
Under consideration for publication in Formal Aspects of Computing

Language Family Engineering with Product
Lines of Multi-level Models
Juan de Lara1 and Esther Guerra1
1Modelling and Software Engineering research group
http://miso.es
Computer Science Department
Universidad Autónoma de Madrid, Spain

Abstract. Modelling is an essential activity in software engineering. It typically involves two meta-levels: one in-
cludes meta-models that describe modelling languages, and the other contains models built by instantiating those
meta-models. Multi-level modelling generalizes this approach by allowing models to span an arbitrary number of
meta-levels.

A scenario that profits from multi-level modelling is the definition of language families that can be specialized
(e.g., for different domains) by successive refinements at subsequent meta-levels, hence promoting language reuse.
This enables an open set of variability options given by all possible specializations of the language family. However,
multi-level modelling lacks the ability to express closed variability regarding the availability of language primitives
or the possibility to opt between alternative primitive realizations. This limits the reuse opportunities of a language
family. To improve this situation, we propose a novel combination of product lines with multi-level modelling to cover
both open and closed variability. Our proposal is backed by a formal theory that guarantees correctness, enables top-
down and bottom-up language variability design, and is implemented atop the METADEPTH multi-level modelling
tool.

Keywords: Meta-modelling, Multi-level modelling, Product lines, Domain-specific languages, Software language
engineering, METADEPTH.

1. Introduction

Modelling is intrinsic to most engineering disciplines. Within software engineering, it plays a pivotal role in model-
driven engineering (MDE) [Sch06]. This is a software construction paradigm where models are actively used to de-
scribe, analyse, validate, verify, synthesize and maintain the application to be built, among other activities [BCW17].

Models are built using modelling languages, which can be either general-purpose, like the UML [UML17], or
domain-specific languages (DSLs) tailored to a specific concern [KT08, VBD+13]. In MDE, the abstract syntax of
modelling languages is defined through a meta-model that describes the primitives that can be used in models one

Correspondence and offprint requests to: Juan de Lara, e-mail: Juan.deLara@uam.es

2 J. de Lara and E. Guerra

TaskType

Coding:
TaskType

Design:
TaskType

…

TaskType

ActorKind

1 perfBy

Process
Language

actors init

[actors]

[actors]

[init] initial: bool TaskType

initial: bool
init
¬actors

(a) (b)

Fig. 1. (a) Open language variability through instantiation. (b) Closed language variability through product lines.

meta-level below. This modelling approach, which is the standard nowadays, constrains engineers to confine their
models within one meta-level (the “model” level).

Several researchers have observed that domain modelling can benefit from the use of more than one meta-level [AK08,
dLGS14, FAGdC18, Fra14, IGSS18, GPHS06, MRS+18]. This way of modelling – called multi-level modelling [AK01]
or deep meta-modelling [dLG10] – yields simpler models in scenarios that involve the type-object pattern [AK08,
dLGS14, MRB97]. Moreover, it permits defining language families (e.g., for process modelling) that can be special-
ized to specific domains (e.g., software process modelling, industrial process modelling) via instantiation at lower
meta-levels [dLGC15]. Instantiation is an open variability mechanism that permits the customization of a language
by specializing its primitives for a domain, or adding new ones via so-called linguistic extensions [dLG10]. As an
illustration, Fig. 1(a) shows a tiny process modelling language that defines the primitive TaskType, which is customized
by instantiation in the lower meta-level for the software process modelling domain (Coding and Design). In turn, these
two primitives could be instantiated in the meta-level below. However, multi-level modelling lacks support for ex-
pressing optionality of language primitives or alternative primitive realizations. This prevents wider language reuse
and customization possibilities.

Software product lines (SPLs) encompass methods, tools and techniques to engineer collections of similar software
systems using a common means of production [NC02, PBL05]. SPLs support closed variability, where a concrete
software product is obtained by selecting among a finite set of available features (i.e., by setting a configuration). SPL
techniques have been applied to language engineering to define product lines of languages representing a closed set of
predefined language variants [GdLCS20, PAA+16, WHG+09]. As an example, Fig. 1(b) shows a process modelling
language product line with two configurable features: actors and initial tasks. Selecting a configuration of features (in
the figure, initial tasks but no actors) yields a language variant. Languages defined via a product line permit configuring
the language primitives and their realization, but cannot be specialized for specific domains, because this requires from
open variability mechanisms.

To improve current language reuse techniques, we propose combining multi-level modelling and product lines.
This allows the definition of highly configurable language families that profit from both open variability (as given by
instantiation) and closed variability (as given by configuration). This way, this paper makes the following contributions:
(i) a novel notion of multi-level model product line; (ii) a theory that enables deferring variability resolution to lower
meta-levels in a flexible way, guaranteeing the correctness of interleavings of instantiation and configuration steps;
(iii) techniques supporting both top-down and bottom-up variability design, based on the possibility of advancing
variability extension to both instantiation and configuration; and (iv) an implementation of these ideas on top of the
METADEPTH tool [dLG10].

This work builds on our FASE’20 article [dLG20], expanding it in three main ways, covering both usage and
design of language product lines. First, we complete the presented theory with required definitions and lemmas for
composition of specializations steps (Definition 3 and Lemma 1; Def. 9 and Lemma 2; Def. 12 and Lemma 3). Then,
we expand the theory to calculate the fully configured language (i.e., a language definition with no variability) that
is equivalent to the language resulting from an arbitrary chain of language instantiations and partial configurations,
as shown by Theorem 5.3. This is an important result, which shows that, in order to use a language family, users
do not need to provide a full configuration before using the family. Instead, they can directly use it by instantiation,
while variability can be resolved at later steps providing partial configurations as needed. The second main extension
of this paper facilitates designing language product lines. In [dLG20], we assumed that a language family needed to
be constructed in a top-down way, where all variability is designed up-front. This was due to the fact that the theory
did not have a way to characterize extensions of the feature models and the associated model product lines (instead,
the theory only covered specializations). However, in practice, product lines can be constructed both top-down and
bottom-up [KC16]. Supporting these two options in our setting requires enabling exploratory modelling, where the
language is instantiated, possibly partially specialized, and then new variants can be added, which the designer might

Language Family Engineering with Product Lines of Multi-level Models 3

like to include in the original language definition. For this purpose, we introduce new notions of extension morphisms
(Defs. 14 and 15), along with compatibility conditions ensuring that variability extensions can be advanced to both
instantiation and specialization (Lemma 4, Theorem 5.4 and Corollary 1). Accordingly, we use the new concepts
and the theory to describe flexible processes for using language families (Section 5.1), and for their top-down and
bottom-up construction (Section 5.2). As a third main extension, we have expanded the tool with new functionality
to support extension, and provide a walkthrough of its use for three activities: top-down creation of language families
(Section 6.1), use of language families (Section 6.2) and bottom-up extension of language families (Section 6.3).
Finally, we provide additional examples and explanations, as well as a more thorough comparison with related work.

The rest of this paper is organized as follows. Section 2 introduces multi-level modelling and identifies the chal-
lenges tackled in this paper. Section 3 provides a light formalization of multi-level modelling, which is extended with
product line techniques in Section 4. Section 5 exploits the introduced concepts for: (a) the flexible use of language
families, by proving that variability configuration can be deferred to model instantiation; and (b) the bottom-up and
top-down construction of language families, by showing that variability extension can be advanced to both configura-
tion and instantiation. Section 6 describes tool support. Section 7 discusses related research, and Section 8 ends with
the conclusions and future work. An appendix includes the proofs of the theorems and lemmas in the paper.

2. Multi-level modelling: intuition and challenges

In this section, we first introduce the main concepts of multi-level modelling guided by an example (Section 2.1), and
then we discuss some challenges when applying multi-level modelling to language engineering (Section 2.2).

2.1. Multi-level modelling by example

Multi-level modelling supports the definition of models using multiple meta-levels [AK08, dLGS14]. To understand
its rationale, assume we would like to create a language to define commerce information systems (a standard example
often used in the multi-level modelling literature [AK08, dLGS14]). The language should allow defining product types
(like books or food) which have a tax, as well as products of the defined types (like Othello or banana) which have a
price. Moreover, some product types may need to define specific properties, like the number of pages in books.

Fig. 2(a) shows a solution for this scenario using two meta-levels. In this solution, the meta-model uses the type-
object pattern [MRB97] to emulate the typing relationship between Product and ProductType. In addition, classes Attribute
and Slot permit defining properties in ProductTypes and assigning them a value in Products (called dynamic features
pattern in [dLGS14]). The model in the bottom meta-level represents an information system for Kiosks. It defines the
product types Book and Food, as well as the products sold by a particular kiosk: the Othello book and Bananas.

On reflection, one can realize that this solution emulates two meta-levels within one, as we convey with the dashed
line in Fig. 2(a). Therefore, we show an alternative multi-level solution using three meta-levels in Fig. 2(b). The top
level defines just ProductType, which is instantiated at the next level to create Book and Food product types, which in
turn are instantiated at the bottom level to create specific products. Hence, elements in this approach are uniformly
called clabjects [Atk97] across meta-levels (from the contraction of the words class and object), since they are types
for the elements in the level below, and instances of the elements in the level above. For example, clabject Book is a
type for Othello and an instance of ProductType. This multi-level solution leads to a simpler model (with fewer elements)
because a clabject suffices to represent both ProductType and Product.

Clabjects may need to control the properties of their instances beyond the next meta-level. For example, the direct
instances of ProductType need to have a tax, and the instances of its instances (which we call indirect instances) have a
price. This is possible by the use of a deep characterization mechanism called potency [Atk97, AK01]. The potency is
a natural number, or zero, which governs the instantiation depth of models, clabjects and features. Fig. 2(b) depicts the
potency after the “@” symbol, and the elements that do not declare potency take it from their container. As an example,
attribute ProductType.price takes its potency from ProductType, and this from the Commerce model, which declares potency
2. When an element is instantiated, the instance receives the potency of the element minus 1. Elements with potency 0
are pure instances and cannot be instantiated. For example, attribute ProductType.tax with potency 1 is instantiated into
Book.tax and Food.tax, which therefore have potency 0 and can receive values. As model Commerce has potency 2, it can
be instantiated at the two subsequent meta-levels. The potency of a model is often called its level [AK08].

Sometimes, it is not possible to foresee every possible property required by clabject instances several meta-levels
below – like the number of pages in books – or we may need to introduce new primitives at lower levels – like a
new clabject to model the authors of books. To handle those cases, multi-level modelling supports linguistic exten-

4 J. de Lara and E. Guerra

ProductType

price : double
tax@1 : double

@2 Commerce

@1
Book:

ProductType

tax = 0,1
numPages: int

Food:
ProductType

tax = 0,04

Kiosk

@0

Othello: Book

price= 30
numPages=250

Banana:
Food

price=0,5

WHKiosk

ProductType

tax: double

Product

price: double 1

type

tax = 0,1

Food:
ProductType

tax = 0,04

Othello:
Product

price= 30

Banana:
Product

price=0,5

Commerce

Attribute

type: String

Slot

value: String

numPages:
Attribute

type=“int”

s: Slot

value=“250”

attrs * slots

type

1

:attrs
Book:

ProductType

:type

:slots

:type :type

Kiosk

WHKiosk
(a) (b)

Fig. 2. Commerce example using (a) standard modelling and (b) multi-level modelling.

TaskType
Gateway

Type

src

tar

*
* duration : int

initial@1 : boolean

Requirements :
TaskType

initial = true

Design:
TaskType

initial = false
style : String

ReqDep:
GatewayType

* DesignDep:
GatewayType

1..*

1..*

from: src

nxtDesign:
tar

BusinessReqs :
Requirements

MobileReqs :
Requirements

CoreDesign :
Design

CoreReqs:
ReqDep

:from

:nxtReq

:nxtDesign

duration = 4

duration = 2

duration = 3
style=“service”

@2 Process modelling

@1 Software process modelling

@0 Mobile HR project plan

1..*

*

from: src

nxtReq:
tar

nxtDesign:
tar

Fig. 3. Multi-level model for process modelling, and application to software process modelling.

sions [dLGC15]. These are elements (clabjects or features) with no ontological type, but with a linguistic type that
corresponds to the meta-modelling primitive used to create it (see Orthogonal Classification Architecture in [AK02]
for more details). As an example, Book.numPages is a linguistic extension modelling a property specific to Book but not
to other product types. Instead, in the two-level solution in Fig. 2(a), the properties of specific ProductTypes need to be
explicitly modelled by classes Attribute and Slot, leading to more complexity.

2.2. Improving reuse in multi-level modelling: some challenges

Multi-level modelling enables language reuse by supporting the definition of language families. For example, Fig. 3
shows at the top a generic process modelling language that can be used to define process modelling languages for
different domains, like education, software engineering, or production engineering. The language is designed to con-
sider three levels. Level 2 at the top contains the language definition, consisting of primitives (i.e., clabjects) to define
task and gateway types. Level 1 contains language specializations for specific domains. The figure shows the case
for the software engineering domain, which defines the task types Requirements and Design, and two gateway types:

Language Family Engineering with Product Lines of Multi-level Models 5

TaskType

@2

TaskType Gateway
Type

src

tar

*
*

next
*

+

@2

initial@1 : boolean
duration : int
rDuration : int

(a) (b) (c) (d)

@2

TaskType

ActorKind

1 perfBy

TaskType
@2

@1 Coding:
TaskType

Testing:
TaskType

Software
Engineer

@2

@1 Coding:
TaskType

Testing:
TaskType

TaskType ActorKind perfBy

SoftwareEngineer:
ActorKind

Fig. 4. Examples of variability needs: (a) alternative primitive realizations, (b) optional primitives, (c) optional attributes, (d) bottom-up variability
design.

ReqDep to transition from requirement tasks to either design or requirement tasks, and DesignDep to declare depen-
dencies between design tasks. Finally, level 0 contains domain-specific processes. The one in the figure declares two
requirements tasks, one design task and one gateway.

This example shows how instantiation permits customizing the language primitives offered at the top level for
particular domains, and how linguistic extensions (e.g., attribute Design.style at level 1 in Fig. 3) allow adding domain-
specific primitives and properties to language specializations. However, the following scenarios require further facili-
ties that enable a better fit for particular domains, increase language reuse and facilitate language family engineering.

• Alternative realizations. A language primitive may be realised in different ways, each more adequate than the
others depending on the domain. For example, in Fig. 3, dependencies between task types are modelled by Gateway-
Type. However, in domains that do not require distinguishing types of gateways or n-ary dependencies, a simpler
representation of dependencies as a binary reference between TaskTypes is enough (see Fig. 4(a)). Unfortunately,
multi-level modelling does not support this kind of variability, which enables alternative realizations of available
language primitives.

• Primitive excess. Some offered language primitives may be unnecessary in simple domains. This can be controlled
by not instantiating the primitive. However, withdrawing the needless primitives may be a better option because
it simplifies the language usage and avoids some problematic situations. First, if the needless primitive is an
attribute (like initial in Fig. 4(c)), then it becomes instantiated by force, polluting the model with unnecessary
information. Second, some mandatory primitives may not be needed in certain domains. For example, in Fig. 4(b),
the language designer assumes that any TaskType (e.g., Requirements) will be performed by one ActorKind (e.g.,
Analyst or DomainExpert). However, there may be domains that do not involve actors (e.g., if tasks are automated),
but the mandatory relation perfBy still forces having instances of ActorKind associated to instances of TaskType.

• Deferred variability resolution and exploratory modelling. The decision about the inclusion or not of a prim-
itive may not be clear when the language is instantiated for a domain, but this can be determined later at lower
meta-levels. For example, in Fig. 4(c), an engineer might hesitate whether, in addition to the expected task dura-
tion (attribute duration), tasks should store their real duration as well (attribute rDuration with potency 2); in such a
case, the engineer may prefer deferring the decision to level 1 or 0, where the need becomes evident. In general,
resolving all variability in a language family at the top level may be hasty in some cases, since the suitability of a
primitive may be apparent only when a language has reached certain specificity (i.e., at lower meta-levels). More-
over, enabling modelling before resolving every possible language variability option may be good for exploratory
purposes.

• Top-down and bottom-up variability design. Language variability can be designed up-front, following a top-
down process. However, some language variants may emerge when working in a specific domain, making it desir-
able to lift the discovered variant bottom-up [SdLG12] from a lower meta-level to the top one. Fig. 4(d) shows an
example. The left side shows a process modelling language that does not support actors (level 2), but its refinement
for software engineering requires software engineers – a kind of actor – so it defines the linguistic extension Soft-
wareEngineer (level 1). Since other domains may need to support actors, SoftwareEngineer could be lifted to the top
level renamed more generically to ActorKind, as the right side of Fig. 4(d) shows. ActorKind would be optional as not
every domain needs actors. This kind of bottom-up refactorings [dLG18] would facilitate extending the definition
and variability of language families upon emerging variants. Supporting both top-down and bottom-up variability
design would provide flexibility to language family creation and evolution.

To tackle these challenges, we incorporate variability into multi-level models taking ideas from SPLs. As a first
step, in the next section we formalize multi-level models.

6 J. de Lara and E. Guerra

TaskType

@2

(a) (b) (c)

@3 TaskType
@2

rDuration@3: int
TaskType

@2
Budget

amount: double

@1
budget

Fig. 5. Illustrating the violation of the well-formedness rules in Def. 1 for potency. (a) A clabject with higher potency than the model level. (b) A
slot with higher potency than the one of its container clabject. (c) A reference with higher potency than its target clabject.

3. A formal foundation for multi-level modelling

We start defining the structure of models equipped with deep characterization, which we call deep models. We repre-
sent models at different meta-levels in a uniform way, in order to cope with an arbitrary number of meta-levels. For
simplicity of presentation, and because they are not essential to demonstrate our ideas, we omit inheritance, cardinali-
ties and integrity constraints in our formalization.

