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Abstract. Chatbots are software services accessed via conversation in
natural language. They are increasingly used to help in all kinds of pro-
cedures like booking flights, querying visa information or assigning tasks
to developers. They can be embedded in webs and social networks, and
be used from mobile devices without installing dedicated apps. While
many frameworks and platforms have emerged for their development,
identifying the most appropriate one for building a particular chatbot
requires a high investment of time. Moreover, some of them are closed –
resulting in customer lock-in – or require deep technical knowledge.
To tackle these issues, we propose a model-driven engineering approach
to chatbot development. It comprises a neutral meta-model and a domain-
specific language (DSL) for chatbot description; code generators and
parsers for several chatbot platforms; and a platform recommender. Our
approach supports forward and reverse engineering, and model-based
analysis. We demonstrate its feasibility presenting a prototype tool and
an evaluation based on migrating third party Dialogflow bots to Rasa.
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1 Introduction

Chatbots are software programs that interact with users via natural language
(NL) conversation. Their use is booming because they can be used within webs
and social networks – like Telegram, Twitter or Slack – without having to in-
stall dedicated apps [23]. Many companies are developing chatbots to offer 24/7
customer service while reducing costs, and their presence is percolating a wide
range of areas such as education [26, 29, 30] or civic engagement [27].

The success of chatbots has led to the emergence of a plethora of technologies
for their creation. Not only big software companies have made available chat-
bot creation tools, like Google’s Dialogflow [9], IBM’s Watson Assistant [28],
Microsoft’s bot framework [17] or Amazon’s Lex [15], but many other proposals
exist, like Rasa [21], FlowXO [10] and Pandorabots [18]. Among them, we find a
variety of approaches. For example, Dialogflow and Watson offer low-code cloud
development platforms that support the creation and deployment of bots, while
Rasa is a framework that requires Python programming for bot development.

Overall, these chatbot creation tools are indisputably powerful (e.g., some
provide NL processing, speech recognition, etc.). However, since there are so
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many options, choosing the most appropriate one to develop a chatbot with
certain features is not easy. There may also be operational factors to consider
in the decision, as for example, some options may imply vendor lock-in, and
migrating chatbots between tools is not generally supported. Last but not least,
some approaches have a steep learning curve and require expert knowledge.

To overcome these problems, we propose a model-driven engineering (MDE)
approach [22] to chatbot development. This relies on a meta-model with core
primitives for chatbot design, and a domain-specific language (DSL) to define
bots independently of the implementation technology. Chatbots defined with the
DSL can be analysed for “smells” of defects, and a ranked list of appropriate bot
creation tools is recommended based on the chatbot definition and other require-
ments. Our DSL can be used for forward engineering, to produce the chatbot
implementation from its specification; and for reverse engineering, to produce
a model out of a chatbot implementation, which can then be analysed, refac-
tored and migrated to other platforms. Currently, we provide code generators
and parsers from/to Dialogflow and Rasa, but our architecture is extensible. We
evaluate our approach migrating third-party Dialogflow chatbots to Rasa.

In the rest of the paper, Section 2 introduces chatbot design and motivates
our work. Section 3 outlines our proposal. Section 4 describes the meta-model
and the DSL. Section 5 details our platform recommender. Section 6 presents tool
support. Section 7 reports an evaluation based on migration. Section 8 compares
with related works, and Section 9 concludes and outlines future work.

2 Building a chatbot: background and limitations

Chatbots (also called conversational agents) are software programs with a con-
versational user interface. They can be classified into open-domain, if they can
converse on any topic with users, or task-specific, if they assist in a concrete task
(e.g., bookings flights or shopping). Our work targets the latter kind of bots.
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Fig. 1: Chatbot working scheme.

Fig. 1 shows the typical working
scheme of task-specific chatbots. They
are designed around a set of intents
that users may want to accomplish.
Given a user utterance (e.g., “I’d like
to buy a flight ticket from Madrid to
Vienna”, label 1 in the figure), the
chatbot tries to identify the corre-
sponding intent (label 2). The ap-
proach for this depends on the par-
ticular chatbot creation tool. Some
of them – like Pandorabots – permit
defining patterns or regular expres-
sions upon which the utterance is matched, while others – like Dialogflow, Lex
or Rasa – require declaring training phrases and apply NL processing (NLP)
techniques. If the chatbot does not find any matching intent, some approaches
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allow having a default fallback intent. In addition, the conversation flow can be
structured into expected sequences of intents (relation follow-up in the figure).

