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Abstract—Model-Driven Engineering (MDE) promotes the use
of models to conduct all phases of software development in an
automated way. Models are frequently defined using Domain-
Specific Modelling Languages (DSMLs), which many times need
to be developed for the domain at hand. However, while con-
structing DSMLs is a recurring activity in MDE, there is scarce
support for gathering, reusing and enacting knowledge for their
design and implementation. This forces the development of every
new DSML to start from scratch.

To alleviate this problem, we propose the construction of
DSMLs and their modelling environments aided by patterns
which gather knowledge of specific domains, design alternatives,
concrete syntax, dynamic semantics and functionality for the
modelling environment. They may have associated services,
realized via components. Our approach is supported by a tool
that enables the construction of DSMLs through the application
of patterns, and synthesizes a graphical modelling environment
according to them.

Index Terms—Domain-Specific Modelling Languages, Meta-
Modelling, Meta-Modelling Patterns, Modelling Environments

I. INTRODUCTION

Model-Driven Engineering (MDE) [6] is a software engi-
neering paradigm that aims at reducing the accidental com-
plexity of software systems by promoting the use of models
that focus on the essential complexity of systems. In this
way, models in MDE are first-class artefacts of the software
development process, from which typically a significant part of
the application is derived. To take advantage of the knowledge
and expertise within a domain, models are often described with
Domain-Specific Modelling Languages (DSMLs). DSMLs en-
able the description of systems from the point of view of the
problem domain while hiding the accidental complexity of the
technical solution. This improves productivity and allows non-
technical personnel to use and understand the DSML [22].

Hence, a recurring activity in MDE is the definition of new
DSMLs and the development of modelling environments for
them. Building a DSML is costly and requires specialized
technical skills, as it involves defining its abstract syntax
(normally through a meta-model), its concrete syntax, and
its semantics (e.g., via a simulator or a code generator).
Moreover, these different aspects must be supported by an
integrated modelling environment with advanced functionality,
such as support for model modularization or model filtering.
Even though there are many software frameworks to ease the
development of textual and graphical environments [17], [22],
[35], nowadays, the creation of DSMLs is mostly an ad-hoc
process and lacks the ability to build on existing knowledge
coming from the previous construction of similar DSMLs.

To alleviate this situation, we propose the assisted construc-
tion of DSMLs by means of the use of patterns for different
concerns of DSMLs, like frequent domain abstractions, design
solutions, concrete syntax representations, dynamic semantics,
and functionality of the modelling environment. Patterns may
have variants to account for different pattern realizations,
which can be selected through a feature model [19]. While
some patterns are used in a constructive way, that is, they
add elements to the meta-model to speed up the productivity,
other patterns are used to configure the services that the
modelling environment will provide. Services are realized via
components, which can be interconnected through compatible
interfaces to define how they will collaborate to make available
the desired functionality in the modelling environment.

To demonstrate the feasibility of our approach, we have
created a tool that assists in the correct application of patterns,
and it is able to synthesize a full-fledged graphical modelling
environment for the pattern-based customized meta-model of
a DSML. The tool includes a catalogue of patterns, some of
them identified by an analysis of the ATL meta-model zoo1.

The rest of the paper is organized as follows. Section II
presents a classification of DSML patterns. Then, Section III
describes how patterns are defined, Section IV explains how to
express and select variants, and Section V introduces pattern
services. Section VI presents our tool. Finally, Section VII
discusses related work and Section VIII concludes.

II. A TAXONOMY OF PATTERNS FOR DSMLS

A. What’s in a meta-model?

DSMLs are described by meta-models, but how are these
meta-models constructed? Do different meta-models share
common features? If so, we could generalize the commonality
into reusable assets (patterns) to speed up the construction
of new meta-models. To answer these questions, we have
analysed a public meta-model repository (the ATL meta-model
zoo) to find common domain concepts arising in meta-models.
The analysed repository contains 305 meta-models, out of
which 20 could not be processed, thus we considered 285
meta-models in our study. Table I summarizes the results,
where each row states how many meta-models included some
occurrence of the ticked domains. A detailed view of the
results is available at http://miso.es/dsets/atlMMzoo/.

We found that different meta-models contained similar con-
cepts. For example, when a meta-model represented behaviour,

1http://www.emn.fr/z-info/atlanmod/index.php/Ecore



TABLE I
COMMON DOMAIN CONCEPTS FOUND IN THE ATL META-MODEL ZOO.

Domain Concepts # meta-models
Workflow State Machine Expressions Component Information Def.