Def. 1 (Deep model). A deep model is a tuple M = 〈p, C, S,R, src, tar, pot〉, where:

• p ∈ N0 is called the model potency, or level.
• C, S and R are disjoint sets of clabjects, slots and references, respectively.
• src : S ∪R→ C is a function assigning the owner clabject to slots and references.
• tar : R→ C is a function assigning the target clabject to each reference.
• pot : C ∪ S ∪R→ N0 is a function assigning a potency to clabjects, slots and references s.t.:

1. ∀e ∈ C ∪ S ∪R • pot(e) ≤ p
2. ∀s ∈ S ∪R • pot(s) ≤ pot(src(s))
3. ∀r ∈ R • pot(r) ≤ pot(tar(r))

In the previous definition, we assign a level p to deep models. Elements in a deep model have a potency via function
pot, which must satisfy three conditions: (1) the potency of an element should not be larger than the model level, (2)
the potency of slots and references should not be larger than the one of their container clabject, and (3) the potency of
references should not be larger than the one of the clabjects they point to. Please note that we use the term slot to refer
uniformly to attributes (or their instances) at any meta-level.

Example. Fig. 5 illustrates the rationale of the three well-formedness rules in Def. 1 concerning potency. Specifically,
each deep model violates one of the rules. Fig. 5(a) depicts a deep model where the level (2) is lower than the potency
of its contained clabject (3). This would be problematic two levels below, where the indirect instances of TaskType
have potency 1 but cannot be instantiated because their container model has potency 0 and hence is non-instantiable.
Similarly, Fig. 5(b) shows a slot with higher potency (3) than its container clabject (2). In this case, the indirect
instances of the clabject with potency 0 will contain a slot rDuration with potency 1. The slot would receive a value one
level below, when it reaches potency 0, but this is not possible because its container clabject cannot be instantiated
further. Finally, in Fig. 5(c), reference budget with potency 2 points to clabject Budget with potency 1. As a consequence,
the reference can only be instantiated at the next level regardless its potency 2, due to the lower potency of Budget.

Next, we define a general notion of mapping (a morphism) between deep models as a tuple of three (total) functions
between the sets of clabjects, slots and references. Each morphism has a depth (a natural number or 0) controlling the
distance between the levels of the involved models. We use two particular types of mappings to represent the type
relation between deep models at adjacent meta-levels (when the morphism depth is 1), and extensions of a deep model
to add linguistic extensions (when the depth is 0).

Def. 2 (D-morphism, type and extension). Given two deep models Mi = 〈pi, Ci, Si, Ri, srci, tari, poti〉 for i =
{0, 1}, a deep model morphism (D-morphism in short) m = 〈d,mC ,mS ,mR〉 : M0 → M1 is a tuple made of a
number d ∈ N0 called depth, and three functions mC : C0 → C1, mS : S0 → S1 and mR : R0 → R1 s.t.:

1. p0 + d = p1
2. ∀e ∈ X0 • pot0(e) + d = pot1(mX(e)) (for X ∈ {C, S,R})
3. Each function mC ,mS ,mR commutes with functions srci and tari (see Fig. 6)

Language Family Engineering with Product Lines of Multi-level Models 7

S1
src1 // C1 C1 R1

src1oo tar1 // C1

S0

mS

OO

src0 //

=

C0

mC

OO

C0

mC

OO
=

R0
src0oo tar0 //

mR

OO
=

C0

mC

OO

Fig. 6. Commutativity conditions for D-morphisms in Def. 2.

D-morphism tp = 〈d, tpC , tpS , tpR〉 : M0 → M1 is called type if d = 1, and is called indirect type if d > 1. M1 is
called the (indirect) model type of M0.
D-morphism ex = 〈d, exC , exS , exR〉 : M0 → M1 is called level-preserving if d = 0. A level-preserving D-
morphism ex is called extension if each exX (for X = {C, S,R}) is an inclusion. An extension is called identity
if each exX is surjective.

In Def. 2, condition 1 ensures that the D-morphism connects models of suitable levels (at a distance of d levels),
condition 2 checks that the potency of elements in M0 decreases according to the depth of the D-morphism, and
condition 3 ensures that the D-morphism is coherent with the source and target of slots and references (just like in
standard graph morphisms [EEPT06]). We use total functions to represent the type, which ensures that each element
in a deep model has a type. Linguistic extensions are not typed, but they are modelled as an extension D-morphism of
a (typed) deep model into a larger model. This avoids resorting to partial functions to represent the type, which would
complicate the formalization [RdLG+14, WMR20]. Identity extensions map isomorphic deep models.

D-morphisms can be composed by composing the three mappings and adding their depths, as the next definition
and lemma show. Composition of D-morphisms is necessary as a basis for the results of Section 5.

Def. 3 (D-morphism composition). Given two D-morphisms m1 = 〈d1,m1
C ,m

1
S ,m

2
R〉 : M0 → M1 and m2 =

〈d2,m2
C ,m

2
S ,m

2
R〉 : M1 →M2, the composed morphismm2◦m1 : M0 →M2 is defined as 〈d1+d2,m2

C ◦m1
C ,m

2
S ◦

m1
S ,m

2
R ◦m1

R〉.
Lemma 1 (D-morphism composition yields a D-morphism). Given two D-morphisms m1 = 〈d1,m1

C ,m
1
S ,m

2
R〉 :

M0 →M1 andm2 = 〈d2,m2
C ,m

2
S ,m

2
R〉 : M1 →M2, their compositionm2◦m1 : M0 →M2 is a valid D-morphism.

Proof. By compositionality of functions over sets. See proof details in appendix.

Remark. The composition of two (indirect) type D-morphisms is an indirect type D-morphism. The composition of
two level-preserving D-morphisms is level preserving, and it is an extension (resp. identity) if both D-morphisms are
extensions (resp. identities).

A multi-level model is made of a root deep model, and a sequence of pairs of instantiations and extensions. The
length of this sequence is equal to the root model level. The extensions are allowed to be identity extensions.

Def. 4 (Multi-level model). A multi-level model MLM = 〈M ′0,ML = 〈(M ′i
tpi+1←− Mi+1

exi+1−→ M ′i+1)〉i=0..p′0−1〉 is
made of a deep modelM ′0 called the root, and a sequenceML of length p′0 (the level ofM ′0) of spans of D-morphisms,
where the left D-morphism is a type and the right D-morphism a (possibly identity) extension.

Example. Fig. 7 shows a multi-level model (a small excerpt of the one in Fig. 3) according to Def. 4. Slots are
represented as rounded nodes, instead of inside the owner clabject box. Fig. 3 hides the slots with potency bigger than
0 that are typed, like Design.duration at level 1, but such instances do exist and are explicitly shown in Fig. 7 (see slot
duration’ in models M1 and M’1). The figure shows a clabject TaskType in the root model M’0, its instance called Design in
model M1, a subsequent extension that adds a style slot to Design (model M’1), an instantiation of it (model M2), and an
identity extension (model M’2). Whenever a model does not include linguistic extensions, like M2, we use the identity
extension D-morphism. Since slot initial’ in model M’1 has potency 0, it is not instantiated in the model with level 0 (M2).
Finally, it would be possible to derive the (indirect) type of M2 with respect to M’0 by defining a construction akin to a
pullback (in a category made of multi-level models and D-morphisms) that yields the part of M2 typed by M1 [Lan71].

4. Multi-level model product lines

In order to solve the challenges identified in Section 2.2, we extend deep models with closed variability options by
borrowing concepts from product lines. We use feature models [KCH+90] to represent the allowed variability.

8 J. de Lara and E. Guerra

TaskType@2

Design@1

CoreDesign@0

M'0@2

M1@1

M2@0

duration@2 initial@1

duration'@1 initial'@0

tp1

Design@1
M'1@1

ex1

tp2

duration''@0 style'@0

CoreDesign@0
M'2@0

duration''@0 style'@0

ex2

style@1 duration'@1 initial'@0

Fig. 7. Multi-level model example, according to Def. 4.

ProcessLanguage

Gateways

FM =
 F = { ProcessLanguage,
 Gateways, actors, Tasks,
 simple, object,
 initial, enactment},

 = ProcessLanguage
 Gateways Tasks
 ((simple object)
 (simple object))

(a) (b) (c)

object simple initial enactment

Tasks

Legend

alternative
(exactly one)

or
(at least one)

mandatory optional

actors

C =
 F+ = {ProcessLanguage,
 Gateways, Tasks,
 initial},

 F- = {actors}

Fig. 8. (a) Feature model for the running example using the feature diagram notation. (b) Feature model for the running example using Def. 5. (c)
A partial configuration.

Def. 5 (Feature model). A feature model FM = 〈F,Φ〉 consists of a set F of propositional variables called features,
and a satisfiable propositional formula Φ over the variables in F , specifying the valid feature configurations.

Example. Fig. 8 shows the feature model for the running example using (a) the standard feature diagram nota-
tion [KCH+90], and (b) Def. 5. The feature model permits choosing if the process modelling language will have
primitives to define actors (feature actors, cf. Fig. 4(b)), initial tasks and their enactment at level 0 (features initial and
enactment, cf. Fig. 4(c)), as well as selecting whether gateways are to be represented either as references or objects
(features simple and object, cf. Fig. 4(a)). The feature model includes the mandatory features ProcessLanguage, Gateways
and Tasks as syntactic sugar to obtain a tree representation, but they are not needed in our formalization.

The selection of one option within the variability space offered by a feature model is done through a configuration.
A configuration specifies sets of selected and discarded features, assigning the value true to the former and false to
the latter. To enhance flexibility of use, we also support partial configurations where some features are not given any
value (i.e., they are neither selected nor discarded). We will use partial configurations to allow deferring the resolution
of some variability options to lower meta-levels.

Def. 6 (Configuration). Given a feature model FM = 〈F,Φ〉, a configuration of FM is a tuple C = 〈F+, F−〉
made of two disjoint sets F+ ⊆ F and F− ⊆ F , s.t. Φ[F+/true, F−/false] � false. C is total if F = F+ ∪ F−,
otherwise it is partial. The set of all configurations of FM is denoted by CFG(FM).

Given two configurations Ci = 〈F+
i , F

−
i 〉 ∈ CFG(FM) (for i = {0, 1}), C0 is smaller than or equal to C1,

written C0 ≤ C1, if F+
0 ⊆ F

+
1 and F−0 ⊆ F

−
1 . Similarly, C0 < C1 if C0 ≤ C1 and either F+

0 ⊂ F
+
1 or F−0 ⊂ F

−
1 .

In the previous definition, F+ contains the selected features (i.e., those given the value true), F− the discarded
features (i.e., those given the value false), and F \ (F+ ∪ F−) is the set of features whose value has not been set. A
configuration must be compatible with the feature model, so Def. 6 demands that the formula Φ of the feature model is
not false after substituting the features in F+ by true and the features in F− by false. If the configuration is total, then
the condition entails that Φ must evaluate to true. The relation < between configurations defines a partial order where

Language Family Engineering with Product Lines of Multi-level Models 9

total configurations are maximal elements, and the empty configuration (i.e., the configuration that does not select or
discard any feature) is the minimal element.

Remark. We sometimes use the term invalid configuration for a tuple C = 〈F+, F−〉 with F+ ⊆ F and F− ⊆ F ,
s.t. Φ[F+/true, F−/false] ∼= false.

Example. Fig. 8(c) shows an example of configuration, which selects features ProcessLanguage, Gateways, Tasks and ini-
tial; and discards the feature actors. Since features simple, object and enactment remain undefined, it is a partial configura-
tion. The result from substituting the selected and discarded features by their values in the feature model formula is the
following: Φ[{ProcessLanguage, Gateways, Tasks, initial}/true, {actors}/false] ∼= (¬simple∧object) ∨ (simple∧¬object)).

Next, we assign a level to feature models, and potencies to features, in order to control the level at which features
should be assigned a truth value.

Def. 7 (Deep feature model). A deep feature model DFM = 〈l, FM = 〈F,Φ〉, pot〉 is made of a level l ∈ N0, a
feature model FM , and a function pot : F → N0 assigning a potency to each feature, s.t. ∀f ∈ F • pot(f) ≤ l.

Next, we define a mapping between deep feature models, called F-morphism. Similar to D-morphisms (cf. Def. 2),
F-morphisms have a depth that can be positive or 0. In addition, they include a configuration, and a mapping for the
features excluded from the configuration (i.e., those without a value). This is necessary, since we want to represent
specialization relations between the two feature models [TBK09] by means of the (partial) configuration of the mor-
phism. We identify two special kinds of F-morphisms: one representing a type relationship between two feature models
(where the morphism depth is 1 and the configuration empty), and the other expressing a specialization relationship
between two feature models via a total or partial configuration (where the morphism depth is 0).

Def. 8 (F-morphism, type and specialization). Given two deep feature models DFMi = 〈li, FMi, poti〉 (for i =
{0, 1}), a deep feature model morphism (F-morphism in short) m = 〈d,mF , C〉 : DFM0 → DFM1 is made of:

• a depth d ∈ N0 s.t. l0 + d = l1
• an injective set morphism mF : F0 → F1 s.t. ∀f ∈ F0 • pot0(f) + d = pot1(mF (f))

• a configuration C = 〈F+
1 , F

−
1 〉 ∈ CFG(FM1) s.t.:

1. mF (F0) = F1 \ (F+
1 ∪ F

−
1)

2. Φ1[F+
1 /true, F

−
1 /false]

∼= Φ0[F0/mF (F0)]

F-morphism tp is a type morphism if d = 1 and C = 〈∅, ∅〉, and it is an indirect type morphism if d > 1 and
C = 〈∅, ∅〉. F-morphism sp is a specialization if d = 0.

Def. 8 requires that the F-morphism depth fills the gap between the feature model levels, and between the potencies
of the mapped features. FM0 may have fewer features than FM1, in case the configuration C assigns a value to
the missing features with respect to FM1. In particular, the injectivity condition of mF and requiring mF (F0) =
F1 \ (F+

1 ∪ F
−
1) ensures that only the features left undefined by C are mapped from FM0. Moreover, when the

configuration C assigns a value to some feature, the definition requires that the formula Φ1 after replacing the features
in C by their value true or false, is equivalent to Φ0 after replacing the features in F0 by their mapping in F1. This
corresponds to a (partial) evaluation of the formula Φ1 as a result of a feature model specialization.

Example. Fig. 9 shows two F-morphisms, with tp a type and sp a specialization. F-morphism tp : FM1 → FM2

relates two deep feature models FM1 and FM2, where the level and potencies of FM1 are one less than those in
FM2, and the formulae are the same modulo feature renaming. Specialization sp : FM0 → FM1 has depth 0 and
partial configuration C = 〈F+ = {object}, F− = {simple}〉. Hence, the levels and potencies are maintained, but the
feature set F0 is decreased by removing from F1 the features that appear in C. According to condition 1 in Def. 8,
{Gateways} = {Gateways, simple, object} \ ({object} ∪ {simple}). According to condition 2 in the definition, the formula
Φ0 is equivalent to replacing object by true and simple by false in Φ1.

F-morphisms are composable by adding their depths and constructing the union of the positive (resp. negative)
features in the configurations, as the next definition and lemma show. Composition of F-morphisms is necessary as a
basis for the results of Section 5.1.

Def. 9 (F-morphism composition). Given two F-morphisms m1 = 〈d1,m1
F , C

1 = 〈F+
1 , F

−
1 〉〉 : DFM0 → DFM1

and m2 = 〈d2,m2
F , C

2 = 〈F+
2 , F

−
2 〉〉 : DFM1 → DFM2, the composed morphism m2 ◦m1 : DFM0 → DFM2 is

defined as 〈d1 + d2,m2
F ◦m1

F , 〈m2
F (F+

1) ∪ F+
2 ,m

2
F (F−1) ∪ F−2 〉〉.

10 J. de Lara and E. Guerra

tp

FM0 @1

sp
d=0
C= F+={object},
 F-={simple}

DFM2 = 2,
 F2={Gateways, simple, object},
 2 = Gateways
 ((simpleobject)
 (objectsimple)),
 pot2={ (Gateways,2),
 (simple,1),
 (object,1)}

FM2 @2

Gateways

object simple

@2

@1 @1

FM1 @1
Gateways

object simple

@1

@0 @0

DFM1 = 1,
 F1={Gateways, simple, object},
 1 = Gateways
 ((simpleobject)
 (objectsimple)),
 pot1={ (Gateways,1),
 (simple,0),
 (object,0)}

DFM0 = 1,
 F0={Gateways},
 0 = Gateways,
 pot0={(Gateways,1)}

Gateways
@1

d=1
C= ,

Fig. 9. Examples of F-morphisms.

@2
TaskType

initial@1 : boolean
duration : int
rDuration : int

ActorKind

perfBy

Gateway
Type

src

tar

n
ex

t

[actors]

[actors]

[s
im

p
le

]
[object]
[object] [initial]

[enactment]

@2
ProcessLanguage

Gateways

object simple initial enactment

Tasks actors

@0 @0

@1

@1 @2

[object]

*
*

Fig. 10. Deep model PL example.

Lemma 2 (F-morphism composition yields an F-morphism). Given two F-morphismsm1 = 〈d1,m1
F , C

1〉 : DFM0

→ DFM1 and m2 = 〈d2,m2
F , C

2〉 : DFM1 → DFM2, their composition m2 ◦m1 : DFM0 → DFM2 is a valid
F-morphism.

Proof. By checking that the composition satisfies the five requisites for F-morphisms in Def. 8: correct depth, injec-
tivity, composed configuration being correct, and conditions 1 and 2. See proof details in appendix.

Example. In Fig. 9, the composition of sp with tp results in the F-morphism tp ◦ sp, which has depth 1 and config-
uration C = 〈F+ = {object}, F− = {simple}〉. This F-morphism models the combined action of instantiation and
variability specialization, but is neither a type nor a specialization according to Def. 8.

Finally, we are ready to characterize deep model product lines (PLs) as a deep model, a deep feature model with
the same level as the deep model, and a mapping assigning presence conditions (PCs) to deep model elements.

