
Analysing Graph Transformation Through OCL

Jordi Cabot1, Robert Clarisó1, Esther Guerra2, and Juan de Lara3

1 Universitat Oberta de Catalunya (Spain), {jcabot,rclariso}@uoc.edu
2 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es

3 Universidad Autónoma de Madrid (Spain), jdelara@uam.es

Abstract. In this paper we present an approach to the analysis of graph
transformation rules based on an intermediate OCL representation. We
translate different semantics of rules into OCL, together with the prop-
erties of interest (like rule applicability, conflict or independence). The
intermediate representation serves three purposes: (i) allows the seamless
integration of graph transformation rules with the MOF and OCL stan-
dards, and enables taking into account meta-model and OCL constraints
when verifying the correctness of the rules; (ii) permits the interoperabil-
ity of graph transformation concepts with a number of standards-based
model-driven development tools; and (iii) makes available a plethora of
OCL tools to actually perform the rule analysis.

1 Introduction

Model-Driven Development (MDD) is a software engineering paradigm where
models play a fundamental role. They are used to specify, simulate, test, ver-
ify and generate code for the application to be built. Most of these activities
are model manipulations, thus, model transformation becomes a crucial activ-
ity. Many efforts have been spent in designing specialized languages for model
transformation, ranging from textual to visual; declarative to imperative through
hybrid; semi-formal to formal. The OMG vision of MDD is called Model-Driven
Architecture (MDA) and is founded on standards like QVT [17] for the trans-
formations and MOF and OCL for modelling and meta-modelling.

Graph Transformation [8, 18] is a declarative, rule-based technique for ex-
pressing model transformations. It has been mainly used for specifying in-place
transformations like animations [10], simulations [14], optimizations and re-
designs [16]. It is gaining increasing popularity due to its visual form (making
rules intuitive) and formal nature (making rules and grammars amenable to
analysis). For example, it has been used to describe the operational semantics
of Domain Specific Visual Languages (DSVLs) [14], taking the advantage that
it is possible to use the concrete syntax of the DSVL in the rules, which then
become more intuitive to the designer.

As models and meta-models can be expressed as graphs (with typed, at-
tributed nodes and edges), graph transformation can be used for model manipu-
lation. The main formalization of graph transformation is the so called algebraic
approach [8], which uses category theory in order to express the rewriting. Promi-
nent examples of this approach are the double [8] and single [9] pushout (DPO

and SPO), which have developed interesting analysis techniques, e.g. to check
independence between pairs of derivations [8, 18], or to calculate critical pairs
(minimal context of pairs of conflicting rules) [12]. However, graph grammar
analysis techniques work with simplified meta-models (so called type graphs),
with no inheritance, cardinalities nor textual OCL-like constraints.

In this paper, our goal is to advance in the integration of graph transfor-
mation and MDD. We propose using OCL as an intermediate representation of
both the semantics of graph transformation rules and the analysis properties
of interest. Representing rules with OCL, concepts like attribute computation
and attribute conditions in rules can be seamlessly integrated with the meta-
model and OCL constraints during the rule analysis. Specifying the rules and
the properties in OCL makes available a plethora of tools (e.g. HOL-OCL [4],
USE [11], MOVA [7], UML2Alloy [1] and UMLtoCSP [6]), able to analyze this
kind of specifications. A secondary effect is that graph transformation is made
available to the increasing number of MDA tools that the community is building
and vice-versa. For example, using such tools, it could be possible to generate
code for the transformations, or apply metrics and redesigns to the rules.

More in detail, we use OCL to represent (DPO/SPO) rules with negative ap-
plication conditions and attribute conditions. These rules may have objects with
abstract typing, which can be matched to objects of more concrete types [13]. In
addition, we have represented a number of analysis properties with OCL, taking
into account both the rule structure and the rule and meta-model constraints:
rule applicability (whether there is a model satisfying the rule and the meta-
model constraints), weak executability (whether the rule’s post-condition and
the meta-model constraints are satisfiable by some model), strong executabil-
ity (whether all models satisfying the rule’s pre-condition and the meta-model
constraints allow a valid rewriting step), correctness preserving (if a rule ap-
plied to a legal model always yields a legal model), overlapping rules (whether
there is a model in which both rules are applicable), conflicts (there are two
applicable rules on the same model, and firing one disables the other), and rule
independence (check if the application order of two rules matters). As a proof
of concept, we have checked these properties using the UMLtoCSP tool, which
internally treats the OCL expressions as a Constraint Satisfaction Problem.