√ − − − − 10
− √ − − − 4
− − √ − − 34
− − − √ − 9
− − − − √ 23
√ − − √ − 1
√ − − − √ 1
− √ √ − − 1
− − √ √ − 1
− − √ − √ 7
− − − √ √ 4
√ √ √ − − 1
√ − √ √ − 1
− √ √ − √ 1
√ √ √ √ √ 5

16 occs. 10 occs. 42 occs. 15 occs. 39 occs. 89 mms, 122 occs.

it frequently included concepts from state machines. Elements
from workflow languages, identifying different types of nodes
and gateways [9], were also found in several meta-models.
When the meta-model had the necessity to describe structure,
one may encounter variants of component languages defining
component types/instances and input/output ports. For DSMLs
describing information, concepts allowing the representation
of entities/classes, features and their relations were found. Fi-
nally, in DSMLs describing computations, we encountered el-
ements of mathematical and arithmetical expression languages
that included classes to represent operands and operators.

We call these concepts domain patterns: they are concep-
tualizations which occur across many meta-models. For small
DSMLs, domain patterns may occur in isolation. However,
we observed that some meta-models included several domain
patterns. Our study shows that 89 meta-models (31%) contain
at least one occurrence of the identified domain patterns:
68 meta-models use 1 pattern, 15 use 2 patterns, 3 use 3
patterns, and 3 use 5. Moreover, the joint occurrence of the
Expression and Information Definition patterns is relatively high,
as meta-models for programming languages contain facilities
for defining both structures like classes and expressions.

Hence, since common domain concepts appear across differ-
ent meta-models, it looks promising to have a means to gather
and enact this knowledge to build DSMLs. In the next section,
we argue that domain patterns are not enough to describe a
DSML, but more information is needed in order to synthesize
a customized modelling environment for the DSML.

B. A taxonomy of patterns

The definition of a DSML encompasses several aspects.
The first one concerns its abstract syntax, which should gather
the primitives of the domain, realized in a high-quality meta-
model. The second aspect deals with the representation of
the DSML, either textually or graphically, through a concrete
syntax. In the case of a graphical syntax, aspects like layouting
or zooming (e.g., through filters or hierarchical grouping)
may also be specified. Third, the DSML semantics specifies
the meaning of models, e.g., through simulation, execution,

model transformation or code generation. Finally, the editing
of models of a DSML is usually performed using a dedicated
modelling environment which provides services like model
persistence and model conformance checking. We propose
patterns to address all these aspects:

• Domain patterns. These patterns characterize a family
of DSMLs, gathering requirements of similar languages
within a domain, and documenting their variability. For
example, there may be patterns for workflow languages,
expressions (e.g., arithmetic, logical), variants of state
machines, query languages, and component/connector ar-
chitectural languages. A single DSML may use several of
these patterns, customized for a given need, and probably
extended with other domain-specific concepts.

• Design patterns. These lower-level patterns are con-
cerned with the meta-model design. Some examples
include patterns describing different options to realise
tree-like structures [2], lists, containment relations [8],
connectors, or the type/instance relation [24].

• Concrete syntax patterns. They characterize families
of DSMLs with similar representation [3]. For example,
graph-based languages depict concepts using nodes and
arrows; hierarchical graph languages represent in addition
hierarchy; and tabular languages use columns and rows.
Moreover, some domain patterns may attach a predefined
instantiation of a concrete syntax pattern, customized for
the domain. For example, state machines may be rep-
resented with a particular instantiation of a hierarchical
graph pattern, where states are depicted as ovals with the
name (and maybe other states) inside, and transitions are
shown as arrows. Similarly, workflow languages may at-
tach a graph pattern instance that represents each gateway
type as a rhombus with a different decoration.

• Dynamic semantics patterns. These patterns describe
the participant roles in different styles of semantics [4]:
Petri-net like, variations of state machines, event-based
semantics, data-flow semantics, etc. Alternatively, the se-
mantics could be given by transformations into a semantic
domain, or via code generation.



• Infrastructure patterns. These patterns identify services
typically provided by modelling environments, but which
need to be configured for a particular DSML. Some
examples of this kind of patterns include model fragmen-
tation strategies allowing the hierarchical decomposition
of large models into folders and model fragments [15],
model abstraction services to obtain a simpler view of a
model containing the subset of elements of interest [11],
and different layouts for graphical DSMLs.

Patterns can be used in two ways. First, as a means to raise
the productivity, repeatability and reliability of the meta-model
construction process, by incorporating the pattern elements
(i.e., a meta-model fragment) to the DSML meta-model. Some
elements of the pattern may already exist in the meta-model,
in which case, only the missing ones are added. This usage is
typical for domain and design patterns. In the second way, pat-
terns are a means to configure functionality for the DSML by
identifying the pattern elements (or roles) with existing meta-
model elements. This is typically the case for concrete syntax,
dynamic semantics and infrastructure patterns. In practice, one
often has intermediate situations. Once a pattern is applied, the
meta-model elements identified or created by the pattern are
“annotated” with the pattern roles. In addition, patterns may
offer services to be used together with other patterns, like a
layout pattern for certain concrete syntax pattern. To define this
interaction, patterns can publish the services they provide or
require as pluggable components through suitable interfaces.