After matching an intent, the chatbot extracts the parameters of interest from
the utterance (e.g., the origin and destination of the flight, label 3). Parameters
may be typed by entities, which can be either predefined (e.g., date, number)
or specific to a chatbot (e.g., flight class). If the utterance lacks some expected
parameters (e.g., date of flight), the chatbot can be configured to ask for them.

As a last step, the chatbot can perform different actions depending on the
intent, such as calling an external service (e.g., a booking information system,
label 5) or replying to the user (label 6). The simplest response format is text,
but some chatbot deployment platforms (e.g., Telegram, Twitter) also support
images, URLs, videos or buttons.

There are numerous tools for creating chatbots that follow this scheme.
These tools use different approaches, ranging from low-code form-based plat-
forms (e.g., Dialogflow, Lex, Watson, FlowXO) to frameworks for programming
languages (e.g., Rasa, Botkit [4]), libraries (e.g., Chatterbot [6]) and services
(e.g., LUIS [16]). Such a variety makes it difficult to ascertain which tool is
suitable to build a specific chatbot, as not every tool supports every possible
feature (e.g., only a few provide NLP or multi-language support). Moreover,
the conceptual model of the chatbot might be difficult to attain, as the chatbot
definition frequently includes tool-specific accidental details. As a consequence,
reasoning, understanding, validating and testing chatbots independently from
the implementation technology becomes challenging. Finally, some platforms are
proprietary which hinders chatbot migration and results in vendor lock-in.

In the following section, we present our proposal to overcome these problems.

3 Model-driven engineering of chatbots

Fig. 2 shows a scheme of our proposal. It provides a technology-agnostic DSL
called Conga (ChatbOt modelliNg lanGuAge) to design chatbots. This is built
on the basis of a neutral, platform-independent meta-model resulting from an
analysis of the existing approaches. The DSL permits modelling chatbots in-
dependently of any development platform, and validating quality criteria and
well-formedness rules on the chatbot models. Section 4 introduces this DSL.

To facilitate the task of selecting a development tool for implementing a given
chatbot model, we provide an extensible recommender that analyses the chatbot
model as well as other requirements, to provide a ranked list of suitable tools.
Section 5 explains the recommender system and its extensible architecture.

In addition, the DSL is complemented with code generators that synthesize
chatbot implementations from chatbot models for specific development tools
(e.g., JSON configuration files in the case of Dialogflow, or Python programs
and configuration files in the case of Rasa). The chatbots so generated can be
deployed in different platforms (e.g., Telegram, Slack or Twitter) to make them
available to users. Likewise, the DSL facilitates chatbot migration by the pro-
vision of parsers from several development platforms into the DSL. Our tool
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Fig. 2: Overview of our proposal.

support for these scenarios is explained in Section 6, while its evaluation based
on migration scenarios is presented in Section 7.

Overall, the advantages of our proposal are the following: it keeps the design
of the chatbot independent of the specific development technology; it provides
analyses applicable at the design level (i.e., prior to the implementation); it as-
sists in the selection of an appropriate development tool; it enables both forward
and backward engineering; and it reduces the risk of vendor lock-in.

4 Conga: a DSL for chatbot design

Our DSL Conga enables the design of chatbots conformant to the neutral meta-
model of Fig. 3. This is a platform-independent meta-model which gathers recur-
rent concepts in chatbot development approaches. Table 1 summarizes the main
concepts of the 15 approaches that we have revised to design our meta-model.

The main meta-model class is Chatbot, which has a name and a list of sup-
ported languages to allow the definition of multi-language chatbots. Chatbots
can define intents, entities, actions and structure the dialogue via flows.

Most analysed approaches (10 out of 15) rely on the notion of intent. In our
meta-model, an Intent has a name, can be a fallback intent, and defines one set
of regular expressions or NL training phrases per supported language. As Table 1
shows (3rd and 4th columns), all approaches support at least one of these two
definition mechanisms, while 6 approaches can combine regular expressions with
NL phrases. An example of a training phrase in English to query the price of a
cake can be “How much does a chocolate cake cost?”.

