
Automating the Development of Task-oriented LLM-based
Chatbots

Jesús Sánchez Cuadrado

Universidad de Murcia

Murcia, Spain

jesusc@um.es

Sara Pérez-Soler

Universidad Autónoma de Madrid

Madrid, Spain

sara.perezs@uam.es

Esther Guerra

Universidad Autónoma de Madrid

Madrid, Spain

esther.guerra@uam.es

Juan de Lara

Universidad Autónoma de Madrid

Madrid, Spain

juan.delara@uam.es

ABSTRACT

Task-oriented chatbots are increasingly used to access all sorts of

services – like booking a flight, or setting a medical appointment –

through natural language conversation. There are many technolo-

gies for implementing task-oriented chatbots, including Dialogflow,

Watson, and Rasa. They rely on an explicit definition of the user

intents, conversation flows, and chatbot outputs, which is costly to

specify, and sometimes results in suboptimal user experiences and

artificial conversations with limited diversity of chatbot responses.

Recently, the advances in generative artificial intelligence fos-

tered by Large Language Models (LLMs) have enabled a new range

of open-domain chatbots, like ChatGPT, able to converse fluently

on any topic. However, they are general-purpose, and therefore not

directly usable to solve specialised tasks reliably.

In this paper, we study the power of LLMs to build task-oriented

chatbots, resulting in lighter specifications – no intent definition

required – and more natural conversations than in intent-based

approaches. To this end, we propose a lightweight domain-specific

language based on YAML to specify chatbots using modules of

different types (e.g., menus, question-answering, data gathering).

These specifications are compiled into structured LLM prompts that

use the ReAct framework to inform our runtime how to interpret the

user input and coordinate the tasks that the chatbot must perform.

The paper presents the design and realisation of our framework, and

an assessment that encodes a set of existing intent-based chatbots

using our approach, showing its benefits in terms of specification

size, conversation flexibility and output diversity.

CCS CONCEPTS

•Human-centered computing�Natural language interfaces;

• Software and its engineering� Context specific languages;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0511-3/24/07. . . $15.00

https://doi.org/10.1145/3640794.3665538

KEYWORDS

Task-oriented Chatbots, Large Language Models, Domain-Specific

Languages

ACM Reference Format:

Jesús Sánchez Cuadrado, Sara Pérez-Soler, Esther Guerra, and Juan de

Lara. 2024. Automating the Development of Task-oriented LLM-based Chat-

bots. In ACM Conversational User Interfaces 2024 (CUI ’24), July 8–10, 2024,
Luxembourg, Luxembourg. ACM, New York, NY, USA, Article 1, 11 pages.

https://doi.org/10.1145/3640794.3665538

1 INTRODUCTION

Task-oriented chatbots are conversational agents designed to per-

form specific tasks. They are used as front-end for all sorts of ser-

vices, from customer support to online shopping. They are popular

thanks to their seamless integration with social networks (e.g.,

Telegram, Slack), web sites and intelligent speakers. Moreover,

there are many frameworks for their construction, like Google’s

Dialogflow [10], Amazon Lex [17], IBM Watson Assistant [33] or

Rasa [24]. Using these frameworks, developing a chatbot entails

the explicit definition of its intents by means of extensive sets of

training phrases (in all languages the chatbot should understand),

designing all paths a conversation between the chatbot and users

may take, and defining the chatbot outputs. This is time-consuming

and requires substantial specification effort [27, 29]. Moreover, be-

ing ready-made, the chatbot outputs sometimes feel artificial or

repetitive.

Recently, the advances in generative artificial intelligence via

transformers [32] and Large Language Models (LLMs) [39] have

triggered the construction of open-domain chatbots, like OpenAI’s

ChatGPT [19] or Google’s Gemini [12]. These chatbots can con-

verse with users on many topics, and despite their so-called hal-
lucinations [5], they are heavily used today as assistants in many

disciplines like marketing, law, computer science or media content

creation [25]. However, they are general-purpose, and therefore

not directly usable to solve specialised tasks – like those required

from task-oriented chatbots – reliably.

Given the capabilities of LLMs, a natural question is whether they

can be used as the underlying technology for task-oriented chatbots.

This would make it possible to use the generative nature of LLMs

to produce realistic outputs in natural language, and could reduce

the chatbot specification effort, avoiding the need to craft large sets

of training phrases and complex conversation paths. However, a

https://doi.org/10.1145/3640794.3665538
https://doi.org/10.1145/3640794.3665538

CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg Jesús Sánchez Cuadrado et al.

direct use of LLMs alone – via monolithic, complex prompts – is not

feasible [37]. Although some frameworks to build applications atop

LLMs have emerged (e.g., LangChain [14]), they generally require

high programming skills and are not specifically designed to build

task-oriented chatbots.

To fill this gap, we present a declarative approach to specify task-

oriented chatbots that run atop LLMs. Our chatbots are specified

via different types of modules (menus, question-answering, actions,

data-gathering), from which appropriate prompts are generated,

and which are coordinated using a state-machine model. We use

ReAct-style prompts [36] to let the LLM inform our runtime how to

interpret the user input and coordinate the tasks that the chatbot is

expected to perform. Chatbots are specified using a textual domain-

specific language with YAML syntax for ease of use. This paper

presents the design of the framework, a supporting prototype tool

called Taskyto, and an initial evaluation that compares the con-

struction of 4 chatbots using both our approach and intent-based

technologies for chatbot development, showing benefits in terms

of specification size, conversation flexibility and output diversity.

Paper organisation. Section 2 introduces background and related

works on task-oriented chatbots and LLMs. Section 3 motivates

our approach by introducing a running example chatbot and some

requirements for its construction. Section 4 describes our proposal.

Section 5 presents the tooling, and Section 6 an evaluation. Finally,

Section 7 concludes and proposes lines for future research.

2 BACKGROUND AND RELATEDWORK

This section provides background and reviews related research

on techniques for building chatbots. We focus on the two main

approaches for building chatbots, based on intents (Section 2.1) and

LLMs (Section 2.2).

2.1 Intent-based chatbots

Task-oriented chatbots provide support for specific tasks using Nat-

ural Language (NL) conversation. Many technologies – including

Dialogflow, Lex, Watson or Rasa (cf. [22] for a survey) – allow their

specification by the definition of the user intents that the chatbot
aims at recognising. Each intent declares training phrases exem-

plifying how users could express the intent. When the user states

an utterance, the chatbot matches the most likely intent for the

utterance with a certain probability. If no intent matches above

a threshold, the agent applies a default fallback intent (if defined)
to ask the user to rephrase the utterance. Intents may also have

parameters, which are pieces of information extracted from the user

utterances. When the chatbot matches an intent, it performs the

actions associated to the intent (e.g., accessing an external service,

or producing a text response). Finally, full-fledged conversations are
designed by interleaving expected user intents and agent actions,

and may bifurcate depending on the user responses.

Many commercial technologies (e.g., Dialogflow, Watson, Ama-

zon Lex) are cloud-based, low-code platforms that simplify the

creation of intent-based chatbots via forms or graphical notations.