Def. 10 (Deep model PL). A deep model PL DM = 〈M,DFM,φ〉 is made of:

• A deep model M and a deep feature model DFM with the same level (p = l).
• A function φ : C ∪ S ∪ R → B(F) mapping each element in M to a non-false propositional formula over the

features in F , called presence condition (PC), s.t.:

1. ∀s ∈ S ∪R • φ(s) =⇒ φ(src(s))

2. ∀r ∈ R • φ(r) =⇒ φ(tar(r))

3. ∀e ∈ C ∪ S ∪R, ∀v ∈ Var(φ(e)) • pot(v) ≤ pot(e)

In the previous definition, we use function Var to return all variables (i.e., all features) within a propositional
formula. Intuitively, given a configuration, we can derive a product (a deep model) of the PL by deleting the model
elements whose PC evaluates to false when substituting its variables by their value true or false. To avoid dangling
edges in product deep models, Def. 10 requires the PC of slots and references not to be weaker than the PC of their
owning clabject (condition 1), and the PC of references not to be weaker than the one of their target clabject (condition
2). In addition, the variability of an element must be resolved in a level that contains the element or an instance of it.
To this aim, condition 3 requires the potency of an element not to be smaller than the potency of the variables within
its PC.

Language Family Engineering with Product Lines of Multi-level Models 11

DM0@2

DM1@1

actors
@1

actors
@0

tp

Design:
TaskType

DM2@1

sp

C=F+={},
 F-={actors}

Task
Type

DM3@2

sp’

tp’

DM4@1

actors
@0

ex

SoftEng:
ActorKind

UIDsgner:
ActorKind

[actors]

[actors]

[actors]

Skill:

progLang: String
experience: int

Design:
TaskType

[actors]

exp

perfBy perfBy

SoftEng:
ActorKind

UIDsgner:
ActorKind

[actors]

[actors]

[actors]

Design:
TaskType

[actors]

perfBy perfBy

Task
Type

Actor
Kind

[actors]

[actors]
perfBy C=F+={},

 F-={actors}

Fig. 11. Examples of PL-morphisms and deferred configuration.

Example. Fig. 10 shows a deep model PL for process modelling languages. The left compartment contains the deep
feature model, the one to the right contains the deep model, and the PCs are represented between square brackets close
to the deep model elements they are mapped into. If an element does not specify a PC (like TaskType), then its PC is
assumed to be true. This deep model PL permits two alternative realizations for gateways: either as the reference next
if the feature simple is selected, or as the clabject GatewayType if the feature object is selected instead. This variability
needs to be resolved before instantiating the language for a specific domain, as features simple and object have potency
0. The PL also offers the choice to add or not the primitive ActorKind to the language by means of the feature actors;
since this feature has potency 1, this decision can be taken either before specializing the language or at level 1 to enable
exploratory modelling. Finally, the PL allows selecting whether tasks can be initial or hold enactment information. By
condition 3 in Def. 10, feature initial in the feature model cannot have potency 2 because the feature is used in the PC of
attribute TaskType.initial, which has potency 1. The feature model depicts features ProcessLanguage, Gateways and Tasks
in colour and without a potency; this is so as these features are mandatory (i.e., true in any valid configuration), and
while the figure shows them to obtain a tree-like feature model, the formalization of the example does not include
them.

Next, we introduce mappings between deep model PLs (called PL-morphisms) as a tuple of morphisms between
their constituent deep models and deep feature models. As in the previous cases, we are interested in type morphisms,
linguistic extensions, and specializations of deep model PLs via a (partial) configuration.

Def. 11 (PL-morphism, type, extension, specialization). Given two deep model PLs DMi = 〈Mi, DFMi, φi〉 (for
i = {0, 1}), a PL-morphism m = 〈mD,mF 〉 consists of a D-morphism mD : M0 → M1 and an F-morphism
mF : DFM0 → DFM1 with configuration C = 〈F+

1 , F
−
1 〉, s.t.:

∀e ∈ C0 ∪ S0 ∪R0 • φ1(mD(e))[F+
1 /true, F

−
1 /false]

∼= φ0(e)[F0/m
F
F (F0)]

PL-morphism tp = 〈tpD, tpF 〉 is a type if both tpD and tpF are types.
PL-morphism ex = 〈exD, idF 〉 is an extension if exD is an extension and idF is an identity.
PL-morphism sp = 〈mD, spF 〉 is a specialization if spF is a specialization and mD is injective, level-preserving, and
satisfying ∀e ∈ C1 ∪ S1 ∪R1 • (φ1(e)[F+

1 /true, F
−
1 /false] � false⇔ ∃e′ ∈ C0 ∪ S0 ∪R0 •mD(e′) = e).

Remark. There is no condition on the equality of depths of mD and mF , as M0 and DFM0 have the same level, and
in turn, the levels of M1 and DFM1 are equal. The condition for PL-morphisms demands that the PCs in the deep
model M0 are modified according to the selection of features in configuration C of mF . In addition, in specialization
PL-morphisms,M0 should contain just the elements whose PC is not false after substituting the features in F+ by true,
and the ones in F− by false. Therefore, the definition of specialization PL-morphism requires that only the elements
in M1 whose PC is not false after substituting the features by their values, are mapped from M0; while this mapping
mD needs to be injective. Moreover, by Def. 10 of deep model PL, no element in M0 can have a PC that is false.

Other kinds of PL-morphisms are possible, for example, adding features to a feature model in the same or lower
levels to increase its variability. We will introduce this possibility in Section 5.2.

Example. Fig. 11 shows four PL-morphisms (tp, tp′, sp, sp′) and a function ex, which fails to be a PL-morphism.
Both tp and tp′ are types: they relate models at adjacent levels, where one is an instance of (typed by) the other. Types

12 J. de Lara and E. Guerra

always have depth 1 and use the empty configuration C = 〈∅, ∅〉 (cf. Def. 8), and so, a model element and its instances
have the same PC (see, e.g., ActorKind and its instances SoftEng and UIDsgner). Both sp and sp′ are specialization PL-
morphisms. This is so as they preserve levels and potencies, and map injectively the model elements whose PC does
not evaluate to false when applying the configuration C. Actually, since the configuration C of both PL-morphisms is
total, the PC of the elements in DM3 and DM2 evaluates to true, and hence, these models do not have more closed
variability options to configure (i.e., they are final products of the PL).

The figure also shows a deep model DM4, which is an attempt to extend DM1 by a linguistic extension made of
the clabject Skill and its incoming reference exp. However, the result is not a valid deep model PL as the PC of exp (true)
is weaker than the PC of its owner clabject SoftEng (actors). This makes ex fail to be a PL-morphism. DM4 can become
a deep model PL by adding to exp and Skill the PC actors. In such a case, morphism ex (with empty configuration)
would become a PL-morphism.

Finally, we define PL-morphism composition, and show that it leads to a valid PL-morphism.

Def. 12 (PL-morphism composition). Given PL-morphismsm1 = 〈mD
1 ,m

F
1 〉 : DM0 → DM1 andm2 = 〈mD

2 ,m
F
2 〉

: DM1 → DM2, the composition morphism m2 ◦m1 : DM0 → DM2 is defined as 〈mD
2 ◦mD

1 ,m
F
2 ◦mF

1 〉.
Lemma 3 (PL-morphism composition yields a PL-morphism). Given PL-morphisms m1 = 〈mD

1 ,m
F
1 〉 : DM0 →

DM1 and m2 = 〈mD
2 ,m

F
2 〉 : DM1 → DM2, their composition m2 ◦m1 : DM0 → DM2 is a valid PL-morphism. If

m1 and m2 are specializations, so is m2 ◦m1.

Proof. For proving the first part of the lemma, we use Lemmas 1 and 2 (composition of D- and F-morphisms), and then
check the condition in Def. 11. For the second part, we check that the resulting morphism is injective, level-preserving
and that the co-domain keeps only the elements with non-false PC. See proof details in appendix.

5. Engineering and using language families via multi-level model product lines

In this section, we apply and extend the theory presented so far to cover two scenarios in language family engineering.
The first one (Section 5.1) is its usage to represent a language family with variability that is specialized via instantiation
and (partial) configurations. The second one (Section 5.2) covers the creation process of a language family with
variability, which can be done either top-down (by working at the top-level to incrementally extend the language
variability) or bottom-up (by pulling up linguistic extensions and variability options to upper levels).

5.1. Usage of a language family

A deep model PL can be used as a language family with variability. Fig. 12 illustrates this usage scenario. The deep
model with variability at the top describes a language family. This language is created by a language family designer
in step 1. While the figure depicts a language family with depth 3, our framework is general and supports any depth.

Then, the figure depicts two scenarios to the left and right. In the branch (a) to the right, a DSL designer (labelled
DSL-1 designer) customizes the language family by giving a total configuration (step 2a). This resolves all “closed”
variability options offered by the language family definition before using the language. Then, the DSL designer instan-
tiates the language to create the DSL-1 meta-model (step 3a), which DSL-1 users can instantiate to build models (step
4a). Compared with a standard software language engineering process, here the DSL designer uses a language family
meta-model as a basis to create DSL-1, instead of using a meta-modelling language like the OMG’s Meta-Object Fa-
cility [MOF16]. The advantage is that the language family meta-model contains relevant primitives for the DSL scope
(e.g., TaskType, ActorKind), which do not need to be invented anew, but specialized for the domain via instantiation.
Moreover, the language family meta-model can define services like transformations or code generators, which can be
reused for every DSL of the family [dLGC15].

The branch (b) to the left illustrates a more flexible usage scenario, where some “closed” variability options are
not resolved at the top level, but later at lower levels, including level 0. In this case, a DSL designer (labelled DSL-2
designer) specializes the language family definition by providing a partial configuration (step 2b), and then instantiates
the resulting language to define the DSL-2 meta-model (step 3b). However, in this case, some variability options
remain open at level 1. Hence, the DSL users can specialize the language further according to their needs (step 4b),
and then use it to create models (step 5b). In the figure, some variability remains open at level 0, meaning that the DSL
users can create models with variability and resolve this variability later (step 6b).

We need to tackle two issues to properly realize both scenarios. The first one relates to derivation. Since our

Language Family Engineering with Product Lines of Multi-level Models 13

Language
Family

Designer
DSL-2 Designer DSL-1 Designer

instantiates

Language
family

MM

Model

ProcessLanguage

Gateways

objectsimple initial enactment

Tasks

@0 @1 @2

variability

ProcessLanguage

enactment

Tasks

@0

variability
DSL-2 Users

Level 2

Level 1

creates

Level 0

DSL-1 Users

1

4b

Specialized
language

family MM

variability
2b

specializes

DSL-2
MM

variability

3b

Specialized
DSL-2
MM

variability
ProcessLanguage

enactment

Tasks

@1

5b

Model
variability

6b

specialize

specialize

2a

DSL-1
MM

variability

instantiates 3a

Fully
specialized
language

family MM

variability

Model
variability

instantiate 4a instantiate

ProcessLanguage

initial enactment

Tasks

@1@0

specializes
empty

empty

empty empty

Fig. 12. Using a language family with variability. Branch (a – right) resolves the closed variability options before language use. Branch (b – left)
defers variability resolution to lower levels.

theory models configurations by means of specialization morphisms, the question is whether for any (total or partial)
configuration, we can find a corresponding valid specialization morphism. This enables steps 2a, 2b, 4b, and 6b in
Fig. 12. The second one pertains scenario (b). Since we want to allow deferring the variability resolution to lower
levels, the question is whether there is always an equivalent scenario (a) where all the variability is resolved in a first
step. If so, this entails that the expressiveness of a language family with variability is independent on how it is used.

We first tackle the issue concerning derivation. When the configurationC of a specialization PL-morphism sp : DM0

→ DM1 is total, DM0 is a product of DM1 with no variability options to choose from, being equivalent to a deep
model (without the PL part, cf. Def. 1). This is so as the feature model would be empty, and all PCs of the model
elements would be true. However, the question remains whether for any valid configuration C of a deep model PL
DM , we can find a deep model PL DM ′ and a specialization PL-morphism sp : DM ′ → DM via C. This requires
showing that any choice of feature configuration 〈F+, F−〉 produces a valid deep model PLDM ′ as given by Def. 10.
Theorem 5.1 captures this result.

Theorem 5.1 (Specialization morphisms for configurations). Given a deep model PL DM = 〈M,DFM,φ〉 and
any configuration C of DFM , there is exactly one deep model PL DM ′, such that a specialization PL-morphism
sp : DM ′ → DM with configuration C exists.

Proof. We construct a deep model PL DM ′, where its model M ′ has same level as M , and contains the elements
of M with non-false PC. Similarly, the feature model of DM ′ is restricted to the features that have not been set by
C (i.e., those remaining undefined) and the formula is the result of evaluating DFM ’s formula on configuration C.
Then, we prove that such deep model PL is valid according to Def. 10. Finally, we build a specialization PL-morphism
from DM ′ to DM , showing that it fulfils Def 11 and is unique. See proof details in the appendix.

We are now ready to characterize the process of derivation from a deep model PL via a configuration, using
specialization PL-morphisms and the results of Theorem 5.1.

Def. 13 (Derivation). Given a deep model PL DM = 〈M,DFM = 〈l, FM, pot〉, φ〉, the set of derivable deep
model PLs Der(DM) = {DM ′ | ∃sp : DM ′ → DM with configuration C ∈ CFG(FM)} is made of the
set of all deep models DM ′ s.t. there is a specialization PL-morphism sp : DM ′ → DM using any (total, partial)
configuration C of DFM . DM ′ is called a (total, partial) product of DM .

Next, we look into the second issue, which is the soundness of deferring the configuration of an element after it
is instantiated. The question is whether, in every situation that allows configuring an element after its instantiation,
we obtain the same result by resolving the element variability first and then instantiating. This result is important as,

14 J. de Lara and E. Guerra

DM0 DM3sp′oo

DM1

tp

OO

=

DM2spoo

tp′

OO

Fig. 13. Deferred configuration: specialization can be advanced to instantiation.

regardless of the order in which configurations and instantiation are performed, we can calculate the language that
results from applying the configurations as the first step, by advancing the configuration steps over the instantiations.

The next theorem captures the fact that if we can instantiate and then configure, then we obtain the same result if
we configure and then instantiate.

Theorem 5.2 (Specialization can be advanced to instantiation). Given three deep model PLsDMi = 〈Mi, DFMi,
φi〉 (for i = {0, 1, 2}), a type PL-morphism tp : DM1 → DM0 and a specialization PL-morphism sp : DM2 →
DM1, there is a unique deep model PL DM3 ∈ Der(DM0), a specialization PL-morphism sp′ : DM3 → DM0 and
a type PL-morphism tp′ : DM2 → DM3 s.t. the diagram in Fig. 13 commutes.

Proof. We use Theorem 5.1 to construct a deep model PL DM3 and a specialization morphism sp′ : DM3 → DM0,
using the configuration of specialization morphism sp. Then, a well-defined, unique type PL-morphism from DM2 to
DM3 can be constructed by restricting tp. See proof details in appendix.

Remark. The converse is not true in general, that is, instantiation cannot always be advanced to specialization. The
reason is that type morphisms to features with potency 0 are disallowed, and so they must be configured first.

Example. Fig. 11 shows a deferred configuration. Deep model PL DM0 is instantiated into DM1, and then special-
ized using the configuration C = 〈F+ = {}, F− = {actors}〉 to yieldDM2. As the figure shows, we obtain the same
result by first specializing DM0 using C, which yields DM3, and then instantiating DM3 into DM2. Deep model PL
DM3 is relevant since it corresponds to the fully-configured language (i.e., with no unresolved variability) employed
to build DM2.

Finally, we use Theorem 5.3 to ensure that, given any arbitrary chain of specializations (via partial configurations)
and instantiations, we can calculate the fully configured language by applying all configurations in one step. This
allows going from scenario (b) to scenario (a) in Fig. 12 by iterating the construction of Theorem 5.2 (cf. Fig. 13).

Theorem 5.3 (Equivalent fully configured language). Given a chain of PL-morphisms:

DM0
tp1← DM1

sp2←− DM2...
tpn← DMn

spn+1←− DMn+1

where each tpi is a unique type PL-morphism and each spi is a specialization PL-morphism, there is:

1. a unique deep model PL DMFC ∈ Der(DM0), called fully configured language, and
2. a specialization PL-morphism sp′0 : DMFC → DM0 with a configuration that selects and discards the same

features as the configurations of sp2, ..., spn+1,

such that DMn+1 is an (indirect) instance of DMFC .

Proof. This proof uses Theorem 5.2 to advance specialization to type PL-morphisms, and the fact that PL-morphisms
can be composed. See proof details in appendix.

Example. Fig. 14 shows an example of calculation of the equivalent fully configured language (DMFC) of the chain
DM0 ← DM1 ← DM2 ← DM3 ← DM4. The diagram depicts a scenario where the language family meta-model
(DM0) is instantiated for the industrial process domain (DM1), and two instances of TaskType (Laminate and Mill) and
one of ActorKind (Operator) are defined. Subsequently, the designer decides to discard ActorKinds from the language since
both task types are automated. This is done by the specialization morphism sp2, where the configuration sets feature
actors to false, and the result is DM2. Then, this industrial process model language description DM2 is instantiated
into DM3. At this point, the modeller realizes that the real task duration (rDuration attribute) is always the same as
the expected task duration (duration attribute), since tasks are automated. Hence, a specialization sp4 that sets feature
enactment to false is performed, yielding model DM4. DM4 does not have any variability options to configure.

Now, we use Theorem 5.3 to calculate the equivalent fully configured language (DMFC) in the figure. This is the
indirect deep model type that results from doing all the specializations before any instantiation, and corresponds to

Language Family Engineering with Product Lines of Multi-level Models 15

@2
TaskType

duration : int
rDuration : int

ActorKind

perfBy
[actors]

[actors]

[enactment]

@2

ProcLanguage

enactment actors
@1 @2

@1

Mill: TaskType

:perfBy

[actors]

[actors]

@1

ProcLanguage

enactment actors
@0 @1

Laminate: TaskType

Operator:
ActorKind

:p
e

rf
B

y
[a

ct
o

rs
]

tp1

@1

Mill: TaskType

@1

ProcLanguage

enactment
@1

Laminate: TaskType

sp2

F+={},
F-={actors}

@0

PlasticMill: Mill

@0

ProcLanguage

enactment
@0

PlasticLam: Laminate

duration = 5
rDuration = 5

duration = 25
rDuration = 25

@0

PlasticMill: Mill

@0

PlasticLam:
Laminate

duration = 5

duration = 25 sp4

F+={},
F-={enactment}

tp3

duration : int
rDuration : int

duration : int
rDuration : int

[enactment]

[enactment]

[enactment]

[enactment]

@1

Mill: TaskType

@1

Laminate: TaskType
duration : int

duration : int

F+={},
F-={enactment}

sp’4

tp’3

F+={}, F-={actors, enactment}

sp’’4

@2
TaskType

duration : int

@2

F+={}, F-={actors, enactment} sp’0

duration : int
rDuration : int [enactment]

duration : int
rDuration : int [enactment]

DM0

DM1

DM2

DM3 DM4

=

=

=

DMFC1

DMFC

tp’1

Fig. 14. Calculating the equivalent fully configured language of the exploratory modelling chain DM0 ← DM1 ← DM2 ← DM3 ← DM4.

