
Umbra Designer: Graphical Modelling for
Telephony Services

Nicolás Buezas1, Esther Guerra1, Juan de Lara1, Javier Mart́ın2, Miguel
Monforte2, Fiorella Mori1, Eva Ogallar2, Oscar Pérez2, and Jesús Sánchez

Cuadrado1

1 Department of Computer Science
Universidad Autónoma de Madrid (Spain)

2 Almira Labs, S. L.
Science Park – Tres Cantos, Madrid (Spain)

http://www.almiralabs.com

Abstract. Almira Labs is a software company that develops value-
added services for the telecommunications industry. It is focused on inno-
vative technologies that enable enterprise business and mobile and land-
line operators to offer next-generation voice-driven applications for all
types of phones. Telephony services are built atop the proprietary Um-
bra framework, which is a Java API relying on the JAIN SLEE standard
for event-based communication applications.
This paper describes Umbra Designer, a novel graphical modelling tool
for the visual development of telephony services, from which Java code
for the Umbra framework is synthesized. In this way, it is easy to develop
ready-to-use services, even by users not familiar with the Java API or
the JAIN SLEE standard. We also report on some experiments aimed
at measuring the efficiency gain derived from using the graphical tool,
compared with coding directly using the Java API.

Keywords: Model-Driven Engineering, Telephony Services, Jain SLEE, Do-
main Specific Visual Languages, Code Generation

1 Introduction

We are witnessing an exponential grow in the capabilities of mobile phones and in
the functionality demanded by their users. The usual approach to deliver mobile
services nowadays is the development of apps for a particular technology (iOS,
Android, BlackBerry), running in the device of the client. This business model
is supported by small software firms that need to develop innovative solutions in
short times, in order to cope with an increasingly competing environment. This
model has the drawback of the fragmentation of the mobile platforms, which
implies different developments for each platform. Moreover, the functionality
offered by different phones varies, from traditional landline phones to smart-
phones of the latest technology. Thus, companies may lose clients if they target
particular platforms or assume some functionality for running their app [4].

2

Instead, a different alternative is to build services that do not run on the
phone, but on the provider infrastructure through dedicated servers or the cloud,
and which are accessed through phone calls [8]. This model has the advantage
that is independent of the mobile phone platform used, and to a certain extent, of
the phone capacities. While these “server-side” services cannot replace all types
of phone apps, they are useful for many scenarios. They are normally driven by
voice and DTMF key strokes. Examples include voice notes and voice-to-email
services; services to inject customized background sounds in phone calls; the
customization of the telephone keys to inject “voice smileys” in a conversation; as
well as the typical Interactive Voice Response (IVR) applications of call centers,
telebanking, credit card services, and so on. These services tend to require a
reduced customer learning curve compared to those offered by mobile apps.

JAIN SLEE [1] is a standard of the Java Community Process for developing
event-based telecommunication applications, which can be used to build server-
side telephony services. Applications developed with JAIN SLEE can be deployed
on any server implementing it. A Service Logic Execution Environment (SLEE)
is an efficient event processing application environment with high throughput
and low latency. A service is built by the construction and interconnection of
components, and their subsequent deployment in SLEE servers.

Almira Labs has developed the Umbra framework, a Java API that leverages
on the JAIN SLEE standard. The framework simplifies the development of JAIN
SLEE applications by providing a higher-level view of the event flows and proto-
cols involved in a telecommunications application, and provides true portability
across different SLEE implementations. Still, using this framework requires spe-
cialized knowledge in JAIN SLEE and Java. In order to make service construction
possible for non-experts – namely, people from customer companies – Almira and
some researchers of the Universidad Autónoma have developed Umbra Designer,
a tool for the graphical development of telephony services. The tool abstracts
services in the form of hierarchical state machines using the events and actions
available in the Umbra framework. The tool integrates a code generator that
produces a Maven [9] Java project, which can be deployed as-is in JAIN SLEE
servers for execution. The aim of the tool is to facilitate service modelling to
non-experts in the API, and speed-up the development for programmers. This is
demonstrated by a series of experiments where we have measured the efficiency
of manual service development using the Java API with respect to using the
tool, reporting an increase of productivity of more than 40% in the average case.

Paper organization. Section 2 provides some background on JAIN SLEE and the
Umbra framework. Section 3 introduces the graphical modelling tool. Section 4
presents the evaluation results. Section 5 compares with related work, and finally,
Section 6 ends with the conclusions and plans for future work.