Instead, other approaches require programming using general-

purpose programming languages, and so they have a steeper learn-

ing curve. For example, Rasa is a framework to develop chatbots

using Python, markdown and YAML files. Midway between both

options, some domain-specific languages (DSLs) aim at reducing the

construction effort by providing concepts like intent or conversa-

tion as first-class citizens of the language. For instance, Conga [21],

Xatkit [8] and Pandorabots [20] have textual DSLs tailored to de-

fine intent-based chatbots. Conga is a compiled language (i.e., the

chatbot definitions are compiled into other technologies such as

Dialogflow or Rasa for execution), and Xatkit and Pandorabots are

interpreted and provide their own execution engine. While these

DSLs are textual, Tilbot [9] provides a visual DSL (a block dia-

gram that can be split in layers) to create conversational interfaces.

Tilbot is open-source and targets students and researchers as its

main users.

In summary, there are many approaches to building intent-based

chatbots for specific tasks, some based on DSLs. However, they still

require considerable effort to define enough training phrases for

ensuring an accurate recognition of the user intents, as well as to

foresee all conversations the chatbot can have. This may result in

conversations that are artificial, not flexible, and overly sensitive to

small variations in how users express their intents. Next, we show

how LLM-based chatbots alleviate some of these problems.

2.2 LLM-based chatbots

LLMs are transformer-based neural networks trained on vast

amounts of text data. Many general LLMs have emerged, like

those of the GPT family [23], Llama [31], Claude [1], BLOOM [28],

and others [39]. Given the generic nature of LLMs [4], chatbots

built with them – like ChatGPT or Gemini – are typically general-

purpose and open-domain.

To narrow down the output of LLMs towards specific interac-

tions, some researchers propose creating task-oriented chatbots

atop LLMs via prompting (i.e., by prepending textual instructions

and examples of the desired interaction to the LLM input with the

aim of improving its output). For example, BotDesigner [37] is a

no-code tool to create LLM-based chatbots solely through prompt

templates, and observe the effects by conversing with the chatbot.

A prompt template includes NL instructions for the chatbot, mes-

sages with which the chatbot will start any conversation, and a

reminder to be included in the LLM prompt of the next conversation

turn. However, crafting effective prompts is challenging, especially

for non-AI-experts. The reported challenges [38] include difficulty

on choosing and formulating the right instructions to achieve the

desired effects, systematic testing, or understanding the effect of

prompts. In the health domain, Wei et al. [34] explore different

prompt styles to build chatbots for self-reporting data atop LLMs.

In particular, they analysed slot-filling performance and conversa-

tion styles. Even if task-oriented, these chatbots perform simple

data-gathering tasks. Hence, more complex, multi-step tasks would

benefit from dedicated support.

To address these challenges, the community is demanding de-

velopment tools (akin to traditional programming tools) that assist

prompt programmers. In [11], the authors extract the structure of

NL prompts from prompt metadata annotations, which prompt edit-

ing environments can exploit. Another attempt is Impromptu [7],

a DSL to define platform-agnostic prompts and generate prompt

versions for specific platforms. But, perhaps, one of the best-known

Automating the Development of Task-oriented LLM-based Chatbots CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg

tools is LangChain [14]. It is a Python library for LLM-based applica-

tion development, with facilities to build prompts and agents. How-

ever, it requires substantial programming expertise, and the execu-

tion model focusses on linear chains of procedures. LangFlow [15]

permits defining LangChain flows graphically, but they need to be

exported to LangChain for refinement. Finally, PromptSapper [6]

permits building LLM-based applications with an execution model

similar to LangChain, but uses a graphical block-based language

and has a chatbot to assist in their construction. Its focus is also

on chains, with no first-class support for typical features of task-

oriented chatbots like fallbacks, parameter declaration and passing,

or allowed conversation languages. In general, agent-based tech-

nology is not adequate for building task-oriented chatbots since

agents are intended to solve multi-step tasks autonomously. In-

stead, task-oriented chatbots require that the user interaction drives

the execution of the agent. Thus, the analysed tools either create

chatbots that are general-purpose [7, 11], require programming

expertise [14, 15], or miss primitives for task-oriented chatbots [6].

Actually, a recent work [2] proposes a new Rasa engine based on

LLMs, showing that the construction of task-oriented chatbots with

LLMs needs techniques different from the ones currently available.

Another technique for obtaining narrower chatbots is fine-tuning
on specialised data, like code [35]. This enables repurposing an

LLM pretrained on generic data for specific downstream tasks (e.g.,

question-answering) or domains (e.g., programming), but it is very

expensive, since it requires a training phase. Although some tech-

niques permit reducing the cost, like LoRA [13], they require large

amounts of (perhaps unavailable) data and the computational cost

remains high. A less expensive approach is retrieval-augmented gen-

eration (RAG), which has been used to enable chatbots to converse

on proprietary data [16]. Still, these chatbots are not task-oriented,

and would require coordination to accomplish multi-step tasks.

In conclusion, LLM-based chatbots overcome the artificiality of

task-oriented chatbots by enabling realistic conversations, but they

are general-purpose. Some techniques allow conversations to be

tailored to restricted domains (e.g., fine-tuning, RAG), but to the

best of our knowledge, there are no practical tools specific for the

declarative creation of task-oriented chatbots using LLMs. In the

rest of this paper, we present our proposal that does exactly that.

3 MOTIVATION AND RUNNING EXAMPLE

To motivate our work and illustrate the following sections, let us

consider the development of a chatbot for a photography shop

specialised in art galleries. The chatbot should help the visitors of

the shop website in the following tasks:

• Answer questions about the shop. For instance, it should

make clear that the shop does not do wedding photographs.

• Gather contact information for having a personal call before

a photo session is scheduled.

• Give price estimates for the most common types of works.

For instance, Figure 1 shows a potential conversation for the

running example. The implementation of this chatbot poses several

challenges:

(1) Ease of implementation. Many chatbots have a small scope [3],

so it is not possible to devote many resources to their devel-

opment. However, using an intent-based approach requires a

I0 Chatbot: Hello

I1 User: Hi

I2 Chatbot: Welcome to ArtClicks, we are spe-

cialised in photographs for art galleries.

What can I do for you?

I3 User: I need a photographer for my gallery,

for tomorrow

I4 Chatbot: Of course, we’d be happy to assist with

your gallery photography. Could you

please provide your name and phone

number for our records? Also, if you

wish, you can provide your email ad-

dress, although this is optional

I5 User: My name is John Smith, and my phone

is 212-998-1212

I6 Chatbot: Thanks John Smith! We’ll contact you

very soon for a session on 10/02/2024

Figure 1: Potential conversation for the example chatbot.

non-trivial effort to provide training phrases, likely in several

languages, which correctly capture the domain vocabulary

and trigger the adequate conversation flows.

(2) Smart conversation flow. Users would like to converse with

the chatbot in a way that feels natural to them, where the

chatbot remembers past interactions. For instance, in inter-

action I1, the user might have said: “Hi, I’m John Smith”.

In such a case, in interaction I4, the chatbot should ask the

appointment date but not the user name. In general, users

may provide relevant information to the chatbot at different

points in time, and the chatbot should be flexible to respond

properly in all cases. For instance, the user has not provided

the email address in interaction I5, but since it is optional,
the chatbot does not insist on asking for it. In intent-based

chatbots, these conversation possibilities need to be defined

in advance.

