
Fundamenta Informaticae XXV (2014) 1–51 1

IOS Press

Pattern-based Rewriting through Abstraction

Paolo Bottoni1, Esther Guerra2, Juan de Lara2
1Computer Science Department, “Sapienza” Università di Roma (Italy)
2Computer Science Department, Universidad Autónoma de Madrid (Spain)

bottoni@di.uniroma1.it, Esther.Guerra@uam.es, Juan.deLara@uam.es

Abstract. Model-based development relies on models in different phases for different purposes,
with modelling patterns being used to document and gather knowledge about good practices in spe-
cific domains, to analyse the quality of existing designs, and to guide the construction and refactoring
of models. Providing a formal basis for the use of patterns would also support their integration with
existing approaches to model transformation. To this end, we turn to the commonly used, in this
context, machinery of graph transformations and provide an algebraic-categorical formalization of
modelling patterns, which can express variability and required/forbidden application contexts. This
allows the definition of transformation rules having patterns in left and right-hand sides, which can
be used to express refactorings towards patterns, change the use of one pattern by a different one, or
switch between pattern variants. A key element in our proposal is the use of operations to abstract
models into patterns, so that they can be manipulated by pattern rules, thus leading to a rewriting
mechanism for classes of graphs described by patterns and not just individual graphs. The proposal
is illustrated with examples in object-oriented software design patterns and enterprise architecture
patterns, but can be applied to any other domain where patterns are used for modelling.

Keywords Model-based development, Modelling patterns, Graphs, Trees, Category theory, Graph
transformation, Refactorings, Pattern variants.

1. Introduction

Model-based approaches have become commonplace for software development [31, 35, 49], where mod-
els are actively used to specify, verify, test, and generate code for the applications to be built. In this
setting, modelling patterns [1, 25] become essential assets, as they describe proven solutions to recur-
ring problems within a domain. Therefore, means are needed to formally describe modelling patterns
for specific domains, and to make them operational. Such a formal theory would enable their use for
pattern-assisted modelling, reasoning about the consequences of their combination or possible conflicts.

2 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Pattern-based modelling [9] enables modelling at a higher-level of abstraction, as patterns become
higher-level modelling primitives. However, making patterns “first-class citizens” requires appropriate
means for their manipulation, including ways to express refactoring toward patterns, formally describe
how to change the use of one pattern by another one in a certain context, and generate pattern variants.

In previous works [8, 9] we proposed a formal notion of pattern, including the satisfaction of a
pattern by a model, and the composition of patterns. In this paper we formalize and improve such notion,
distinguishing between pattern trees and variable patterns. The latter are a natural improvement of the
former with equations governing the allowed variability of the pattern variable regions. We define several
kinds of pattern morphisms and define a category that admits pushouts [32], on which we base a pattern
rewriting technique [21]. We characterize satisfiability, and provide a classification of patterns according
to this property. Then, we define pattern rules, and an abstraction operation permitting the abstraction of a
graph with respect to a pattern, and hence its rewriting via a pattern rule. This form of abstract rewriting
opens the door to analysis of rewriting transformations for classes of initial graphs (as abstracted in a
pattern) and not just for individual initial graphs, as usual in standard graph transformation [21].

We also formally study the recurring notion of pattern variant, where a pattern may be realized in
several ways. For example, in the Adapter pattern, one can use inheritance or delegation [25], and op-
erations of the adapter can be provided in the same class, or in multiple classes. The rewriting technique
can be used to obtain such pattern variants, and to substitute one variant for another on concrete models.

Patterns can be derived for domain-specific modelling languages, and we illustrate our approach
at work in the domains of enterprise application architecture [23] and object oriented software design
patterns [25]. Adopting patterns as a way of specifying architectural styles and pattern rules as a way
to describe architectural reconfigurations capitalises on a vast literature employing type graphs, graph
constraints and transformation rules for specifying the construction of architectural configurations con-
forming to the constraints (see e.g. [4, 6]). In [48] a similar formalism is used to verify conformance of
a realised architecture to a style, while graph transformations allow the architecture to evolve. Similar
techniques can be used for model smell (or anti-pattern) detection and repair [33, 3].

Altogether, this paper makes the following contributions: (a) a formal notion of pattern, and the defi-
nition of pattern rules, (b) an abstraction operation for graphs into patterns, and compatibility conditions
for their manipulation using graph and pattern rules, (c) some operations to construct variants of a given
base pattern, and (d) application of the theory to enterprise application architecture and object oriented
design. Due to the length of the underlying theory, in this paper we restrict to pattern trees, while the
developments for variable patterns will be the subject of a subsequent contribution.

