.from is required. All classes are closed (instances will not support linguistic extensions), except instances of Message.  

Fig. 10 – (a) Meta-model for the running example with multi-level annotations. (b) Annotations as instances of the MLM meta-model. 

4.2. Deep-model instantiation through extension 

Our approach replaces instantiation by inheritance, and hence we emulate clabjects with classes. When the base domain meta-model is instantiated, the 

created subclasses need to be annotated with multi-level annotations as well. This is illustrated in Figure 11 with the running example. Please note that we 

encode slot values for classes using annotations (e.g., MChannel.delay), and take into consideration the annotations in the parent objects as a guide to 

create the instances. For example, as reference Connector.from is annotated with default, it means that its instances (MChannel.from) need to have the 

same declared cardinality. 

Fig. 11 - Instantiation of the running example. 
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Please note that, compared to an ad-hoc static approach like the one described in Section 2.2 (cf. Figure 2), our annotations permit emulating attribute 

values at the class level (e.g, MChannel.delay), while ensuring a correct emulation of instantiation with inheritance. For example, they disallow multiple 

inheritance from two classes (e.g, Component and Port) of the top meta-model, while controlling the specified instantiation cardinality. This solves the 

issues of ad-hoc static approaches identified in Table 1. 

4.3. Compiling the multi-level model 

Optionally, the developer can compile the multi-level model into a standard meta-model. This process removes the multi-level annotations, encoding the 

semantics of the different multi-level constructs in the standard meta-model, including the semantic difference between inheritance and instantiation (T. 

Kühne, 2009). This compilation process takes as reference the procedure described in (Guerra & de Lara, 2017), and has four steps: 

 Compilation of clabjects: each class at level 2 or higher is set to abstract, while classes with potency 0 become abstract as well. This is necessary 

to avoid instantiating those clabjects at level 0. In the first case, we would be jumping levels when instantiating. In the second, we would be 

instantiating clabjects with potency 0.  

Figures 12(a) and (b) illustrate these two cases. In both of them, the multi-level model appears to the left of the arrow, and the compiled standard 

meta-model to the right. In Figure 12(a), we cannot set class A to concrete, as we could instantiate it at level 0, which is not allowed in the multi-

level model. In such Figure, class B becomes concrete, because the multi-level model permits instantiation. In Figure 12(b), both classes A and B 

become abstract, as we cannot instantiate any of them at level 0. In our example, we set to abstract classes Component, Port, Message, InputPort, 

OutputPort and Connector. 

Fig. 12 - Compiling classes with potency annotations: (a) Classes with same potency and level; (b) Classes with potency 0. 

 

 Compilation of attributes: attributes (with primitive data type) are just copied. However, depending on their potency, they may need to be set as 

static, and their values redefined. In particular, attributes whose potency is lower than the model level, need to be set as static (a class attribute). 

This is required to emulate that such attribute values are assigned at the class level, and is the same for all the instances of such class. Please note 

that, in meta-modelling system that do not support class attributes (like EMF), the value can be emulated with an OCL invariant, or as a derived 

attribute, but in such case, the attributes remain read-only. 

For example, delay has potency 1, while its owner clabject Connector has potency 2, and is located in a model with level 2. This way, the 

attribute is compiled into a static attribute, where the value is redefined in the MChannel subclass, as shown in Figure 13(a). In case of EMF, the 

class attribute value would be emulated with an OCL invariant in the context of MChannel (stating self.delay=5) or with a derived attribute. 

Figure 13(b) shows another case where the attribute (stime) has potency 2, and the owner’s level is 2 as well. Therefore, it is compiled as an 

instance attribute. 

Fig. 13 - Compiling attributes: (a) Attributes with potency lower than the level; (b) Attributes with same potency as the level.  

 Compilation of references: similar to clabjects, to avoid illegal instantiations, references at level 2 or higher are removed, while references at 

level 1 with potency 0 are removed as well. To avoid losing information (and to be able to write OCL constraints that consider those elements), 

the removed references are substituted by query operations returning the specified classes. In meta-modelling system supporting OCL, the 

operation code can be given in OCL. 

Figure 14 illustrates this compilation. Reference A.r1 is removed and substituted by an abstract query operation r1() in the compiled meta-model. 