Language
family MM

variability

Level 2

Level 1

creates 1

2a
extends
MM &

variability

DSL
MM

variability Extended
DSL
MM

2b

3b

4b

extends MM &
variability

lifts
variability

creates

Top-down
language definition

Bottom-up
language definition

ProcLang

initial enactment

Tasks

@1 @2

ProcLang

Gateways

object simple
@0 @0

ProcessLanguage

Gateways

object simple initial enactment

Tasks

@1 @0 @1 @1

ProcLang

Gateways

objectsimple
@1@1

ProcLang

Gateways

objectsimple
@0@0

ProcessLanguage

Gateways

objectsimple initial enactment

Tasks

@1 @0 @1@1

extension morphism extension morphism

extension morphism

extended
variability

Extended
language

family MM

ProcessLanguage

Gateways

objectsimple initial enactment

Tasks

@0 @1 @2@0

extended
variability

Language
Family

Designer

Extended
language

family MM

ProcessLanguage

Gateways

objectsimple initial enactment

Tasks

@0 @1 @2@0

extended
variability

Fig. 15. Creating a language family with variability. (a) Top-down approach. (b) Bottom-up approach.

the language definition without variability needed to create DM4. First, we use Theorem 5.2 to build DMFC1. This is
the deep model type of DM4 without variability options at level 1. Then, we use the composition morphism sp2 ◦ sp′4
to iterate the same construction to yield DMFC . Finally, we compose tp′1 ◦ tp′3 to obtain an indirect type morphism
DM4 → DMFC .

For clarity, note that models DM1, DM2 and DMFC1 explicitly show the attributes rDuration and/or duration, but
these are normally hidden in practical tools.

5.2. Engineering a language family with open and closed variability

In this subsection, we turn our attention at how language families are constructed with our approach, based on the
notion of extension. As it is common in standard practice of SPLs [KC16], we anticipate two processes called top-
down and bottom-up, as depicted in Fig. 15.

In the top-down approach, shown in branch (a) to the right of the figure, the variability options are defined up-front
together with the language meta-model. This requires support for extension to increase both the feature model and
the meta-model of the language family (step with label 2a). For this purpose, we will define a new kind of morphism
between deep model PLs to represent such extensions.

16 J. de Lara and E. Guerra

@2

Tasks

initial
@2

@2
Tasks

initial
@2

enactment
@2

m1

@2

Tasks

initial
@2

@2
Tasks

initial
@2

enactment
@2

m2

(a) (b)

DFM0 DFM1 DFM2 DFM3

Fig. 16. Correct (a) and incorrect (b) EF-morphisms.

In the bottom-up approach, shown in branch (b) to the left of the figure, concrete language instantiations at low
levels guide the creation or extension of the language family definition at the top level. For example, the language
family designer may instantiate a draft version of the language family meta-model for exploratory modelling (step
2b), and then realize that the given domain requires adding linguistic extensions to the instance or extending the
feature model with additional variability options (step 3b). If such extensions are deemed general, a lifting process
can promote them one level up, in the figure from level 1 to level 2 (step 4b). This way, the original language family
definition becomes extended. Moreover, if the designer specializes the language family via a configuration before
performing the extension at level 1, then we need to advance the extension to the specialization to incorporate the new
variability to the top level. For this purpose, we will have to characterize compatibility conditions between extension
and specialization. While the proposed bottom-up techniques may enable the creation of a language family from
scratch out of a set of existing individual sample languages, we will tackle this scenario in future work.

In the remainder of this section, we first introduce extension morphisms to enable increasing the variability of deep
model PLs. Then, we define mechanisms to advance extension to specialization and to instantiation in order to enable
the bottom-up construction of deep model PLs. We start by defining extension morphisms (EF-morphisms) between
deep feature models. Since we aim for interleaving specializations and extensions, we allow feature model extensions
only if they preserve all (partial) configurations of the feature model. Def. 14 formalizes this intuition.

Def. 14 (EF-morphism). Given two deep feature models DFMi = 〈li, FMi = 〈Fi,Φi〉, poti〉 (for i = {0, 1}) with
the same level, a variability extension deep feature model morphism (EF-morphism in short), written DFM0

me=⇒
DFM1, is an injective set morphism me : F0 → F1 such that:

1. ∀f ∈ F0 • pot0(f) = pot1(me(f))

2. ∀ C0 = 〈F+
0 , F

−
0 〉 ∈ CFG(FM0), ∃ C1 = 〈F+

1 , F
−
1 〉 ∈ CFG(FM1) • me(F

+
0) ⊆ F+

1 ∧me(F
−
0) ⊆ F−1 ∧

∀ C0 = 〈F+
0 , F

−
0 〉 /∈ CFG(FM0), 6 ∃ C1 = 〈F+

1 , F
−
1 〉 ∈ CFG(FM1) • me(F

+
0) ⊆ F+

1 ∧me(F
−
0) ⊆ F−1

Condition 1 in the definition preserves the potencies. Condition 2 ensures that any (partial) configuration 〈F+
0 , F

−
0 〉

of FM0 can be extended to a (partial) configuration of FM1 by expanding the sets F+
0 and F−0 . Hence, modulo feature

renaming byme, we haveC0 ≤ C1. In addition, condition 2 prevents extending invalid configurations of FM0 to valid
configurations of FM1.

Example. Fig. 16 shows two examples of allowed and disallowed extensions of deep feature models. In Fig. 16(a)
the deep feature model DFM0 is extended with a new optional feature called enactment. Morphism m1 is a valid
extension, since any non-valid configuration in DFM0 cannot be extended to a valid one in DFM1, and any valid
configuration in DFM0 can be extended to a valid one in DFM1. However, morphism m2 in Fig. 16(b) is not
a valid EF-morphism. In this case, the extension attempt adds an optional feature called enactment and makes the
existing feature initial mandatory. This is not a valid EF-morphism since configurations of DFM2 making initial false
(〈F+ = {}, F− = {initial}〉) are valid, but cannot be extended to valid configurations of DFM3.

Remark. We cannot use the F-morphisms from Def. 8 to represent extensions, since F-morphisms include a (partial)
configuration modelling a specialization. For example, in the EF-morphism m1 in Fig. 16(a), this implies being able
to assign a true or false value to feature enactment, which is not possible because the feature does not exist in DFM0.
Moreover, condition 1 in Def. 8 of F-morphisms requires DFM0 and DFM1 to have the same feature set, and
condition 2 requires they have equivalent formula modulo their partial evaluation using the morphism configuration.

Next, we need to check that EF-morphisms can be advanced to specialization (to enable advancing variability
extensions to configurations) and to type F-morphisms (to allow lifting variability extensions to upper levels). Lemma 4
formalizes this.

Language Family Engineering with Product Lines of Multi-level Models 17

DFM1 DFM0
me +3moo

��

DFMext DFM0

me

"*N
NNN

NNN
N

NNN
NNN

NN
m

xxrrr
rrr

rrr

=DFM1

m′e

"*L
LLL

LLL
L

LLL
LLL

LL
DFMext

m′

xxqqq
qqq

qqq
q

DFM1

m′e +3 DFMext
0 DFMextm′oo DFMext

0

Fig. 17. Advancing extension to specialization/typing (left). Commuting square (right).

@2

Tasks

initial
@2

DFM0

@2
Tasks

initial
@2

DFM1

final
@1

@2
Tasks

initial
@2

enactment
@1

@2
Tasks

initial
@2

enactment
@1

final
@1

C=F+={}, F-={final}

m me

m’e
m’

=

DFMext

DFM0
ext

C=F+={}, F-={final}

@1

Tasks

initial
@1

DFM0

@2

Tasks

initial
@2

DFM1 @1
Tasks

initial
@1

enactment
@0

@2
Tasks

initial
@2

enactment
@1

C=F+={}, F-={}

t
me

m’e t’

=

DFMext

DFM0
ext

C=F+={}, F-={}

(a) (b)

Fig. 18. Examples of advancing EF-morphisms to F-morphisms. (a) Advancing through a specialization F-morphism. (b) Advancing through a type
F-morphism.

Lemma 4 (EF-morphisms can be advanced to F-morphisms). Given an F-morphismm = 〈d,mF , C〉 : DFM0 →
DFM1 and an EF-morphism DFM0

me=⇒ DFMext, there is a deep feature model DFMext
0 , an F-morphism

m′ = 〈d,m′F , C〉 : DFMext → DFMext
0 , and an EF-morphism DFM1

m′e=⇒ DFMext
0 s.t. m′e ◦mF = m′F ◦me as

Fig. 17 shows.

Proof. We first construct the deep feature model DFMext
0 by the union of features of DFM1 and DFMext, and

the disjunction of their formulae. Then, morphisms m′ and m′e are built and shown to commute. See proof details in
appendix.

Example. Fig. 18(a) shows an example of advancing an EF-morphism (me in the figure) to a specialization F-
morphism (m in the figure). F-morphismmmodels a specialization ofDFM1 that assigns false to feature final. The EF-
morphism me models the addition of an optional feature enactment to DFM0. In this setting, we can construct a deep
feature model DFMext

0 by merging DFM1 and DFMext. We obtain an extension EF-morphism m′e which models
the addition of feature enactment to DFM1, and a specialization morphism m′ that assigns the value false to feature fi-

nal. Overall, we have been able to advance the extension over the configuration: inDFM1
m←− DFM0

me=⇒ DFMext,

we configure DFM1 and then extend the variability; while in DFM1
m′e=⇒ DFMext

0
m′←− DFMext, we first extend

DFM1 and then configure.
The advancement of extensions through type F-morphisms is also possible. Fig. 18(b) shows an example, where

the potency of feature enactment in DFMext
0 is obtained by adding the depth of morphism t to the potency of the

feature in DFMext.

Remark. Technically, DFMext
0 is not unique because there are many equivalent formulae Φ modelling the same

feature model.

Now, we use EF-morphisms to define extensions of deep model PLs. For this purpose, we define EPL-morphisms.
Unlike PL-morphisms in Def. 11, EPL-morphisms permit making the PC of elements stronger, which is useful to

18 J. de Lara and E. Guerra

@2

Tasks

initial
@1

DM0

TaskType

initial@1 : boolean
duration : int

[initial]

@2

Tasks

initial
@1

DM1

TaskType

initial@1 : boolean
duration : int
rDuration : int

[initialenactment]

enactment
@2

[enactment]

m

Fig. 19. Example of EPL-morphism.

DM1 DM0
me
+3moo

��

DMext DM0

me

!)K
KKK

KKK
K

KKK
KKK

KK
m

zzttt
tt
tt
t

=DM1

m′e

 (I
II

II
II

II
II

II
I

DMext

m′

yysss
sss

sss

DM1
m′e +3 DMext

0 DMextm′oo DMext
0

Fig. 20. Advancing extension to specialization/typing (left). Commuting square (right).

allow the PC of existing elements to use the new features added by a deep feature model extension. Def. 15 captures
this new type of morphism.

Def. 15 (EPL-morphism). Given two deep model PLs DMi = 〈Mi, DFMi, φi〉 (for i = {0, 1}) with same level,
an extension PL-morphism (EPL-morphism in short) m = 〈mD,me〉, written DM0

m
=⇒ DM1, is made of a D-

morphism mD : M0 → M1 and an EF-morphism DFM0
me=⇒ DFM1 s.t. ∀e ∈ C0 ∪ S0 ∪ R0 • φ1(mD(e)) =⇒

φ0(e)[F0/me(F0)].

Example. Fig. 19 shows an example EPL-morphism m. On the one hand, its constituent EF-morphism expands the
feature model with an additional optional feature enactment. On the other, its D-morphism adds a new attribute rDuration
to clabject TaskType. The PC of attribute initial is refined to initial∧enactment, which the condition in Def. 15 allows since
initial∧enactment =⇒ initial. The new attribute rDuration is assigned a PC, which is also allowed since the attribute is not
mapped from DM0.

Remark. We cannot use standard PL-morphisms to represent EPL-morphisms, as only the former but not the latter
include a configuration. In the example of Fig. 19, the configuration could assign the value false to enactment to
emulate that DM0 does not define attribute rDuration, but this attribute could define any PC (e.g., enactment∨initial) that
may not evaluate to false. Moreover, the PC of initial in DFM1 is initial∧enactment, which does not evaluate to initial
when substituting enactment by false.

We are ready to enunciate the main results of this subsection. First, Theorem 5.4 states that EPL-morphisms can be
advanced to (both type and specialization) PL-morphisms under certain conditions. Then, Corollary 1 states that these
conditions are enough for type PL-morphisms, while specialization PL-morphisms require an additional condition
guaranteeing the compatibility of the extension with the configuration chosen for the specialization.

Theorem 5.4 (EPL-morphisms can be advanced to PL-morphisms). Let m = 〈mD,mF 〉 : DM0 → DM1 be a
PL-morphism and me = 〈mD

e ,me〉 : DM0 → DMext an EPL-morphism, such that:

1. ∀ei, ej ∈ C0 ∪ S0 ∪R0 •mD(ei) = mD(ej) =⇒ φext(mD
e (ei)) = φext(mD

e (ej))

2. ∀e ∈ C0 • φext(mD
e (e)) = φ0(e)[F0/me(F0)].

We can build a deep model PL DMext
0 , a PL-morphism m′ = 〈m′D,m′F 〉 : DMext → DMext

0 and an EPL-

morphism DM1
m′e
=⇒ DMext

0 with m′e = 〈m′De ,m′e〉 s.t. m′e ◦ mF = m′F ◦ me and m′De ◦ mD = m′D ◦ mD
e as

Fig 20 shows.

Proof. We first construct the deep model PL DMext
0 , where the model part is built by a construction similar to a

pushout in graphs, and the deep feature model is built as in the proof of Lemma 4. Then, the morphisms m′ and m′e
are constructed and shown to commute. See proof details in appendix.

Language Family Engineering with Product Lines of Multi-level Models 19

@2

Tasks

initial
@1

DM1

TaskType

initial@1 : boolean [initial]

@1

Tasks

initial
@0

DMext

enactment
@1 m

@1

Tasks

initial
@0

DM0

Laminate: TaskType

initial= false [initial]

tp

Mill: TaskType

initial= false [initial]

Laminate: TaskType

initial= false
rDuration : int

[initial]

[enactment]

Mill: TaskType

initial= false
rDuration : int [enactment]

[initial]

TaskType

initial@1 : boolean
rDuration : int [enactment]

[initial]

@2 DM0
ext

Tasks

initial
@1

enactment
@2

m’

tp’

@2

Tasks

initial
@1

DM1

TaskType

initial@1 : boolean [initial]

@2

Tasks

DM0

TaskType

C=F+={}, F-={initial}
sp

Tasks

enactment
@2

TaskType

rDuration : int [enactment]

DMext @2

TaskType

initial@1 : boolean
rDuration : int [enactment]

[initial]

@2 DM0
ext

Tasks

initial
@1

enactment
@2

m’

m

sp’
C=F+={}, F-={initial}

=

=

(a) (b)

Fig. 21. Examples of advancing EPL-morphisms to PL-morphisms. (a) Advancing through a type PL-morphism. (b) Advancing through a special-
ization PL-morphism.

In the previous theorem, condition 1 requires that the elements in DM0 that are mapped to the same element in
DM1 have the same PC in DMext. In addition, condition 2 forbids that the extension modifies the PC of clabjects to
avoid dangling references and slots when advancing the extension morphism.

Corollary 1 (Preservation of type and specialization PL-morphisms). Let m = 〈mD,mF 〉 : DM0 → DM1 be a
PL-morphism and me = 〈mD

e ,m
F
e 〉 : DM0 → DMext an EPL-morphism satisfying the conditions of Theorem 5.4,

and let m′ be the advanced PL-morphism. Then:

1. If m is a type PL-morphism, so is m′.
2. If m is a specialization, and ∀e ∈ Cext ∪ Sext ∪ Rext • φext(e)[F+/true, F−/false] � false, then m′ is a

specialization.

Proof. Regarding 1) by construction m′ and m have same depth, and so if m is type, so is m′. For 2) in addition, we
need to check injectivity, and the condition on the PCs as per Def. 11. See details in appendix.

Example. Fig. 21 illustrates the advancement of EPL-morphisms to PL-morphisms. In particular, Fig. 21(a) shows
an example of extension that is advanced to instantiation. We start from a situation where DM1 has been instantiated
into DM0, which has two instances of TaskType, and next, DM0 has been extended into DMext by adding a new
feature enactment and a linguistic extension rDuration to both task types. Then, by using Theorem 5.4, we build model
DMext

0 and morphisms tp′ and m′. This means that we can first extend DM1 (via m′) to yield DMext
0 and then

instantiate DMext
0 (via tp′) to yield DMext. However, not any DMext permits this advancement, as the condition of

Theorem 5.4 states. For example, should we assign the PC enactment∧initial to Laminate.rDuration, we would not obtain
a correct type PL-morphism m′. This is so as Laminate.rDuration and Mill.rDuration are both mapped to the same clabject
TaskType.rDuration in DMext

0 , but they would have different PCs.
Fig. 21(b) shows that Theorem 5.4 can also be applied to advancing extension to specialization. In the figure, we

start from a situation where DM1 has been specialized via the PL-morphism sp with configuration C = 〈F+ =
{}, F− = {initial}〉 to yield DM0, and then, DM0 has been extended via the EPL-morphism m to yield DMext.
DMext contains an extra feature enactment and a linguistic extension rDuration. We can use Theorem 5.4 to obtain
DMext

0 and morphisms m′ and sp′. This way, we can first extend DM1 (via m′) and then specialize it (via sp′). The
PC of rDuration in DMext satisfies the condition of Corollary 1, since enactment[initial/false] = enactment � false. Should
the PC be enactment∧initial, then sp′ would not be a proper specialization. This is so as enactment∧initial[initial/false] =
false, and so the field TaskType.rDuration should not be present in DMext. In this case, the extension would collide with
the specialization, precluding the advancement.