The rest of the paper is organized as follows. Section 2 provides a motivation on the different choices
of our approach, and gives an overview of it. Section 3 introduces pattern trees admitting nested (positive
and negative) variable regions. Section 4 discusses abstraction operations to represent graphs as patterns.
Section 5 defines pushouts and pattern rules. Section 6 describes some mechanisms to obtain variants
of a given pattern. Section 7 shows some examples in the area of enterprise application architecture and
software design patterns. Section 8 compares with related research and Section 9 concludes the paper.
An appendix provides the details of the proofs of the different results. The reader is assumed to have
basic knowledge of category theory, as can be found for example in [32].

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 3

2. Motivation and overview of the approach

We provide an overview of the paper, starting from a collection of requirements for a formalism for
pattern modelling.

1. It should be easily integrated with existing ones for Model Driven Development (MDD).

2. It should allow the assessment of the relation between a model and a pattern.

3. It should support model refactoring to enforce conformance of a model to a pattern.

4. It should support model transformation so that a model conformant to a pattern is transformed to
a model conformant to a different pattern.

Patterns are restrictions on the structure that models may assume and as such they can be expressed
either as logical constraints using some textual notation based on First Order Logic (FOL), or through
some graph-based formalism, or even through second order logic over graphs [16]. Considering Require-
ment 1, we adopt a graph-based formalism, since (attributed typed) graphs are a widespread formalism
for the representation of models and meta-models (especially when the Unified Modeling Language
(UML) is adopted) in MDD. In this approach, graph transformations are used as a declarative speci-
fication according to which one can construct models progressively closer to the level where concrete
implementation is possible, or different views of semantically equivalent models. A number of options
are then available to express that only graphs with specific “shapes” are admissible. Among them we
mention Hierarchical Graphs [18, 12] and nested graph constraints [27, 20]. Both these approaches allow
the expression of an overall structure as well as of local configurations within the structure. We leave to
Section 8 a more detailed discussion on the specific choices which led us to adopt a particular restriction
of the formalism of nested graph constraints. The requirement could have also been met by using the
Object Constraint Language (OCL), which is an integral part of UML and which provides navigation
expressions to refer to the graph-based representation of the model. However OCL expressions tend to
be verbose and the definition of complex patterns becomes rapidly unwieldy, while a graphical represen-
tation can express them in a compact form. Moreover, OCL specifications do not lend themselves well
to the kind of formal transformation needed to meet Requirements 3 and 4.

Considering Requirement 2, the fundamental relation that one wants to express is whether a model
is conformant to a pattern. Conformance is more complex than direct pattern matching, as some suitably
denoted parts of a pattern can occur repeatedly in the model. A typical example is that of the Observer
pattern, where several instances of different types of concrete observer can be associated with the same
Subject. In this case we want to see the complex formed by the subject, all of its observers, and all of
the links between them as forming a single instantiation of the pattern, rather than several occurrences
of it. Besides this, another typical activity one wants to perform is the discovery of underlying similar
structures within different models. A notion of abstraction is therefore needed, by which the relevant
part of a model can be seen as an instance of a general pattern. With the mentioned techniques based on
graph transformation theory, specific algebraic or categorical constructions come to that effect.

Requirements 3 and 4 point to the need for a notion of pattern-based model transformation, whereby
one can transform a model into another with reference to some pattern. By adopting the graph transfor-
mation approach, the notion of a pattern rule arises naturally, through which one can indicate modifica-
tions both in the overall (hierarchical or nested) structure of the pattern and in its local configurations.

4 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Pattern rules can then be used to realise a form of refactoring - one transforms a model, abstracted as a
source pattern, so as to make it conformant to a target pattern, then concretised back to a model – or to
specify how a pattern can be transformed to a different one. In this second case, one can be interested
in the transformation per se, for example to express pattern variants, or can apply the transformation so
that all instances of the source pattern in a model are migrated to become instances of the target pattern.

In order to meet the requirements above, we proceed as follows.
We first introduce patterns as a collection of typed graphs structured by graph morphisms in a tree

shape, with annotations indicating whether subtrees must be interpreted positively or negatively. This
is equivalent to a form of nested graph constraints with a standard formula associated with the tree
structure, rather than arbitrary operators along each branch, and it allows a subsequent simple definition
of morphisms between patterns, leading to the identification of a category of patterns equipped with
pushouts, and providing the setting for a number of original contributions.

We provide a formal notion of pattern satisfaction and discuss the conditions under which the seman-
tics of a pattern is preserved when the pattern structure or the local configurations are extended.