2 Programming voice-driven telephony services

Our work targets at voice and key-strokes driven telephony services. These ser-
vices normally run on the infrastructure of the service provider. Subsection 2.1

3

reviews a standard (JAIN SLEE) that can be used for building this kind of ap-
plications, while subsection 2.2 introduces a Java framework built atop JAIN
SLEE which provides higher-level abstractions and true portability across SLEE
implementations.

2.1 JAIN SLEE

JAIN SLEE is a standard by the Java Community Process that describes a
Service Logic and Execution Environment (SLEE) architecture [1]. This archi-
tecture defines a component model for structuring the logic of communications
applications as a collection of object-oriented components (called Service Build-
ing Blocks, SBBs), which can be composed into services. The SLEE architecture
also defines the contract between these components and the container that will
host them at runtime. JAIN SLEE applications are event-driven, which means
that methods of the application are invoked when suitable events arrive. In this
way, each SBB to be deployed in the SLEE identifies the event types that accepts,
and defines event handler methods with code to process such event types.

The framework provides an API for handling events, resources and connec-
tions, facilities like timers and alarms, and standard interfaces to be implemented
by SBBs. Still, the API is low-level, and service developers would benefit from
higher-level abstractions, tailored to voice-driven telephony services, as explained
in the next subsection.

2.2 The Umbra Framework

The Umbra framework hides the low-level details of JAIN SLEE to enhance per-
formance and simplify the development of telephony services. It masks the JAIN
SLEE components behind a simpler Java API that offers enhanced, scalable,
carrier-grade performance. Another benefit is portability. As different providers
offer different implementations of the standard, there may be JAIN SLEE com-
pliant applications that do not run on every SLEE container. Moreover, when
migrating an application from one vendor to another, parts of its code may need
to be re-written to ensure smooth porting and compatibility. With the Umbra
framework, the code works across JAIN SLEE platforms from the main vendors
without any recoding.

The framework enables building applications mixing both web and telephony
services. While JAIN SLEE can deal with low-level protocol issues at the back-
end, a J2EE environment can provide a front-end for Internet services. Hence,
Umbra enables the SLEE to offer web services the J2EE world can interact with.

Fig. 1 shows the typical structure of a service built with the Umbra frame-
work. The upper part shows only the most relevant interfaces provided by the
framework. The lower part (package application) presents a schema of the classes
and interfaces that programmers have to develop. As we will see, Umbra is based
on the definition of suitable event types and listeners for such events. The listen-
ers contain call-back methods, invoked upon the reception of the events, which
need to be programmed by the service developers.

4

Fig. 1: Structure of an application using the Umbra framework (simplified).

A service is started upon the reception of the onBootstrap event. Hence,
the developer needs to implement code to react to this event in the Boot-
StrapEventListener. Normally, this code includes loading the needed resources
and register event listeners through a ServiceLocator, especially SessionRequest
events, which are events triggered by the SLEE container when the network re-
quests a new session. Then, the service waits for incoming events, which may
trigger specific actions like playing a message, recording a message, soliciting the
user to press a key, and so on. These actions are supported by an IVRServer (a
media server), which is a resource that needs to be identified upon bootstrap.
The service will receive an event notification upon completion of the actions, as
declared in the IvrServerEventListener. For example, the onPlayed method will
be called upon completion of a play action, which plays a voice message.

Practice has shown that a suitable organization for event-driven applications
is through state machines. Hence, a typical programming idiom for services built
with the Umbra framework is the State pattern [2] in order to describe the dif-
ferent execution states of the service, the possible incoming events, the actions
to be performed upon the arrival of events, and the state changes. This way,
services normally define an interface State declaring all possible events, while
the abstract class AbstractState defines default empty implementations for the
event handlers. Therefore, developers have to create a subclass of AbstractState
per application state (State1 in Fig. 1), and override the methods for the events
accepted by the state.

This organization is a Java implementation of a natural way of designing
services as state machines. However, this style of programming is not enforced
by the Umbra framework even though it is common practice. Hence, we decided
to provide developers with a higher level representation of this pattern, closer
to the abstractions of state machines. This way, the gap from design to imple-
mentation would be smaller. Moreover, this representation would facilitate the
communication with customers, most frequently non-technical people. The next

5

service

developer

Maven

Project

media content

server

JSLEE

Server

media content

network

EMF Graphiti EGL Service

Umbra Designer

code

generation
deploy

Fig. 2: Schema of Umbra Designer.

section introduces a Domain-Specific Visual Language that helps in describing
services at a higher level of abstraction.