6. Tool support

We have implemented the notions presented so far atop METADEPTH [dLG10]. This is a textual multi-level modelling
tool which supports an arbitrary number of meta-levels and deep characterization through potency. It integrates the
Epsilon family of languages for model management [PKR+09], which permits defining code generators and model
transformations for multi-level models.

METADEPTH was used to define language families via multi-level modelling in [dLGC15], but it did not support

20 J. de Lara and E. Guerra

the definition of closed sets of variability options by means of PLs. For this work, we have extended the tool to
allow creating deep feature models and multi-level models with PCs, specializing deep model PLs via configurations,
extending them with new features, and advancing those extensions to instantiations. The extended tool is available at
http://metadepth.org/pls, together with examples of use.

In the following we showcase the use of the tool for three different activities: top-down creation of language fam-
ilies (Section 6.1), use of language families (Section 6.2) and bottom-up extension of language families (Section 6.3).
Overall, these activities cover the scenarios explained in Sections 5.1 and 5.2.

6.1. Top-down creation of language families

METADEPTH has a uniform textual syntax to specify models at any meta-level, similar to the UML Human-Usable
Textual Notation [OMG04]. In addition, the tool supports the specification of domain-specific textual syntaxes for
deep language families [dLGC15]. While the approach fosters a textual approach to modelling, the tool is able to
produce read-only graphical views with the models being built, which may help in their comprehension.

Listing 1 specifies the deep model in the right part of Fig. 10, using METADEPTH’s syntax. First, line 1 states the
name of the deep feature model (defined in Listing 2) associated to the deep model. Then, line 2 declares a deep model
with level 2, named ProcessModel. This contains three clabjects: TaskType (lines 3–13), ActorKind (lines 15–16) and
GatewayType (lines 18–22). PCs are specified as @Presence annotations. This is possible as, similar to Java [CdL16],
METADEPTH permits defining annotation types by providing their syntax, parameters, and the kind of elements they
can annotate (models, clabjects or fields) [SdL18]. This definition is a meta-model, and so, when annotations are
parsed, they are transformed into a model conforming to such meta-model. The model with the parsed annotations
contains references to the annotated model (e.g., ProcessModel in this case). Representing annotations as models, allows
well-formedness checking of the specific annotations with respect to their definition (i.e., the annotation values are not
just uninterpreted strings).

1 @Variability(model=”ProcessOptions”)
2 Model ProcessModel@2 {
3 Node TaskType {
4 @Presence(condition=”initial”)
5 initial@1 : boolean = false;
6 duration : int;
7 @Presence(condition=”enactment”)
8 rDuration : int;
9 @Presence(condition=”simple”)

10 next : TaskType;
11 @Presence(condition=”actors”)
12 perfBy : ActorKind;
13 }
14
15 @Presence(condition=”actors”)
16 Node ActorKind;
17
18 @Presence(condition=”object”)
19 Node GatewayType {
20 src : TaskType[∗];
21 tar : TaskType[∗];
22 }
23 }

Listing 1: Deep model PL.

Regarding the PC of fields, for usability reasons, our implementation internally conjoins the PC of fields with the
PC of their owner clabject. For example, the PC of reference Gateway.src is object, because the PC of Gateway is object.
This guarantees that condition 1 in Def. 10 is satisfied, while conditions 2 and 3 are checked by constraints. Finally,
please note that, while the condition parameter of the Presence annotation is a String, we internally check that it is a
well formed boolean formula, which uses the features of the feature model identified in the Variability annotation of the
model.

We have created a meta-model for deep feature models, and designed a domain-specific textual syntax for it, similar
to the FAMILIAR tool [ACLF13]. Listing 2 shows the METADEPTH definition of the deep feature model in Fig. 10
(but we changed the potency of features simple and object to 1). Line 1 declares a feature model called ProcessOptions
with level 2. Line 2 declares the root feature ProcessLanguage, and its children features Gateways, Tasks and actors.
Children features can specify a potency after the “@” symbol, and be declared optional using the “?” symbol. Line 3

Language Family Engineering with Product Lines of Multi-level Models 21

ProcessModel@2 PCAnnotations@0 ProcessOptions@0

PCAnnotations@1 FeatureModelMM@1

TaskType :Presence

condition=“simple”

simple:Feature

val=undef

«conforms to» «conforms to»

Feature

val: boolean[0..1]

Presence

condition: String

… … …
…

next

…

Fig. 22. Internal METADEPTH representation of a deep model PL.

declares the children of Gateways, which are alternative as specified by the keyword alt. Line 4 declares the children of
Tasks, which are optional.

1 FeatureModel ProcessOptions@2 {
2 ProcessLanguage : Gateways Tasks actors?@1;
3 alt Gateways : simple@1 object@1;
4 Tasks : initial?@1 enactment?@2;
5 }

Listing 2: Deep feature model.

Fig. 22 shows the internal representation of a deep model PL in METADEPTH. The PC annotations are automati-
cally converted into an annotation model, which is also linked to the deep feature model (ProcessOptions). Such feature
model is generated from the textual concrete syntax shown in Listing 2.

6.2. Using language families

To use a deep model with PCs, like the one in Listing 1, it needs to be instantiated. Annotations in METADEPTH can
attach actions to be triggered upon certain modelling events, like instantiation or value assignment. These actions are
defined via a meta-object protocol (MOP) [SdL18, KR91]. This way, we have defined a MOP with actions for the PC
annotations, to help instantiating deep model PLs. Specifically, when an element of a deep model with variability is
instantiated (like ProcessModel in Listing 1), its PC is copied to the instance. Moreover, a constraint forbids instantiating
a deep model PL if the associated deep feature model has features with potency 0.

Listing 3 displays a small instance of the deep model PL of Listing 1, as would be created by a modeller. Line
1 declares the model type (ProcessModel) and the model name (SoftwarePM). Then, the model declares two instances
of TaskType called Requirements and Design. The former sets the value of field initial to true, while the latter sets it to
false and declares a linguistic extension called description. Please note that, this model has potency 1, since the type has
potency 2. This potency does not need to be explicitly specified, but it is calculated by the tool.

1 ProcessModel SoftwarePM {
2 TaskType Requirements{
3 initial = true;
4 }
5
6 TaskType Design {
7 initial = false;
8 description : String;
9 }

10 }

Listing 3: Using a deep model PL.

As mentioned, the MOP we have created for variability handling inserts the required PC annotations in the model
as needed. Listing 4 shows the model with such annotations included (cf. lines 1, 4 and 8). This process is totally
transparent to the modeller, who can recover such annotated model when it is displayed on METADEPTH’s console by
using command dump.

22 J. de Lara and E. Guerra

1 @Variability(model= ”ProcessOptions”)
2 ProcessModel SoftwarePM {
3 TaskType Requirements {
4 @Presence(condition= ”initial”)
5 initial=true;
6 }
7 TaskType Design {
8 @Presence(condition= ”initial”)
9 initial=false;

10 description:String;
11 }
12 }

Listing 4: Generated PC annotations.

In addition to instantiation, the user of the language family needs to configure the language. For this purpose, we
have created a command called config to specialize a deep model PL via a configuration (see Listing 5). When the
command is executed, the PCs attached to model elements are evaluated (partially if the configuration is partial), and
they are removed if their value is false. The applied configuration (i.e., the boolean values assigned to the features) is
stored in the deep feature model itself (cf. model ProcessOptions in Fig. 22).

1 config ProcessModel with { !initial, object }

Listing 5: Feature configuration.

The config command – when used without the with argument – can also be used to obtain the current configuration
of a deep model PL. Overall, this simple example language already admits 16 total configurations, which can be
succinctly represented as a PL, increasing its reuse possibilities.

Applying the configuration of Listing 5 eliminates the initial and next fields of TaskType in Listing 1, which are
therefore eliminated from the instance models, like the one in Listing 4. Please note that by setting object to true, we
are implicitly setting simple to false, since they are alternative features. Overall, the resulting deep model PL is shown
in Listing 6.

1 @Variability(model=”ProcessOptions”)
2 Model ProcessModel@2 {
3 Node TaskType {
4 duration : int;
5 @Presence(condition=”enactment”)
6 rDuration : int;
7 @Presence(condition=”actors”)
8 perfBy : ActorKind;
9 }

10
11 @Presence(condition=”actors”)
12 Node ActorKind;
13
14 Node GatewayType {
15 src : TaskType[∗];
16 tar : TaskType[∗];
17 }
18 }
19 @Variability(model= ”ProcessOptions”)
20 ProcessModel SoftwarePM {
21 TaskType Requirements;
22 TaskType Design {
23 description:String;
24 }
25 }

Listing 6: Deep model PL after partial configuration.

6.3. Bottom-up extension of language families

As described in Section 6.3, another scenario of interest is the bottom-up creation of language families. In this scenario,
extensions to both the feature model and the model are done at lower meta-levels, and then promoted to the top-level.
For this purpose, we have created a command add feat, which adds features to the feature model. Listing 7 shows an

Language Family Engineering with Product Lines of Multi-level Models 23

example, which adds an optional feature named details, with potency 2, under the Tasks feature. The command updates
the feature model, checking that the extension is possible according to Def. 14.

1 add opt feat details@2 under Tasks

Listing 7: Extending the feature model.

Then, the new features can be used within the PC formulae of the model elements. For example, we can use the
introduced details optional feature to tag modelling elements that are useful to provide detailed insights of the different
tasks of specific software process models, as Listing 8 depicts.

1 @Variability(model= ”ProcessOptions”)
2 ProcessModel SoftwarePM {
3 TaskType Requirements;
4 TaskType Design {
5 @Presence(condition=”details”)
6 description:String;
7 }
8 @Presence(condition=”details”)
9 Node Issue {

10 comments : String;
11 dsgnTasks : Design[∗];
12 reqTasks : Requirements[∗];
13 }
14 }

Listing 8: Extending a model PL at level 1.

In the listing, we have added the PC details to Design.description, and to clabject Issue. The latter is a linguistic
extension that allows attaching comments to design or requirements tasks at the level below. At this point, the designer
may realize that such an extension might be useful for other domains beyond software process modelling. Hence,
we have created a command called promote to advance such extensions to instantiation, pulling them up to the upper
meta-level. This process checks the pre-conditions in Theorem 5.4, required for the advancement to become possible.
Listing 9 displays the resulting top-level model. In this model, field TaskType.description (line 10) was created, together
with a new clabject IssueType (lines 17–20). The latter serves as a type for clabject Issue in Listing 8, and where field
IssueType.tasks is the type for both Issue.dsgnTasks and Issue.reqTasks. Technically, the command promote uses two types
of multi-level refactorings [dLG18]: createClabjectType and createFeatureType. The former creates a clabject type at the
upper meta-level for a clabject linguistic extension, while the latter creates a field type at the upper meta-level for a
field linguistic extension. Please note that we follow a naming convention for introduced clabject types (the name of
the lower-level clabject followed by “Type”), while names of introduced reference types (like IssueType.tasks) need to
be given by the modeller.

1 @Variability(model=”ProcessOptions”)
2 Model ProcessModel@2 {
3 Node TaskType {
4 duration : int;
5 @Presence(condition=”enactment”)
6 rDuration : int;
7 @Presence(condition=”actors”)
8 perfBy : ActorKind;
9 @Presence(condition=”details”)

10 description : String;
11 }
12
13 @Presence(condition=”actors”)
14 Node ActorKind;
15
16 Node GatewayType {
17 src : TaskType[∗];
18 tar : TaskType[∗];
19 }
20
21 @Presence(condition=”details”)
22 Node IssueType {
23 comments : String;
24 tasks : TaskType[∗];
25 }
26 }

Listing 9: Extended deep model PL.

24 J. de Lara and E. Guerra

7. Related work

Next, we review related research coming from language product lines (Section 7.1), variability in multi-level modelling
(Section 7.2) and software product lines (Section 7.3).

7.1. Language product lines

Some researchers have proposed increasing the reusability of modelling languages by incorporating SPL techniques
(see [MGD+16] for a survey). For example, in [WHG+09], DSL meta-models can be configured using a feature
model. In [PAA+16], the authors propose featured model types: meta-models whose elements have PCs, and with
operations that are offered depending of the chosen variant. In [GdLCS20], meta-models can have variability, and
their instantiability is analysed at the PL level. However, all these works only consider closed variability, while our
work also supports open variability through instantiation (since we consider multi-level models).

In [BPRW20], the authors propose a framework – based on MontiCore [KRV10] and the principles of concern-
oriented language development [CKM+18] – for defining language families with support for both open and closed
variability. The framework relies on language components encapsulating syntax (through a grammar) and semantics
(via code generators). Closed variability is achieved via a feature configuration that selects the components to be com-
posed to form a language. For open variability, the composed language may contain extension points (e.g., expressing
the need for an expression language) that other components need to satisfy, and parameters that can be assigned values.
Other approaches follow similar ideas. For example, language definitions are modularized via roles in [WTZ09], while
Melange [DCB+15] and Neverlang [VC15] also support modularization. In the first case, this is done via an algebra
of operators for extending, restricting, and assembling separate language artefacts. In the second, by providing syntax
definitions with placeholders, and modules that may implement language features.

Similar to the previous approaches, the closed variability in our approach is also achieved by configuring a feature
model. However, instead of relying on required interfaces, extension points, or roles, we enable open variability via
instantiation and linguistic extensions. We believe that both styles for open variability are complementary and suited
for different scenarios. Our notion of open variability via refinement is better suited to specialize a generic language
(e.g., a process modelling language) to specific domains (e.g., software process modelling, industrial process mod-
elling). Instead, open variability via replacement of components is better suited to express alternative realizations for
a concept (e.g., different types of expression languages).

The previous approaches [BPRW20, WTZ09, DCB+15, VC15] also consider the language semantics. METADEPTH
is integrated with the Epsilon family of languages [PKR+09], which have been extended to work in a multi-level set-
ting [dLGC15]. However, making these languages aware of variability via PLs is up to future work. Our plan in this
aspect is to build on the ideas reported in [dLGCS18].

7.2. Multi-level modelling: Variability and formalization

A plethora of multi-level modelling approaches and tools have emerged recently, like DeepTelos [JN16], FMMLx [Fra14],
Melanee [AG16], MultEcore [MRS+18], MLT [FAGdC18], OMLM [IGSS18] and TOTEM [JdL20]. Some of them
are based on deep characterization through potency [AG16, Fra14, IGSS18, MRS+18, JdL20], while others rely on
powertypes [FAGdC18] or most-general instances [JN16]. None of them support variability based on feature models
as we describe here. However, there have been some attempts to improve multi-level modelling with SPL techniques,
which we describe next.

Reinhartz-Berger and collaborators [RSC15] present a preliminary proposal to support the configuration of classes
with optional attributes. It is based on a kernel language with support for multiple meta-levels but lacking deep char-
acterization. The proposal is incipient as it is neither formalized nor implemented. In [CFRS17], the authors analyse
the limitations of feature models alone to describe a set of assets, and propose using multi-level models instead. As
multi-level models have limitations to express variability – as described in Sec. 2.2 – we propose to combine feature
models and multi-level models.

Nesic and collaborators [NNG17] explore the use of MLT [FAGdC18] to reverse engineer sets of related legacy
assets into PLs. MLT is a multi-level modelling approach based on powertypes and first order logic. In their work, the
authors represent variability concepts like PCs and product groups within MLT models. This embedding may result in
complex models where elements can represent either variability concepts or domain concepts. Instead, we separate PCs
and feature models to avoid cluttering the multi-level model. Our goal is to define highly reusable language families,

Language Family Engineering with Product Lines of Multi-level Models 25

for which we provide feature models to describe variability options, and offer the possibility to defer configurations;
instead, the approach in [NNG17] lacks an explicit representation of feature models. Finally, we provide both a theory
and a working implementation.

Other formalizations of potency-based multi-level modelling exist, like [RdLG+14] or the more recent [WMR20].
Those theories do not account for variability, but they could be extended with feature models, in a similar way as we
do.

7.3. Software product lines

Our deferred configurations can be seen as a particular case of staged configurations [CHE05]. These permit selecting
a member of the PL in stages, where each stage removes some choices. In our approach, the potency controls the level
where the variability can be resolved. Staged configurations are also useful in software design reuse. In this setting,
Kienzle and collaborators [KMCA16] propose Concern-Oriented Reuse, a paradigm where reusable modules (called
concerns) define variability interfaces as feature models. The variability of a reused concern can be resolved partially,
in which case, the undefined features are re-exposed in the interface of the resulting concern. We also support deferring
the variability resolution, but composing deep model PLs is future work.

Taentzer and collaborators formalized model-based SPLs using category theory [TSSC17]. Different from ours,
their formalization does not capture typing (it is within a single meta-level), while their morphisms can expand the
feature model, but cannot be used to model partial configurations. Borba and collaborators have studied PL refinement,
which adds new products maintaining the behaviour of existing ones [BTG12]. In our case, our variability extension
morphisms preserve partial configurations.

To cope with large variability spaces, partitioning techniques can be applied to feature models to yield so-called
multi-level feature models [CHE05, RPG+18]. However, the term multi-level does not refer to multiple levels of
classification (as in our case), but to multiple partitions of a feature model.