Next, we introduce a running example illustrating all kinds
of patterns except semantics, left for a future contribution.

C. Running example

Assume we need to build a DSML for the controller soft-
ware of wind turbines2. The language should allow the defini-
tion of components, and specifying their behaviour using state
machines. As we expect large model instances, the modelling
environment should provide support to split and organize
models in different files and folders, instead of in a single
monolithic file. The environment should also incorporate a
filtering facility to help detecting symptoms of incomplete
or faulty designs, like states with no incoming transitions or
components without ports. Finally, the environment should
support the graphical editing of models, as well as their
compact visualization using a tree-view.

Although one could build this DSML and its supporting
environment from scratch, we propose the use of patterns.
Hence, we can use two domain patterns to build the abstract
syntax: one for components and another for state machines.
For the concrete syntax, we can use the commonly accepted
graphical representations for state machines and components.
Finally, services like model splitting and model filtering can
be configured using infrastructure patterns. The following
sections illustrate the process of defining this DSML and
synthesizing a modelling environment for it.

2The running example is based on a real case study of the MONDO EU
project http://www.mondo-project.org, proposed by an industrial partner.
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Fig. 1. Infrastructure pattern, and some valid instantiations.

III. PATTERN STRUCTURE AND APPLICATION

Our notion of pattern is meta-level independent, as patterns
can be applied to models or meta-models. For simplicity of
presentation, we assume that they are applied at the meta-
model level only. This and the next two sections introduce the
main ingredients of our patterns: structure, variant selection
and services. In the next subsections, we describe how patterns
are specified, applied and combined.

A. Pattern specification and instantiation

The structure of a pattern is specified by a meta-model,
and its elements (classes, references, and attributes) are called
roles. The allowed instantiability for roles can be configured
through role cardinalities. This cardinality is an interval,
possibly with unbounded top, which governs the number of
times the role can occur in a pattern instance. If a role does
not explicitly define a cardinality, then it is assumed to be
[1..1]. Class roles can be tagged with the stereotype abstract.
In such a case, the role cannot be instantiated, but it is a
placeholder for attribute or reference roles that get inherited
by children class roles. Since roles tagged as abstract cannot
be instantiated, they do not have any cardinality.

As an example, Fig. 1 shows an infrastructure pattern called
modularity to describe model fragmentation strategies. The pur-
pose of this pattern is to offer services to organize a model into
projects, packages and units, just like programming language
environments organize programs. The associated service maps
physically packages into folders, and units into files. This way,
models are no longer monolithic, but they can be split across
the file system [15].

Patterns are instantiated similar to meta-models, where
roles with the stereotype abstract (like Container) cannot be
instantiated, the instantiation of every role has to obey the role
cardinality (e.g., 1..* for Unit), and attributes and references
can only be instantiated if the owner class (for attributes)
or incident classes (for references) are instantiated as well.
Please note that reference roles have both a role cardinality and
a multiplicity. For example, the role cardinality of reference
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Fig. 2. Structure and application of a pattern for state machines.

contents is 1..*, which means that the role should be instantiated
at least once whenever a subrole of Container is instantiated.
However, the multiplicity of contents is *, which means that any
instance of contents should have multiplicity *. Alternatively,
multiplicities could be described using constraints instead of
a concrete value (like *). This way, we could specify that all
instantiations of contents should have minimum multiplicity 1
or bigger, and any value for the maximum multiplicity.

The bottom part of Fig. 1 shows two valid instantiations
of the pattern, describing two fragmentation strategies. As the
pattern indicates, both instantiations contain mandatorily an
instance of Project. In the left instance, a model is organized
in a project, and partitioned in two types of files. The pattern
instance to the right enables a more sophisticated organization,
where projects contain two kinds of packages with one unit
kind each, and one of the package types can have subpackages.

Finally, we distinguish two kinds of attribute roles in
patterns. The first kind corresponds to regular attributes (like
name in Fig. 1), and the second kind are pattern configuration
attribute roles which must receive a value in each instantiation
(like extension, used to customize the extension of each file
type). In the next section we will see that, in addition, each
kind of attribute behaves differently when a pattern is applied.

B. Pattern application

Patterns are applied to meta-models by selecting one pattern
instance, and then binding the instantiated roles to classes,
attributes or references in the meta-model. If a role is left
unbound, then the corresponding class, attribute or reference
is created new in the meta-model.