(3) Realistic, engaging chatbot answers. Users may be more will-

ing to engage with natural-sounding chatbots [18, 26, 30],

which may use the (perhaps unsolicited) information that

the user provides to converse in a natural way. For exam-

ple, if the user says “Hi, I’m John Smith” in interaction I1,
the chatbot may reply “Hi John! Welcome to ArtClicks [...]”,

using the user name in the response. In the example interac-

tion, in step I4 the chatbot refers to the gallery the user just

mentioned (“Of course, we’d be happy to assist with your

gallery photography [...]”). Hence, our chatbot should avoid

ready-made responses, since they may become repetitive

and lead to user frustration [18, 26].

(4) Scoped conversation. Unlike open-domain chatbots, task-

oriented chatbots are designed to solve particular tasks in

an effective manner. Therefore, our chatbot must not engage

in conversations outside its scope. For example, if the user

says “What are the best football players in the world?”, the

CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg Jesús Sánchez Cuadrado et al.

chatbot should redirect the conversation to the objective

tasks, answering “I’m sorry, I can help you setting an ap-

pointment for a session, provide price estimates, and answer

issues related to our shop. Is there anything related to our

services that I can help you with?”.

(5) Trustworthiness. Task-oriented chatbots need to perform the

tasks they are designed for in a trustworthy manner. This

includes preventing the chatbot from having hallucinations

or providing false or made-up data to the user or to other

components the chatbot interacts with.

(6) Maintainability. Chatbots are often designed as a mono-

lith [3], which makes their extension and evolution difficult.

Instead, we would like our chatbot to be defined with a mod-

ular structure to allow the independent development and

modification of the modules, making the chatbot easier to

maintain and extend.

Table 1 shows the degree in which intent-based technologies

and a direct use of raw LLMs meet these challenges.

Requirement Intent-based LLM-based (pure)

Ease of implementation × ∼
Smart conversation flow ∼ ✓

Realistic, engaging chatbot answers × ✓

Scoped conversation ✓ ×
Trustworthiness ✓ ×
Maintainability × ×

Table 1: Coverage of requirements for chatbot construction

with current technologies.

First, intent-based chatbots are hard-to-build, as they require an

explicit design of intents and conversations, with a provision of

a potentially large number of training phrases per intent, in each

language supported by the chatbot (e.g., English, Spanish), and

with an explicit identification of parameters within each phrase. In

contrast, LLMs are conversation-ready and do not need a training

phase beforehand. The conversation abilities of LLMs – maybe en-

hanced by prompts encoding the conversation history – contrast

with the need for an explicit conversation design of intent-based

approaches. LLMs are open-domain, and hence able to converse

on any topic. Instead, intent-based approaches have a scoped con-

versation by design. The generative nature of LLMs makes them

able to emulate realistic, engaging conversations that may use the

information provided by the user as context, even if unexpected.

Their “creativity” or determinism can be modulated by setting a

temperature to the LLM. Instead, answers of intent-based chatbots

are typically pre-defined. This fact makes them trustworthy, while

LLMs have the problem of hallucinations. Finally, even if the design

of intent-based chatbots is organised in intents, there is no notion

of module [22]. Similarly, a large monolithic prompt to create an

LLM chatbot is hard to maintain and extend, and can be problematic

to ensure the chatbot’s correct behaviour [37].

In this paper, we propose a new method for building task-

oriented chatbots, motivated by the need to leverage the advantages

of intent-based and LLM-based approaches. On the one hand, we

exploit LLMs’ support for smart conversation flows, realistic and

engaging answers, and the avoidance of training phrases and an

explicit design of all possible conversation paths. On the other hand,

we adopt intent-based features for scoping the conversation topics

and obtaining trustworthiness. Our method promotes modularity

to improve the maintainability of chatbots, and reduces the im-

plementation effort through a declarative YAML-based DSL that

reduces the need for coding.

4 OVERVIEW OF OUR APPROACH

Figure 2 shows a schema of our approach. First, the developer

specifies the chatbot using declarative modules that encapsulate

independent parts of the chatbot behaviour, and may refer to other

modules. There must be a top-levelmodule, which is the entry point

to the chatbot conversation. Each module will be run using an

LLM (e.g., of the GPT family, or others like Llama2). The developer

can configure the parameters of the LLM, as well as other general

chatbot aspects, like the conversation languages. Then, the defined

chatbot is parsed into a state-machine model, where each module

becomes a state that defines a structured prompt generated from the

module information. These prompts contain, among other things,

the purpose of the module, and the format of the chatbot response.

An interpreter takes care of executing the state-machine, keeping

track of the active state, and storing a working memory with the

previous conversation history and the data provided by the user.

The latter is employed to provide context information to the LLMs

to handle the user requests.

Next, Section 4.1 provides more details on how to specify chat-

bots, and Section 4.2 explains how these are executed.

4.1 Chatbot specifications

In our approach, a chatbot is specified as a set of modules that can

be of five types: menu, action, data gathering, question answering,

and sequence. Moreover, as we explain next, some types of modules

can refer to other modules in the specification.

• Amenu module allows defining a set of conversation alterna-

tives (exclusive choice). These can either capture the answer

to a specific user question, be a complex conversation flow

handled by othermodule, or be a sequencemodule (explained

later). Menu modules may also specify a fallback response,
to be used when the chatbot does not know how to handle

the user message. Typically, a chatbot will define a menu

module as its top-level module.

• An action module executes an action upon receiving some

input data. Actions are defined by code in some language

(currently Python) and produce a response for the user. This

response can be displayed verbatim, or be rephrased by an

LLM using the conversation context of the caller module.

This latter option enables more natural and less repetitive

conversations.

• A data gathering module is used to request some data from

the user, and may then execute some action.

• A question answering module declares a set of questions that
users may ask, and their answers. Unlike intent-based chat-

bots, which need to provide many training phrases to recog-

nise the user intents, questions in our approach do not need

to be reformulated in several ways, but an LLM is used to

Automating the Development of Task-oriented LLM-based Chatbots CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg

Chatbot
developer

LLM configuration
Convers. languages

m1

m2 m3

structured prompt

structured prompt

structured prompt

Interpreter

GPT-4GPT-3.5 Llama2
LLMs…

Chatbot
user

Chatbot definition

Chatbot

Configuration

Chatbot
module
Chatbot
module
Chatbot
module
Chatbot
module
chatbot
module

(top)

Behaviour

refers

parsing

Chatbot execution

active
input

output

conversation
memory

Figure 2: Overview of our approach.

identify which question in the module corresponds to the

user utterance.

• A sequence module defines a chain of conversation steps,

each of them defined in another module.

To simplify the specification, we provide a DSL with YAML syn-

tax to define chatbots. As an example, Listing 1 uses this DSL to

define the top-level module of our running example. It is a menu

module (as stated in line 2) and contains a presentation section to

instruct the LLM on the conversation scope and the assistance to

provide (line 3). As we will see in Section 4.2, this will be injected

as part of the prompt for the LLM. Then, there is a fallback mes-

sage (line 4) and a set of conversation possibilities given by other

modules: photo_qa (lines 7–9, which provides a FAQ on common

questions), call_appointment (lines 10–12, to make an appointment),

a sequence of two modules (lines 13–17, to calculate the estimate

price of a work), and a welcome message (lines 18–20, to greet the

user). In the menu module, each conversation option has a descrip-

tive title, a kind (module, sequence, or answer), and a reference to
the name of another module (or modules in the case of references).

Listing 2 shows the photo_qa question answering module, which

compiles frequently asked questions. Even if the chatbot is to oper-

ate on several languages (e.g., English, Spanish), the questions and

answers only need to be provided in one language (English in this

case).