Paper Organization. Section 2 introduces graph transformation using a
production system example. Section 3 presents our translation of graph transfor-
mation rules into OCL. Section 4 shows the encoding of some analysis properties.
Section 5 presents the use of the UMLtoCSP tool for checking some properties.
Section 6 compares with related work and Section 7 ends with the conclusions.

2 Graph Transformation by Example

In this section we give an intuition on graph transformation by presenting some
rules that belong to a simulator of a DSVL for production systems. Fig. 1 shows
the DSVL meta-model. It defines different kinds of machines (concrete subclasses
of Machine) that can be connected through conveyors. These can be intercon-

nected and contain pieces (the number of pieces they actually hold is stored in
attribute nelems), up to its maximum capacity (attribute capacity). The last
two OCL constraints to the right of the figure guarantee that the number of el-
ements of a conveyor is equal to the number of pieces connected to it and never
exceeds its capacity. Human operators are needed to operate the machines, which
consume and produce different types of pieces from/to conveyors.

Fig. 1. Meta-model of a DSVL for production systems.

Fig. 2 shows a production model example using a visual concrete syntax. It
contains six machines (one of each type), two operators, six conveyors and five
pieces. Machines are represented as decorated boxes, except generators, which
are depicted as semi-circles with an icon representing the kind of piece they gen-
erate. Operators are shown as circles, conveyors as lattice boxes, and each kind
of piece has its own shape. In the model, the two operators are currently operat-
ing a generator of cylindrical pieces and a packaging machine respectively. Even
though all associations in the meta-model are bidirectional, we have assigned
arrows in the concrete syntax, but of course this does not affect navigability.

Fig. 2. Example production system model.

We use graph transformation techniques for the specification of the DSVL
operational semantics. A graph grammar is made of a set of rules and an initial
graph to which the rules are applied. Each rule is made of a left and a right hand
side (LHS and RHS) graphs. The LHS expresses pre-conditions for the rule to be
applied, whereas the RHS contains the rule’s post-conditions. In order to apply
a rule to the host graph, a morphism (an occurrence or match) of the LHS has to
be found in it (if several are found, one is selected randomly). Then, the rule is
applied by substituting the match by the RHS. The grammar execution proceeds
by applying the rules in non-deterministic order, until none is applicable.

Next, we show some of the rules describing the DSVL operational semantics.
Rule “assemble” specifies the behaviour of an assembler machine, which converts
one cylinder and a bar into an assembled piece. The rule is shown in concrete
syntax to the left of Fig. 3, and in abstract syntax to the right. It can be applied
if an occurrence of the LHS is found in the model (e.g. it could be applied to
the model in Fig. 2). Then, the elements in the LHS that do not appear in the
RHS are deleted, whereas the elements in the RHS that do not appear in the
LHS are newly created. Our rules may include attribute conditions (which must
be satisfied by the match) and attribute computations, both expressed in OCL.
Attributes referenced to the right of an assignment in an attribute computation
refer to the value of the attribute before the rule application.

Fig. 3. Assemble rule in concrete syntax (left) and abstract syntax (right).

There are two main formalizations of algebraic graph transformation, DPO
and SPO. From a practical point of view, their difference is that in DPO, deletion
has no side effects. When a node in the host graph is deleted by a rule, it
can only be connected with those edges explicitly deleted by the rule. When
applying the rule in Fig. 3, if piece “b” in the match is connected to more than
one conveyor (should it be allowed by the meta-model), then the rule cannot
be applied as edges would become dangling in the host graph. This condition
is called dangling edge condition. In SPO, dangling edges are removed by the
rewriting step. Therefore in DPO, in addition to positive pre-conditions, a LHS
also imposes implicit negative pre-conditions in case the rule deletes some node.

A match can be non-injective, which means for example that two nodes with
compatible type in the rule may be matched to a single node in the host graph. If
the rule specifies that one of them should be deleted and the other one preserved,
DPO forbids applying the rule at such match, while SPO allows its application
and deletes both nodes. This is called the identification condition.

Fig. 4 shows further rules for the DSVL. Rule “move” describes the movement
of pieces through conveyors. The rule has a negative application condition (NAC)
that forbids moving the piece if the source conveyor is the input to any kind
of machine having an operator. Note that this rule uses abstract nodes: piece
“p” and machine “m” have abstract types, and are visually represented with
asterisks. Abstract nodes in the rule can get instantiated to nodes of any concrete
subtype [13]. In this way, rules become much more compact. Rule “change”

models an operator changing to a machine “m1” if the machine has some piece
waiting to be processed and it is unattended. Rule “rest” models the break pause
of an operator, which is deleted, while rule “work” creates a new operator in an
unattended machine.