Resuming our running example, we will illustrate the pattern
application process using a domain pattern. Fig. 2 shows
the structure of a simple state machine pattern in the upper
left (label 2). InitialState, FinalState and Event are optional, so
they receive the cardinality [0..1]. The rest of roles, including

reference and attribute roles, have [1..1] cardinality (omitted).
StateVertex is not an abstract role (i.e., it is not tagged as
abstract), but it is a class role demanding the class it gets bound
to be abstract; therefore, StateVertex can be instantiated.

Fig. 2 shows how the pattern (label 2) is applied to a meta-
model (label 1). As abovementioned, conceptually, a pattern
defines the set of allowed instantiations that result from the
possible values for its different role cardinalities. In this case,
as most roles have cardinality 1, the variability results from the
instantiation or not of the optional roles InitialState, FinalState
and Event. The meta-model designer selects one of such pattern
instances (label 3); the one selected in the example does not
contain the roles Event and FinalState. This pattern instance will
be incorporated to the meta-model. However, not every pattern
role of the chosen instance will be necessarily created new in
the meta-model, but it is possible to bind existing meta-model
elements to roles in the pattern (label 4). In the figure, Edge
is bound to Transition, and Vertex to StateVertex.

Our bindings allow structural matching. This means that
attribute and reference roles are requirements to be satisfied
by the meta-model class to which the owner class role of the
attribute or reference roles is bound. In this way, attribute name
in the pattern instance should be bound to some String attribute
of the meta-model class the StateVertex role is bound to, or
to some superclass. Our support for structural binding takes
into account that Edge and Vertex in the meta-model inherit an
attribute name, and hence, it is possible to bind Edge.name to
Transition.name, and Vertex.name to StateVertex.name.

Regarding the binding of attribute roles, the regular ones can
be bound to existing meta-model attributes, and are created if
they are left unbound. This is the case of attribute role name
in Fig. 2. Pattern configuration attribute roles (like extension in
Fig. 1) are always created new, and need to receive a value at
the pattern instance/meta-model level. To deal with both kinds



of attributes, we take ideas from multi-level modelling [1] and
consider they have a potency, i.e., a natural number specifying
at how many meta-levels below they receive a value. Pattern
configuration attributes have potency 1 (indicated by @1 in the
pattern) and receive a value in meta-models. Regular attributes
have potency 2 (not shown as it is the default potency value)
and receive a value in models.

Once the binding is performed, the unbound pattern el-
ements are created in the meta-model. Moreover, both the
created meta-model elements (like SimpleState) and the ones
identified by the binding (like Vertex) are annotated with their
role in the pattern (labels 5 and 7). This annotation can be
considered a partial typing of the meta-model w.r.t. the pattern
(label 6), which signals a pattern occurrence. In contrast to
the conformance relation between a model and a meta-model,
which is mathematically a total function (i.e., every model
element is typed), the relationship between a meta-model and
a pattern is partial, as only some meta-model elements are
typed by some pattern role.

The presented example is the typical situation for domain
patterns, where a few meta-model elements are bound, and the
meta-model is completed with new elements derived from the
unbound pattern roles. In contrast, infrastructure patterns (like
the one in Fig. 1) hardly ever imply the creation of elements.

C. Combined application of patterns

Sometimes, it is useful to be able to enrich a pattern with
others that cover complementary aspects, so that whenever
the first pattern is applied, the rest are automatically applied
as well. This could be used, for example, to assign a default
graphical concrete syntax to state machines, that gets automati-
cally created. For this purpose, patterns can define any number
of secondary patterns that become applied when the main
pattern is applied. The dependency between the main and the
secondary patterns is declared in two steps: first, the secondary
pattern is instantiated, and then, the roles in this instantiation
must be bound to roles in the main pattern. This is similar
to how patterns are applied to meta-models, but in this case,
roles in the secondary pattern instance cannot be unbound.
Using this mechanism, the roles in the main pattern “receive”
roles from the secondary patterns, which get transferred to the
meta-models where the main pattern is applied.

As an example, Fig. 3 shows how to use the concrete syntax
pattern graph-based representation as secondary pattern of the
state machine domain pattern. The concrete syntax pattern has
roles for edges and for several graphical forms of nodes, which
can be customized via pattern configuration attributes (i.e.,
attribute roles with potency 1). The pattern is instantiated in
the bottom-right of the figure for state machines, assigning
appropriate values to the pattern configuration attributes. Then,
a binding maps elements in the main pattern to their graphical
representation (e.g., InitialState to the Circle with radius 10),
so that when the former elements are instantiated in a meta-
model, their graphical representation is instantiated as well.
Please note that secondary patterns are proper patterns that
can be applied to a meta-model on their own.
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IV. PATTERN VARIANTS

The cardinality of pattern roles allows their fine-grained
customization for a context. In addition, a pattern may have
variants accounting for coarse-grained alternatives in the pat-
tern structure. For example, transitions in a state machine may
be represented as references between two states, as hyperedges
connecting multiple source to multiple target states, or with
an intermediate class storing properties of the transition. Only
the latter two cases allow associating a trigger to transitions.
This variability in the pattern structure would be challenging
to express with role cardinalities alone.