Intents may need to collect information, like the cake flavour in the previ-
ous sentence. This information is stored in Parameters, which most approaches
support (see 5th column of Table 1). In our meta-model, Parameters have a
name, a type, can be a list, can be required, and may define a list of prompts to
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Fig. 3: Platform-independent chatbot design meta-model (simplified excerpt).

Table 1: Recurrent concepts of representative chatbot creation approaches.

Approach Intent NLP Regular Phrase Entities Answ. Answ. Http Dialogue
expr params Text Image Rq/Rs structure

Botkit [4] no no yes no no no no no programm.
Bot framework [17] yes yes yes yes yes yes yes yes tree
Chatfuel [5] no yes no no no yes yes yes tree
Chatterbot [6] no yes no no yes no no no context
Dialogflow [9] yes yes no yes yes yes yes yes context
FlowXO [10] yes no yes no yes yes yes yes tree
Landbot.io [14] no no yes no no yes yes yes tree
Lex [15] yes yes no yes yes yes yes yes session
LUIS [16] yes yes yes yes yes no no no tree
Pandorabots [18] yes no yes yes no yes yes no DSL
Rasa [21] yes yes no yes yes yes yes yes tree
SmartLoop [24] yes yes yes yes yes yes yes no context
Watson [28] yes yes yes yes yes yes yes yes context
Xatkit [8] yes yes yes yes yes yes yes yes context
Xenioo [31] no yes yes yes yes yes yes no tree

ask for a value when the parameter is required but the user utterance does not
include its value. Parameters are typed by entities (6th column in the table).
Our meta-model supports both predefined entities (enumeration PredefinedEn-
tity with values text, date, number, float and time) and chatbot-specific ones
(class Entity).

Chatbot-specific entities can be Simple entities, defined as a list of words
with their synonyms, or Composite entities, made of other entities and text. For
example, in our bakery example, we may define simple entities for the prod-
ucts (cake, cupcake, biscuit...) and flavours (chocolate, strawberry, vanilla...),
and a composite entity combining both (〈product〉 with 〈flavour〉 flavour, 〈flavour〉
〈product〉, 〈flavour〉 flavoured 〈product〉...).
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Chatbots can perform different Actions. The most common ones are the
following (see 7th to 9th columns in Table 1): sending a Text response to the
user, which requires specifying the actual text for each chatbot language; sending
an Image which is identified by its URL; performing an HttpRequest to a given
URL, optionally providing some headers and data; and sending to the user an
HttpResponse for a previous http request.

Finally, a chatbot can define conversation Flows. As the last column of Ta-
ble 1 shows, all approaches provide some way to structure the dialogue, and in
particular, the meta-model has primitives to cover conversation trees and intent
activation based on contexts and sessions. Pandorabots supports a richer mech-
anism based on a DSL – the Artificial Intelligence Markup Language (AIML)1

– which our meta-model does not include due to its specificity. A flow is made
of UserInteractions associated to an intent, and BotInteractions comprising one
or more actions. A flow must start with a user interaction followed by a bot
interaction, after which there may be other user interactions, and so on.

To facilitate the instantiation of this meta-model, we have designed a textual
concrete syntax for it. Listing 1 illustrates its usage by showing an excerpt of
the definition of a chatbot for a bakery to which users can consult prices and
order different products like bread or cakes. The first line defines the chatbot
name and the supported languages (English and Spanish). Lines 4–18 define an
intent named Price, which declares a set of training phrases for each language of
the chatbot. If a set of phrases does not specify a language (as is the case in line
5), then they are assumed to be in the first language declared by the chatbot
(English in this example). The intent defines four parameters in lines 15–18. The
training phrases can refer to them (e.g., [count param] in line 6) and assign them
a value in the context of the phrase (e.g., three in line 6). The parameters type
can be a predefined entity, like number, or a user-defined one, like flavour.

Lines 21–29 show the definition of the simple entity flavour. This declares the
admissible flavours for each language supported by the chatbot, together with
their synonyms.

Lines 31–42 illustrate the definition of actions, specifically, a text response
called PriceResponse. As in the training phrases, text responses can be in differ-
ent languages, and use parameter values (e.g., [Price.bread param] in line 34).