Fig. 4. Additional rules for the DSVL simulator.

3 From Graph Transformation to OCL

This section presents a procedure to translate graph transformation rules into
an OCL-based representation. The procedure takes as input a graph transfor-
mation system, made of a set of rules; together with the MOF-compliant meta-
model used as a context for the rules. As output, the method generates a set
of semantically-equivalent declarative operations (one for each rule) specified in
OCL. Declarative operations are specified by means of a contract consisting of
a set of pre and post-conditions. Roughly speaking, pre-conditions will define a
set of conditions on the source model that will hold iff the rule can be applied,
namely if the model has a match for the LHS pattern and no match for any
NAC, while post-conditions will describe the new state of the model after the
operation execution as stated by the difference between the rule’s RHS and LHS.

More precisely, the input of the procedure is a tuple (MM, ruleStyle, GTS =
{rj}j∈J), where MM is a meta-model (possibly restricted by OCL well-formedness
rules), ruleStyle is a flag indicating DPO or SPO semantics, and GTS is a
set of graph transformation rules. We represent DPO and SPO rules as r =
(LHS, RHS,ATTCOND, ATTCOMP , {NACi, ATT i

COND}i∈I), where LHS, RHS
and NACi are models conformant to MM . Instances are identified across mod-
els by their object identifiers, e.g. the preserved elements by the rule have the
same object identifiers in LHS and RHS. ATTCOND, ATT i

COND and ATTCOMP

are sets of OCL expressions. The first two contain attribute conditions for the
LHS and the i-th NAC, the latter contains attribute computations to state the
new values for the attributes in the RHS.

Next subsections use this formalization to translate the GTS in terms of
a set of OCL operations. The name of the operations will be the name of the
corresponding rule. All operations will be attached to an artificial class System,

typically used in the analysis phase to contain the operations describing the
behaviour of the system [15]. Alternatively, each operation could be assigned
to one of the existing classes in the meta-model (in particular, to one of the
classes referred in the LHS or RHS patterns of the rule) following the guidelines
provided by the GRASP patterns [15].

3.1 Translating the left-hand side

A rule r can be applied on a host graph (i.e a model) if there is a match, that
is, if it is possible to assign objects of the host graph to nodes in the LHS such
that (a) the type in the host graph is compatible with the type in the LHS, (b)
all edges in LHS may be mapped to links in the host graph and (c) the attribute
conditions evaluate to true when symbols are replaced by the concrete attribute
values in the model. It is possible that the same object is assigned to multiple
nodes in LHS (non-injective match) as long as conditions (a-c) are satisfied.

When defining the translation for condition (a) we must explicitly encode the
set of quantifiers implicit in the semantics of graph transformation rules: when
checking if the host graph contains a match for LHS we have to try assigning
each possible combination of objects from compatible types in the model to
the set of nodes in the pattern. Thus, we need one quantifier for each node
in LHS. In terms of OCL, these quantifiers will be expressed as a sequence of
embedded exists operators over the population of each node type (retrieved using
the predefined allInstances operation).

Once we have a possible assignment of objects to the nodes in LHS we must
check if the objects satisfy the (b) and (c) conditions. To do so, we define an auxil-
iary query operation matchLHSr. This operation returns true if a given set of ob-
jects comply with the pattern structure defined in LHS and satisfy its ATTCOND

conditions. In particular for each edge e linking two objects o1 (of type t1) and
o2 (of type t2) in LHS, matchLHSr must define a o1.navt2−> includes(o2) con-
dition stating that o2 must be included in the set of objects retrieved when
navigating from o1 to the related objects in t2; the right association end to use
in the navigation navt2 is extracted from the MM according to the type of e
and the type of the two object participants. ATTCOND conditions, already ex-
pressed using an OCL-like syntax in r, are directly mapped as a conjunction of
conditions at the end of matchLHSr.

Let L = {L1, . . . , Ln} denote the set of nodes in LHS and E = {(Li, Lj)}
the set of edges. Then, according to the previous guidelines, the LHS pattern of
r will be translated into the following equivalent pre-condition:

context System::r()
pre: L1.type::allInstances()−>exists(L1 |

. . .
Ln.type::allInstances()−>exists(Ln | matchLHSr(L1, . . . , Ln)))

context System::matchLHSr(L1 : L1.type, . . . , Ln : Ln.type)
body: L1.navL2.type−>includes(L2) and

. . . and
Li.navLj.type−>includes(Lj) and ATTCOND

where Li.type returns the type of the node and the identifier of the node is used to
name the variable in the quantifier. Note that Li.type::allInstances() returns all
direct and indirect instances of the Li.type (that is, it returns also the instances
of its subtypes) and thus abstract objects can be used in the definition of r.