For this reason, we equip patterns with a feature model [19]
that defines the coarse-grained variability of patterns. As an
example, the left of Fig. 4 shows the feature model attached to
the pattern for state machines. It defines three alternatives for
the design of transitions (Hyperedges, Standard and Unnamed),
and each alternative is exclusive (i.e., only one can be selected
at a time). Hence, transitions can be either a class like in
Fig. 2 (variant Standard), a hyperedge, or a reference (variant
Unnamed, in which case there are no classes for the roles
Transition and Event, but there is an association starting and
ending in StateVertex instead). Each variant has associated a
meta-model fragment. When the pattern is instantiated, the
designer selects the desired variant, and the associated meta-
model fragment will be added to the pattern structure in that
particular instance. The figure shows the fragments associated
to the standard and unnamed variants as shadowed regions,
while the one for hyperedges is omitted.
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Technically, our pattern definition is created using superim-
posed variants [10]. Thus, the pattern structure is described
by a meta-model that contains the elements of all possible
variants, and each feature may have an associated selection
reference pointing to the elements of the meta-model enabled
by the feature and will be kept upon the feature selection. This
form of variability is adequate in this context since patterns
are generally small and contain few variants.

V. PATTERN SERVICES

Patterns may include services contributing functionality to
the environment generated for a DSML. Fig. 5(a) shows the
general schema of a pattern service. A service is encapsulated
as a component, which may define any number of ports. Each
port declares an interface and can be of four different types:
slot, plug, injector and consumer. Services can be connected
through their ports if their types and interfaces are compatible.
Regarding type compatibility, slots are compatible with plugs,
and injectors are compatible with consumers.

A slot represents a functionality “hole” in a service, to
be provided by another service that declares a plug with a
compatible interface. Moreover, slots have a cardinality which
constrains the allowed number of plugs that can be connected
to them. Typically, the functionality provided by a plug needs
to be deployed in the context of a service with a compatible
slot, while slots with a minimum cardinality 1 need to be
connected to a compatible plug to obtain a proper behaviour.
On the other hand, an injector port is an emitter of information
populated by a service. This information can be used by a
consumer port with a compatible interface. In this way, a
connection between an injector and a consumer induces a
dependency injection from the service defining the injector
to the service defining the consumer.

For example, Figs. 5(b) and (c) show two infrastructure
patterns that define two services that we would like to have
in the modelling environment for the running example. The
first one is the modularity pattern previously shown in Fig. 1.
This allows generating a modelling environment where models
are organized hierarchically into projects, packages and files
of different types, similar to the organization of Java software
projects. The associated service has a slot named EditorTab that
allows other services to extend the environment with tabs that
contribute further functionality. The service also defines an

injector which supplies to consumers a ModelDescriptor object
with information of the model unit selected in the environment.

The infrastructure pattern in Fig. 5(c) allows customizing
model filters. The classes amenable to be filtered should be
bound to Filterable, while the attributes and references to be
considered in the filtering conditions should be bound to
aKey and rKey, being possible to have any number of them.
Since the actual type of the attributes bound to aKey and the
references bound to rKey are unimportant, they are tagged as
ANY. This pattern defines a service that is compatible with the
previous HierarchicalOrganization service: on one hand, it has a
plug named FilterConfigTab that contributes a tab to control the
model filter behaviour; on the other hand, it has a consumer
port named ModelConsumer from which the service will obtain
the model unit to filter, selected in the environment.

The service in Fig. 5(d) is associated to the concrete syntax
pattern graph-based representation shown in Fig. 3. This service
generates an editor to build models using the defined graphical
concrete syntax. The service needs a model descriptor, which
will be provided by the HierarchicalOrganization service.

When a pattern is applied, its services become available.
Services can be optional, in which case, the DSML designer
can activate them or not. Since some services produce data
to be consumed by other services, or define functionality to
be plugged to other services, it is necessary to connect those
services to make explicit their dependencies so that they can
be resolved. For this purpose, we provide an automated com-
position mechanism that matches interfaces and connects ports
whenever possible. Thus, our different port types describe how
services should be composed, and are useful for pattern/service
developers. Nevertheless, they are transparent for the DSML
designer, because the matching and composition of services
is automatic. In this way, the functionality of the environment
for a DSML is obtained by the automatic composition of the
services associated to the instantiated patterns.