We use pushout constructions as a basis for a number of pattern operators extending the classical
operations of tree concatenation and graph glueing to patterns, as well as introducing an original notion
of merging of a graph with a pattern. These operations are the building blocks for defining the abstraction
of a graph into a pattern, preserving the graph as part of the semantics of the derived pattern.

The existence of pushouts allows the introduction of a notion of pattern rule, extending standard
Double Pushout rules from graph transformation, so that a number of theoretical results developed under
that approach can be used. This provides a uniform view of pattern-related transformations, including
the refactoring of concrete models to conform to patterns, the migration of instances of a source pattern
to instances of a target pattern, or the derivation of variants from a source pattern.

3. Trees and Pattern Trees

We revise the definition of pattern in [9] to make it more amenable to the definition of morphisms, but
without losing generality. Patterns are modelled as trees, where each node of such a tree is associated
with a graph and there is a corresponding graph morphism for each edge of the tree. The tree structure is
used to express variability regions in graphs. Roughly speaking, such variability is given by the difference
between the source and target graphs in each morphism.

A tree is defined by a structure T = (V,E, root), where V is a finite set of nodes, E ⊂ V × V is
a set of edges s.t. (vi, vj) ∈ E =⇒ ((vj 6= vi) ∧ (vj , vi) 6∈ E ∧ 6 ∃vk [vk 6= vi ∧ (vk, vj) ∈ E]),
and ∃!root ∈ V s.t. (v, root) 6∈ E for any v ∈ V . Moreover, if we define the sets of edges in
the path from root to a node v as the fixpoint of the function p(v) defined by Equation (1), we have
v ∈ V ∧ v 6= root =⇒ ∃!vl[(root, vl) ∈ p(v)]. As a consequence of the above properties, for each
node v ∈ V there is one and only one path (with no cycle in it) from the root to v.

p(v) =

{
∅ if v = root,

p(v′) ∪ {(v′, v)} if (v′, v) ∈ E.
(1)

Given a node n ∈ V , its children are defined by the set children(n) = {m | (n,m) ∈ E}.
Given two trees T1 and T2, a tree morphism m : T1 → T2 is defined by a pair of total injective set

functions m = (mV : V1 → V2,mE : E1 → E2), mapping the roots (mV (root1) = mV (root2)) and

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 5

preserving the tree structure: e = (n1, n2) ∈ E1 =⇒ mE(e) = (mV (n1),mV (n2)).
As usual for trees, a tree T induces two functions, Subtree and Sons, where for each n ∈ V , Sub-

tree(n) = (V ′ ⊆ V,E′ ⊆ E,n ∈ V ′) is the subtree of T rooted in n and Sons(n) = {Subtree(m) |
m ∈ children(n)} is the set of subtrees of each child of n. Moreover, T induces a collection of
paths, as described above, from which we derive Path(T) = {path(v) | v ∈ V } where each set
path(v) = {v} ∪ {vi ∈ V | (vi, vj) ∈ p(v)} contains all and only the nodes appearing in the sequence
of edges from the root to v ∈ V , including v. Cod(f) denotes the codomain of function f .

3.1. Pattern trees

Given the basic concepts regarding trees above, we are ready to introduce our notion of pattern trees.

Definition 1. (Pattern Tree)
A pattern tree is a construct PT = (V,E, root,G,Mor, σ, γV , γE) where:

• T = (V,E, root) is a tree rooted in root.

• G is a finite set of graphs and γV : V → G is a surjective function associating each node vi ∈ V
with a graph in G.

• Mor = {mij : γV (vi)→ γV (vj) | (vi, vj) ∈ E} is a finite set of total injective graph morphisms.
We associate each (vi, vj) ∈ E with a morphism mij through the surjective function γE : E →
Mor.

• σ : Cod(Subtree) → {�,�}, with σ(Subtree(root)) = �, assigns positive (�) or negative (�)
sign to each subtree of T .

We call PT the set of all pattern trees.

Remark 3.1. While definition 1 is agnostic with respect to the kind of graphs used, in this paper we
use attributed, typed graphs [21]. In particular, we assume the presence of a set, TY PES, of types that
nodes and edges (collectively referred to as elements) may take through a function type. In practice,
such types are given by a meta-model. If untyped graphs are used instead, one still has two types, one
for nodes and another one for edges. We use the terms “graph” and “model” (in the sense of software
engineering model) interchangeably.