Then, such operation is overridden in A1 and A2 accordingly. Please note that we take advantage of covariant return in method overriding. This 

way, as all instances of r1 in A1 return objects of type A2, method A1.r1() returns a collection of A2. Instead, there are two instances of r1 in A2, 

namely r3 (with target A1) and r4 (with target A2). As they are not the same class, we take the most specific common superclass of all of them, 
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which in this case is A. As there are two instances, then A2.r1() returns the union of such instances. As it can be noted, the goal is to avoid 

instantiating r1, while emulating reference redefinition via operation overriding. As references r2, r3 and r4 have potency 1, they can be 

instantiated normally at level 0. 

Fig. 14 - Compiling references. 

 Compilation of annotations: the untyped clabjects created by the developer at any meta-level may contain annotations. The compilation only 

needs to tackle the class cardinality annotations. These produce an OCL constraint restricting the number of instances of the class. Such OCL 

constraint is added in the root class. This is an idiom of EMF, in which the root class is expected to be instantiated exactly once, and contain all 

other classes directly or indirectly through containment references. We will discuss more on root classes in Section 5. 

As an example, Figure 15 shows the compilation of the multi-level model in Figure 11 using the procedure just described. Clabjects with potency 2 at 

level 2 are compiled into abstract classes, while their instances become their subclasses. References at level 2 are removed and replaced by abstract 

methods, returning objects of the appropriate class and cardinality (taken from the original references). Instances of clabjects override these methods 

depending on the reference instantiation. For example, class Component declares method pTypes() returning a set of Port objects, as it had a reference to 

Port. Class Producer overrides operation pTypes to return a set of Pout objects (those in reference outs). Should Producer define more references of type 

pTypes, the method would be overridden returning the common most specific class of the reference targets. Please note that, as Connector.delay has 

potency 1, it becomes a static attribute, whose initial value is set in MChannel.  

Fig. 15 - Compilation of the multi-level model in Figure 11. 

In case the compilation targets EMF, it would add a root class containing all the class of level 2 (Component, Port, Connector and Message), the possible 

linguistic extensions at level 1 not contained in other classes, and OCL invariants taking care of the declared clabjects cardinalities (e.g., cardinality [1..*] 

of Component and Connector). 

Please note that, while in all example Figures used in this section, the maximum level is 2, our compilation works the same for other level values. Another 

point is that in our approach, the compilation specifically targets the creation of a meta-model that enables building a model at level 0. However, it could 

be used to create models e.g., at level 1. This could be done by setting an explicit target level for compilation (as in (Guerra & de Lara, 2017)), instead of 

assuming level 0. This would mean that, e.g., in Figure 12, we would make concrete those classes having a potency equal to the target level plus 1. 

However, in this case, we could only create the instance facet of those elements, but not the type facet (e.g., we could not add additional attributes with 

type facet to objects), or create untyped clabjects. The idea of compilation for levels other than 0 was also sketched in (Neumayr et al., 2018). 

4.4. Creating the level-0 model 

As mentioned, the level-0 model can be created in two ways: (i) by instantiating the compiled meta-model, and (ii) by extending the multi-level model. 

The first option is preferred when compatibility with two-level frameworks is desired. For example, if the developer needs to define a model 

transformation to manipulate the level-0 model, then such transformation will be defined over the compiled meta-model. Interestingly, any level-0 model 

built in this way will be a valid instance of the original multi-level model represented using meta-model extension. The second way to create the model 

emulates objects with classes, and does not require compiling the multi-level model. This is the preferred option when the developer does not want to use 

a different tool (e.g. a two-level standard model editor) to create the level-0 model. 
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As an example, Figure 16 (a) depicts a level-0 model (made of just on object m of type Packet), showing how it is an instance of the multi-level model. In 

particular, we use «instance of» to convey that the model has been created using the compiled meta-model, and «conforms to» to convey that the model is 

conforming to the extension-based representation of multi-level models. Please note that the converse does not hold: there are instance models of the 

extension-based representation (in particular, those with an object of type Message) that do not conform to the compiled meta-model representation. 

However, those models are undesired, as in this case we would be jumping meta-levels when instantiating the Message class. Effectively, the compilation 

makes explicit the semantics of the multi-level model using standard meta-modelling facilities. 

Fig. 16 - (a) Object-based representation of level 0 models; (b) Class-based representation of level 0 models. 

Figure 16 (b) shows the same model expressed using a class-based representation. Hence, this approach represents clabjects at level 0 using classes. As 

these clabjects will frequently have instance fields, annotations are used to store their values. 