Finally, lines 44–49 define the conversation flow (i.e., sequences of user and
chatbot interactions). The listing configures two flows, which always must start
with a user interaction and the corresponding intent. Flows are defined once,
independently of the language. The flow in line 45 takes place when the user ut-
terance matches the Price intent, in which case, the chatbot performs the action
PriceResponse defined in lines 32–42. The second flow (lines 46–49) corresponds
to the intent Buy. In this case, the chatbot asks for the product type to buy, and
the flow is split depending on the user answer (cake or bread). This branching
can be recursively nested to enable a compact representation of alternative flows.

The DSL includes model validation rules of two kinds. The first ones are
integrity constraints that ensure the well-formedness of chatbot models. For ex-

1 http://www.aiml.foundation/
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ample, some of these rules forbid equally named elements (e.g., two Actions with
the same name) and validate that each Intent has exactly one LanguageIntent for
each language of the chatbot (attribute Chatbot.lang). The second kind of rules
performs a static analysis of the chatbot definition to assess whether it adheres
to best practices for chatbot design. Violating these rules may be a “smell” of
a bad chatbot design. Currently, the DSL validates the following aspects: there
is a fallback intent; text responses only use parameters of intents appearing in
the conversation flow; there are no two intents with the same training phrase;
all intents define either one regular expression or at least three training phrases;
and training phrases do not start by a parameter typed by the predefined entity
text, as this would match any user utterance which can be problematic.

1 chatbot Bakery language: en, es
2
3 intents:
4 Price:
5 inputs {
6 ”How much are” (three)[count param] (bread)[bread param] ”?”,
7 ”How much is a” (cake)[cake param] ”?”,
8 ”How much is a” (chocolate)[flavour param](cake)[cake param] ”?”
9 }

10 inputs in es {
11 ”¿Cuanto cuesta el” (pan)[bread param] ”?”,
12 ”¿Cuanto cuesta una” (tarta)[cake param] ”?”,
13 ”¿Cuanto cuesta un” (pastel)[cake param] ”de” (chocolate)[flavour param] ”?”
14 }
15 parameters:
16 bread param, cake param: entity product;
17 flavour param: entity flavour;
18 count param: entity number;
19
20 entities:
21 simple entity flavour:
22 inputs in en {
23 chocolate synonyms choco, cocoa, truffle;
24 ...
25 }
26 inputs in es {
27 chocolate synonyms choco, cacao, trufa;
28 ...
29 }
30
31 actions:
32 text response PriceResponse:
33 inputs {
34 ”The” [Price.bread param] ”costs 1 euro per unit”,
35 ”The” [Price.flavour param] [Price.cake param] ”costs 10 euro per unit”,
36 ”The” [Price.cake param] ”costs 10 euro per unit”
37 }
38 inputs in es {
39 ”El” [Price.bread param] ”cuesta 1 euro por unidad”,
40 ”Las” [Price.cake param] ”de” [Price.flavour param] ”cuestan 10 euros por unidad”,
41 ”Las” [Price.cake param] ”cuestan 10 euros por unidad”
42 }
43
44 flows:
45 − user Price => chatbot PriceResponse;
46 − user Buy => chatbot Type {
47 => user Cake => chatbot Quantity => user num => chatbot BuyCakeHttp, buyCakeResponse;
48 => user Bread => chatbot Quantity => user num => chatbot BuyBreadHttp, buyBreadResponse;
49 }

Listing 1: Excerpt of chatbot model definition with the Conga DSL.
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5 Recommending a chatbot creation tool

Due to the large amount of tools and approaches for chatbot creation (cf. Ta-
ble 1), selecting the best option to build a particular chatbot becomes complex.
To assist in this task, we provide a recommender that receives a chatbot model
specified with Conga and the answers to a questionnaire relative to other as-
pects of the chatbot (e.g., technical, organizational or managerial requirements),
and from this information, it recommends an appropriate tool to implement the
chatbot. The recommender builds on a model-based extensible architecture that
enables the addition of new chatbot creation tools and the customization of the
questions and model features the recommendation builds on.
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name: String
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Fig. 4: Recommender meta-model.