Module call_appointment in Listing 3 is a data-gathering module

to request the name, phone number, email and appointment date

from the user, as lines 5–11 declare. Our DSL supports both classic

computer language data types (date, line 11) and “soft” types (e.g.,
person name in line 5, or countries). In the latter case, the chatbot

will use an LLM to validate whether a user-provided value is ap-

propriate for the type. The DSL has formatters for some data types,

which convert the user-supplied string into the specific data type.

For example, the field appointment should be a date, so if a user states
in two days, and today is January 22nd 2024, the chatbot will store

the value 24/01/2024 in appointment. The data are mandatory by

default, but can be explicitly declared optional, like email in line 10.

The chatbot will ask for the value of the mandatory data that the

user does not provide, but not for the optional data. Moreover, users

can provide all required data in a single phrase, or after multiple

interactions. Finally, the on-success section (lines 13–19) is executed

1 name: top−level

2 kind: menu

3 presentation: You are a chatbot which helps customers of a photography shop

specialised in photographs for art galleries. The shop also works on other

media like video and 3D rendering.

4 fallback: I'm sorry, I can help you setting an appointment for a session, provide

price estimates, and answer issues related to our shop.

5

6 items:

7 − title: Q&A

8 kind: module

9 reference: photo_qa

10 − title: Sets a follow−up appointment

11 kind: module

12 reference: call_appointment

13 − title: Calculates a price estimate of the work

14 kind: sequence

15 references:

16 − session_details

17 − estimate_price

18 − title: Welcome. To say hello to the customers.

19 kind: answer

20 answer: Welcome to ArtClicks, we are specialised in photographs for art

galleries. What can I do for you?

Listing 1: Top menu module of the photography chatbot.

1 name: photo_qa

2 kind: question_answering

3 description: Useful for answering general questions about ArtClicks' photo shop.

4 questions:

5 − question: When are you open?

6 answer: We shoot art on location and on our studio at SoHo. We are open

Monday to Friday from 9:00am to 17:00pm.

7 − question: Do you charge per hour or by number of photos?

8 answer: We charge 200$ per hour

9 ...

Listing 2: Question answering module.

once the chatbot has obtained all mandatory data. This section

contains the code to execute (lines 14–16) and the chatbot response
(lines 17–19). The former can be a Python code snippet (as in the

listing), or a reference to an external Python file. For simplicity, the

illustrated snippet prints a line, but one could provide a webhook

to connect with an existing information system. Note that the code

and the response can include the value of the gathered data by

their name (e.g., name, phone_number). As for the response, it can be

CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg Jesús Sánchez Cuadrado et al.

1 name: call_appointment

2 kind: data_gathering

3 description: Useful for asking the contact information, so that the shop can

contact the client for the photo session.

4 data:

5 − name: Person name

6 − phone_number:

7 type: Phone number

8 − email:

9 type: email

10 required: false

11 − appointment: date

12

13 on−success:

14 execute:

15 language: python

16 code: print(f"Saving appointment for {name} ({phone_number}) at {

appointment} into data base")

17 response:

18 text: Thanks {name}! We'll contact you very soon for a session on {

appointment}.

19 rephrase: simple

Listing 3: Data gathering module to obtain the contact

information.

displayed either verbatim (the default) or rephrased (as indicated in

line 19). The rephrase option allows the chatbot to answer slightly

differently each time, so that the conversation does not seem prefab-

ricated. In the example, the response could be rephrased as Thank
you, John! We’ll be reaching out to you shortly to schedule a session
on January 24th, 2024. The DSL supports two rephrasing modes:

simple (as in the example), in which an LLM is asked to rephrase

a fixed response, and in-caller, in which the LLM automatically

rephrases the answer when the module execution ends and the

module response is pasted in the caller module history. The latter

mode is particularly suitable for adapting a module response to the

previous conversation history.

For space reasons, we omit the definition of the other example’s

modules, which are available at https://github.com/satori-chatbots/

taskyto.

Finally, a configuration file permits defining the default LLM

used by all modules and its temperature, which particular modules

can override. It also permits configuring global chatbot options, like

the conversation languages. This forces the chatbot to converse

only on those languages, informing the user of this fact in the

language the user employed. For example, if a chatbot is set to

converse only in English and Spanish, and the user says in French:

Pouvons-nous parler en français?, the chatbot replies Désolé, je ne
parle pas français. Pouvez-vous s’il vous plaît parler en anglais ou en
espagnol?

4.2 Chatbot execution model

The chatbot execution model is based on the idea that, at each

conversation step, the chatbot attempts to accomplish some task.

For instance, in the top-level module of the running example, the

task of the chatbot is to determine the user intention. If the user

types I would like to know the pricing of your services, then the task

switches to gathering the data required to price a service (module

estimate_price). Thus, executing the chatbot requires the ability to

“jump” from one module to another when this other module is best

suited to handle the user request.

To achieve this effect, our approach first analyses the chatbot

specification to compute a dependency graph, where each node

refers to a chatbot module (i.e., to a task), and the edges represent

possible transitions between tasks. Figure 3 shows the graph for

the running example.

top-level

photo_qa

call_
appointment

price-
estimation-
sequence

session_
details

estimate_
price

Conversation Memory

top-level:
AI: Hi!
Human: I’m John and I need an
appointment

call_appointment:
Gathered data: {
 name: “John”,
 phone: “+34 555… ” }
AI: Can you provide…
Human: My phone is +34 555…

Current State

call_appointment

Configuration

top-level: gpt-3.5
call_appointment: gpt-4

(a)

(b)

Figure 3: Dependency graph of the photography chatbot.

top-level

photo_qa

call_
appointment

price-
estimation-
sequence

session_
details

estimate_
price

Conversation Memory

top-level:
AI: Hi!
Human: I’m John and I need an
appointment

call_appointment:
Gathered data: {
 name: “John”,
 phone: “+34 555… ” }
AI: Can you provide…
Human: My phone is +34 555…

Current State

call_appointment

Configuration

top-level: gpt-3.5
call_appointment: gpt-4

(a)

(b)Figure 4: Interpreter structure.

We have implemented an interpreter that coordinates the exe-

cution of the tasks (see Figure 4). The interpreter keeps the con-

versation state, which is given by the current state (i.e., a node

of the dependency graph) and the conversation history. Upon re-

ceiving an input from the user, the interpreter assembles a prompt

tailored to the current state. This prompt uses information from

the module specification associated to the current state, and the

stored conversation history. The prompt is then sent to an LLM

to obtain a response. As an example, Figure 5 shows the prompt

compilation for the top-level module, which contains the following

eight sections:

(1) Presentation. It includes a high-level description of the chat-

bot purpose. It is extracted from the top-level module, and

applied to all modules to ensure that the chatbot always

knows its working context.