Remark 3.2. The graphs in G correspond to the variable regions in [9], indicating the possibility of
multiple instances of additional elements. Roughly, such variability is given by the difference between
the source and target graphs in each morphism in Mor. According to the sign assigned by σ, we talk
of positive or negative regions (or graphs). The fact that we allow nested negative regions of arbitrary
length presents an improvement with respect to [9] (where no nesting of negative regions was allowed).
Abusing of notation, we sometimes use the function σ on nodes of V instead of on subtrees.

Example 3.1. Figure 1(a) shows a pattern tree (named C/S) representing a simple client/server architec-
ture in the form of a tree of graph morphisms, with a direct correspondence to the formal definition. The
root graph is made of a Server node. A nested positive variable region clients models the fact that

6 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

there should be at least one client node, where the nested positive region channels requires that each
client has at least one connection to the server. No connection is allowed between clients, as specified
by the negative regions inc and out. The sign of the subtree rooted in a node is shown in the left-top
corner of each box. To represent the graphs, we use the UML notation for object diagrams. Hence, nodes
are mandatorily decorated with a type from the set {Server, Client} and optionally with an identifier
(e.g., s, c). Graph morphisms are implicitly shown by equality of object identifiers. Figure 1(b) depicts
the same pattern using a more compact notation visualizing nested regions as inclusions of graph differ-
ences. The area representing the root region is not explicitly marked, but would include all elements.
Negative regions are decorated using the “forbidden” symbol.

c:Client

channels
clients

:Client :Client

inc out

s:Server

s:Server

c:Client

root

clients

C/S

s:Server

clients

c:Client

channels

:Client

c:Client

:Client

c:Client

inc out

(a) (b)

s:Server s:Server s:Server

Figure 1. The C/S pattern tree. (a) in theoretical notation, (b) in compact notation.

Next, we introduce some operations that will be useful later. The first one (mpath) returns the chain
of morphisms from the graph γV (root) associated with the root of the tree to the graph γV (v) associated
with a given tree node v. The second one (terminal) returns the set of nodes of positive sign that do
not have any children with positive sign.

Definition 2. (Morphism chain path)
Let PT be a pattern tree and v ∈ V a node. The operation mpath(PT, v) = γV (root)→ . . .→ γV (v)
returns the chain of graph morphisms from γV (root) to γV (v).

Definition 3. (Positive terminal nodes)
Given a pattern tree PT , we define its set of positive terminal nodes as terminal(PT) = {v ∈ V | @ v′ ∈
children(v) with σ(v′) = � ∧ ∀ vi ∈ path(v)[σ(vi) = ⊕]}.

Next, we define the satisfaction of a pattern tree by a graph. Following [9], we consider an existential
semantics. Intuitively, a graph satisfies a pattern tree PT if it presents an occurrence of the root, at
least one occurrence of a configuration of graphs in the subtrees associated with positive (up to terminal)
nodes, and no occurrence of a configuration of the graphs in the subtrees associated with negative nodes,

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 7

where configurations are defined according to the morphisms inMor. More precisely, Definition 4 gives
a notion of satisfaction for pattern trees, where all graph morphisms are required to be injective.

Definition 4. (Pattern Tree Satisfaction)
Given a pattern tree PT ∈ PT and a graph M , M satisfies PT (or M is a model of PT), written
M |= PT , if

∃m : γV (root)→M [
∧

vi∈children(root)

SATPT(PT, root, vi,m, γE((root, vi)))]

where the predicate SATPT is defined as follows:

SATPT(PT, r, v,m : γV (r)→M,n : γV (r)→ γV (v))

1. Let Tv = {p : γV (v) → M | m = p ◦ n} be the set of all injective graph morphisms from
γV (v) ∈ V into M , commuting with the given morphisms m and n (see Figure 2).

2. if children(v) = ∅:

• Let Sv = Tv.

3. else:

• Let Sv = {p ∈ Tv |
∧
vi∈children(v) SATPT(PT, v, vi, p : γV (v)→M,γE((v, vi)))} ⊆ Tv.

4. if σ(v) = � return |Sv| ≥ 1; else return |Sv| = 0.

γV (r)
n=γE((r,v)) //

m

��
=

γV (v)

p
ppM

Figure 2. Morphism compatibility for set S.

Remark 3.3. The codomains of the morphisms in Tv need not be disjoint (i.e., non-overlapping), but
each morphism in Tv should be different.