Fig. 4 shows the meta-model
our Recommender relies on. To
make a recommendation, it con-
siders a list of chatbot Require-
ments, whose value can be re-
trieved either by means of a
Question to the developer, or
automatically via an Analysis of
the chatbot model. Both kinds
of requirements have a name, a
text, a list of admissible Options, and can be multi-response or not. In addition,
Analysis requirements define an evaluator, which is the (Java) class in charge of
analysing the chatbot model. This latter class must extend the built-in abstract
class Evaluator and implement its abstract method evaluate, which receives a
chatbot model and returns the Options that this model fulfils. The recommen-
dation consists of a list of Tools. For each tool, the recommender stores the
requirement options that are available, unavailable, unknown or are ultimately
possible (i.e., not natively supported but achievable using a workaround).

The recommender currently considers the requirements in Table 2, and new
ones can be added if needed. The table also shows the coverage of these require-
ments by two chatbot creation tools: Dialogflow and Rasa. Regarding analysis
requirements, we check whether the chatbot model is multi-language (like in
Listing 1), the targeted languages2, and whether it uses predefined or chatbot-
specific entities, calls to external services, parameters, training phrases or regu-
lar expressions. Rasa does not support multi-language bots, but a workaround
is generating one bot per language, hence the value possible in the table.

Questions are chatbot requirements explicitly asked to the developer as they
cannot be inferred from the chatbot model. The first seven questions in Table 2
deal with technical aspects. Specifically, we ask for the following issues: the so-
cial network the chatbot is to be deployed in (Dialogflow supports 16, and Rasa
8); the hosting server of the chatbot, since some platforms (e.g., Dialogflow) can
host the chatbot themselves, but others (e.g., Rasa) require an external server;
the level of support for version control, which is built-in in platforms like Di-

2 For brevity, Table 2 shows the number of languages supported, not the list of them.
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Table 2: Requirements that the recommender currently takes into consideration.

Text Multi- Options Dialogflow Rasa
response

Analyses

Is the chatbot multi-language? false
Yes avail. possib.
No avail. avail.

Which are the chatbot languages? true - 21 all

Does the chatbot use new or predefined
entities?

true
Predefined avail. avail.

New entities avail. avail.
None avail. avail.

Does the chatbot call to external services? false
One avail. avail.

Multiple possib. avail.
None avail. avail.

Does the chatbot use phrase parameters? false
Yes avail. avail.
No avail. avail.

Does the chatbot need persistent or volatile
parameter storage?

true
Persistent avail. avail.
Volatile avail. avail.
None avail. avail.

Does your chatbot need natural language
processing or pattern matching?

true
NLP avail. avail.

Pattern unavail. unavail.
Questions

Which social networks do you want to deploy
the chatbot in?

true - 16 8

Do you want to deploy the chatbot on your
own host?

false
Tool host avail. unavail.
Own host unavail. avail.

Do you want to use a built-in version control
system?

false
Yes avail. avail.
No avail. avail.

Do you require native support for chatbot
analytics?

false
Yes avail. unavail.
No avail. avail.

Do you require native support for utterance
persistence?

false
Yes avail. avail.
No avail. avail.

Do you require the chatbot to support speech
recognition?

false
Yes avail. unavail.
No avail. avail.

Do you require the chatbot to support
sentiment analysis?

false
Yes avail. unavail.
No avail. avail.

Do you require to use an open-source tool? false
Yes unavail. avail.
No avail. avail.

Which price model do you plan to use? true

Free avail. avail.
Pay as you go avail. unavail.

Quota unavail. unavail.
Pay advanced feats. unavail. avail.

What’s the level of expertise of the
development team?

false
Low avail. unavail.
High avail. avail.

alogflow, while programming-based approaches like Rasa need to use an external
version control system like github; the need to monitor the chatbot performance
(e.g., Dialogflow provides some chatbot analytics); the persistence of utterances
for their subsequent analysis; and the need to support speech recognition or
sentiment analysis.

The last three questions in Table 2 tackle organizational and managerial
aspects concerned with open-source and price model requirements, and the level
of expertise of the development team. For example, the expertise for using Rasa
is higher than for Dialogflow, since the former requires programming.

Since some requirements may be more important than others depending on
the project, we assign an importance level to each requirement, which the devel-
oper can customize. The supported levels are: irrelevant, relevant, double relevant
and critical. Irrelevant requirements are not considered for the recommendation,
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and critical ones are breaking factors (i.e., tools that do not comply with the
requirement will not be recommended). For each tool, the recommender com-
putes a score based on the supported requirements and their importance level.
Available requirements add 1 to the score of a tool, unavailable ones add 0, un-
known ones add 0.5, and possible ones add 0.75. In all cases, double relevant
requirements score double. Then, the recommender orders the tools according
to their score, and produces a report with the ranking of tools and how each
requirement contributes to this ranking.