5. Architecture and tool support  

We have realized the described approach in a tool called TOTEM. The tool is an Eclipse plugin, freely available at http://miso.es/tools/totem.html. The 

tool web page contains several examples and case studies, including the running example and the “Bicycle challenge”, a case study proposed in the 

MULTI series of workshops (see https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/#challenge). The architecture of TOTEM is shown in Figure 17. 

Fig. 17 - Architecture of TOTEM. 

TOTEM is made of two main components (labels 2 and 3 in the Figure). The first component is the multi-level annotation tool. With this tool, an existing 

EMF (Steinberg et al., 2008) domain meta-model (label 1 in the Figure) is annotated with multi-level modelling annotations by the language designer. 

These annotations are realized as a model conforming to the meta-model shown in Figure 9. The elements of this annotation model have cross-references 

to the elements in the standard domain meta-model (cf. Figure 10(b)). To perform this task, the annotation tool offers two editors to the designer: a tree-

based editor and a textual editor (labels 2a and b in the Figure). The annotation tool is described in Section 5.1 in more detail. 

The second component of TOTEM is the multi-level modelling tool (label 3 in the Figure). This tool receives a standard meta-model with multi-level 

annotations and permits its instantiation at any depth, including level 0, according to the defined annotations. Additionally, TOTEM can produce a 

standard meta-model using the compilation procedure in Section 4.3 (label 4 in the Figure). This way, standard EMF tooling can be used to instantiate the 

meta-model, or to define model transformations over it. This second component will be described in more detail in Section 5.2. 

TOTEM supports two approaches to create a full multi-level model. In the first one, an existing standard EMF meta-model is annotated with multi-level 

annotations using the annotation tool, and then instantiated using the multi-level modelling tool. This scenario enhances compatibility with EMF, and 

facilitates migration into a multi-level architecture. In the second scenario, the language designer does not start from an existing EMF meta-model, but 

instead uses the multi-level modelling tool to create the top-level model of the language. We will discuss how this is achieved in Section 5.2. 
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For simplicity, and to facilitate comprehension, in this Section we will use as example the multi-level model depicted in Figure 18. The model is a well-

known example used in the multi-level literature (Atkinson & Kühne, 2002), where the idea is being able to create product types (like Book or Food), each 

with a different tax, and then instantiate these types at level 0, and assign them a concrete price. 

Fig. 18 – Multi-level example used in this section. 

5.1. The multi-level annotation tool 

The multi-level annotation tool is useful for the case in which we base our multi-level model on an existing EMF meta-model. The annotations can be 

specified using a tree-based editor or using a domain-specific textual language we have created using Xtext. As an example, Figure 19(a) shows a standard 

Ecore meta-model corresponding to the level 2 of Figure 18, while Figures (b) and (c) show the annotations we have added to such meta-model using the 

tree editor and the textual editor. In both cases, the meta-model itself is set potency 2, class ProductType is set potency 2, while attribute TAX is set 

potency 1. Attribute price is not set an explicitly potency, and so it obtains the potency of its enclosing class (potency 2, cf. Figure 17). 

Additionally, Figure 19(c) shows some more details that are not visible in Figure 19(b). In particular, it declares the meta-model as open, which means 

that we can include clabjects with no type in the level below. It also sets a persistence flag (save) indicating that, upon instantiation, the resulting model is 

to be persisted in a separate file (newMM). The other alternative for persistence is saving in the same file. Class ProductType is assigned an instantiability 

interval of [1..*] (so its instantiation is mandatory). It is also tagged as concrete (so that instances of this class cannot be abstract), open (so that instances 

can add untyped fields and references), and root. The latter flag is used to indicate that this will be the root class. Having a root class is a common idiom in 

EMF, so that frequently, models contain just one object of the root class, which contains directly or indirectly all other objects. Several classes can be 

tagged as root. In our implementation, the compilation adds an additional class acting as the root container, which contains the instances of the classes 

tagged as root. Please note that we omitted the persistence and root flags from the meta-model in Figure 9 as they are implementation details.  
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Fig. 19 - (a) Example standard meta-model; (b) Multi-level annotations using the tree-based editor; (c) Textual DSL. 

5.2. The Multi-level modelling tool 

Once the multi-level annotations are specified, the annotated meta-model can be instantiated with the multi-level modelling tool. Figure 20 shows some 

screenshots of the tool being used to instantiate the annotated meta-model of Figure 18. Its main interface (a) is organized in three sections. The left 

section shows all the elements of the base meta-model (clabjects, fields and references), which can be instantiated according to their annotations. In the 

columns to the right, several features appear, like the potency, cardinality, type (reference type for associations, or datatype for attributes), and value 

(target class for reference or value for attributes).  