Fig. 6 shows an excerpt of the running example meta-model.
It has been created by applying patterns, and therefore, some
elements are annotated with pattern roles. In particular, we
have applied the state machine and component domain patterns.
Both have a secondary graph-based representation concrete syn-
tax pattern with an associated service that will generate a
graphical editor for them. We have also applied two infras-
tructure patterns: modularity and filter.
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Fig. 6. Resulting meta-model for the running example.

Fig. 5(e) shows the service composition induced for this
meta-model. Our mechanism detects that the slot EditorTab
and the plug FilterConfigTab have a compatible interface and
connects both ports, and similar for the injector ModelInjector
and the three consumers ModelConsumer.

VI. TOOL SUPPORT

We have built a prototype implementation of our pattern-
based approach atop Eclipse. The tool is called DSL tao, and
is freely available at http://miso.es/tools/DSLtao.html. Next,
we explain its extensible architecture, its functionality, and
demonstrate its capabilities to generate a customized graphical
modelling environment using the running example.

A. Architecture: DSL tao for pattern developers

DSL tao uses Eclipse/EMF as implementation platform to
profit from its plugin-based architecture, which allows extend-
ing the platform to incorporate new functionality through ex-
tension points. This simplifies the task of adding new patterns
to the system, and it is a natural deployment infrastructure for
our generated DSML environments, as we will show next.

The tool includes an extensible catalogue of patterns. New
patterns can be defined by providing its meta-model and
role cardinalities. Fig. 7 shows an excerpt of the underlying
meta-model for pattern definition. A Pattern declares Roles,
which annotate the elements of the ecore Metamodel with
the structure of the pattern. Patterns may have any number
of PatternInstances, which contain RoleInstances of the roles
declared by the pattern. Whereas roles in patterns point to
meta-elements like EClass or EAttribute, role instances point to
EObjects in the structure of the pattern instance. In addition to
their own instances, patterns may have associated secondary
instances from other patterns. Finally, patterns may define
Services, which need to declare their Ports and Interfaces.

By means of extension points, the pattern developer is
allowed to extend the base definition of a pattern to include
pattern-specific validations, heuristics or services (if needed):

• pattern-specific validations: The pattern developer may
include extra validations, e.g., expressed in OCL, to check
whether a binding is correct for a given pattern. It is used
only for pattern-specific validations, as DSL tao already
performs generic correctness checkings (e.g., that if a
meta-model attribute is bound to a pattern attribute, their
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Fig. 7. Excerpt of DSL tao’s pattern meta-model.

owner classes are bound). An example of pattern-specific
validation for the modularity pattern is checking that the
class bound to Project is root (i.e., it contains all other
classes, directly or indirectly).

• pattern-specific heuristics: These are heuristics that facil-
itate the correct instantiation of a pattern. For example,
the modularity pattern identifies the root class of a meta-
model as the optimal binding for the Project role.

• services: The pattern semantics can be realized via ser-
vices, typically through code generation using Acceleo or
any other code generation language, and it is encapsulated
as an Eclipse plugin. Code generation is needed because
the generated plugin needs to be customized with infor-
mation of the pattern instance. For example, the plugin
generated for the HierarchicalOrganization service needs to
enforce the desired project/package/unit structure. Service
dependencies are realized as plugin dependencies and
appropriate instances of extension points.

B. Using DSL tao to describe DSMLs

Fig. 8 shows a screenshot of DSL tao. The tool enables
the construction of DSML meta-models by dragging elements
from a palette into the canvas (label 3). A Patterns View
(omitted in the figure) lists the patterns of the different
categories. When a pattern is selected, a wizard (labels 1 and 2)
facilitates its instantiation as follows: first, the pattern variant
is selected, together with its secondary patterns (if any). In the
figure (label 1), the StateMachine pattern is to be applied, and
the designer may choose among three default visualizations
(three secondary patterns). Then, the designer can bind meta-
model elements to the pattern roles by dragging the former into
the latter (label 2), and instantiate the pattern roles according
to their cardinality.

Label 3 in Fig. 8 shows the resulting meta-model. To
the right (label 5), the Applied Patterns View displays a
tree containing each pattern instance and instantiated role.
Selecting a role highlights the bound meta-model element in
the canvas (InitialState in the figure). Each meta-model element
shows its roles in patterns as annotations, and the canvas itself
shows the list of applied patterns in the upper-right corner.