Incorporating a new chatbot creation tool (e.g., Watson) into our frame-
work requires: (i) informing the tool options for every requirement in the recom-
mender; (ii) providing a code generator from Conga to the tool; (iii) optionally,
providing a parser if reverse engineering is required. Our framework prevents the
code generation for a tool whenever the chatbot requirements are unavailable in
that tool. There may be some possible requirements though, meaning that their
support is not native in the tool but they can be implemented. For instance,
Rasa does not support multi-language chatbots, but this can be emulated by
generating one chatbot per language. As another example, Dialogflow only sup-
ports one external service call per intent, and so, the generator only considers
the first call and warns the developer.

6 Tool support

We have built tool support for our approach. Fig. 5(a) shows the developed editor
for the Conga DSL, which uses the Eclipse Modeling Framework (EMF) [25]
and Xtext. The editor provides syntax highlighting, autocompletion, and informs
of errors and warnings found in the chatbot models.

Upon uploading a chatbot model to a web server, we can apply the rec-
ommender (Fig. 5(b)) and generate code for a specific chatbot creation tool.
Currently, the recommender considers 14 up-to-date tools, and we provide gen-
erators and parsers from/to Dialogflow and Rasa. Anyhow, as previously ex-
plained, both aspects are extensible. Figs. 5(c.1) and 5(c.2) show two generated
chatbots for Dialogflow and Rasa in their respective development environments,
from where the chatbots can be deployed into a social network.

7 Evaluation

This section reports on an evaluation of our approach on a migration scenario
which involves both backward and forward engineering. The goal is to answer
two research questions (RQs): RQ1: Is Conga expressive enough to capture the
details of existing chatbots? RQ2: Can the migration process be fully automated?
For this purpose, we have migrated four Dialogflow agents developed by third
parties (three from github, one built by Google) into Rasa. Table 3 summarizes
the experiment results.
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a) CONGA DSL 

b) Recommender tool 

c.1) Dialogflow test console 

c.2) Rasa test console 

Fig. 5: Our tool in action for forward engineering. (a) Conga editor. (b) Recommender.
(c.1) Generated bot for Dialogflow. (c.2) Generated bot for Rasa.

Table 3: Assessment metrics.

Dialogflow Conga Rasa

No.
intents

No.
ents.

Http
req.

No.
files

Lang
No.

objects
No.
lines

No.
chatbots

No.
Python

lines

No.
Markd.

lines

No.
yaml
lines

Game 11 0 yes 30 en/fr 541 268 2 378 242 362
Room reservation 7 1 no 17 en 717 196 1 253 166 137
Coffee shop 21 8 no 60 en 931 393 1 657 394 269
Nutrition 4 7 no 23 en 833 610 1 802 81 99

Game3 is a conversational agent for a numeric guessing game. It has 11
intents, no entities, one http request, and supports English and French. Its Di-
alogflow specification is made of 30 JSON files. From this specification, our parser
creates a model with 541 objects and 268 lines of Conga code. Since Rasa does
not support multi-language chatbots, two Rasa chatbots are generated from the
Conga model, one for each language. These have 378 lines of Python code (to
define parameters and actions), 242 lines of Markdown code (to define intents
and flows) and 362 lines of YAML code (to configure the chatbot).

Room reservation4 is a chatbot to book hotel rooms. It has 7 intents and one
entity, and works in English. The migration produces a Rasa chatbot with 253
lines of Python code. Since the original Dialogflow chatbot has button actions,
which are unsupported by Conga, we had to add them manually in Rasa.

Coffee shop is a Dialogflow pre-built agent to order food to a coffee shop. Its
specification is the most complex of the four chatbots, spanning 60 JSON files.
These are parsed into a Conga model with 931 objects.

3 https://github.com/actions-on-google/dialogflow-number-genie-nodejs
4 https://github.com/dialogflow/dialogflow-java-client-v2/tree/master/samples/resources
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Nutrition5 is a chatbot to query the nutritional value of meals. Although it is
a small chatbot with 4 intents and 7 entities, it generates many lines of Python
code because the entities have many entries.