The right section of the interface (panel labelled “OPTIONS”) contains buttons to instantiate clabjects and references, create untyped clabjects or edit 

existing clabjects. Figure 20(b) shows the dialog used to instantiate a clabject. It allows setting the value of attributes, creating new fields if the clabject 
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type is open, and instantiate references as appropriate. Figure 20(c) shows the tool after creating two instances of ProductType. In both such instances we 

can assign a value to TAX (as it has potency 0). Moreover, attribute price (with potency 1) is also visible, to permit assigning it a default value. 

TOTEM supports an arbitrary number of meta-levels, and also unbounded potency. To support the scenario where the designer does not start from an 

existing EMF meta-model, we use a generic annotated meta-model with no classes. This meta-model just has unbounded potency and is open. This means 

that we can instantiate it to create a model of some arbitrary potency, and untyped clabjects within it. 

(a) 

(b) 

(c) 

Fig. 20 - Using the multi-level modelling tool: (a) Main GUI; (b) Instantiating a clabject; (c) Instantiating a model. 

5.3. Extracting a standard meta-model 

TOTEM permits modelling the level 0 within the tool, or it can produce a standard meta-model according to the procedure described in Section 4.4. Figure 

21(a) shows the generated meta-model, while Figure 21(b) depicts a (level 0) model created with the standard tree editor of EMF. Please note that TAX 

has potency 1, and then receives values at level 1. This is encoded as a derived attribute, which takes the value using operation compute_TAX(), which is 

overridden to yield the appropriate values for clabjects Book and Food. In addition, the tool generates a root class containing all classes declared as root 

(ProductType in this case). This is used in the model of Figure 21(b) as the container for the model objects. 

6. Evaluation 

In this section, we provide both an experimental evaluation and an analytic one. Our aim is answering two research questions: “RQ1: is TOTEM able to 

produce solutions comparable to state-of-the-art multi-level modelling tools?”, and to “RQ2: what are the advantages of TOTEM with respect to state-of-

the-art multi-level modelling tools?”. For this purpose, we fully develop the running example, showing its realization with TOTEM and then comparing its 

realization with an implementation using MetaDepth and Melanee (Section 6.1). Second, we perform an analytical evaluation of TOTEM in comparison 

with current multi-level modelling tools (Section 6.2). 

6.1. Empirical evaluation: comparing the running example using TOTEM, MetaDepth and Melanee 

In this section we compare a TOTEM model of the running example, with an encoding using MetaDepth and Melanee. They have been selected as 

representative state-of-the-art multi-level modelling tools (they are among the oldest tools supporting both potency and levels). Our aim is to measure the 

complexity of both solutions, in terms of metrics like size, and on the multi-level features available in each tool. This experiments aims at answering RQ1 

and RQ2. 
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Fig. 21 - (a) Compiled standard meta-model; (b) A model at level 0 created using the standard EMF tree editor.  

Figure 22 (a) shows the EMF meta-model we started with to model level 2, while Figure 22 (b) shows TOTEM being used to create the model at level 1. 
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Fig. 22 - (a) Top-level model for the running example as an Ecore meta-model; (b) Levels 2 and 1 in the TOTEM GUI.  

Listing 1 shows the running example using the textual syntax of MetaDepth. Listing 1(a) shows level 2, where clabjects Component, Port, InputPort, 

OutputPort and Connector are defined. Clabjects with no ontological type are declared using the keyword Node, and clabject cardinalities are specified 

next to the clabject name (e.g., [1..*] for Connector). If no cardinality is specified, then [0..*] is assumed. By default, instances of a model may include 

clabjects with no type (i.e., linguistic extensions), and similarly, instances of a clabject can be added fields with no type. However, this can be controlled 

prefixing models and clabjects with the keyword strict. Potency is indicated after the “@” symbol. If a clabject or field does not explicitly declare potency, 

it takes the one of its container. 

Listing 1(b) shows an instance of the ComponentSystem model, with the producer-consumer system of the running example. Instantiating a clabject 

requires prefixing the clabject name with its type (e.g., “Component Producer” creates a clabject with identifier Producer, of type Component). At this 

level some clabjects assign values to fields with potency 0 (e.g., delay = 5), and as all clabjects are extensible, we can declare new fields (e.g., dat: 

String). Instantiating a reference requires declaring its target clabject type (e.g., out : Packet), the cardinality (e.g., [0..1]) and the type of the parent 

reference (e.g., {accepts}). Finally, Listing 1(c) shows a level 0 model. 