The tool includes a Pattern Services View (label 4 in the
figure), where each row indicates a service instance, the pattern
that provides the service, and if it is activable or not. If a
service is optional, the designer can activate it. A pattern is
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Fig. 8. Using DSL tao. (1, 2) Applying the StateMachine pattern. (3) Resulting meta-model. (4) Services. (5) Applied patterns.

activable if all its port dependencies are resolvable. In case
a service is not activable, the view informs of which ports
are unconnected, and which patterns in the repository could
resolve the given dependency. The figure shows the Hierarchical
Organization service deactivated, which makes the Filtering and
the two Graph-based editing services unavailable. Note that the
DSML designer is unaware of the different port types (slot,
plug, injector, consumer) and the composition of services, as
this is automatically performed by the tool.

C. Generation of modelling environments with DSL tao

The modelling environment for a DSML can be synthesized
once its meta-model is completed. For this purpose, DSL tao
invokes the code generators of the active services associated to
the applied patterns. This generates a modelling environment
made of several contributing plugins, where typically, each
plugin is generated by one service.

Fig. 9 shows some snapshots of the generated DSML
environment for the running example. The environment is
made of four plugins, contributed by the modularity pattern, the
filter pattern, and two by the graph-based representation pattern
(applied as secondary patterns when instantiating the state
machine and component domain patterns). The modularity pattern
organizes a model as an Eclipse project, where the model is
broken into units (files) and packages (folders). By breaking
the model, operations working on its parts become more
efficient, as the whole model does not need to be in memory
at the same time. Moreover, the hierarchical decomposition of
models promotes their comprehensibility.

Label 1 in the figure shows the Eclipse Package Explorer,
which contains a model of our DSML organized into packages
and file units. Because the model is physically fragmented in
the file system, the environment allows moving around pack-
ages and units, and updates the underlying model accordingly.
Moving elements to locations that result in an incorrect model
is prevented by the environment. This is accomplished with the

help of Concordance [27], a model indexer that keeps track of
inter-model references.

The environment has a dedicated editor for each file unit
type, with tabs that provide different views of the unit content
(e.g., as a tree, as a table, etc.). The Filtering service contributes
with an additional tab (label 2) that permits defining filters for
simple states, as this was the class annotated with the Filterable
role. The filtering conditions can be defined using a form-
like user interface, and the result of applying the filter can be
viewed on the other tabs. The figure shows the condition to
filter states without incoming transitions (label 2). The purpose
is to find unreachable states, which is challenging to do by
hand in case of big models. Labels 3 and 4 show the model
before and after applying the filter.

In addition, the environment includes a graphical editor for
state machines (label 5) and another for components. When
opening a file unit, the environment offers the possibility of us-
ing either a tree editor or the appropriate graphical editor. The
graphical editors are based on Sirius [29], which is a model-
based framework that enables the specification of graphical
modelling environments by defining a model that describes
the graphical elements to be used (e.g., rectangles, circles),
their mapping to meta-model elements, palette buttons, and so
on. Our approach is to transform the concrete syntax pattern
instances into Sirius models. As Sirius is interpreted, we
include such Sirius models in the generated environment, in
order to allow users their modification if so desired.

Altogether, the environment has 7200 lines of generated
code for the modularity and filtering mechanisms, apart from
the Sirius editor. This would be costly to develop by hand.

As a summary, we have illustrated how to use our novel
approach to develop DSML meta-models by reusing domain
patterns, combined and adapted to the application context, and
how to generate functionality-rich modelling environments by
using infrastructure patterns.



Fig. 9. Generated environment: filters and state machine graphical editing environment.

VII. RELATED WORK

The main lines of related works deal with the definition and
automated application of DSML design patterns, the usage of
patterns to improve productivity in the construction of DSMLs,
and the classification of DSML patterns.
Pattern definition. Several works formalize patterns and au-
tomate their application for some notation [5], [14]. Compared
to [5], our patterns are more expressive due to the instantiation
mechanism. The closest formalization to our approach is [14],
which applies to UML diagrams. In this approach, patterns
have roles with cardinalities. We enrich this pattern definition
in several ways. First, we recast it in a multi-level setting,
which permits attributes with potency 2 that can be bound to
meta-model attributes, and attributes with potency 1 that re-
ceive a value. Second, we allow combined pattern applications
and variants through a feature model. Moreover, our patterns
include services to help creating DSML environments, and our
tool supports pattern-based meta-model completion.
Patterns for DSML construction. Most works that use
patterns for building DSMLs only handle one or two aspects
of our pattern taxonomy, mainly design patterns. For instance,
in [8], the authors define meta-modelling design patterns
directed to design decisions, with no support for variability.
In [28], the authors detect the lack of engineering processes
for DSML construction, and propose documenting DSML re-
quirements using use cases and design patterns. Spinellis [30]
defines architectural patterns for DSML design. Altogether,
design patterns in these works improve the inner quality of
the DSML, but they are low-level and provide less gain in
productivity compared to domain and infrastructure patterns.