In our work, we use F-morphisms (cf. Def. 8) to represent a partial configuration relation between two (deep) fea-
ture models, and EF-morphisms (cf. Def. 14) to represent an extension of a (deep) feature model. Related to this, syn-
tactic and semantic differences between feature models have been studied in the PL community [AHC+12, DKMR19,
TBK09]. In [TBK09] the authors present different types of relations between feature models, like refactoring (the
products in both models remain the same), specialization (the set of products is reduced), and generalization (the set
of products increase), along with algorithms based on SAT solving to compute them. In our case, F-morphisms cor-
respond to specializations, while EF-morphisms are similar to generalizations (they in addition demand that invalid
configurations cannot be extended to valid ones). Furthermore, our interest is in understanding whether extensions
can be advanced to configurations (and to typing). In [AHC+12] the authors propose additional techniques for both
syntactic and semantic differencing, to help in understanding and reasoning about differences. These differences can
be combined with composition and decomposition operators. Open-world semantics for feature models, together with
semantic diffs based on those semantics, are introduced in [DKMR19]. Such semantics includes all configurations
– even containing features not belonging to the original feature model – which do not contradict the feature model
formula. Hence, this notion is similar to our allowed extensions, and to the generalization relations in [TBK09].

Other modelling notations support variability. For example, Clafer [JSM+19] is an approach that unifies feature
and class modelling. It supports both class and (partial) object models, feature models and their (partial) configurations
and logic constraints. However, it does not support multi-level modelling or deep characterization. Similar to delta-
oriented programming [SBB+10], in ∆-modelling, a core model (representing one product) is enriched with a set
of changes (with application conditions) to capture further products [Sch10]. The approach has been proposed in
combination with MDE, showing that model configuration and refinement (e.g., a component being refined by a set
of classes) commute. This is in line with our Theorems 5.2 and 5.4, but we are interested in instantiation (instead
of refinement), and need to incorporate potency for deep characterization. Therefore, in our case instantiation and
specialization (configuration) do not commute, but the latter can be advanced to former. In addition, we have also
studied the advancement of extension to both instantiation and specialization.

Within model-driven software product line engineering [CAK+05], some researchers have analysed techniques
to manage variability across multiple models and artefacts [GW21, SPJ18]. In [GW21] the authors compare how
different tools and approaches deal with the propagation of PCs across different models. They report that automated
propagation is a feature that is scarcely supported. A multi-level model can be seen as a mega-model [BJRV05]
made of a set of models related via instantiation relations. In our case, we do support automated propagation, for
example, when instantiating a deep model PL (cf. Section 6.2), as well as when advancing extension to instantiation
(cf. Section 6.3).

26 J. de Lara and E. Guerra

Table 1. Summary of approaches to variability in language and model-driven engineering (where MM stands for meta-model, FM for feature model,
and MLM for multi-level model).

Approach Variability support Mechanism Style Meta-levels

White et al. [WHG+09] Closed MM + FM Annotative 1 (meta-)
Featured model types [PAA+16] Closed MM + FM Annotative 1 (meta-)
Meta-model PLs [GdLCS20] Closed MM + FM Annotative 1 (meta-)
Monticore [BPRW20] Open & closed MM with extension points + FM Compositional 1 (meta-)
Wendel et al. [WTZ09] Open & closed MM with Roles Compositional 1 (meta-)
Melange [DCB+15] Closed MM + Operators Compositional 1 (meta-)
Neverlang [VC15] Open & closed Language Modules Compositional 1 (meta-)

DeepTelos [JN16] Open MLM based on most general instances Instantiation arbitrary
FMMLx [Fra14] Open MLM based on instantiation levels Instantiation arbitrary
Melanee [AG16] Open MLM based on potency Instantiation arbitrary
MultEcore [MRS+18] Open MLM based on potency Instantiation arbitrary
MLT [FAGdC18] Open MLM based on powertypes Instantiation + Classificat. arbitrary
OMLM [IGSS18] Open MLM based on potency Instantiation arbitrary
TOTEM [JdL20] Open MLM based on potency Instantiation arbitrary
Our approach Open & closed MLM based on potency + FM Instantiation + Annotative arbitrary

In the programming world, Batory [Bat06, SB02] proposes mixin layers, a composition mechanism to add fea-
tures to sets of base classes (so called two-level designs). Higher-level designs can be obtained by applying the same
techniques. In [Bat06], these higher-level designs are called multi-level models. Again, the use of the term multi-level
is different from ours, which refers to models related by classification relations.

As a summary, Table 1 classifies the approaches along their variability support (open, closed), the mechanisms in-
volved (e.g., meta-models, feature models, etc.), the style (annotative, compositional, via instantiation or classification
relations), and the meta-models on which the variability take place. The upper part of the table classifies approaches
for language product lines, while the lower part contains approaches for multi-level modelling. Overall, our proposal
is the first one adding variability to multi-level models with support for deep characterization via potency.

8. Conclusions and future work

In this paper, we have proposed a new notion of multi-level model PL to improve current reuse techniques for mod-
elling languages. This is so as it permits both open variability (by successive instantiations leading to language refine-
ments for specific domains), and closed variability (by selecting among a set of variants). We have presented a theory
for the proper construction and use of language families. The theory contains results ensuring the proper interleave of
instantiation, configuration and extension steps. The ideas have implemented on top of the multi-level modelling tool
METADEPTH.

In the future, we plan to provide a categorical formalization of the theory, which would bring operations like inter-
section via common parts (pullbacks) and merging (pushouts) of deep model PLs. We would like to develop analysis
techniques for multi-level model PLs, e.g., to check instantiability properties in the line of [GdLCS20]. Our goal is to
make multi-level model PLs ready for MDE. This would entail the ability to define MDE services like transformations
and code generators on multi-level model PLs. Technically, our plan is to use the Epsilon languages supported by
METADEPTH, and follow ideas from existing works on PLs of transformations [dLGCS18], and transformation of
PLs [SFR+14]. We would like to develop mechanisms for the assisted derivation of deep language families out of
existing DSL meta-models, using as a basis the techniques for bottom-up modelling presented in Section 5.2. Finally,
to proper model language families, we need to consider the concrete syntax as well. For this purpose, we plan to build
on approaches to define graphical and textual syntaxes for multi-level models [Ger17, dLGC15], making them aware
of closed variability through feature models (e.g., in the style of [GWG+20]).

Language Family Engineering with Product Lines of Multi-level Models 27

S2
src2 // C2 C2 R2

src2oo tar2 // C2

S1

m2
S

OO

src1 //

=

C1

m2
C

OO

C1

m2
C

OO

=

R1
src1oo tar1 //

m2
R

OO

=

C1

m2
C

OO

S0

m1
S

OO

src0 //

=

m1
S◦m

2
S

@@

C0

m1
C

OO m1
C◦m

2
C

^^

C0

m1
C

OO

=

m1
C◦m

2
C

@@

R0
src0oo tar0 //

m1
R

OO

=

m1
R◦m

2
R

VV

C0

m1
C

OO m1
C◦m

2
C

^^

Fig. 23. Commutativity conditions for composition of D-morphisms.

Acknowledgements

We thank the reviewers for their useful comments. This work has been funded by the Spanish Ministry of Science
(project MASSIVE, RTI2018-095255-B-I00), and by the R&D programme of Madrid (project FORTE, P2018/TCS-
4314).

Appendix

In this appendix we provide the proof details of the lemmas and theorems proposed in the paper.

Proof of Lemma 1 (D-morphism composition yields a D-morphism): In this lemma, we need to prove that,
given two D-morphisms m1 = 〈d1,m1

C ,m
1
S ,m

2
R〉 : M0 → M1 and m2 = 〈d2,m2

C ,m
2
S ,m

2
R〉 : M1 → M2, their

compositionm2 ◦m1 : M0 →M2 (withm2 ◦m1 = 〈d1 +d2,m2
C ◦m1

C ,m
2
S ◦m1

S ,m
2
R ◦m1

R〉) is a valid D-morphism.
For this purpose, we proof the three conditions for D-morphisms of Def. 2, as follows:

1. We need to prove p0 + (d1 + d2) = p2. Since m1 and m2 are valid D-morphisms, we have p0 + d1 = p1 and
p1 + d2 = p2, and so p0 + d1 = p2 − d2, and therefore p0 + (d1 + d2) = p2.

2. We need to prove ∀e ∈ X0 •pot0(e)+(d1+d2) = pot2(m2
X ◦m1

X(e)) (forX ∈ {C, S,R}). Sincem1 andm2 are
valid D-morphisms, we have ∀e ∈ X0•pot0(e)+d1 = pot1(m1

X(e)) and ∀e′ ∈ X1•pot1(e′)+d2 = pot2(m2
X(e′))

(for X ∈ {C, S,R}). Since the second property applies to all elements e′ ∈ X1, it also applies to m1
X(e), and

so we have ∀e ∈ X0 • pot0(e) + d1 = pot1(m1
X(e)) ∧ pot1(m1

X(e)) + d2 = pot2(m2
X(m1

X(e))). But then,
∀e ∈ X0 • pot0(e) + d1 = pot2(m2

X ◦m1
X(e))− d2 and so ∀e ∈ X0 • pot0(e) + (d1 + d2) = pot2(m2

X ◦m1
X(e))

as required.
3. We need to proof that each function m2

C ◦m1
C ,m

2
S ◦m1

S ,m
2
R ◦m1

R commutes with functions srci and tari. But
this follows by the composition of commutative squares in set functions [EEPT06], as the outer squares of Fig. 23
shows.

Proof of Lemma 2 (F-morphism composition yields an F-morphism): In this lemma, we need to proof that,
given two F-morphisms,m1 = 〈d1,m1

F , C
1 = 〈F−1 , F

+
1 〉〉 : DFM0 → DFM1 andm2 = 〈d2,m2

F , C
2 = 〈F+

2 , F
−
2 〉〉 :

DFM1 → DFM2, their compositionm2◦m1 : DFM0 → DFM2 (defined as 〈d1+d2, 〈m2
F (F+

1)∪F+
2 ,m

2
F (F−1)∪

F−2 〉,m2
F ◦m1

F 〉) is a valid F-morphism. For this purpose, we proof the three conditions for D-morphisms of Def. 8,
as follows:

• We need to prove that l0 + (d1 + d2) = l2. Since both m1 and m2 are F-morphisms, we have that l0 + d1 = l1 and
l1 + d2 = l2. Therefore l0 + d1 = l2 − d2 and so l0 + (d1 + d2) = l2 as required.

• We need to show that m2
F ◦m1

F is injective, and it is, since both m2
F and m1

F are injective and the composition
of injective set functions is injective. In addition, we need to show that ∀f ∈ F0 • pot0(f) + d1 + d2 =
pot2(m2

F ◦m1
F (f)). Since m1 and m2 are F-morphisms, we have that ∀f ∈ F0 • pot0(f) + d1 = pot1(m1

F (f))
and ∀f ′ ∈ F1 • pot1(f ′) + d2 = pot2(m2

F (f ′)). Since the last statement applies to all f ′ ∈ F1, it also applies to
m1

F (f), and so we have ∀f ∈ F0 • pot0(f) + d1 = pot1(m1
F (f)) ∧ pot1(m1

F (f)) + d2 = pot2(m2
F (m1

F (f)))
and therefore ∀f ∈ F0 • pot0(f) + d1 + d2 = pot2(m2

F ◦m1
F (f)) as required.

• We need to proof that 〈m2
F (F+

1) ∪ F+
2 ,m

2
F (F−1) ∪ F−2 〉 ∈ CFG(FM2), for which we need to check that

28 J. de Lara and E. Guerra

Φ2[m2
F (F+

1)∪F+
2 /true,m

2
F (F−1)∪F−2 /false] � false. Becausem2 is F-morphism, Φ2[F+

2 /true, F
−
2 /false]

∼=
Φ1[F1/m

2
F (F1)] � false. Performing a further substitution for 〈F+

1 , F
−
1 〉, if Φ2[F+

2 /true, F
−
2 /false][m

2
F (F+

1)

/true,m2
F (F−1)/false] ∼= false, then Φ1[F1/m

2
F (F1)][F+

1 /true, F
−
1 /false]

∼= false. But since m1 is F-
morphism, this would mean that Φ0[F0/m

1
F (F0)] ∼= false, which is not possible since FM0 is a valid feature

model according to Def. 5.
• We need to show that m2

F ◦ m1
F (F0) = F2 \ (m2

F (F+
1) ∪ F+

2 ∪ m2
F (F−1) ∪ F−2). Since both m1 and m2 are

F-morphisms, we have thatm1
F (F0) = F1 \ (F+

1 ∪F
−
1) andm2

F (F1) = F2 \ (F+
2 ∪F

−
2). From the first statement,

we have that F1 = m1
F (F0) ∪ F+

1 ∪ F
−
1 , and substituting in the second statement we have that m2

F (m1
F (F0) ∪

F+
1 ∪ F

−
1) = F2 \ (F+

2 ∪ F
−
2). Since m2

F (m1
F (F0) ∪ F+

1 ∪ F
−
1) = m2

F ◦m1
F (F0) ∪m2

F (F+
1) ∪m2

F (F−1) we
have that m2

F ◦m1
F (F0) = F2 \ (F+

2 ∪F
−
2) \ (m2

F (F+
1)∪m2

F (F−1)) = F2 \ (F+
2 ∪F

−
2 ∪m2

F (F+
1)∪m2

F (F−1))
as required.

• We need to show that Φ2[F+
2 ∪m2

F (F+
1)/true, F−2 ∪m2

F (F−1)/false] ∼= Φ0[F0/m
2
F ◦m1

F (F0)]. We have that
Φ1[F+

1 /true, F
−
1 /false]

∼= Φ0[F0/m
1
F (F0)] and Φ2[F+

2 /true, F
−
2 /false]

∼= Φ1[F1/m
2
F (F1)]. In the latter,

statement, doing an additional substitution for 〈F+
1 , F

−
1 〉 on both sides should preserve equivalence, and so we

have Φ2[F+
2 ∪m2

F (F+
1)/true, F−2 ∪m2

F (F−1)/false] ∼= Φ1[F1/m
2
F (F1)][m2

F (F+
1)/true,m2

F (F−1)/false]. But
since Φ1[F+

1 /true, F
−
1 /false]

∼= Φ0[F0/m
1
F (F0)], we have Φ2[F+

2 ∪m2
F (F+

1)/true, F−2 ∪m2
F (F−1)/false] ∼=

Φ0[F0/m
2
F ◦m1

F (F0)] as desired.

Proof of Lemma 3 (PL-morphism composition yields a PL-morphism): This lemma has two parts. In the first
one, we need to prove that given PL-morphisms m1 = 〈mD

1 ,m
F
2 〉 : DM0 → DM1 and m2 = 〈mD

2 ,m
F
2 〉 : DM1 →

DM2, their composition m2 ◦m1 = 〈mD
2 ◦mD

1 ,m
F
2 ◦mF

1 〉 : DM0 → DM2 is a valid PL-morphism.
From Def. 3 se have mD

2 ◦mD
1 = 〈d1 + d2,m2

C ◦m1
C ,m

2
S ◦m1

S ,m
2
R ◦m1

R〉, and according to Def. 9 we have
mF

2 ◦mF
1 = 〈d1 + d2, 〈m2

F (F−1) ∪ F−2 ,m2
F (F+

1) ∪ F+
2 〉,m2

F ◦m1
F 〉.

We need to prove:

∀e ∈ C0∪S0∪R0 • φ2(mD
2 ◦mD

1 (e))[F+
2 ∪m2

F (F+
1)/true, F−2 ∪m2

F (F−1)/false] ∼= φ0(e)[F0/m
2
F ◦m1

F (F0)]

Since both m1 and m2 are PL-morphisms, we have that

(1) ∀e ∈ C0 ∪ S0 ∪R0 • φ1(mD
1 (e))[F+

1 /true, F
−
1 /false]

∼= φ0(e)[F0/m
1
F (F0)]

and

(2) ∀e′ ∈ C1 ∪ S1 ∪R1 • φ2(mD
2 (e))[F+

2 /true, F
−
2 /false]

∼= φ1(e′)[F1/m
2
F (F1)]

In the latter statement, since both terms are equivalent, performing an extra substitution [m2
F (F+

1)/true,m2
F (F−1)

/false] also yields equivalence: ∀e′ ∈ C1 ∪ S1 ∪R1 • φ2(mD
2 (e))[F+

2 ∪m2
F (F+

1)/true, F−2 ∪m2
F (F−1)/false]

∼= φ1(e′)[F1/m
2
F (F1)][m2

F (F+
1)/true,m2

F (F−1)/false]. But because of (1), we have

∀e ∈ C0∪S0∪R0 • φ2(mD
2 ◦mD

1 (e))[F+
2 ∪m2

F (F+
1)/true, F−2 ∪m2

F (F−1)/false] ∼= φ0(e)[F0/m
2
F ◦m1

F (F0)]

as desired.
For the second part of the lemma, we need to proof that, if m1 and m2 are specializations, so is m2 ◦m1. This

means proving three conditions:

• Injectivity: Since both mD
1 and mD

2 are injective so is mD
2 ◦mD

1 .
• Level-preserving: Since both m1 and m2 are level-preserving, so is m2 ◦m1 since d1 = d2 = 0 = d1 + d2.
• Keeping elements with non-false PC: We require thatm2◦m1’s co-domain contains exactly the elements e ∈ C2∪
S2∪R2 s.t. φ2(e)[F+

2 ∪m2
F (F+

1)/true, F−2 ∪m2
F (F−1)/false] � false. The co-domain of the composition mor-

phism m2 ◦m1 contains those elements, since m2’s co-domain includes each element e s.t. φ2(e)[F+
2 /true, F

−
2 /

false] � false, which is a larger set than the set of elements e making φ2(e)[F+
2 ∪ m2

F (F+
1)/true, F−2 ∪

m2
F (F−1)/false] � false. In addition, the co-domain of m2 ◦m1 does not contain elements e s.t. φ2(e)[F+

2 ∪
m2

F (F+
1)/true, F−2 ∪ m2

F (F−1)/false] ∼= false, since m1’s co-domain does not contain any element e s.t.
φ1(e)[F+

1 /true, F
−
1 /false]

∼= false.