Overall, both solutions are similar, leading to very similar size metrics. In both cases, level 2 has 6 clabjects, 5 references, 2 fields and 2 inheritance 

relations. Level 1 has 6 clabjects in both cases, 9 fields in case of MetaDepth and 10 in case of TOTEM. The difference concerns attribute stime, which is 

shown in Packet at level 1 in TOTEM, so that it can be assigned a default value, if desired. In MetaDepth the attribute would only need to be explicitly 

declared within MChannel if an initial value is to be given. Therefore, the size of both specifications is similar. Please note that we count size as it is 

perceived by the designer, hence we do not include the annotation model internally required by TOTEM (cf. Figure 10(b)) in the count of the model size 

(just like for MetaDepth, we do not count internal Java objects, but only count those elements that the designer actually deals with). 
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Model ComponentSystem@2   
  Node Component [1..*] { 
    pTypes : Port[*]; 
  } 
  abstract Node Port { 
    accepts : Message[*]; 
  }   
  Node InputPort : Port{}   
  Node OutputPort : Port{} 
  Node Message { 
    stime: double; 
  } 
  Node Connector [1..*] { 
    delay@1 : double; 
    from    : OutputPort; 
    to      : InputPort[*]; 
    transports : Message[*]; 
  } 
} 

 
 

(a) 

ComponentSystem ProducerConsumer { 
   Component Producer{  
      outs : Pout[1..*] {pTypes}; 
   } 
   Component Consumer{ 
      inp  : Pin {pTypes}; 
   } 
   OutputPort Pout{ 
      out : Packet[0..1]{accepts}; 
   } 
   InputPort Pin{ 
      in : Packet[0..1]{accepts};  
   } 
   Connector MChannel { 
      delay = 5; 
      fromp   : Pout {from}; 
      top     : Pin [1..2] {to}; 
      carries : Packet[0..10]{transports}; 
   } 
   Message Packet {dat : String;} 
} 

(b) 

ProducerConsumer aModel { 
   Producer p { 
     outs = [po]; 
   } 
   Pout po { 
     out = [pk]; 
   } 
   Packet pk { 
     dat = “Hi!”; 
     stime = 1.5; 
   } 
   MChannel mc { 
     fromp = po; 
     top = [pi1, pi2]; 
   } 
   Pin pi1; 
   Pin pi2; 
   Consumer c1 { inp = [pi1]; } 
   Consumer c2 { inp = [pi2]; }    
} 
 

(c) 

Listing 1 - Running example in MetaDepth: (a) Component meta-model (level 2); (b) Producer-consumer meta-model (level 1);                         

(c) A Producer-consumer model (level 0). 

A crucial difference in the modelling approach in both cases is that, when elements are instantiated in TOTEM, the fields are automatically instantiated as 

well, and shown in the GUI. Because MetaDepth has a textual syntax, the developer needs to explicitly write such field instances, which requires more 

effort. 

Both approaches are similar in that both enable expressing clabjects cardinalities, and controlling whether linguistic extensions are allowed. On a more 

detailed comparison, we observe that MetaDepth lacks composition relations, while compositions are native in EMF, and therefore TOTEM supports 

them. Hence, an advantage of TOTEM is that, by reusing the EMF for multi-level modelling, we immediately acquired its meta-modelling facilities (e.g., 

opposite references, composition references, enumerations). Moreover, TOTEM supports the specification of whether the instances of a reference need to 

be compositions as well. A faithful modelling of the running example in MetaDepth would require OCL constraints emulating the composition semantics. 

MetaDepth does not require root classes, as models are first class entities in MetaDepth. In contrast, being based on EMF, TOTEM requires marking the 

classes that are to be taken as roots (which produces an additional class when compiling the meta-model). Finally, TOTEM has flags to control the 

allowed cardinalities of the instances of a given relation (like default or restrictive), while this requires OCL constraints in MetaDepth. 

Figure 23 shows the running example built using Melanee. For comprehensibility we have labeled the three levels with “Level 2”, “Level 1” and “Level 

0”, but the tool indexes the top level as level 0.  

Fig. 23 – Running example in Melanee. 
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Melanee provides a palette for the graphic construction of the multi-level model. Figure 24 shows some of the dialog boxes used by Melanee to specify 

values of the properties of some elements of the multi-level model. Figure 24 (a) shows the specification of the properties of the Component clabject with 

potency 2 and level 2. The property Level Index = 0, specifies the level of the model in which the clabject is located. When an entity is created in the first 

level of the model (the top), the property will have value 0, which is assigned automatically. As the clabject is instantiated, the value of the property 

increases by 1.  