Domain patterns capture domain knowledge and speed up
the construction of DSML meta-models. Similarly, [26] argues
on the benefits of building DSMLs by composing domain
concepts. A domain concept is a meta-model, and its semantics
is given as a model transformation. The authors define some
composition operators, and aim at composing the respective
transformations. Instead, our patterns reside at a higher meta-
level than the DSML meta-model, and their instantiation

mechanism is more flexible. Moreover, we support combined
pattern application, variants, and the component-based con-
struction of the DSML environment. Also related to our
proposal, in [34], DSMLs can have attached a feature model,
and the selection of features yields a meta-model variant. We,
in addition, provide further flexibility by the instantiation of
role cardinalities, and enable a way to generate customized
modelling environments by associating services to patterns.

In the grammarware technical space, Neverlang [33] per-
mits the modular construction of textual languages from slices
containing fragments of the concrete syntax and semantics
(a textual grammar and an evaluator). Slices can be selected
and combined using a feature model. Our approach addresses
the peculiarities of the modelware technical space. Thus, our
pattern instantiation mechanism provides extra flexibility, and
it is possible to apply several patterns at once.

Finally, profiles are extensions of a base language, nor-
mally UML [32], where diagram types are fixed. Instead,
our approach is extensible as new patterns can be added to
our catalogue. Moreover, profiles do not provide additional
services as our patterns do (e.g., modularization or filtering).

Generation of graphical modelling environments. Many
tools to develop graphical tools for different applications
have emerged along the years, like meta-CASE tools [22],
diagram sketching [7], or multi-formalism modelling and sim-
ulation [12]. The advent of Eclipse has promoted frameworks
to build visual editors as plugins, like GMF [16], Eugenia [23],
Spray [31], Graphiti [18], or Sirius [29]. These tools are
model-based, except Graphiti, which relies on a Java API
and coding. Some of them generate artefacts for other lower-
level approaches. For example, Eugenia is built atop GMF,
and Spray atop Graphiti. In our case, the graphical editors
produced by DSL tao are based on Sirius. All these frameworks
rely on code generation except Sirius, which is interpreted. The
way of specifying the concrete syntax varies: Eugenia requires
annotating the meta-model elements, Spray uses a textual
DSL, GMF and Sirius require building models that describe
the graphical syntax, and Graphiti requires Java programming.



Conceptually, our approach is closer to Eugenia, as our pattern
applications result in meta-model annotations. However, DSL
tao allows attaching concrete syntax styles to domain patterns,
which speeds up the generation of graphical environments.
This feature, and the ability to specify tool services via
infrastructure patterns, are unique among the mentioned tools.
In particular, none of these tools is able to produce graphical
environments with model fragmentation capabilities.

Concerning concrete syntax patterns, the VL-Eli system [21]
supports the creation of visual languages by defining a textual
grammar for the abstract syntax, and choosing between several
patterns for the concrete syntax. They consider patterns for
lists, tables, and other basic visualizations. However, they lack
reuse of domain patterns and infrastructure services.
Classification of DSML patterns. Several authors have ac-
knowledged the difficulty of developing DSLs [20], [25], [28]
and propose catalogues of patterns to facilitate this task. For
instance, [25] identifies patterns that help in the decision,
analysis, design and implementation of DSLs. Our pattern
taxonomy does not cover the decision and analysis phases, but
focuses on design and implementation. Our domain patterns
can be seen as an incarnation of their so-called language
exploitation pattern, and we give semantics to pattern in-
stances using their so-called generator implementation pattern.
In [13], Fowler outlines some design/implementation patterns
and idioms for internal DSLs, whereas we assume external
DSLs. Finally, [20] proposes design guidelines for DSMLs,
categorised on language purpose, implementation, design and
syntax. Our work is aligned with these guidelines, which
recommend composing languages where possible (in our case
enabled by the reuse of patterns), and providing organizational
structures for models (enabled by our modularity pattern).

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a pattern-based approach for the creation
of DSMLs, together with their supporting graphical environ-
ments via pattern services. Our patterns enable a fine-grain
configuration via role cardinalities, and variant selection using
a feature model. Patterns may be applied in combination, and
may offer services for the resulting DSML environment, where
service composition is entailed by pattern application. The
approach is supported by a tool, which we have illustrated
by the generation of an environment with rich functionality.
Our work paves the way towards sound engineering methods
for a more productive, sound, repeatable construction process
of DSMLs, a core, recurring activity in MDE.

Currently, we are enhancing the graphical concrete syntax
patterns, to allow their application using a dedicated wizard
with advanced heuristics. We are also working on defining new
patterns, and analysing further repositories to identify domain
patterns and services for them (e.g., transformations). We also
plan to perform an empirical validation of DSL tao with users.
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