(2) Tool formatting. It provides instructions on how to obtain

the chatbot response. This depends on whether the LLM has

all the information to answer directly, or needs to delegate

the task to another module. We use ReAct prompting [36] to

know when the conversation should flow to another module,

using a similar style to LangChain which employs the term

tool to refer to modules. In the prompt, the tag Thought indi-
cates whether to use a tool or answer directly, Action defines
the name of the tool to use, and Action Input permits passing

parameters to the tool. For example, given the user input I
want an appointment for tomorrow, the control will flow to

module call_appointment passing the parameter appointment

https://github.com/satori-chatbots/taskyto
https://github.com/satori-chatbots/taskyto

Automating the Development of Task-oriented LLM-based Chatbots CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg

Presentation

Tool formatting

Tasks

You are a chatbot which helps customers of a
photography shop…

Tools availability

Fallback

History

New input

You have tools to help you perform your
tasks. If you need to use a tool, use the
following format: …

You have the following tools:
> photo_qa: Useful for…
> call_appointment: Useful for…

You are able to assist only in these tasks:
1. Q&A: You have to use the ‘photo_qa’ tool
2. Set up an appointment: You have to use
the ‘call_appointment’ tool…

For any question not related to these tasks,
answer: “I'm sorry, I can help you…”

Previous conversation history:
Human: …
AI: …

New input: I need a photo session

1

2

3

4

5

7

8

1

2

3

4

5

7

8

Structured prompt

Thought: Do I need to use a tool? No
AI: <response>

Thought: Do I need to use a tool? Yes
Action: The action to take. One of:
photo_qa, call_appointment, …
Action Input: The input for the tool
Observation: …

Generated prompt Tool formatting

Do I need to
use a tool?

LLM response
parsing

Output
<response>

Run <action>
module with

<action input>

Languages6

You are only able to answer the user in the
following languages: English, Spanish. If
the user uses a different language, ask
politely to switch to English or Spanish.

6

yesno

Figure 5: Example of how the prompt for the top-level module is generated from the structured prompt.

= tomorrow. The interpreter will parse the output of the LLM
according to this format to determine the next action (either

showing the AI response or delegating to another tool).

(3) Tool availability. It lists the tools that the LLM can use, in-

cluding their name (so that the LLM can refer to them) and

an automatically generated description of their usefulness

to perform a certain task. For instance, the description of a

question answering module includes the questions (but not

the answer), and the description of a data gathering module

includes information about the data to be collected. This sec-

tion and the previous one are only present when the module

may not be self-sufficient.

(4) Tasks. It describes the task that this module performs. In

Figure 5, the task is to decide which sub-taskmust be invoked

(since it is a menu). Instead, the task of the call_appointment
data gathering module is collecting data, and its prompt

would be “Your task is collecting the following data from the

user: name, phone number [...]”.

(5) Fallback. It is a predefined response to be used when the user

input is unrelated to the current task.

(6) Languages. It instructs the LLM to converse only in the spec-

ified languages, asking the user to switch to any of them if

he/she uses a different one.

(7) History. This section is a placeholder for the interpreter to

paste the current conversation of the module.

(8) New input. This is a placeholder for the user input.
As an example of the execution model, when the user is in

the top-level menu and says Hi, my name is John, the interpreter
records this interaction in the history and lets the LLM answer

without executing any other module. Then, if the user says I need
a photo session tomorrow, the LLM detects the need to invoke the

call_appointment module to satisfy the user request. Thus, the inter-

preter moves the chatbot to the call_appointment state. It is worth
noting that, since John is in the history, this information is passed

to the call_appointment module, in addition to the appointment date,

so that the module does not need to ask the user for them.

As a final note, the prompt for the question answering modules

contains the whole compiled list of frequently asked questions in

the module (cf. Listing 2). For large modules (with many queries or

lengthy answers), we plan to make available a RAG architecture.

This way, the query list is split and stored in a knowledge base, and

a retrieval step is used to obtain the relevant information and inject

it into the prompt.

5 TOOL SUPPORT

Our proposal is backed by a tool implemented in Python, called

Taskyto. It has an extensible design that enables the seamless

integration of LLMs as plug-ins (e.g., a custom server deploying a

Llama2 model). Currently, Taskyto has direct support for LLMs

of the OpenAI’s GPT family using their REST API, but we plan to

support other LLMs such as Claude. The tool can be easily used

in the command line. In addition, to facilitate the deployment of

chatbots, we provide a web server able to keep several independent

conversation states simultaneously.

To facilitate the incremental development of chatbots, Taskyto

allows recording user-chatbot interactions as a YAML file, and re-

playing recorded user utterances. In addition, Taskyto provides

facilities to describe and run test cases. A test case comprises a

set of user-chatbot interactions, which may include assertions to

check the correctness of the conversation flow, the gathered data,

and the chatbot responses. Since chatbots may rephrase their re-

sponses, assertions can specify several possible chatbot answers

which are checked for an exact match, as well as define a tolerance

for approximate string sequence alignment
1
.

The source code and usage instructions are available at

https://github.com/satori-chatbots/taskyto.

1
https://github.com/eseraygun/python-alignment

https://github.com/satori-chatbots/taskyto
https://github.com/eseraygun/python-alignment

CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg Jesús Sánchez Cuadrado et al.

Rasa Taskyto

Name Intents Training Words Files LoC LoC Modules Words Files LoC LoC

Phrases (YAML/md) (YAML/md) (Python) (YAML) (YAML) (Python)

Photography 10 98 1451 6 332 207 5 381 6 140 14

Veterinary 8 94 1179 6 292 148 3 244 4 71 0

Pizza-shop 5 52 627 6 256 277 4 201 5 92 0

Bike-shop 5 70 781 6 212 200 3 208 4 65 0

Table 2: RQ1: Comparing the specification sizes of Rasa and Taskyto chatbots.

6 EVALUATION

In this section, we evaluate the chatbots built with Taskyto under

three perspectives: their specification size (as a proxy for effort),

the flexibility of their conversation flows, and the degree in which

they produce realistic, varied responses. These aspects correspond

to requirements R1–R3 stated in Section 3. For space constraints,

we leave the evaluation of requirements R4 (scoped conversation),

R5 (trustworthiness) and R6 (maintainability) for future work.

To frame our evaluation, we compare Taskyto’s approach with

an intent-based technology, such as Rasa. We aim at answering the

following research questions (RQs):

RQ1 What is the specification size of Taskyto chatbots in com-

parison with intent-based technologies?

RQ2 How flexible are the conversation flows of Taskyto chatbots

in comparison with intent-based technologies?

RQ3 How varied are the answers of Taskyto chatbots in compar-

ison with intent-based technologies?

In the following, Section 6.1 presents the experiment set-up,

Sections 6.2–6.4 report on the results, and Section 6.5 discusses

threats to validity. The raw data of the experiments, including the

created chatbots and the user-chatbot interactions in test suites, are

available at https://github.com/satori-chatbots/taskyto-evaluation.

6.1 Experiment set-up

To evaluate our approach, we compare four chatbots built with

both Taskyto and Rasa 1.10 open source
2
. The first chatbot is the

running example (Photography). The other three were taken from

the literature [3, 22], so they were originally implemented in Rasa,

and we created Taskyto versions trying to mimic their behaviour.

Veterinary is a chatbot for setting appointments and asking the

opening hours of a vet clinic [22]. Pizza-shop assists in ordering

pizzas and selecting their size, toppings and drinks [3]. Finally,

Bike-shop helps arranging appointments for different types of bike

repairs, and answers to common bike maintenance questions [3].