As an example, the pre-condition for the rest rule would be:

context System::rest()
pre: Operator::allInstances()−>exists(op |

Machine::allInstances()−>exists(m | matchLHSrest(op, m))

context System::matchLHSrest(op: Operator, m: Machine)
body: op.machine−>includes(m)

where matchLHSrest is called for every possible combination of operators and
machines in the model (because of the two nested exists). If one of such com-
binations satisfies matchLHSrest the pre-condition evaluates to true, meaning
that “rest” can be applied on the model.

3.2 Translating the negative application conditions

In presence of NACs the pre-condition of r must also check that the set of
objects of the host graph satisfying LHS do not match any of the NACs.

The translation of a NAC pattern is almost equal to the translation of a LHS
pattern: an existential quantifier must be introduced for each new node in the
NAC (i.e. each node not appearing also in the LHS pattern) and an auxiliary
query operation (matchNACr) will be created to determine if a given set of
objects satisfy the NAC pattern. MatchNACr is specified following the same
procedure used to define matchLHSr.

Within the pre-condition, the translation of the NACs is added as a negated
condition immediately after the translation of the LHS pattern.

Let N = {N1, . . . , Nm} denote the set of nodes in a NAC that do not appear
also in LHS. The extended pre-condition for r (LHS + NAC) is defined as:

context System::r()
pre: L1.type::allInstances()−>exists(L1 |

. . .
Ln.type::allInstances()−>exists(Ln | matchLHSr(L1, . . . , Ln)
and not (N1.type::allInstances()−>exists(N1 |
. . .
Nm.type::allInstances()−>exists(Nm |
matchNACr(L1, . . . , Ln, N1, . . . , Nm)) . . .)

If r contains several NACs we just need to repeat the process for each NAC,
creating the corresponding matchNACir operation every time.

As an example, the translation for the LHS and NAC patterns of the “work”
rule would be:

context System::work()
pre: Machine::allInstances()−>exists(m | matchLHSwork(m)

and not Operator::allInstances()−>exists(op1|matchNACwork(m,op1)))

context System::matchLHSwork(m:Machine):Boolean body: true

context System::matchNACwork(m:Machine, op1:Operator):Boolean
body: m.operator−>includes(op1)

Note that for this rule, matchLHSwork simply returns true since as long as a
machine object exists in the host graph (ensured by the existential quantifier in
the pre-condition), the LHS is satisfied. The additional condition is here imposed
by the NAC, stating that no operator may be working on that machine.

3.3 Translating the right-hand side

The effect of rule r on the host graph is the following: (1) the deletion of the
objects and links appearing in LHS and not in RHS, (2) the creation of the ob-
jects and links appearing in RHS but not in LHS and (3) the update of attribute
values of objects in the match according to the ATTCOMP computations.

Clearly, when defining the OCL post-condition for r we will need to consider
not only the RHS pattern (the new state) but also the LHS (and NAC) patterns
(the old state) in order to compute the differences between them and determine
how the objects evolve from the old to the new state. In OCL, references to the
old state (i.e. references to the values of objects and links in the state before
executing the operation) must include the @pre keyword (for instance, a post-
condition expression like o.atr1 = o.atr1@pre + 1 states that the value of atr1

for object o is increased by one upon completion of the operation)
Therefore, the translation of the RHS pattern requires, as a first step, to select

a set of objects of the host graph that are a match for the rule. Unsurprisingly,
this initial condition is expressed with exactly the same OCL expression used to
define the pre-condition (where the goal was the same: to determine a match for
r). The only difference is that in the post-condition, all references to attributes,

navigations and predefined properties will include the @pre keyword. Next, the
selected set of objects are passed to an auxiliary operation changeRHSr, in charge
of performing the changes defined in the rule.

ChangeRHSr will be defined as a conjunction of conditions, one for each dif-
ference between the RHS and LHS patterns. Table 1 shows the OCL expressions
that must be added to changeRHSr depending on the modifications performed
by r on the host graph. Moreover, all ATTCOMP are added as additional compu-
tations at the end. Again, in the computations all references to previous attribute
values are extended with the @pre keyword. As usual, we assume in the defini-
tion of the post-condition for r that all elements not explicitly modified in the
post-condition remain unchanged (frame problem).