Proof of Theorem 5.1 (Specialization morphisms for configurations): Given a deep model PLDM = 〈M,DFM,φ〉
and a configuration C = 〈F+, F−〉 of DFM , we build DM ′ = 〈M ′, DFM ′, φ′〉 as follows:

Language Family Engineering with Product Lines of Multi-level Models 29

• M ′ has the same level asM , and contains each element e ofM s.t. φ(e)[F+/true, F−/false] � false. Functions
src′, tar′ and pot′ are restrictions of src, tar and pot to the elements in M ′.

• DFM ′ = 〈l, FM ′ = 〈F ′,Φ′〉, pot′〉, where F ′ = F \ (F+ ∪F−), Φ′ = Φ[F+/true, F−/false], and pot′ is the
restriction of pot to F ′.

• Function φ′ is defined as follows: ∀e ∈ C ′ ∪ S′ ∪R′ • φ′(e) = φ(e)[F+/true, F−/false].

Now we show that M ′ is a valid deep model according to Def. 1:

• To check that src′ is well formed, we show that ∀s ∈ S′ ∪ R′, src(s′) is defined. By condition 1 in Def. 10,
φ(s) =⇒ φ(src′(s)). This precludes the source of any s ∈ S′∪R′ to be absent fromC ′, since if φ(src′(s))[F+/true,
F−/false] = false, then φ′(s)[F+/true, F−/false] = false.

• The well-formedness of tar′ is shown like in the previous case.
• Function pot′ satisfies conditions 1–3 of Def. 1, since pot satisfies them, and pot′ is just a restriction of pot.

Now we show that DM ′ is a valid deep model PL according to Def. 10:

• M ′ and DFM ′ have the same level (l).
• The three conditions over φ′ and pot′ hold, since they hold for φ and pot.

Finally, we build a specialization PL-morphism sp = 〈mM , spF 〉 : DM ′ → DM as follows:

• mM = 〈0, incMC , incMS , incMR 〉, where X ′
incMX
↪−−−→ X (for X = {C, S,R}) are inclusion set morphisms,

• spM = 〈0, incF , C〉, where F ′
incF

↪−−−→ F is an inclusion morphism.

For mF , according to Def. 8, we need to show that: (i) mF (F ′) = F ′ = F \ (F+ ∪ F−), which holds since F ′
was defined above as F \ (F+ ∪ F−); and (ii) Φ[F+/true, F−/false] ∼= Φ′[F ′/incF (F ′)], which holds since Φ′

was defined above as Φ[F+/true, F−/false].
Then, according to Def. 11, we need to show that ∀e ∈ C ′ ∪ S′ ∪ R′ • φ(e)[F+/true, F−/false] ∼= φ′(e),

which holds by construction. Finally, we need to show that ∀e ∈ X • (φ(e)[F+/true, F−/false] � false ⇔
∃e′ ∈ X ′ • spMX (e′) = e) (for X = C, S,R), which holds since we only include in DM ′ those elements for which
φ(e)[F+/true, F−/false] � false.

Now, we show thatDM ′ is unique (up to isomorphism). To show that, assume we add a new clabject n toDM ′. Let
spMC (e) be the element inDM that e is mapped to. Because sp is specialization, we require φ(mM

C (e))[F+/true, F−/
false] � false, and so mM

C (e) should have received a mapping from another node, since sp was a correct special-
ization. This means that we should map sp non-injectively, which is not possible by the definition of specialization.
Adding new slots or references follows the same reasoning. Similarly, we could delete an element from DM ′, but in
that case an element from DM with φ(mM

C (e))[F+/true, F−/false] � false would not receive a mapping, which
is not allowed by specialization morphisms. Finally, we cannot change the source or target of slots or references in
DM ′, since then they would not commute properly, as required by correct D-morphisms. Please note that, whileDM ′
is unique, there might be several (equivalent) ways to map it to DM . �

Proof of Theorem 5.2 (Specialization can be advanced to instantiation): Let C = 〈F+, F−〉 be the configuration
of the specialization PL-morphism sp : DM2 → DM1. From DM0 and C, we construct (uniquely) a deep model
DM3 and a specialization PL-morphism sp′ : DM3 → DM0 as described in the proof of Theorem 5.1. Then, we
build a type PL-morphism tp′ = 〈tp′D, tp′F 〉 : DM2 → DM3 as follows:

• tp′D = 〈1, tpDC |C2
, tpDS |S2

, tpDR |R2
〉, with tpDX |X2

the restriction of tpDX to set X2 in DM2 (for X = {C, S,R}).
• tp′F = 〈1, tpFF |F2

, C〉 with tpFF |F2
the restriction of tpFF to set F2.

D-morphism tp′D is well defined because ∀c ∈ C2, ∃c′ ∈ C3 s.t. tpDC (spDC (c)) = sp′DC (c′). This is so as
φ1(spDC (e))[F+/true, F−/false] � false due to Def. 11 of specialization PL-morphism. And now, since the con-
figuration of tp is empty, we have φ0(tpDC (spDC (e))[F+/true, F−/false] � false. This means that, according to
Def. 11, this element is in the co-domain of sp′DC , and is assigned to c by tp′DC . The same reasoning applies to sets S2

and F2. Function tpFF |F2 is also well formed, since the same configuration C was used to derive DM2 and DM3. This
reasoning also shows that tp ◦ sp = sp′ ◦ tp′, as Theorem 5.2 demands.

30 J. de Lara and E. Guerra

DMn−3 DMFCn−3
sp′n−3

oo

DMn−2

tpn−2

OO

DMn−1spn−1oo DMFCn−2
sp′n−1
oo

tp′n−2

OO

sp′′n−1ss

DMn

tpn

OO

=

DMn+1spn+1oo

tp′n

OO

Fig. 24. Calculating the equivalent fully configured model.

Finally, please note that, once sp′ is constructed, tp′ is unique (while there can be several ways to build sp′). �

Proof of Theorem 5.3 (Equivalent fully configured language): We need to check that given a chain of PL-
morphisms:

DM0
tp1← DM1

sp2←− DM2...
tpn← DMn

spn+1←− DMn+1

where each tpi is a type PL-morphism and each spi is an specialization PL-morphism, there is a unique deep model
PL DMFC ∈ Der(DM0) (called fully configured model) with a configuration made of all selected and unselected
features of the configurations of sp2, ..., spn+1, s.t. DMn+1 is an (indirect) instance of DMFC .

We use the diagram in Fig. 24 for the proof. We start by applying Theorem 5.2 to advance spn+1 to tpn, ob-
taining the (unique) deep model PL DMFCn−2

and PL-morphisms sp′n−1 : DMFCn−2
→ DMn−1 (a specialization

PL-morphism) and tp′n : DMn+1 → DMFCn−2
(a type morphism). Now, by Lemma 3 we can compose sp′n−1 and

spn−1, which yields a specialization PL-morphism. Now, we apply again Theorem 5.2 to advance spn−1◦sp′n−1 to tpn
(cf. Fig. 24). This yields the (unique) deep model PL DMFCn−3 and PL-morphisms sp′n−3 : DMFCn−3 → DMn−3
(a specialization PL-morphism) and tp′n−2 : DMFCn−2 → DMFCn−3 (a type morphism). We can iterate this pro-
cedure as needed. In the final result, we can obtain an indirect type morphism, by composing the calculated type
PL-morphisms (tp′n, tp′n−2,...). �

Proof of Lemma 4 (EF-morphisms can be advanced to F-morphisms): We need to prove that given an F-
morphism m = 〈d,mF , C〉 : DFM0 = 〈l0, FM0, pot0〉 → DFM1 = 〈l1, FM1, pot1〉 and an EF-morphism
DFM0

me=⇒ DFMext = 〈l0, FMext, potext〉, there is a deep feature model DFMext
0 and morphisms m′ =

〈d,m′F , C〉 : DFMext → DFMext
0 , DFM1

m′e=⇒ DFMext
0 s.t. m′e ◦mF = m′F ◦me.

We construct DFMext
0 = 〈lext0 , FMext

0 = 〈F ext
0 ,Φext

0 〉, potext0 〉 as follows:

• The level is set to lext0 = l0 + d

• The feature set is set to F ext
0 = F0∪ (F1 \mF (F0))∪ (F ext \me(F0)), which is the disjoint union of F1 and F ext

where the elements sharing a preimage in F0 are identified, which is a pushout in the category of sets [EEPT06].
• The feature model formulae is set to Φext

0 = Φ1[mF (F0)/F0] ∨ Φext[me(F0)/F0] which is the disjunction of the
formulas of DFM1 and DFMext using the names of features in DFM0.

• The potency is defined as:
∀e ∈ F0 • potext0 (e) = pot1(mF (e)),
∀e ∈ F1 \mF (F0) • potext0 (e) = pot1(e), and
∀e ∈ F ext \me(F0) • potext0 (e) = potext(e) + d .

(The potency is taken from DFM1 for those elements in F0 or F1, and from DFMext otherwise. Please note that the
potency of mapped features in DFM0 and DFMext is the same since me is an EF-morphism).

Now, we need to show that FMext
0 is correct according to Def. 5, for which we need to show that Φext

0 is satisfiable.
This holds since Φext

0 = Φ1 ∨ Φext and both Φ1 and Φext are satisfiable. Then, we need to show that DFMext
0 is

correct according to Def. 7. This requires to show that the potency of each element is less than or equal to DFM0’s
level. This is so for those elements receiving potency from potext, since the level ofDFM0 andDFMext is the same,

Language Family Engineering with Product Lines of Multi-level Models 31

by Def. 15, and the level of DFMext is equal or larger (l0 + d). The potency is less or equal than the level also for
elements receiving the potency from pot1, because the level of DFM1 is l0 + d, which is the level of DFMext

0 .

Next, we need to show that there are commuting morphismsm′ = 〈d,m′F , C〉 : DFMext → DFMext
0 ,DFM1

m′e=⇒
DFMext

0 s.t. m′e ◦mF = m′F ◦me.
First, we build F-morphism m′ = 〈d,m′F , C〉 : DFMext → DFMext

0 as follows:

• The depth d is equal to the depth d of F-morphism m.
• The mapping m′F is defined as ∀f ∈ F0 •m′F (me(f)) = f ; ∀f ∈ F ext \me(F0) •m′F (f) = f (i.e., we build an

identity mapping).
• The configuration C is equal to the configuration C of m.

The F-morphism m′ so constructed is valid according to Def. 8, since:

• The morphism depth fills the gap between the levels: lext + d = lext0 . This holds since lext = l0 and lext0 = l0 + d.
• Morphism m′F is injective, since me is injective, and we built an identity for features in F ext \mF (F0).
• The morphism depth d fills the gap between the potencies: ∀f ∈ F ext • potext(f) + d = potext0 (m′F (f)). To

show this, we split F ext in me(F0) and F ext \me(F0) and check the property on these two sets:

– On the one hand, ∀f ∈ F0 • potext0 (f) = pot1(mF (f)) (by the way we have constructed DFMext
0), and

∀f ∈ F0•pot0(f)+d = pot1(mF (f)) (sincem is an F-morphism). Therefore we have ∀f ∈ F0•potext0 (f) =
pot0(f) + d. Because me is an EF-extension, by Def. 14, we have that ∀f ∈ F0 • pot0(f) = potext(me(f)),
and so ∀f ∈ me(F0) • potext0 (f) = potext(m′F (f)) + d as required.

– On the other, by construction of DFMext
0 , we have ∀f ∈ F ext \me(F0) • potext0 (f) = potext(f) + d, and

because m′F is an identity on those elements, ∀f ∈ F ext \ me(F0) • potext0 (f) = potext(m′F (f)) + d as
required.

• The configuration C = 〈F+, F−〉 ofm′F should be a configuration ofDFMext
0 . C is a configuration ofDFMext

0
if Φext

0 [F+/true, F−/false] � false, SinceC is a configuration ofDFM1, we have Φ1[F+/true, F−/false] �
false, and so Φext

0 [F+/true, F−/false] � false as required.
• We need to show m′F (F ext) = F ext

0 \ (F+ ∪F−). Since m is F-morphism, we have mF (F0) = F1 \ (F+ ∪F−),
and so F1 \mF (F0) = F+ ∪ F−. By construction, we have F ext

0 = F0 ∪ (F1 \mF (F0)) ∪ (F ext \me(F0)),
and substituting we have F ext

0 = F0 ∪ (F+ ∪ F−) ∪ (F ext \me(F0)). But by construction of m′F we have that
F0 ∪ (F ext \me(F0)) = m′F (F ext), and substituting again F ext

0 = m′F (F ext) ∪ (F+ ∪ F−). Solving, we find
F ext
0 \ (F+ ∪ F−) = m′F (F ext) as required.

• Finally, we need to show that Φext
0 [F+/true, F−/false] ∼= Φext[F ext/m′F (F ext)]. Using the remark in Def. 8,

this is equivalent to require that any configuration C ′ ∈ DFG(DFMext) s.t. C ≤ C ′ is valid in DFMext iff it is
valid in DFMext

0 . By construction, Φext
0 = Φ1[mF (F0)/F0] ∨ Φext[me(F0)/F0]. By the second term, any con-

figuration C ′ ∈ CFG(DFMext) belongs to CFG(DFMext
0). Hence, any configuration C ′ ∈ DFG(DFMext)

s.t. C ≤ C ′ of DFMext is valid in DFMext
0 . Conversely, any non-valid configuration C ′ ∈ DFG(DFMext)

s.t. C ≤ C ′ makes the second term false. However, the first term should also be false, since such configuration
would make Φ0 false (by the second part of condition 2 in Def. 14) and hence not equivalent to Φ1 as required by
m being an F-morphism.

Second, we build m′e as follows: f ∈ mF (F0) =⇒ m′e(f) = m−1F (f), and f ∈ F1 \mF (F0) =⇒ m′e(f) = f .
Morphism m′e so constructed is valid according to Def. 14, since (1) the potency potext0 of all elements e ∈ F0 ∪F1 is
taken from pot1(e), and (2) every configuration C of DFM1 makes Φ1[mF (F0)/F0] true and hence a configuration
of DFMext

0 . In addition any invalid configuration C of DFM1 makes Φ1[mF (F0)/F0] false, but also Φ0 false (since
mF is an F-morphism, and Φ1[F+/true, F−/false] and Φ0 are equivalent). Hence, Φext should also be false, since
me is an EF-morphism, and therefore Φext

0 should also be false as required.
�

Proof of Theorem 5.4 (EPL-morphisms can be advanced to PL-morphisms): We need to prove that given a
PL-morphism m = 〈mD,mF 〉 : DM0 → DM1 and an EPL-morphism me = 〈mD

e ,me〉 : DM0 → DMext, such
that

1. ∀ei, ej ∈ C0 ∪ S0 ∪R0 •mD(ei) = mD(ej) =⇒ φext(mD
e (ei)) = φext(mD

e (ej))

32 J. de Lara and E. Guerra

2. ∀e ∈ C0 • φext(mD
e (e)) = φ0(e)[F0/me(F0)].

then, we can build a deep model PL DMext
0 , a PL-morphism m′ = 〈m′D,m′F 〉 : DMext → DMext

0 and an EPL-

morphism DM1
m′e
=⇒ DMext

0 with m′e = 〈m′De ,m′e〉 s.t. m′e ◦mF = m′F ◦me and m′D ◦mD = m′D ◦mD
e .

First, we construct DMext
0 = 〈Mext

0 , DFMext
0 , φext0 〉 as follows:

• The model Mext
0 = 〈pext0 , Cext

0 , Sext
0 , Rext

0 , srcext0 , tarext0 , potext0 〉 is essentially a pushout in the category of
graphs [EEPT06], constructed as follows:

– The level pext0 = p0 + d is taken as the level of DM0 plus the morphism’s depth d.
– Xext

0 = X1∪̇Xext|≡ (for X = C, S,R). Where ∪̇ is the disjoint union and ≡ is the smallest equivalence
relation with (mD(e),mD

e (e)) ∈≡ for all e ∈ X0 (for X = C, S,R).
– ∀e ∈ X1 • srcext0 ([e]) = [src1(e)], and ∀e ∈ Xext • srcext0 ([e]) = [srcext(e)], for X = S,R and where [e]

is the equivalence class of e in using relation ≡ (i.e., the element in Xext
0 e is mapped to). Function tarext0 is

constructed similarly.
– The potency function is constructed as: ∀e ∈ X1 • potext0 ([e]) = pot1(e) (for X = C, S,R) and ∀e ∈
Xext \mD

e (X0) • potext0 ([e]) = potext(e) + d (where d is the depth of morphism mD).

• The deep feature model DFMext
0 is constructed as in the proof of Lemma 4.

• The presence condition function is constructed as follows: ∀e ∈ X1 \ mD(X0) • φext0 ([e]) = φ1(e); ∀e ∈
Xext\mD

e (X0)•φext0 ([e]) = φext(e); ∀e ∈ X0•φext0 ([mD(e)]) = φ1(mD(e))∧φext(mD
e (e)) (forX = C, S,R).

Now, we need to show that DFMext
0 is correct according to Def. 10, for which we need to check:

• DFM0 and M0 have the same level, which is the level of DM0 plus the morphism’s depth d.
• The function φmaps elements to a (non-false) propositional formula. This is so as neither φ1 nor φext map elements

to false propositional formulae.
• The function φ satisfies the following three conditions:

1. ∀s ∈ Sext
0 ∪ Rext

0 • φext0 (s) =⇒ φext0 (srcext0 (s)). This holds since (a) it holds for both DFM1 and
DFMext, (b) the PC of elements in C0 that are common in DFM0 is not changed by m or me, according to
condition 2 in this theorem, and (c) the PC of elements in Sext ∪ Rext can be strengthened (since me is an
EPL-morphism). However, strengthening the premise of an implication preserves the implication (e.g., if we
have φext(s) =⇒ φ0(s) and φ0(s) =⇒ φ0(src(s)) then φext(s) =⇒ φ0(src(s))).

2. ∀r ∈ Rext
0 • φext0 (r) =⇒ φext0 (tarext0 (r)). This holds by the same reason as the previous property.