6.2 Experiment results: Specification size (RQ1)

Table 2 shows size metrics of the chatbot specifications in both

technologies. Columns 2–7 correspond to Rasa, where chatbots

define intents and training phrases. Rasa specifications comprise a

markdown file with the definition of the intents and their training

phrases; additional YAML and markdown files to configure the NLU

component, conversation flows, chatbot answers, entities, execu-

tion policies, credentials and endpoints; and Python files to define

2
We chose this version because three of the four chatbots were originally developed

using this version.

custom actions (e.g., for data validation). Thus, for each Rasa chat-

bot, the table reports the number of intents, training phrases, words

in the training phrases and chatbot answers, YAML/markdown files,

YAML/markdown lines of code (LoC), and Python LoC. Typically,

Rasa chatbots require 6 YAML/markdown files and one Python file.

Columns 8–12 show similar metrics for Taskyto. These chatbots

are specified via modules, which can embed Python code (or refer

to a Python file) to define custom actions. The number of words in

this case considers prompts and answers.

We observe that, in all cases, specifications are larger in Rasa

than in Taskyto, which may suggest a greater effort to define Rasa

chatbots. In particular, the Rasa specifications have between 3,12

and 4,83 times more words in inputs and outputs, and between

2,37 and 4,11 times more YAML LoC, than the Taskyto specifi-

cations. Similarly, the number of Python LoC is between 0 and

14 in the Taskyto chatbots, but around a couple of hundreds in

the Rasa chatbots. This code was used in Rasa, e.g., to handle pa-

rameter gathering and validation, while using Taskyto, only the

Photography chatbot needed Python code to estimate the price for a

photo session. Moreover, Rasa chatbots sometimes require defining

custom entity types – like phone numbers or emails – via regular

expressions, which can be cumbersome and error-prone. This is

not needed in Taskyto, as it uses an LLM to validate the values

for these data types. Finally, the metrics in Table 2 are for chatbots

supporting one language (English). If they had to support several

languages (e.g., Spanish, French), then the size of the Rasa specifi-

cations would be roughly multiplied by the number of languages,

while the size of the Taskyto specifications would not change.

Answering RQ1: For the chatbots in our evaluation, the specifica-

tions are smaller for Taskyto than for Rasa. The number of words

needed to specify the understanding and answering aspects of the

Taskyto chatbots is lower (sometimes by one order of magnitude),

and similarly for the LoC of the YAML files. Finally, the Taskyto

chatbots only required Python code to implement some business

logic, but not to specify the chatbot behaviour.

6.3 Experiment results: Conversation flexibility

(RQ2)

To answer RQ2, we created test suites for each chatbot, which con-

tained user interactions and indications on how the chatbot should

react for an engaging experience. We run each test on the Rasa and

Taskyto chatbots, and assessed if the chatbots reacted as expected

(column Pass), if the answers or the conversation flow were wrong

(column Fail), and if the conversation had some faulty interaction

but was overall correct (column Defects). Table 3 summarises the

results.

https://github.com/satori-chatbots/taskyto-evaluation

Automating the Development of Task-oriented LLM-based Chatbots CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg

Rasa Taskyto

Name Tests Pass Fail Defects Pass Fail Defects

Photography 8 4 1 3 7 0 1

Veterinary 5 2 2 1 4 0 1

Pizza-shop 9 4 4 1 9 0 0

Bike-shop 11 4 6 1 8 2 1

Table 3: RQ2: Comparing conversation flexibility in Rasa and

Taskyto chatbots.

We can see that the Rasa chatbots had more failures (13 vs 2)

and defects (6 vs 3). Some were due to selecting the wrong intent,

and others can be attributed to a rigid treatment of parameters. For

example, in the Photography chatbot, if the user’s first phrase is

Hello, I’m John Smith, the Rasa chatbot triggers the appointment

intent (which has the user name as parameter), and asks for the

missing mandatory parameters as follows: Could you share the
phone number where we can contact you?. However, greeting the

user by name would be more engaging, as Taskyto does when

replying Welcome to ArtClicks, we are specialised in photographs for
art galleries. What can I do for you, John Smith?. Later, if the user
wants an appointment, the history records the user name so the

Taskyto chatbot does not ask it again.

Taskyto also handles optional parameters more flexibly. For

example, the email is optional when setting an appointment in

Photography. Taskyto correctly mentions this to the user. If the

user says Hello, my name is Peter Parker and I need a photo session
tomorrow, the Taskyto chatbot replies Hello Peter Parker, I’m glad
to hear you’re interested in a photo session. Could you please provide
your phone number for us to confirm the appointment? Also, if you
wish, you could share your email address with us. This is optional but
it would help us to send you updates and special offers. Instead, the
Rasa chatbot replies the same as before (Could you share the phone
number where we can contact you?), which is the prompt for the

only mandatory parameter not entered.

Regarding Taskyto, it currently lacks data validation for param-

eters, which caused defects in the tests. For example, the Taskyto

chatbots allow scheduling appointments for past dates. Instead, the

Rasa chatbots can include Python code to validate the user data

and flag those inputs as invalid. We plan to incorporate data vali-

dation in future versions of Taskyto. Another case of failing tests

in Taskyto occurred when the user asked information defined in

a question answering module, while another module was active.

This caused troubles in the Bike-shop chatbot, e.g., when asking the

price of a tire while in the process of setting an appointment.

On the positive side, Taskyto is able to go back to previous

modules in a sequence of correct inputs. For instance, Pizza-shop
concatenates three data gathering modules asking the pizza size,

toppings and drinks in that order. If the user wants to change the

pizza size when the drinks module is active, it can do so with a

sentence like I’d like to change the pizza size to a large one. Taskyto
automatically returns to the pizza size module, stores the new pizza

size, and continues the conversation asking for drinks. While this

is also possible in Rasa, it requires an explicit coding of the conver-

sation flow. The handling of pizza toppings was also very natural

in Taskyto, but caused three failures in Rasa. In Taskyto, the user

can request toppings in very flexible ways (e.g., I’d like all toppings
that are vegetarian), can eliminate or replace toppings (e.g., Oh
sorry, I don’t want olives anymore, but instead ham), or ask details

about toppings (e.g.,Which of the toppings are vegan?). This level
of flexibility would be difficult to achieve in Rasa, as users have

many alternatives for expressing a choice, which would need to be

anticipated and coded.

Answering RQ2: The conversation flows for handling user-supplied

data were generally more flexible and engaging in Taskyto than

in Rasa chatbots. One reason is the availability of a conversation

history, which modules can provide to the LLM to reason about.

This is not possible in intent-based chatbots, as the selected intent

only knows the current sentence and the data captured by other

intents so far. We have also noticed some current limitations of

our framework regarding data validation and navigation between

modules, which we will improve in future work.

6.4 Experiment results: Answer diversity (RQ3)

To answer RQ3, we looked at the variety of chatbot answers in

repeated executions of the test suites of Table 3. First, the chatbots

of Rasa 1.10 open source only provided the answers defined in

their specification. Instead, using the option rephrase of Taskyto
with different temperatures for the LLM, we obtained a variety of

well-formed, realistic answers. On one extreme, with temperature

0, the rephrases always yielded the same sentence. For example, the

appointment module of Photography responded Your appointment
has been successfully set for tomorrow, John Smith. We will contact
you on the provided phone number 555-123456 for further details. On
the other extreme, with temperature 1, each execution produced

a different answer. For instance, the same appointment module

produced phrases like Your appointment has been set successfully
for tomorrow, John Smith. We will contact you on the provided phone
number for further details. Moreover, Taskyto can use the user-

supplied information to construct a realistic answer. For example,

in Pizza-shop, if the user says I’m Ann Gonzales, and I want pizza!,
the Taskyto chatbot may answerWelcome to my pizza shop, Ann
Gonzales. [...]. Instead, the counterpart Rasa chatbot cannot use the
user name in its answers since the chatbot does not require this

name (i.e., no intent declares parameters for the user name).