Table 1. OCL expressions for changeRHSr

Element ∃ in ∃ in Update OCL Expression
LHS? RHS?

Object o of type t No Yes Inserting o o.oclIsNew() and o.oclIsTypeOf(t)
Object o of type t Yes No Deleting o t::allInstances()−>excludes(o)
Link l between (o1, o2) No Yes Inserting l o1.navt2−>includes(o2)
Link l between (o1, o2) Yes No Deleting l o1.navt2−>excludes(o2)

As an example, we show the complete operations generated for the “rest”
and “work” rules. The translation for the other rules in the running example
can be found in the extended version of this paper [22].

context System::rest()
pre: Operator::allInstances−>exists(op|

Machine::allInstances−>exists(m|matchLHSrest(op,m)))
post: Operator::allInstances@pre−>exists(op|

Machine::allInstances@pre−>exists(m|
matchLHSrest’(op,m) and changeRHSrest(op,m)))

context System::matchLHSrest(op: Operator, m: Machine):Boolean
body: op.machine−>includes(m)

context System::matchLHSrest’(op: Operator, m: Machine):Boolean
body: op.machine@pre−>includes(m)

context System::changeRHSrest(op: Operator, m: Machine):Boolean
body: Operator::allInstances()−>excludes(op)

context System::work()
pre: Machine::allInstances()−>exists(m|matchLHSwork(m) and not (

Operator::allInstances()−>exists(op1|matchNACwork(m,op1)))
post: Machine::allInstances()@pre−>exists(m|matchLHSwork’(m) and not

(Operator::allInstances@pre()−>exists(op1|matchNACwork’(m,op1)))
and changeRHSwork(m)

context System::matchLHSwork(m:Machine):Boolean body: true

context System::matchLHSwork’(m:Machine):Boolean body: true

context System::matchNACwork(m:Machine, op1:Operator):Boolean
body: m.operator−> includes(op1)

context System::matchNACwork’(m:Machine, op1:Operator):Boolean
body: m.operator@pre−> includes(op1)

context System::changeRHSwork(m:Machine):Boolean
body: op.oclIsNew() and op.oclIsTypeOf(Operator) and

m.operator−>includes(op)

3.4 Taking into account DPO and SPO semantics

The behaviour of the rules is slightly different depending on whether DPO or
SPO semantics are assumed. The two main differences we must consider in our
translation are the dangling edge condition and the identification condition.

In DPO, the dangling edge condition states that when a node is deleted, it
can only be connected to other nodes by the edges that are explicitly deleted by
the rule. With SPO semantics, all edges are implicitly removed when deleting
the node. This is the common assumption in UML/OCL specifications [19] and
thus with SPO we do not need to modify the translation patterns provided so
far (for instance, in the “rest” operation it is assumed that all links connecting
object op with other objects are implicitly removed when deleting it). Instead,
under DPO semantics we must refine the generated pre-condition to ensure that
the objects deleted by the rule have no other links except for those appearing
in LHS and not in RHS. Therefore, for each deleted object o instance of a type
t and for each type ti related with t in MM we must include in matchLHS the
following conditions:

– o.navti−>isEmpty() (when LHS does not include edges relating o with
nodes of type ti)

– o.navti−>excludingAll(o1, o2, . . . , on)−>isEmpty() (when LHS includes edges
relating o with a set of {o1, o2, . . . , on} nodes of type ti)

As an example, the query operation matchLHSrest for “rest” under DPO
semantics would be redefined as follows:

context System::matchLHSrest(op: Operator, m: Machine):Boolean
body: op.machine−>includes(m) and

op.machine−>excluding(m)−>isEmpty()

The identification condition states that two nodes of the LHS cannot be
matched into the same object in the host graph if one of the nodes does not
appear in the RHS pattern (i.e. it is deleted). With SPO semantics, the object
in the host graph is simply removed. Again, the SPO semantics coincide with
the default UML/OCL behaviour. If two OCL variables point to the same object
and one of the variables is used to define that the pointed object is removed, the
other automatically becomes undefined. Instead, to enforce the DPO semantics
we need an additional condition in the matchLHS operation. Given that L1 and
L2 are two nodes in the LHS pattern, L1.type = L2.type and L1 but not L2

appear in RHS (or the other way around), the condition L1 <> L2 should be
added in matchLHS. This condition forces the problematic existential quantifiers
to map to two different objects when evaluating the pre-condition.