3. ∀e ∈ Cext
0 ∪ Sext

0 ∪ Rext
0 , ∀v ∈ V ar(φext0 (e)) • potext0 (v) ≤ potext0 (e). For the elements mapped from

DM1, this holds as it holds forDM1, and the potency is copied in those case. For those elements mapped from
DMext and not common in DM0, the potency of the elements in Cext

0 ∪ Sext
0 ∪ Rext

0 is increased by d, just
like the feature variables. Therefore, if it holds for DMext, it holds for DMext

0 .

Next, we construct the PL-morphism m′ = 〈m′D,m′F 〉 : DMext → DMext
0 as follows:

• The D-morphism m′D = 〈d′,m′C ,m′S ,m′R〉 is built as follows:

– The depth d′ is taken as the depth of mD (which is d).
– Each element is mapped to its equivalent class under ≡: ∀e ∈ Xext •m′X(e) = [e] (for X = C, S,R).

• m′F is constructed as in the proof of Lemma 4.

We need to show the three PL-morphism well-formedness conditions in Def. 2:

1. Property pext + d′ = pext0 holds since pext0 = p0 + d′ and pext = p0.
2. Property ∀e ∈ Xext • potext(e) + d′ = potext0 (m′X(e)) (for X ∈ {C, S,R}) holds by construction for those

elements e ∈ Xext \mD
e (X0). For those elements in mD

e (X0), their potency is taken from pot1. However, that
potency is pot0 + d, and since potext = pot0 and d = d′, we obtain the desired result.

3. Each function m′C ,m
′
S ,m

′
R commutes with functions srci and tari, which holds since DMext

0 has been con-
structed as a pushout in the category of graphs [EEPT06].

Then, we construct the EPL-morphism m′e = 〈m′De ,m′e〉 : DM1 → DMext
0 as follows:

Language Family Engineering with Product Lines of Multi-level Models 33

1. The D-morphism m′De = 〈d′e,m′eC ,m′eS ,m′eR〉 is built as follows:

• The depth d′e is 0.
• Each element is mapped to its equivalent class under ≡: ∀d ∈ X1 •m′eX(d) = [d] (for X = C, S,R).

2. m′e is constructed as in the proof of Lemma 4.

Then, according to Def. 15 of EPL-morphism, we need to show that ∀e ∈ C1 ∪ S1 ∪ R1 • φext0 (m′e(e)) =⇒
φ1(e)[F1/m

′
e(F1)]. This holds for elements e in X1 \ mD(X0), since the PC is φext0 ([e]) = φ1(e), and therefore

φ1(e) =⇒ φ1(e). It also holds for elements e in mD(X0), since their PC is φext0 ([mD(e)]) = φ1(mD(e)) ∧
φext(mD

e (e)), and so φ1(mD(e)) ∧ φext(mD
e (e)) =⇒ φ1(mD(e)) as required.

Proof of Corollary 1 (Preservation of type and specialization PL-morphisms): First we proof that if m is a
type PL-morphism, so is m′. PL-morphism m = 〈mD,mF 〉 is type if mD and mF are types. Since the depth of m′D
and m′F is that of mD and mF , then m′ is also type.

Then, we assume m is specialization. Then, according to Def. 11, mF is specialization, mD is injective, level-
preserving and satisfying ∀e ∈ C1 ∪ S1 ∪ R1 • (φ1(e)[F+

1 /true, F
−
1 /false] � false ⇔ ∃e′ ∈ C0 ∪ S0 ∪ R0 •

mD(e′) = e). If mF is specialization, its depth is 0, and so is the depth of m′F , and hence m′F is type as well. If mD

is injective, so is m′D because injectivity is preserved in pushouts in graphs (cf. fact 2.17 in [EEPT06]). If mD is level
preserving, so is m′D since they have the same depth.

Finally, regarding the property on the PC, let’s assume that for some element e inXext
0 •φext0 (e)[F+/true, F−/false] �

false (for X = C, S,R). If ∃e′ ∈ X1 with m′e(e′) = e then since m is a specialization morphism, ∃e′′ ∈ X0 with
mD(e′′) = e′. In such a case, by construction, ∃e′′′ ∈ Xext such that me(e′′) = e′′′, and mD(e′′′) = e as required. If
instead @e′ ∈ X1 with m′e(e′) = e, then by construction ∃e′ ∈ Xext with m′D(e′) = e.

Conversely, let’s assume that ∃e′ ∈ Xext with m′D(e′) = e. Then we need to show that φext0 (m′e(e′))[F+/true,
F−/false] � false. By the condition in the corollary, φext(e′)[F+/true, F−/false] � false. If e′ ∈ Xext \
me(X0) then φext0 (e) = φext(e′) and the condition holds. If e′ ∈ m′e(X0) then φext0 (e) = φ1(e′′)∧φext(e′). Sincem
is specialization, φ1(e′′)[F+/true, F−/false] � false, and using the condition of the corollary, φext0 (e)[F+/true,
F−/false] � false as required.

References

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. FAMILIAR: A domain-specific language for large scale
management of feature models. Sci. Comput. Program., 78(6):657–681, 2013.

[AG16] Colin Atkinson and Ralph Gerbig. Flexible deep modeling with melanee. In Modellierung 2016, 2.-4. März 2016, Karlsruhe -
Workshopband, pages 117–122, 2016.

[AHC+12] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe Lahire, and Philippe Merle. Feature model differences.
In Advanced Information Systems Engineering - 24th International Conference, CAiSE, volume 7328 of Lecture Notes in Computer
Science, pages 629–645. Springer, 2012.

[AK01] Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In UML, volume 2185 of LNCS, pages 19–33.
Springer, 2001.

[AK02] Colin Atkinson and Thomas Kühne. Rearchitecting the UML infrastructure. ACM Trans. Model. Comput. Simul., 12(4):290–321,
2002.

[AK08] Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain models. Software and System Modeling, 7(3):345–
359, 2008.

[Atk97] Colin Atkinson. Meta-modeling for distributed object environments. In EDOC, pages 90–101. IEEE Computer Society, 1997.
[Bat06] Don S. Batory. Multilevel models in model-driven engineering, product lines, and metaprogramming. IBM Systems Journal,

45(3):527–540, 2006.
[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in Practice, Second Edition. Synthesis

Lectures on Software Engineering. Morgan & Claypool Publishers, San Rafael, California (USA), 2017.
[BJRV05] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Modeling in the large and modeling in the small. In Model

Driven Architecture, European MDA Workshops: Foundations and Applications, MDAFA, volume 3599 of Lecture Notes in Computer
Science, pages 33–46. Springer, 2005.

[BPRW20] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. A compositional framework for systematic modeling
language reuse. In MoDELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems,
pages 35–46. ACM, 2020.

[BTG12] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of software product line refinement. Theor. Comput. Sci., 455:2–30,
2012.

[CAK+05] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean Lau, and Krzysztof Pietroszek. Model-driven software
product lines. In Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA, pages 126–127. ACM, 2005.

34 J. de Lara and E. Guerra

[CdL16] Irene Córdoba-Sánchez and Juan de Lara. Ann: A domain-specific language for the effective design and validation of java annota-
tions. Comp. Langs., Systems & Structs., 45:164–190, 2016.

[CFRS17] Tony Clark, Ulrich Frank, Iris Reinhartz-Berger, and Arnon Sturm. A multi-level approach for supporting configurations: A new
perspective on software product line engineering. In ER Forum Demo Track, volume 1979 of CEUR Workshop Proceedings, pages
156–164. CEUR-WS.org, 2017.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged configuration through specialization and multilevel configu-
ration of feature models. Software Process: Improvement and Practice, 10(2):143–169, 2005.

[CKM+18] Benoı̂t Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan Bousse, Walter Cazzola, Philippe Collet, Thomas
Degueule, Robert Heinrich, Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias Schöttle, Misha
Strittmatter, and Andreas Wortmann. Concern-oriented language development (COLD): fostering reuse in language engineering.
Comput. Lang. Syst. Struct., 54:139–155, 2018.

[DCB+15] Thomas Degueule, Benoı̂t Combemale, Arnaud Blouin, Olivier Barais, and Jean-Marc Jézéquel. Melange: a meta-language for
modular and reusable development of DSLs. In SLE, pages 25–36. ACM, 2015.

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic evolution analysis of feature models. In Proceedings of
the 23rd International Systems and Software Product Line Conference, SPLC, pages 34:1–34:11. ACM, 2019.

[dLG10] Juan de Lara and Esther Guerra. Deep meta-modelling with MetaDepth. In TOOLS, volume 6141 of LNCS, pages 1–20. Springer,
2010.

[dLG18] Juan de Lara and Esther Guerra. Refactoring multi-level models. ACM Trans. Softw. Eng. Methodol., 27(4):17:1–17:56, 2018.
[dLG20] Juan de Lara and Esther Guerra. Multi-level model product lines - open and closed variability for modelling language families.

In Fundamental Approaches to Software Engineering - 23rd International Conference, FASE, volume 12076 of Lecture Notes in
Computer Science, pages 161–181. Springer, 2020.

[dLGC15] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. Model-driven engineering with domain-specific meta-modelling lan-
guages. Software and System Modeling, 14(1):429–459, 2015.

[dLGCS18] Juan de Lara, Esther Guerra, Marsha Chechik, and Rick Salay. Model transformation product lines. In MoDELS, pages 67–77. ACM,
2018.

[dLGS14] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and how to use multilevel modelling. ACM Trans. Softw. Eng.
Methodol., 24(2):12:1–12:46, 2014.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Algebraic Graph Transformation. Monographs
in Theoretical Computer Science. An EATCS Series. Springer, 2006.

[FAGdC18] Claudenir M. Fonseca, João Paulo A. Almeida, Giancarlo Guizzardi, and Victorio Albani de Carvalho. Multi-level conceptual
modeling: From a formal theory to a well-founded language. In ER, volume 11157 of LNCS, pages 409–423. Springer, 2018.

[Fra14] Ulrich Frank. Multilevel modeling - toward a new paradigm of conceptual modeling and information systems design. Business &
Information Systems Engineering, 6(6):319–337, 2014.

[GdLCS20] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. Property satisfiability analysis for product lines of modelling lan-
guages. IEEE Transactions on Software Engineering, To appear:1–20, 2020.

[Ger17] Ralph Gerbig. Deep, Seamless, Multi-format, Multi-notation Definition and Use of Domain-specific Languages. PhD thesis, Univer-
sity of Mannheim, Germany, 2017.

[GPHS06] César González-Pérez and Brian Henderson-Sellers. A powertype-based metamodelling framework. Software and System Modeling,
5(1):72–90, 2006.

[GW21] Sandra Greiner and Bernhard Westfechtel. On preserving variability consistency in multiple models. In VaMoS’21: 15th International
Working Conference on Variability Modelling of Software-Intensive Systems, pages 7:1–7:10. ACM, 2021.

[GWG+20] Antonio Garmendia, Manuel Wimmer, Esther Guerra, Elena Gómez-Martı́nez, and Juan de Lara. Automated variability injection for
graphical modelling languages. In GPCE, pages 15–21, New York, NY, USA, 2020. Association for Computing Machinery.

[IGSS18] Muzaffar Igamberdiev, Georg Grossmann, Matt Selway, and Markus Stumptner. An integrated multi-level modeling approach for
industrial-scale data interoperability. Software and Systems Modeling, 17(1):269–294, 2018.

[JdL20] Santiago P. Jácome-Guerrero and Juan de Lara. TOTEM: Reconciling multi-level modelling with standard two-level modelling.
Comput. Stand. Interfaces, 69:103390, 2020.

[JN16] Manfred A. Jeusfeld and Bernd Neumayr. Deeptelos: Multi-level modeling with most general instances. In ER, volume 9974 of
LNCS, pages 198–211, 2016.

[JSM+19] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej Wasowski.
Clafer: Lightweight modeling of structure, behaviour, and variability. Programming Journal, 3(1):2, 2019.

[KC16] Thomas Kühn and Walter Cazzola. Apples and oranges: comparing top-down and bottom-up language product lines. In SPLC, pages
50–59. ACM, 2016.

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. Feature-oriented domain analysis (foda) feasibility study.
Technical Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[KMCA16] Jörg Kienzle, Gunter Mussbacher, Philippe Collet, and Omar Alam. Delaying decisions in variable concern hierarchies. In GPCE,
pages 93–103. ACM, 2016.

[KR91] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol. MIT Press, Cambridge, MA, USA, 1991.
[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: a framework for compositional development of domain specific

languages. Int. J. Softw. Tools Technol. Transf., 12(5):353–372, 2010.
[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling - Enabling Full Code Generation. Wiley, 2008.
[Lan71] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
[MGD+16] David Méndez-Acuña, José Angel Galindo, Thomas Degueule, Benoı̂t Combemale, and Benoit Baudry. Leveraging software product

lines engineering in the development of external dsls: A systematic literature review. Comput. Lang. Syst. Struct., 46:206–235, 2016.
[MOF16] MOF. http://www.omg.org/spec/MOF, 2016.
[MRB97] Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pattern Languages of Program Design 3. Addison-Wesley, 1997.

Language Family Engineering with Product Lines of Multi-level Models 35

[MRS+18] Fernando Macı́as, Adrian Rutle, Volker Stolz, Roberto Rodrı́guez-Echeverrı́a, and Uwe Wolter. An approach to flexible multilevel
modelling. EMISA, 13:10:1–10:35, 2018.

[NC02] L. Northrop and P. Clements. Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[NNG17] Damir Nesic, Mattias Nyberg, and Barbara Gallina. Modeling product-line legacy assets using multi-level theory. In SPLC, pages
89–96. ACM, 2017.

[OMG04] OMG. UML Human-Usable Textual Notation. http://www.omgwiki.org/variability/doku.php, 2004.
[PAA+16] Gilles Perrouin, Moussa Amrani, Mathieu Acher, Benoı̂t Combemale, Axel Legay, and Pierre-Yves Schobbens. Featured model

types: Towards systematic reuse in modelling language engineering. In MiSE@ICSE, pages 1–7, New York, NY, USA, 2016. ACM.
[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering: Foundations, Principles and Tech-

niques. Springer-Verlag, Berlin, Heidelberg, 2005.
[PKR+09] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, and Fiona A. C. Polack. The design of a conceptual

framework and technical infrastructure for model management language engineering. In ICECCS, pages 162–171, Washington, DC,
USA, 2009. IEEE Computer Society.

[RdLG+14] Alessandro Rossini, Juan de Lara, Esther Guerra, Adrian Rutle, and Uwe Wolter. A formalisation of deep metamodelling. Formal
Asp. Comput., 26(6):1115–1152, 2014.

[RPG+18] Daniela Rabiser, Herbert Prähofer, Paul Grünbacher, Michael Petruzelka, Klaus Eder, Florian Angerer, Mario Kromoser, and Andreas
Grimmer. Multi-purpose, multi-level feature modeling of large-scale industrial software systems. Software and System Modeling,
17(3):913–938, 2018.

[RSC15] Iris Reinhartz-Berger, Arnon Sturm, and Tony Clark. Exploring multi-level modeling relations using variability mechanisms. In
MULTI@MoDELS, volume 1505 of CEUR Workshop Proceedings, pages 23–32. CEUR-WS.org, 2015.

[SB02] Yannis Smaragdakis and Don S. Batory. Mixin layers: an object-oriented implementation technique for refinements and
collaboration-based designs. ACM Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-oriented programming of software
product lines. In Proc. SPLC, volume 6287 of Lecture Notes in Computer Science, pages 77–91. Springer, 2010.

[Sch06] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer, 39(2):25–31, February 2006.
[Sch10] Ina Schaefer. Variability modelling for model-driven development of software product lines. In Proc. Variability Modelling of

Software-Intensive Systems (VaMoS), pages 85–92, 2010.
[SdL18] Jesús Sánchez Cuadrado and Juan de Lara. Open meta-modelling frameworks via meta-object protocols. Journal of Systems and

Software, 145:1–24, 2018.
[SdLG12] Jesús Sánchez Cuadrado, Juan de Lara, and Esther Guerra. Bottom-up meta-modelling: An interactive approach. In Model Driven

Engineering Languages and Systems - 15th International Conference, MODELS, volume 7590 of Lecture Notes in Computer Science,
pages 3–19. Springer, 2012.

[SFR+14] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha Chechik. Lifting model transformations to product lines.
In ICSE, pages 117–128, New York, NY, USA, 2014. ACM.

[SPJ18] Daniel Strüber, Sven Peldszus, and Jan Jürjens. Taming multi-variability of software product line transformations. In Fundamental
Approaches to Software Engineering, 21st International Conference, FASE, volume 10802 of Lecture Notes in Computer Science,
pages 337–355. Springer, 2018.

[TBK09] Thomas Thüm, Don S. Batory, and Christian Kästner. Reasoning about edits to feature models. In 31st International Conference on
Software Engineering, ICSE, pages 254–264. IEEE, 2009.

[TSSC17] Gabriele Taentzer, Rick Salay, Daniel Strüber, and Marsha Chechik. Transformations of software product lines: A generalizing
framework based on category theory. In MODELS, pages 101–111. IEEE Computer Society, 2017.

[UML17] UML 2.5.1 OMG specification. http://www.omg.org/spec/UML/2.5.1/, 2017.
[VBD+13] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido

Wachsmuth. DSL Engineering - Designing, Implementing and Using Domain-Specific Languages. dslbook.org, 2013.
[VC15] Edoardo Vacchi and Walter Cazzola. Neverlang: A framework for feature-oriented language development. Comput. Lang. Syst.

Struct., 43:1–40, 2015.
[WHG+09] Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha S. Gokhale, and Douglas C. Schmidt. Improving domain-specific

language reuse with software product line techniques. IEEE Software, 26(4):47–53, 2009.
[WMR20] Uwe Wolter, Fernando Macı́as, and Adrian Rutle. Multilevel typed graph transformations. In Graph Transformation - 13th Interna-

tional Conference, ICGT, volume 12150 of Lecture Notes in Computer Science, pages 163–182. Springer, 2020.
[WTZ09] Christian Wende, Nils Thieme, and Steffen Zschaler. A role-based approach towards modular language engineering. In Software

Language Engineering, Second International Conference, SLE, volume 5969 of Lecture Notes in Computer Science, pages 254–273.
Springer, 2009.