3 Modelling telephony services with Umbra Designer

Fig. 2 shows the architecture of our solution. The developer or designer graph-
ically defines the services using Umbra Designer. We have built this tool as an
Eclipse plugin, using Graphiti [3] for the visual part, EMF [14] as modelling
technology, and the Epsilon Generation Language (EGL) [13] for code genera-
tion. After validating the service, the tool generates a Maven project with code
synthesized from the service. The code makes use of the Umbra framework, as
explained in the previous section. Once compiled, the project can be deployed
as-is on SLEE servers, like the open cloud’s Rhino application server [11].

Next, we introduce the main elements of the tool. Fig. 3 shows a screen-
shot with an example service. The tool abstracts services in the form of state
machines, accommodating the State design pattern, as explained above.

The main canvas contains the description of a simple service. The service
initial state is Init, where the service waits for incoming calls once a new session
has been established. Hence, at the top level, the event from the initial state is
SessionRequest (see arrow coming into state Init). The service designer does not
have to take care of handling the Bootstrap event, as the tool itself will generate
code to register the listeners for the events and actions used by the service (in
the example all are IVR events), and identifying the needed resources. Events
are depicted in blue (bold) over the arrows, while actions are shown in red
below the events. The service plays a welcome message to each incoming call.
This is modelled by a Connected event and the associated PlayCollect action.
This action has the additional effect to demand pressing some key on the phone
keypad. Thus, the service waits in state KeyRequest until the reception of some
key stroke (event Collected). If the key pressed was “1” or “2”, the service plays a
different message in each case, as indicated by the Play action. Once the message
associated to “1” or “2” is played (event Played in the transition going out from
Bye), the service ends the call through the Hangup action.

6

Fig. 3: Defining a simple service with Umbra Designer.

The palette to the right contains the different types of states, transitions
(i.e. events) and actions that can appear in services. The Properties view at
the bottom allows configuring any item selected in the model; in the figure, it
shows the configuration properties of the service and its resources. The tool has
a contextual menu to validate the service (the detected warnings and errors are
listed in the Problems view at the bottom), to generate Java code from the
service, and to manage the generated Maven project (the project is shown in the
Project Explorer tab to the left).

Altogether, the tool promotes an agile way to work, providing support for
short cycles of modelling – code (re-)generation – deployment in an integrated
environment. For instance, once code is generated for a service, developers can
provide additional Java classes for further functionality (e.g. database persis-
tence, which is not currently supported by our tool). We believe that this ap-
proach to agile modelling will be better accepted in development processes as
it provides immediate value by code generation and service validation, and it is
seamlessly integrated in the developer Java environment.

The abstract syntax of the services built with our tool is defined through a
meta-model, of which Fig. 4 shows an excerpt. A state machine is configured
through a number of properties (class Properties), like the addresses of the ap-
plication and server, and the protocols used, among others. It is also possible to
declare variables that will be available in Java actions. Two different types of
variables are supported: shared variables (object attributes), used to pass infor-

7

UmbraStateMachine

name:String

main:boolean

State

name:String

states*

PseudoState

CompositeState

sm

InitialState FinalState ChoiceState

Transition

outs

*src

defaultTar

IVREvent

PlayedCollectedBranch

out

branches
*

Key

isConditionKey:boolean

key:String

condition:String

Recorded

Otherwise Condition

condition:String

Action
action

*

IVRAction

Play

baseURL:String

mediaURI:String[*]

HangUpPlayCollect

PlayRecord

action

*

Variable

name:String

type:String

Properties

applicationAddress:String

applicationServerHost:String

properties

staticVariables

*

branches
*

sharedVariables

*

*

Fig. 4: Excerpt of the Umbra Designer meta-model.

mation between different service states, and static variables (class attributes),
which retain their value between different service invocations.

We consider five types of states: initial, final, simple, composite and choice.
Each state machine has one initial and one final states. Composite states enable
hierarchical structuring of the machine, and contain a reference to a state ma-
chine which can be defined within the same model or externally in a separate
file. Choice states have multiple output branches with a boolean condition each.