4 Formalization of Rule Properties with OCL

Translating a graph grammar into a set of operations with OCL pre/post-
conditions allows the analysis of relevant properties of the rules. The properties
under analysis will take into account the meta-model invariants that restrict the
possible set of legal instantiations (i.e. models) of the meta-model.

The following notation will be used to express these concepts: I denotes an
instantiation of the meta-model, while I ′ represents the modified instantiation
after invoking an operation. An instantiation I is called legal, noted as INV[I], if
it satisfies all the invariants of the meta-model, i.e. both the graphical restrictions
such as multiplicity of roles in associations and the explicit OCL well-formedness
rules. By PREr[I] we denote that an instantiation I satisfies the pre-condition
of an operation r. Regarding post-conditions, we write POSTr[I, I ′] to express
that instantiation I ′ satisfies the post-condition of an operation r assuming that
I was the instantiation before executing the operation.

Two families of properties will be studied. First, it is desirable to verify that
for each rule there exists at least one valid model where it can be applied, as
otherwise the rule is useless. Second, it is interesting to check whether differ-
ent rules may interfere among them, making the order of application matter.
Within each family of properties, several notions will be presented, each with a
trade-off between precision and the complexity of its analysis. The list, with its
formalization, is the following:

– Applicability (AP): Rule r is applicable if there is at least one legal in-
stantiation of the meta-model where it can be applied.

∃I : INV[I] ∧ PREr[I]

– Weak executability (WE): r is weakly executable if the post-condition is
satisfiable in some legal instantiation.

∃I, I ′ : INV[I] ∧ INV[I ′] ∧ POSTr[I, I ′]

– Strong executability (SE): r is strongly executable if, for any legal instan-
tiation that satisfies the pre-condition, there is another legal instantiation
that satisfies the post-condition.

∀I : ∃I ′ : (INV[I] ∧ PREr[I]) → (INV[I ′] ∧ POSTr[I, I ′])

– Correctness preserving (CP): r is correctness preserving if, applied to a
legal instantiation of the meta-model, cannot produce an illegal one.

∀I, I ′ : (INV[I] ∧ PREr[I]) → (POSTr[I, I ′] → INV[I ′])

– Overlapping rules (OR): Two rules r and s overlap if there is at least
one legal instantiation where both rules are applicable.

∃I : INV[I] ∧ PREr[I] ∧ PREs[I]

– Conflict (CN): Two rules r and s are in conflict if firing one rule can
disable the other, i.e. iff there is one legal instantiation where both rules are
enabled, and after applying one of the rules, the other becomes disabled.

∃I, I ′ : INV[I] ∧ INV[I ′] ∧ PREr[I] ∧ PREs[I] ∧ POSTr[I, I ′] ∧ ¬PREs[I ′]

– Independence (IN): Two rules r and s are independent iff in any legal
instantiation where both can be applied, any application order produces the
same result. Four instantiations of the model will be considered to charac-
terize this property: before applying the rules (I), after applying both rules
(I ′′), after applying only rule r (I ′r) and after applying only rule s (I ′s).

I
r−−−−→ I ′rys

ys

I ′s
r−−−−→ I ′′

∀I : ∃I ′r, I ′s, I ′′ : (INV[I] ∧ PREr[I] ∧ PREs[I]) →
(INV[I ′r] ∧ POSTr[I, I ′r] ∧ PREs[I ′r] ∧
INV[I ′s] ∧ POSTs[I, I ′s] ∧ PREr[I ′s] ∧

INV[I ′′]∧POSTr[I ′s, I ′′]∧POSTs[I ′r, I ′′])

A model I satisfying PREr[I] may admit non-determinism in the execution of
r, if it contains more than one match of r. The difference between SE and CP is
that the former requires one such application to be valid, while for CP all of them
have to be valid. If a rule does not satisfy CP, it means that it is underspecified
regarding the OCL meta-model invariants. Notice that the attribute condition
in rule “assemble” in Fig. 3 is necessary to ensure that the rule satisfies CP.

The term critical pair is used in graph transformation to denote two direct
derivations in conflict (applying one disables the other), where the starting model
is minimal [8, 12]. The set of critical pairs gives all potential conflicts, and if
empty, it means that the transformation is confluent (i.e. a unique result is

obtained from its application). For technical reasons, any attribute computation
is usually modeled as a rewriting of edges [8]. This means that any two rules
changing the same attribute of the same node will be reported as conflicting. This
does not mean that one rule disables the other, but however ensures confluency.
On the contrary, our CN condition is more precise about attribute computations
and considers the OCL invariants, but by itself does not ensure confluency.