 
 

 

 
 

 

 

(a) 

 
 

 

 

(b) 
(c) 

Fig. 24: Properties of some elements in the solution using Melanee: (a) clabject; (b) attribute; (c) reference. 

Figure 24 (b) shows the specification of the properties of the stime attribute of the Message clabject with potency 2 at level 2 (see Figure 21). In Melanee 

attributes declare both a durability (in how many later levels the attribute may exist), and a mutability (how many levels the value of an attribute can 

change). The Value property is used to assign an initial value. 

Figure 24 (c) shows the specification of the properties of the reference (called connection in Melanee) pTypes of clabject Component. The dialog permits 

assigning a target clabject, a kind (basic, composition or aggregation), a cardinality (lower, upper), a moniker (a role name), a navigability, and an 

optional type (at the higher meta-level). Just like clabjects, associations can specify the level of the model in which the connection is located, the name and 

the potency. 

Once all elements at level 2 have been included and configured, they can be instantiated at level 1, through the tool palette. The value of the potencies of 

the elements (clabject, attributes and references) is automatically controlled by the tool. The assignment of values to the fields with potency 0 (for 

example, MChannel.delay = 5) of the clabjects has to be done manually through the properties window (Figure 24 (b)). Because all clabjects are 

extensible, new attributes can be declared (for example, dat: String) through the tool palette. The instantiation of a reference requires that the origin and 

destination clabject have been previously instantiated at the level above. In such case, it is possible to redefine the cardinality of the instantiated 

references, as well as assign them a new name. 

In general, the solutions using Melanee and TOTEM are similar, which leads to very similar size metrics. In both cases, level 2 has 6 clabjects, 5 

references, 3 fields (because the dat field that is added in level 1 is also added automatically in level 2) and 2 inheritance relationships. Level 1 has the 

same number of elements in both cases: 6 clabjects in both cases, 7 references and 3 fields.  

The main difference concerns the support for clabjects cardinalities and abstract clabjects in TOTEM, which are not supported in Melanee. Melanee can 

emulate abstract clabjects adding them potency 0, but this was not possible with clabject Port due to the potency required for the subclabjects InputPort 

and OutpuPort. Additionally, Melanee by default allows creating untyped clabjects (linguistic extensions) at any level of the model, while in TOTEM this 

can be controlled. The two tools support composition relationships. However, TOTEM allows specifying whether the instances of a reference may or may 

not also be compositions. Melanee also supports aggregation references, and does not require root classes, since the models are first class entities. 

Table 3 shows a summary of the comparison of the approaches with respect to the example. 

Table 3 – Comparison of the solutions using MetaDepth, Melanee and TOTEM. 

Tool                      

                        Aspect                                                                                                   

MetaDepth Melanee TOTEM 

Size of modeling elements Level 2: 6 clabjects, 5 refs, 2 fields and 

2 inheritance relationships. 

Level 1: 6 clabjects, 7 refs, 2 fields. 

Level 2: 6 clabjects, 5 refs, 3 fields, 2 

inheritance relationships. 

Level 1: 6 clabjects, 7 refs, 3 fields. 

Level 2: 6 clabjects, 5 refs, 2 fields, 2 inheritance 

relationships. 

Level 1: 6 clabjects, 7 refs, 3 fields. 

Specification  Textual Multiple formats and notations Tabular  

Compositions  No Yes (also aggregations) Yes (and controlling composition of instances) 

Reference cardinalities Yes Yes Yes, two types of cardinality for references: 1) to 

specify how many instances of the reference can 

be created at the next meta-level, 2) the one in the 

reference itself, which is a template for the 

cardinality of instances. 

Clabject cardinalities Yes No Yes 

Clabject abstractness Yes No Yes 

Control of linguistic 

extensions 

Yes No Yes 

Deep instantiation 

mechanism 

Potency, leap potency Potency, mutability, durability Potency 

Unlimited potency Yes Yes Yes 

Requires defining root 

class 

No No Yes 
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Overall, regarding the research question RQ1, the solution using TOTEM is equal in size to the solutions using state-of-the-art multi-level modelling tools, 

like MetaDepth and Melanee. Regarding RQ2, TOTEM includes advanced constructs to control compositions and reference cardinalities, which are not 

present in MetaDepth; and clabject cardinalities, abstractness and the control of composition in reference instances, which are not present in Melanee. 