Transitions can be of different types that correspond to event types of the
Umbra framework. They are organized in six categories: Interactive Voice Re-
sponse (IVR) events, Call Control events, HTTP (reception of HTTP requests),
SMS, Text-to-Speech (TTS) and Speech recognitions events (for clarity, Fig. 4
only shows IVR events). There are also general facilities, like timers. The ini-
tial event in a state machine is always of type SessionRequest. IVR events are
concerned with playing and recording media streams or with key pressing in the
phone keypad. Examples of supported IVR events include Played (fired when a
media stream finishes playing), Recorded (when a recording finishes) and Col-
lected (when the user presses some key). Call control events include those re-
lated to the connection, disconnection and transfer of call legs. SMS events are
concerned with the reception of text messages. Finally, TTS events are those
generated by a TTS engine, like the start, finish, pause and resume of a speech.

A transition may have associated a sequence of actions, to be executed when
the transition is triggered. Actions rely on the Umbra API, and are organized in
similar categories to those for events. A special action JavaCode permits adding

8

Fig. 5: Hierarchical modelling, and report of errors/warnings, in Umbra Designer.

Java code for more general actions not directly supported by the framework,
where it is possible to use the declared shared and static variables. The param-
eters of each action can be configured through a properties panel, as shown to
the bottom of Fig. 6 for the case of the PlayRecord action.

Umbra Designer supports hierarchical modelling by means of composite states
(see MembersMenu in Fig. 5), and through references to state machines defined
in other diagrams (see state Registration in the same figure). In the last case, a
contextual menu allows opening the referenced machine in a different tab, as well
as expanding or occluding the diagram inside the state. This feature enables the
construction of repositories of services, which then can be used to build other
more complex services.

The tool enables simple validations of services prior to code generation, and
displays the detected errors and warnings in the Eclipse Problems view (see bot-
tom panel in Fig. 5, which contains the detected list of errors for an information
and registration service for a gym). For example, the tool reports as an error
any unreachable state, any state (different from the final state) without outgo-
ing transitions, as well as non-existing paths between the initial and final states.
Warnings concern the order in which some events and actions should occur, as
some actions trigger the future occurrence of events. For example, the tool gives
a warning if a Played event is declared, but there is no previous Play action.
Notice that all these errors and warnings would be difficult to detect statically,
if a direct encoding of the service in Java is used. However, we do not currently
analyse JavaCode actions in transitions.

Once the model of the service is validated, it is possible to synthesize Java
code from it. The tool creates a Maven Eclipse project, which can be deployed

9

in an SLEE server. The generated Java code follows the State pattern [2], and
reflects the hierarchical constructs introduced in the model. Moreover, the code
includes protected regions, so that if the developer modifies the code manually,
this is not overwritten when code is regenerated again from the model.

4 Evaluation

In order to asses to what extent using Umbra Designer improves the productiv-
ity of service development, we have performed an experiment consisting in the
construction of ten services of varying complexity using the graphical tool, and
the comparison with the effort to develop the same services using directly the
framework API (i.e. programming directly in Java).

We had two participants in our experiment, both last year undergraduates in
Computer Science. The first participant had some knowledge of telecommunica-
tions services, but no deep knowledge of the Umbra framework’s API. The second
participant had some 5 months of experience using the API. Each participant
built 5 services using the tool and 5 different ones using the API. Each service
was built in a different session, on a different day. The participants were given
enough time to read each service description and think a solution. When they
were ready, we measured the time they employed to implement the solution, one
using the graphical tool and the other using directly the Java API. This way,
we leave out effects related to problem understanding and solution design, and
strictly measure service production efficiency by two different means.

The services used in the experiment varied in complexity, ranging from simple
ones (five states and few transitions) to medium size (more than 15 states and
35 transitions). In each session, the participants were given textual definitions
of the service to be developed in the session. As an example, the description
of one of the services was the following: “Build a voice service for a computer
repair shop. The service will play a message, and then, it will solicit the year
in which the computer was bought. The user should type the solicited year using
the telephone keyboard. Then, if the computer is still in the guarantee period (2
years), the service will solicit the serial number and the address, which will get
recorded”. Fig. 6 shows the service finally built for the previous service definition,
using the graphical tool. The Properties view contains the configuration of the
actions in the transition entering state SolicitarDireccion (Solicit Address). The
transition has two actions, one for recording the address (whose configuration is
shown), and the other one is just one line of Java code to transform the different
key strokes into a String service variable (not shown).