IN allows applying each pair of rules in any order, obtaining the same result.
This is a strong version of the local Church-Rosser theorem in DPO [8], where
we require rule independence for every valid model I, and ensures confluency.

5 Tool Support

Existing tools for the validation (e.g. USE [11] and MOVA [7]) and verification
of UML/OCL models (e.g. HOL-OCL [4], UML2Alloy [1] and UMLtoCSP [6])
can be used to prove the correctness properties of graph transformation rules
(Section 4) once translated into declarative OCL operations (Section 3).

Each tool follows a different approach to cope with the verification process
with its own set of advantages and drawbacks: bounded verification, need of
user guidance, support for a different subset of the OCL language, different
efficiency levels and so forth. Moreover, the richness of constructs in OCL and
the complexity in some features (e.g. undefined values) constitutes a challenge
for all existing tools. As a result, the degree of support for some OCL constructs
varies from one tool to another. An example is the support for the operator @pre
in the post-condition, which must be used in the verification of properties that
use POSTr. Therefore some tools may have to be adapted for the verification of
those properties. All these issues should be taken into account by the designer
when choosing a particular tool to verify the graph transformation rules.

As an example, we describe in this section how to use our UMLtoCSP tool in
order to check properties of the rules of our running example. UMLtoCSP works
by searching a possible instantiation of the (meta-)model consistent with all
the invariants. To analyze rules, pre-conditions of the corresponding operations
for each rule must be added as additional invariants (with the same body). If
after adding these additional invariants a valid instantiation still exists we may
conclude that the rule property is satisfied. To check properties involving post-
conditions of operations, two valid instantiations must be computed.

First, we use UMLtoCSP to check whether rules “change” and “move” over-
lap. To prove so, UMLtoCSP automatically computes the match on the left
of Fig. 5. Notice that in this match of the “move” operation, the source and
destination conveyors are mapped to the same conveyor object, as there is no
constraint forbidding this choice. In fact, this instantiation helps us to detect a
problem in our system definition: non-injective matches are inadequate for rule
“move”, which in this case may be solved by adding an additional invariant to
the meta-model stating that a conveyor cannot be next to itself. On the other
hand, the image in the right of Fig. 5 depicts a conflict between rules “work”

and “change”: both rules can be applied on the model but applying rule “work”
would disable rule “change”.

Fig. 5. Examples of an overlapping between rules “change” and “move” (left) and a
conflict between rules “change” and “work” (right) as computed by UMLtoCSP.

6 Related Work

There are two main sources of related work: those analysing rules using DPO
and SPO theory, and those that translate rules to other domains for analysis.
In the former direction, graph transformation has developed a number of anal-
ysis techniques [8, 12, 18], but they usually work with simple type graphs. Our
present work redefines some of these analysis properties, but taking into con-
sideration a full-fledged meta-model, as well as OCL constraints in rules. Some
preliminary efforts to integrate graph transformation with meta-modelling can
be found in [13], where type graphs were extended with inheritance, and [20],
were edge inheritance and edge cardinalities were incorporated into type graphs.

Regarding the transformation of graph rules into other domains, their trans-
lation into OCL pre- and post-conditions was first presented in [5]. Here we give
a more complete OCL-based characterization of rules that considers both DPO
and SPO, NACs, and that encodes the LHS’s matching algorithm as additional
pre-conditions (in [5] the match is passed as parameter to the OCL expressions,
assuming an external mechanism). Besides, we exploit the resulting OCL expres-
sions in order to enable the tool-assisted analysis of different rule properties.

Transformations to other domains can be found in [3], where rules are trans-
lated into Alloy in order to study the applicability of sequences of rules and
the reachability of models; in [2], where rules are translated into Petri graphs to
check safety properties; and in [21], where they are transformed into Promela for
model-checking. However none of these approaches supports the analysis taking

a meta-model into account or allowing OCL constraints in rules. Besides, our use
of OCL as intermediate representation has the benefit that it is tool independent
and we can easily integrate attribute conditions and meta-model constraints.

7 Conclusions and Future Work

We have presented a new method for the analysis of graph transformation rules
that takes into account the (meta-)model structure and well-formedness OCL
constraints during the verification process. This way, properties like applicability,
which are fundamental to detect inconsistencies in graph transformation rules,
can be studied while simultaneously checking for semantic consistency with the
meta-model definition. Our method translates the graph transformation rules
into an OCL-based representation. Then, the resulting OCL expressions are com-
bined with the OCL constraints specified for the (meta-)models and passed on
to existing OCL tools for their joint verification. The translation supports rules
with NACs, attribute conditions and distinguishes DPO and SPO semantics.