However, the main advantage of TOTEM is the enhanced compatibility with two-level modelling. First, it is possible to start the multi-level model with a 

standard Ecore meta-model (cf. Figure 22(a)), which is not possible in MetaDepth or Melanee. Second, TOTEM supports the possibility to export the 

multi-level model into a standard meta-model, and then use standard EMF tooling to edit the level 0 model, or to define model manipulations using 

standard transformation languages, like ATL or Acceleo. 

Threats to validity. Regarding internal validity (confounding factors that may influence the results), we have only used one example for the comparison. 

However, the example is substantial, exercising many of the features of both tools. For external validity (generalizability of results), we have only 

compared with MetaDepth and Melanee. While these are two of the most well-established multi-level modelling tools available today (and two of the 

oldest ones supporting potency and levels), generalization of the answers to the research questions would require comparison with other tools, e.g., the 

ones analysed in Section 3.2. An example-based comparison would run the risk of proposing non-optimal solutions (as we are not the authors of those 

tools). For this purpose, we have conducted an analytical evaluation in Section 6.2, comparing with the tools analysed in Section 3.2. 

6.2. Analytical evaluation 

In this section, we report on an analytical evaluation, comparing the features of TOTEM with those of other multi-level modelling tools. For this purpose, 

we base our analysis on the features extracted in Table 2, which are summarized in Table 4.  

As the table shows, our approach is based on meta-model extension, a unique approach among the analysed approaches in Table 2. This approach embeds 

the multi-level model within an Ecore meta-model, presenting advantages regarding compatibility with the EMF standard, as we can directly reuse 

existing Ecore meta-models. 

                            Table 4 - Features of TOTEM. 

Feature TOTEM 

Mechanism Meta-model extension 

Instance characterization Deep (potency, star potency) 

Extension Yes (objects, fields) 

Typing Non-Strict (extension, no-mix) 

Linguistic, ontological 

Meta-Levels Level-adjuvant, extensible, syntactic, semantic 

Constraints Standard OCL, but only affecting level-0 models 

Purpose MDE 

Support for management languages Yes, any available for standard EMF 

Compatibility with two-level modelling and tools Yes, both as a starting top-level meta-model and for editing level 0 models 

 

TOTEM supports deep instance characterization through (clabject and field) potency. Additionally, it also supports star potency, which permits an 

unbounded instantiation depth, and a number of meta-levels that does not need to be fixed a priori. The approach supports linguistic extensions, as both 

meta-models and clabjects can be tagged as open. As the multi-level model is embedded within an Ecore meta-model, constraints can be added using the 

standard OCL. However, such constraints can only apply to level 0. TOTEM has a dual ontological/linguistic typing. On the one hand, we use Ecore 

enriched with the multi-level annotations as the linguistic meta-model. On the other, ontological typing is encoded within the meta-model, using 

inheritance relations. 

The purpose of TOTEM is its use within MDE solutions, and for this purpose it has been built over EMF, as an Eclipse plugin. This decision brings two 

benefits. First, it receives all meta-modelling facilities of Ecore (e.g., opposite references, composition references, a rich set of datatypes, packages). 

Second, it is compatible with all model management languages of the EMF ecosystem, including ATL, Epsilon or Acceleo. Typically, the model 

manipulations will affect the level 0 models, but we can use these standard languages to manipulate the meta-model level as well. The compatibility with 

standard two-level modelling and tools is high, because the modelling process can start by annotating an existing standard meta-model, and the tool can 

produce a standard meta-model at the end, which can be instantiated using standard EMF tooling. Please note that an ad-hoc solution based on promotion 

transformations requires one transformation to instantiate each level below the top one. Instead, by relying on inheritance, we need just one compilation if 

we want to instantiate level 0 using a standard editor. 

Overall, we can conclude that the approach of TOTEM is unique in current tooling. It supports most advanced constructs and requirements of useful 

multi-level modelling tools (deep instance characterization mechanisms, extensibility, extensible meta-levels, and constraints). Further answering RQ2, 

and compared to other existing approaches, it brings an increased compatibility with standard two-level modelling and tools, both to start a multi-level 

model using an existing Ecore meta-model, or to instantiate and manipulate the level 0 using standard tools. 
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7. Conclusions and future work  

In this paper we have discussed the advantages of multi-level modelling in the scenarios where the type-object pattern or some of its variants arise. We 

have reviewed different approaches to multi-level modelling, characterizing their design space through a feature model. We have used this model as a 

basis to compare some representative multi-level modelling tools. From this review, we noticed a lack of integration with standard meta-modelling 

technologies – also observed by other members of the multi-level community – and argued that better compatibility with standards could lead to a wider 

adoption of multi-level modelling, and the benefits that it brings in terms of reduced accidental complexity (Atkinson & Kühne, 2008). To improve this 

situation, we have proposed a novel approach to multi-level modelling, which emulates clabjects with classes and instantiation with inheritance. We have 

realized these ideas in the TOTEM tool, and shown its benefits through a case study. 