Other services built include a game for guessing a number, a time service
which informs of the current time, a taxi call service, a simplified airport infor-
mation service and a service for pizza ordering (see Table 1).

Table 1 summarizes the experiment results. The columns show: (1) the name
of the service; (2–5) the size of its model-based solution (number of states and
transitions, cyclomatic complexity and lines of extra Java code in JavaCode
actions); (6–7) the number of source lines of code (SLOC, not counting blank

10

Fig. 6: Service #7: a simple service for a computer shop.

lines or comments) of the service that are generated by the tool or hand-coded
using the API; (8–9) the minutes taken to build the service using the tool and
the API; and (10) the efficiency gain when using the tool compared to using the
API (minutes and percentage). In the case of using the API, the measurements
also include the creation time of additional artefacts, like property files, needed
to deploy the service (but automatically generated by the tool).

The experiments show good correlation between the number of SLOC of the
hand-coded solution and of the code generated by the tool. Regarding produc-
tivity, by using the tool we observe an increase of around 45% in the average
case. In all cases, the time to develop a service with the tool was less than using
the API directly. Fig. 7(a) shows a graphic showing the net gain with respect to
service size (SLOC of the hand-coded solution), while the right shows the per-
centage gain with respect to size. The graphic shows higher percentual gains for
smaller services; however, the highest net gain was with the largest service. We
noted higher gains in cases were the service accommodated well the abstractions
of state machines: few cycles, few decision nodes, and few extra lines of code.

Altogether, the experiment shows benefits in efficiency when using the graph-
ical tool. Moreover, we believe that it provides further benefits concerning: built-
in validation checks, maintainability, understandability and reutilization of ser-
vices. Experiments to assess these properties are subject to future work. As a
preliminary result, we experienced in measuring the effort gain in maintainabil-

11

Model Size SLOC Time (min.)
States Trans. Cycles Java

Extra
Tool API Tool API Gain

(min./%)
#1 : Message + Key 5 6 3 0 383 395 7 30 23 (76%)
#2 : Taxi Call 8 10 4 2 441 403 9 21 12 (57%)
#3 : Guessing Game 8 13 6 3 448 415 23 42 19 (45%)
#4 : Postal Code/

Time Warning
6 12 8 12 439 453 30 53 23 (43%)

#5 : Traffic 9 12 5 4 450 453 20 35 15 (42%)
#6 : Survey 10 14 6 0 529 477 15 33 18 (54%)
#7 : Computer Shop 9 13 6 4 493 501 20 40 20 (50%)
#8 : Airport 11 23 14 8 542 514 60 90 30 (33%)
#9 : Time Service 5 4 1 269 640 749 24 36 12 (33%)
#10 : Pizza Orders 17 52 37 60 963 925 150 200 50 (25%)

Table 1: Evaluation of the construction of several services.

Fig. 7: Development effort comparison (left). Efficiency gain (right).

ity, where a modification to service #1 consisting in the introduction of an error
message on certain events was introduced. In this case, using the graphical tool
led to shorter times (6 minutes vs 15 minutes). A finding related to this issue
was that both participants found useful to draw state machine-like diagrams on
paper, as a design sketch, before starting coding using the API. This means that
the graphical model was deemed a good abstraction to describe services.

5 Related work

The need for developing and making available telecommunication APIs, is dis-
cussed in [4]. Similar to our rationale, the author foresees the possibility of
telecommunication application stores – similar to those of Apple and Android –
based on the availability of service creation environments.

There are several implementations of the JAIN SLEE, like Mobicents [10]
and OpenCloud [11]. The latter includes a visual builder for services, the Visual
Service Architect (VSA) [15]. In this environment, a service is described by an
application-scenario diagram (to configure properties, protocols and resources),
state machine diagrams (to describe service states) and flowchart diagrams (to
describe actions). VSA targets general JAIN SLEE services, not necessary for
telephony, and hence lacks high-level constructs (both events and actions) for

12

voice-driven telephony services, as we provide in Umbra Designer. VSA state
machines and flowcharts tend to be of lower level of abstraction due to the lack
of constructs like hierarchical states, choice states and key strokes branches,
among others.