Overall, we were able to migrate all Dialogflow chatbots but the button ac-
tions on the room reservation bot, which confirms the expressiveness of Conga
(RQ1). Except for that bot, migration was fully automatic (RQ2). These re-
sults are very promising, but more case studies are needed to strengthen the
confidence in the capabilities of Conga. Moreover, we manually checked that
the produced Rasa chatbots preserved the original Dialogflow behaviour, but we
plan to automate this check in future work (e.g., using tools like Botium6).

8 Related work

The popularity of chatbots has promoted the appearance of many tools for their
construction. In this section, we revise works built atop these tools to simplify
some aspect of chatbot development.

Xatkit [8] (formerly known as Jarvis [7]) is a model-driven solution for devel-
oping chatbots. Similar to our approach, it proposes a meta-model and a textual
DSL. However, differently from us, Xatkit has its own bot execution engine that
builds on Dialogflow to identify the user intent using NLP, and does not generate
code for existing chatbot development tools. Moreover, even though Xatkit is
model-based, it does not address the recommendation of suitable chatbot plat-
forms, nor reduces the risk of vendor lock-in by supporting chatbot migration.

In [3], Baudat et al. facilitate the definition of Watson chatbots by means
of an OCaml library which produces the necessary JSON files, and the use of
ReactiveML to orchestrate the dialog. While this approach is generative, it is
limited to Watson and does not support reverse engineering.

There are some recent model-based proposals to automate the construction
of chatbots for a specific task. For example, the framework in [1] permits creating
chatbots for video game development; in [20], we generate Dialogflow chatbots
to allow instantiating meta-models using a NL syntax; and in [19], we generate
model query chatbots. Other works do not rely on models for automating chatbot
creation, such as [13], where the authors enable a black-box reuse of components
for creating chatbots for FAQ exploration. All these approaches are not general-
purpose, but they produce chatbots for a specific task (creating video games,
creating models, querying models, or exploring FAQs).

Conversely, in [2], the authors envision a reverse engineering process called
botification to produce a conversational interface for existing web sites. The pro-
cess parses a web page to produce a domain model, which serves to configure the
allowed NL interactions. Botified webs improve the user experience for visually
impaired users, and the development cost is low. We believe that our architecture
could serve as a reference to implement this scenario.

5 https://github.com/Viber/apiai-nutrition-sample
6 https://www.botium.ai/
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Another related line of research concerns crowd-powered conversational as-
sistants [11, 12]. While they are not auto-generated, as we do in this paper, they
can auto-evolve by learning appropriate responses from previous ones.

Finally, some development tools are specific for voice-user interfaces. For
example, tortu7 supports the visual creation of conversation flows, but it does
not allow code generation or bot migration. In a similar vein, VoiceFlow8 offers
a graphical DSL to create voice-based conversation flows that can be deployed
on Google home or Alexa, but does not provide recommendation or migration
facilities, and the deployment platforms are fixed.

Overall, our approach is novel as it provides a complete MDE solution com-
prising a unifying DSL for chatbot design, a recommender of up-to-date chatbot
development tools according to given design and technical chatbot requirements,
and supporting forward and backward engineering, including migration.

9 Conclusion and future work

Nowadays, we can find many tools for building chatbots. While these tools ac-
celerate chatbot development, the chatbot design can become obscured under
technical tool details. Moreover, selecting the most appropriate tool, or chatbot
migration, require a high investment of time. To alleviate these problems, we
have proposed an MDE approach to chatbot development that includes a tex-
tual DSL, a platform recommender, code generators and parsers. Our approach
supports both forward and reverse chatbot engineering, and has been evaluated
by migrating four Dialogflow chatbots developed by third parties to Rasa.

In the future, we plan to extend our framework with more chatbot creation
tools, facilities for model-based testing, quick-fixes for violations of chatbot best-
practices, and mechanisms to make Conga extensible with platform-specific
concepts, like buttons. We are currently migrating our editor of Conga models
to a web environment, and later we plan to perform a user study with developers
to assess the advantages of our approach. Finally, we plan to create higher-level
DSLs to define domain-specific chatbots (e.g., for education or commerce) which
can be transformed into our framework for validation and code generation.
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