Intent-based chatbots could achieve a similar behaviour by con-

necting an LLM that rephrases the chatbot answers. To test this

possibility, we connected the Photography Rasa chatbot with an

LLM of the GPT family, by performing calls to OpenAI’s API in the

chatbot actions. To obtain realistic answers – similar to our in-caller
rephrase strategy – we needed to obtain the conversation history,

to pass it to the LLM. This entailed some 150 lines of Python code.

Answering RQ3: Taskyto chatbots can produce realistic and var-

ied answers by using the rephrase option, setting a temperature to

modules, and providing an example phrase. Instead, Rasa 1.10 re-

quires declaring all possible chatbot answers in advance. In addition,

Taskyto chatbots can use user-supplied data (not necessarily de-

fined as parameters) as context information to compose the answers,

which are then adapted to the user input. Although intent-based

chatbots can achieve a similar behaviour by the use of an LLM,

this would require coding effort to properly handle the context

information for rephrasing.

CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg Jesús Sánchez Cuadrado et al.

6.5 Discussion and threats to validity

Regarding internal validity (confidence on the cause-and-effect

relationships deduced from the results), for RQ1, we counted the

number of words and LoC to measure specification size. This can

be seen as a proxy for specification effort, and may suggest that

building chatbots with Taskyto requires less effort than with Rasa.

Still, a user study comparing Rasa and Taskyto development should

be conducted to assess effort.

Also regarding internal validity, we (the authors) built all the

Taskyto and one of the Rasa chatbots (the others were taken from

the literature), and tested them all, which might have introduced a

bias. To mitigate this threat, disjoint sets of developers implemented

the chatbots of each technology, before creating their test suites. In

addition, we (the authors) assessed the output of the chatbots.While

three different authors performed this assessment, in future work,

we would like to conduct a user study to evaluate the perceived

quality of the conversations for each technology.

We developed the chatbots of both technologies to the best of our

abilities, however, we do not claim that Rasa 1.10 chatbots cannot

pass all test suites in Table 3. In general, we observed a trade-off

between the conversation flexibility of Rasa chatbots and their

specification complexity. This is so as adding new conversation

paths requires their explicit encoding in the chatbot, making its

specification more complex. We assessed this via an additional

experiment, where we (after-the-fact) improved the Photography
Rasa chatbot to pass all failing tests. We had to encode the missed

conversation paths, which increased the number of training phrases

by a 42%, the number of words by a 24%, the LoC of YAML files by a

12%, and the LoC of Python code by a 46%. Still, this improvement

does not guarantee the coverage of other realistic conversations

that Taskyto would support.

With regards to external validity (generalisability of results), our

evaluation is based on a comparison of 4 chatbots. Thus, we may

increase the confidence in our findings by using a larger sample size

(more chatbots), more intent-based technologies, more complex and

bigger chatbots, and a wider variety of chatbot tasks. We leave this

as future work, along with the evaluation of requirements R4–R6

stated in Section 3. Given the reduced amount of question answering

information in the evaluated chatbots, we did not need any special

architecture in the Rasa or Taskyto chatbots. However, for large

information-intensive chatbots (e.g., conversational FAQs), a RAG

architecture may be appropriate. In the case of Taskyto, it would

be straightforward to implement a RAG as an extension of our

question answering modules. Regarding R4 (scoped conversation),

our preliminary tests have not uncovered any situation where the

chatbot replied out of scope, but a systematic evaluation of this

aspect is future work. In this line, we have found Taskyto be

trustworthy (R5) in general, but this fact needs to be stressed with

more test cases (e.g., written by external users) and by monitoring

the runtime behaviour of a concrete chatbot in a real deployment.

The main source of hallucinations that we found when developing

the chatbots was related to confusing the intention of the user

to drive the conversation to a specific conversation flow (e.g., in

the menu module, the chatbot may confuse scheduling a session

with computing a price estimate). We tried to adjust the prompts

while testing the chatbots by making more explicit the purpose

of each module. However, other means are necessary to enhance

trustworthiness. We plan to include in the runtime a supervisor
which double-checks the responses of the LLM to mitigate possible

hallucinations by making sure that the answers are in line with the

current conversation.

The evaluated chatbots may not represent industrial use cases

which could be larger. However, the modular architecture of

Taskyto allows the construction of chatbots in a scalable man-

ner since each task is encapsulated into an independent module.

Another question which impacts the usability of the chatbots is the

response time. In the case of Taskyto, the response time currently

depends on the OpenAI API. We have measured the time of the

interactions in the evaluation, and the average response time be-

tween the user input and the chatbot response is around 2.5 seconds.

Interestingly, this is not much slower than the average response

time for interactions with Rasa chatbots deployed locally with no

GPU support, which is around 2 seconds for interactions that do not

involve Python actions, and 4 seconds for those using forms from

actions. We plan to conduct a systematic evaluation of scalability

and performance in future work.

Finally, we have compared Taskyto with Rasa, but not with

LLM technologies (e.g., LangChain or a direct approach based on

prompting) which is also future work.

7 CONCLUSIONS AND FUTUREWORK

This paper has introduced a novel approach to develop LLM-based

task-oriented chatbots. The approach is modular and declarative,

since chatbots are defined by different types of modules (menu,

data gathering, action, Q&A, sequences) using YAML files. We have

provided an implementation (Taskyto), which we have evaluated

by comparing chatbots built with both Rasa and our approach,

obtaining substantial reduction in specification size and benefits in

terms of conversation flexibility and answer variety.

In the future, we would like to strengthen the results of our

evaluation by considering more chatbots and a wider diversity of

tasks. In addition, we plan to expand our comparison of Taskyto

with intent-based technologies, e.g., in terms of the usability of

the frameworks and the resulting chatbots. For this purpose, we

plan to organise a user study. We also plan to perform user studies

from the perspective of the chatbot developer. We are currently

extending Taskyto with data validation and a more flexible con-

versation model. For chatbots with large amounts of data that need

to be handled by question answering modules, we plan to include a

RAG architecture. We are also improving the testing capabilities of

Taskyto with other types of assertions. To help modernising intent-

based chatbots, our next step is to provide automated migration

from technologies such as Dialogflow and Rasa into our framework.

Finally, we aim at building a web-based low-code environment to

build, test and deploy Taskyto chatbots.

Acknowledgments. Work supported by the Spanish Ministry with

the following grants: TED2021-129381B-C21 and TED2021-129381B-

C22 (MICIU/AEI/10.13039/501100011033 and UE/NextGenerationEU),

PID2022-140109NB-I00 (MICIU/AEI/10.13039/501100011033 and FED-

ER/UE), PID2021-122270OB-I00 (MICIU/AEI/10.13039/501100011033 and

FEDER/UE) and RED2022-134647-T (MICIU/AEI/10.13039/501100011033).

Automating the Development of Task-oriented LLM-based Chatbots CUI ’24, July 8–10, 2024, Luxembourg, Luxembourg

REFERENCES

[1] Anthropic. last access in 2024. Claude. https://www.anthropic.com/news/

introducing-claude.

[2] Tom Bocklisch, Thomas Werkmeister, Daksh Varshneya, and Alan Nichol. 2024.