In [5], the authors present an environment for service composition using
MetaEdit+. SBBs are programmed in Java, which become reusable and can
be composed graphically. Our approach is different as the blocks themselves
are modelled using state machines, from which Java code is generated. Also in
the context of MetaEdit+, in [7], the authors describe a graphical language to
define simple call processing services. This language allows defining the flow for
handling incoming calls like rerouting them, or sending a message upon their
reception. The services can be serialized in XML. In our case, state machines
are a better abstraction for the event-driven nature of voice-driven telephony
services, while we need to generate more complex Java code. Another language
for telephony service creation is SPL [12], a scripting textual language with
formal semantics. It differs from our approach in that it is targeted to experienced
programmers, and its formal semantics enables critical properties of services to
be guaranteed. We plan to address exhaustive testing of service models against
user actions in future work.

VoiceXML [16] is a W3C standard to describe interactive voice dialogues be-
tween a human and a computer. VoiceXML files are played by voice browsers,
and contain tags that instruct the browser to provide speech synthesis, auto-
matic speech recognition, dialog management, and audio playback. VoiceXML
applications are accessed via HTTP, while we use phone protocols.

On a final comment, there are not many published results of efficiency of
MDE in practice [6, 7]. Our work also contributes in this direction, by describing
a specific successful scenario for the applicability of MDE.

6 Conclusions and future work

In this paper, we have presented Umbra Designer, a tool for the graphical devel-
opment of “server-side” telephony services. The tool facilitates the construction
of services by non-experts. It includes a code generator that relies on the Umbra
framework, a Java API that is used to build services based on the JAIN SLEE
standard. Some initial experiments show promising results regarding efficiency
gain for the construction of services, with respect to a direct use of the API. We
believe this will be especially interesting for customer companies and users with
no deep knowledge of JAIN SLEE or telecommunication applications.

In the future, we plan to improve the tool with further functionality to con-
sider more advanced services. In some cases, we think it is possible to generate
automatically a graphical user interface for a mobile app (iOS, Android) start-
ing from the state machine description of the voice dialogue. We also plan to
investigate exhaustive testing of service models against user actions and to make
the tool publicly available in the immediate future.

13

Acknowledgements. This work was partially funded by the Innocash program
and the project “Go Lite” TIN2011-24139 of the Spanish Ministry of Economy
and Competitivity. The work was also funded by the R&D programme of the
Madrid Region (project “e-Madrid” S2009/TIC-1650).

References

1. D. Ferry and P. ODoherty. JAIN SLEE (JSLEE) v1.1. Technical report, Java
Specification Request 240, 2008. http://jcp.org/en/jsr/detail?id=240.

2. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

3. Graphiti Project. http://www.eclipse.org/graphiti/.
4. S. Hall. Evolving the service creation environment. In Proc. ICIN’10, pages 1–6,

2010.
5. A. Hulshout. Service creation with MetaEdit+. A telecommunications solution. In

Proc. Code Generation, 2007.
6. J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assess-

ment of MDE in industry. In ICSE’11, pages 471–480. ACM, 2011.
7. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Gen-

eration. Wiley-IEEE CS, 2008.
8. J. Mart́ın-López, M. Monforte-Nicolás, and C. Merino-Moreno. Finding services

and business models for the next-generation networks. In Recent Developments in
Mobile Communications - A Multidisciplinary Approach. InTech, 2011.

9. Maven. http://maven.apache.org/.
10. Mobicents JAIN SLEE project. http://code.google.com/p/jain-slee/.
11. Open Cloud Rhino SLEE server. http://www.opencloud.com/products/rhino-

application-server/real-time-application-server/.
12. N. Palix, L. Réveillère, C. Consel, and J. Lawall. A Stepwise Approach to Devel-

oping Languages for SIP Telephony Service Creation. In Proceedings of Principles,
Systems and Applications of IP Telecommunications, IPTComm, pages 79–88, New
York City, United States, 2007. ACM Press.

13. L. M. Rose, R. F. Paige, D. S. Kolovos, and F. Polack. The Epsilon Generation
Language. In ECMDA-FA’08, volume 5095 of LNCS, pages 1–16. Springer, 2008.

14. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley, 2008.

15. Visual Service Architect. https://developer.opencloud.com/devportal/display/
VSAD.

16. W3C Voice Browser Working Group. http://www.w3.org/Voice/.