In the future, we plan to improve different aspects of the tool, e.g., creating a graphical editor for meta-modelling, integrating the catalogue of multi-level 

refactorings proposed in (de Lara & Guerra, 2018), and achieving better integration with model management languages. In particular, we plan to make 

possible the evaluation of standard OCL at levels different from level 0, which is currently a limitation of our approach. This would require rewriting the 

OCL expression to convert navigations using instantiation into navigations using inheritance (e.g., Component.allInstances() would be rewritten into 

EClass.allInstances()->select(c|c.allSuperTypes()->includes(cmp|cmp.name=’Component’)).  

Another avenue of research is taking advantage of the use of inheritance to emulate more flexible ways of instantiation, in the style of (de Lara & Guerra, 

2017). In this sense, The MOF Support for Semantic Structures (SMOF) (SMOF, 2013) observes some rigidities in the typing as currently realized by 

MOF (MOF, 2016), for example to represent objects holding several classifiers (e.g., a person object that is classified as both Author and Reviewer in case 

of having authored and reviewed articles). While using the standard instantiation support given by MOF rules out this possibility, our approach based on 

emulating instantiation with inheritance opens the door to support multiple classification. This way, we plan to investigate ways to specify and control 

multiple classification with our approach. 

Finally, we plan to expand the evaluation with comparison to other multi-level tools. However, we believe this should be a joint effort of the whole multi-

level modelling community. 
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Appendix A. 

This appendix contains the OCL invariants for the MLM meta-model of Figure 8.  

-- The potency of the MLModel should be higher than or equal to the potency of  
-- their contained clabjects, or unbounded  
context MLModel inv:  
  potency=-1 or classes.forAll(c | potency>=c.potency) 

 

-- The potency of an element cannot be unbounded if the potency of the MLModel is not.  
context MLModel inv:  
  potency<>-1 implies classes->union(references)->union(fields).forAll(potency<>-1)  

 

-- The potency of an MLClass object should be higher than or equal to the potency of  
-- the MLAttribute and MLReference objects annotating the class features  
context MLClass inv: 
   potency=-1 or 
   (MLReference.allInstances()-> select(r | mlmClass.eAllReferences->includes(r.mlmReference))-> 
 forAll(r | potency>=r.potency) and 
    MLField.allInstances()-> select(f | mlmClass.eAllAttributes->includes(f.mlmField))-> 
 forAll(f | potency>=r.potency)) 
 
-- The potency of clabjects is higher than or equal to the potency of the ancestor clabjects  
-- in inheritance hierarchies (or unbounded, if some ancestor has unbounded potency).  
context MLClass inv: 
   MLClass.allInstances()->select(c | mlClass.eAllSuperTypes->includes(c.mlClass))-> 
                           forAll(c | (c.potency=-1 implies potency=-1) and potency >= c.potency) 

 

-- BoundedElement.min should be positive or zero, while BoundedElement.max should be higher  
-- than or equal to BoundedElement.min, or -1 
context BoundedElement inv: 
   min>-1 and (max=-1 or max>=min) 
 
-- The cardinality of a clabject has to be wider than or equal to the interval made of the minimum  
-- cardinality of each subclabject (through the inheritance relation), and the sum of the maximum  
-- cardinalities of each subclabject (where * plus anything results in *).  
context MLClass inv: 
   MLClass.allInstances()->select(c | c.mlClass.eAllSuperTypes->includes(mlClass))-> 
                           forAll(c | min <= c.min) 
context MLClass inv: 
   if (MLClass.allInstances()-> 
                           select(c | c.mlClass.eAllSuperTypes->includes(mlClass))-> 
                           exists(c | c.max = -1))  
   then max=-1 
   else (max=-1 or  
         max >= MLClass.allInstances()->select(c | c.mlClass.eAllSuperTypes->includes(mlClass)).max.sum()) 
   endif 

 