Task-oriented dialogue with in-context learning. arXiv preprint arXiv:2402.12234
(2024).

[3] P. C. Cañizares, J. M. López-Morales, S. Pérez-Soler, E. Guerra, and J. de Lara.

2024. Measuring and clustering heterogeneous chatbot designs. ACM Trans.
Softw. Eng. Methodol. 22, 4 (2024), 90:1–90:43.

[4] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang, Y.

Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu, Q. Yang, and X. Xie. 2024. A survey

on evaluation of Large Language Models. ACM Trans. Intell. Syst. Technol. (jan
2024). Just Accepted.

[5] Y. Chen, Q. Fu, Y. Yuan, Z. Wen, G. Fan, D. Liu, D. Zhang, Z. Li, and Y. Xiao. 2023.

Hallucination detection: Robustly discerning reliable answers in large language

models. In CIKM. ACM, 245–255.

[6] Y. Cheng, J. Chen, Q. Huang, Z. Xing, X. Xu, and Q. Lu. 2023. Prompt Sapper: A

LLM-empowered production tool for building AI chains. ACM Trans. Softw. Eng.
Methodol. In press (2023), 22 pages.

[7] R. Clarisó and J. Cabot. 2023. Model-driven prompt engineering. In 2023 ACM/IEEE
26th International Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, 47–54.

[8] G. Daniel and J. Cabot. 2024. Applying model-driven engineering to the domain

of chatbots: The Xatkit experience. Sci. Comput. Program. 232 (2024), 103032.
[9] J. de Wit and A. Braggaar. 2023. Tilbot: A visual design platform to facilitate

open science research into conversational user interfaces. In 5th International
Conference on Conversational User Interfaces, CUI. ACM, 55:1–55:5.

[10] Dialogflow. last access in 2024. https://dialogflow.com/.

[11] A. J. Fiannaca, C. Kulkarni, C. J. Cai, and M. Terry. 2023. Programming without a

programming language: Challenges and opportunities for designing developer

tools for prompt programming. In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI EA. ACM, 235:1–235:7.

[12] Google. last access in 2024. Gemini. https://gemini.google.com/.

[13] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.

2022. LoRA: Low-rank adaptation of large language models. In 10th International
Conference on Learning Representations, ICLR. OpenReview.net.

[14] LangChain. last access in 2024. https://www.langchain.com/.

[15] LangFlow. last access in 2024. https://www.langflow.org/.

[16] P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,

M. Lewis, W.-T. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. 2020. Retrieval-

augmented generation for knowledge-intensive NLP tasks. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020. 16 pages.

[17] Lex. last access in 2024. https://aws.amazon.com/en/lex/.

[18] Robert J. Moore and Raphael Arar. 2019. Conversational UXDesign: A Practitioner’s
Guide to the Natural Conversation Framework. ACM Books, Vol. 27. ACM.

[19] OpenAI. last access in 2024. https://openai.com/.

[20] Pandorabots. last access in 2023. https://home.pandorabots.com/.

[21] S. Pérez-Soler, E. Guerra, and J. de Lara. 2020. Model-driven chatbot development.

In ER (LNCS, Vol. 12400). Springer, 207–222.

[22] S. Pérez-Soler, S. Juárez-Puerta, E. Guerra, and J. de Lara. 2021. Choosing a

chatbot development tool. IEEE Softw. 38, 4 (2021), 94–103.
[23] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. 2018. Improving

language understanding by generative pre-training. See also https://openai.com/

research/language-unsupervised.

[24] Rasa. last access in 2024. https://rasa.com/.

[25] P. P. Ray. 2023. ChatGPT: A comprehensive review on background, applications,

key challenges, bias, ethics, limitations and future scope. Internet of Things and
Cyber-Physical Systems 3 (2023), 121–154.

[26] R. Ren, J. W. Castro, S. T. Acuña, and J. de Lara. 2019. Evaluation techniques for

chatbot usability: A systematic mapping study. Int. J. Softw. Eng. Knowl. Eng. 29,
11&12 (2019), 1673–1702.

[27] E. Ruane, R. Smith, D. Bean, M. Tjalve, and A. Ventresque. 2020. Developing a

conversational agent with a globally distributed team: An experience report. In

15th IEEE/ACM International Conference on Global Software Engineering, ICGSE.
ACM, 122–126.

[28] T. Le Scao et al. 2023. BLOOM: A 176B-parameter open-access multilingual

language model. arXiv:2211.05100 [cs.CL]

[29] R. M. Schuetzler, G. M. Grimes, J. S. Giboney, and H. K. Rosser. 2021. Deciding

whether and how to deploy chatbots. MIS Q. Executive 20, 1 (2021), 4.
[30] M. Skjuve, A. Følstad, and P. B. Brandtzaeg. 2023. The user experience of ChatGPT:

Findings from a questionnaire study of early users. In 5th International Conference
on Conversational User Interfaces, CUI. ACM, 2:1–2:10.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B.

Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and

G. Lample. 2023. LLaMA: Open and efficient foundation language models.

arXiv:2302.13971 [cs.CL]

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. 2017. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30. 5998–6008.

[33] Watson. last access in 2024. https://www.ibm.com/cloud/watson-assistant/.

[34] Jing Wei, Sungdong Kim, Hyunhoon Jung, and Young-Ho Kim. 2024. Leveraging

large language models to power chatbots for collecting user self-reported data.

In CSCW. arXiv:2301.05843 [cs.HC] See also https://arxiv.org/abs/2301.05843.

[35] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn. 2022. A systematic evaluation

of large language models of code. In MAPS@PLDI. ACM, 1–10.

[36] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. 2022.

React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629 (2022).

[37] J. D. Zamfirescu-Pereira, H. Wei, A. Xiao, K. Gu, G. Jung, M. G. Lee, B. Hart-

mann, and Q. Yang. 2023. Herding AI cats: Lessons from designing a chatbot by

prompting GPT-3. In DIS. ACM, 2206–2220.

[38] J. D. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang. 2023. Why

Johnny can’t prompt: How non-AI experts try (and fail) to design LLM prompts.

In 2023 CHI Conference on Human Factors in Computing Systems, CHI. ACM,

Article 437, 21 pages.

[39] W. X. Zhao et al. 2023. A survey of large language models. CoRR abs/2303.18223

(2023), 124 pages. https://doi.org/10.48550/ARXIV.2303.18223 arXiv:2303.18223

https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude
https://dialogflow.com/
https://gemini.google.com/
https://www.langchain.com/
https://www.langflow.org/
https://aws.amazon.com/en/lex/
https://openai.com/
https://home.pandorabots.com/
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://rasa.com/
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2302.13971
https://www.ibm.com/cloud/watson-assistant/
http://arxiv.org/abs/2301.05843
https://arxiv.org/abs/2301.05843
https://doi.org/10.48550/ARXIV.2303.18223

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Intent-based chatbots
	2.2 LLM-based chatbots

	3 Motivation and Running Example
	4 Overview of our Approach
	4.1 Chatbot specifications
	4.2 Chatbot execution model

	5 Tool Support
	6 Evaluation
	6.1 Experiment set-up
	6.2 Experiment results: Specification size (RQ1)
	6.3 Experiment results: Conversation flexibility (RQ2)
	6.4 Experiment results: Answer diversity (RQ3)
	6.5 Discussion and threats to validity

	7 Conclusions and Future Work
	References