As future work we would like to develop a plug-in for the graph-based AToM3

meta-modeling tool [14] to generate OCL expressions from the meta-model and
the rules. Additionally, we want to explore alternative applications of our trans-
lation. Indeed, once the graph transformation rules are expressed in OCL, we
can benefit from all tools designed for managing OCL expressions (spawning
from code-generation to documentation, metrics analysis,...) when dealing with
the rules. We also plan to study other properties and to apply this approach to
other graph transformation-based techniques, like triple graph grammars.

Acknowledgments: Work supported by the Spanish Ministry of Educa-
tion and Science, projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB
(TIN2006-09678).

References

1. Anastasakis, K., Bordbar, K., Georg, G., Ray, I. 2007. UML2Alloy: A challenging
model transformation. Proc. MODELS’07, pp. 436–450.

2. Baldan, P., Corradini, A., König, B. 2001. A static analysis technique for graph
transformation systems. Proc. CONCUR’01, LNCS 2154, pp. 381–395. Springer.

3. Baresi, L., Spoletini, P. 2006. On the use of Alloy to analyze graph transformation
systems. Proc. ICGT’06, LNCS 4178, pp. 306–320. Springer.

4. Brucker, A. D., Wolff, B. 2006. The HOL-OCL book. Tech. Rep. 525, ETH Zurich.

5. Büttner, F., Gogolla, M. 2006. Realizing graph transformations by pre- and postcon-
ditions and command sequences. Proc. ICGT’06, LNCS 4178, pp. 398–413. Springer.

6. Cabot, J., Clarisó, R., Riera, D. 2007. UMLtoCSP: A tool for the formal verification
of UML/OCL models using constraint programming. Proc. ASE’07, pp. 547–548.

7. Clavel, M., Egea, M. 2006. A rewriting-based validation tool for UML+OCL static
class diagrams. Proc. AMAST’06, LNCS 4019, pp. 368–373. Springer.

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006. Fundamentals of Algebraic
Graph Transformation. Springer.

9. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini,
A. 1999. Algebraic Approaches to Graph Transformation - Part II: Single Pushout
Approach and Comparison with Double Pushout Approach. In [18], pp. 247–312.

10. Ermel, C., Hölscher, K., Kuske, S., Ziemann, P. 2005. Animated simulation of inte-
grated UML behavioral models based on graph transformation. Proc. IEEE VL/HCC
2005, pp. 125–133.

11. Gogolla, M., Bohling, J., Richters, M. 2005. Validating UML and OCL models in
USE by automatic snapshot generation. SoSyM 4(4):386–398. Springer.

12. Heckel, R., Küster, J.-M-., Taentzer, G. 2002. Confluence of typed attributed graph
transformation systems. Proc. ICGT’02, LNCS 2505, pp. 161–176. Springer.

13. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer G. 2007.
Attributed graph transformation with node type inheritance. Theor. Comput. Sci.
376(3):139–163.

14. de Lara, J., Vangheluwe, H. 2004. Defining visual notations and their manipu-
lation through meta-modelling and graph transformation. J. Vis. Lang. Comput.
15(3-4):309–330. Elsevier.

15. Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design. 2004. Prentice Hall, 3rd Edition.

16. Mens, T., Taentzer, G., Runge, O. 2007. Analysing refactoring dependencies using
graph transformation. SoSyM 6(3):269–285. Springer.

17. QVT standard specification at: http://www.omg.org/docs/ptc/05-11-01.pdf
18. Rozenberg, G. (ed.). 1997. Handbook of Graph Grammars and Computing by Graph

Transformations, Volume 1: Foundations. World Scientific.
19. Sendall, S., Strohmeier, A. 2002. Using OCL and UML to specify system behavior.

In Object Modeling with the OCL 2002, LNCS 2263, pp. 250–280. Springer.
20. Taentzer, G., Rensink, A. 2005. Ensuring structural constraints in graph-based mod-

els with type inheritance. Proc. FASE’05, LNCS 3442, pp. 64–79. Springer.
21. Varró, D. 2004. Automated formal verification of visual modeling languages by

model checking. SoSyM 3(2):85–113. Springer.
22. –. Analysing Graph Transformation Rules Through OCL (Extended version). http:

//gres.uoc.edu/UMLtoCSP/ICMT08.pdf.