We use the set of morphisms:

SPT,M =
⋃

vi∈V ∧σ(vi)=�

Svi ∪
⋃

vi∈V ∧σ(vi)=�

Tvi (2)

to denote the union of all sets Sv (for nodes of positive sign) and Tv (for nodes of negative sign) used
by SATPT in checking the satisfaction of M |= PT . The set SPT,M is useful because, for a graph M
satisfying a pattern PT , SPT,M identifies a maximal occurrence of the pattern tree PT in M . Such a set
contains all the morphisms from the positive graphs γV (v) ∈ V to M that satisfy SATPT at each stage

8 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

of the recursion. For a node v with negative sign, we use Tv instead of Sv, as Sv would be empty if M
satisfies the pattern, even if v has a nested negative region. In such case, we are interested in gathering
all morphisms, as nested negative regions have universal semantics.

Example 3.2. Figure 3(a) shows an example of pattern tree satisfaction, where the graph M satisfies
the pattern C/S in Figure 1. There is only one occurrence of the graph γV (root), given by morphism
m1 (morphism subindices denote the step in the recursion call to SATPT). Hence, the function SATPT

is invoked only once, with root, clients, m1 and n1 since the root node has only one child. At this
stage, the set Tclients contains three morphisms: m1,1, m1,2 and m1,3. The first identifies clients c and
c1, the second identifies c and c2, while the third identifies c and c3. A new recursion call is performed
with clients, channels, m1,1 and n2,1 as parameters. At this stage, the set Tchannels contains one
morphism m1,1,1 identifying the unique edge between the server s and c1. As node channels does not
have further children, the function returns true in line 4 of the previous definition. Then, the function
is evaluated with the other two children of clients (inc and out), which have negative sign. In both
cases, sets Tinc and Tout contain no morphisms, since the client c1 is not connected to other clients,
hence both invocations return true. The function also returns true when evaluated with morphism m1,2.
In this case there are two occurrences of γV (channels) (morphisms m1,2,1 and m1,2,2), but the function
returns false when invoked with m1,3. Altogether, at the second stage, the size of the set |Sclients|
is 2 (as two morphisms in Tclients satisfy the pattern). Hence, the overall result is true. SPT,M =
{m1,m1,1,m1,2,m1,1,1,m1,2,1,m1,2,2} identifies the maximal occurrence of the pattern in M , and is
shown enclosed in a dotted area in the graph M .

s:Server

s:Server

c:Client

root

clients

s:Server

c:Client

channels

:Client

c:Client
:Client

c:Client inc

out

s:Server

c1:Client

c2:Client
M

s:Server

s:Server

m1

n1

m1,1 m1,2 ={…

(c, c1)} ={…,

 (c, c2)}

n2,1

n2,2

n2,3

m1,1,1 m1,2,1 m1,2,2

c3:Client

m1,3

={…,

 (c, c3)}

(a)

:Server

:Client

:Server

:Client

:Server

M0 M1

M2

, ,

,

L(C/S)=

:Client :Client

:Server

:Client :Client

M3

,

,…

(b)

Figure 3. Pattern tree satisfaction example (a), and (b) some elements in L(C/S).

We define the semantics of a pattern tree as the set of all graphs that are satisfied by it. We are
also interested in characterizing the set of those models that do not contain “extra” elements but only

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 9

those necessary for satisfaction, as defined by the notion of joint surjectivity: A set of graph functions
{fi : Xi →M} with same codomain M is jointly surjective if each node and edge of M is the image of
a node or edge in some Xi according to fi.

Definition 5. (Pattern Tree Semantics)
Given a pattern treePT ∈ PT, its semantics JPT K = {M |M |= PT} is given by the (possibly infinite)
set of graphs that satisfy it. The language of models spawned by PT is L(PT) = {M ∈ JPT K | SPT,M
is jointly surjective}. PT is called unsatisfiable if L(PT) = ∅, otherwise it is called satisfiable.

The main point of the pattern tree semantics is that, in each graphM ∈ JPT K there is an “occurrence”
M ′ ↪→M of the pattern. Such occurrence is one graph M ′ ∈ L(PT).

Theorem 3.1. (Occurrence embedding)
Given a pattern tree PT , for each finite graphM , we have: M ∈ JPT K =⇒ ∃M ′ ∈ L(PT)[M ′ ↪→M].

Proof:
(Sketch) The set L(PT) contains all minimal graphs satisfying PT . Assume there is some M ∈ JPT K
for which @M ′ ∈ L(PT) such that M ′ ↪→ M ; this means that M does not contain an occurrence of the
pattern PT , and hence does not satisfy it. Therefore such M cannot belong to JPT K. ut

Example 3.3. Figure 3(b) shows some elements in the set L(C/S), of graphs presenting at least one
server and one connected client (as required by regions root, clients and channels). The variability
region named clients permits more than one client, each one of them connected with at least one arrow
to the server. Note that for the graphM in Figure 3(a),M 6∈ L(C/S), but there is an inclusionM3 ↪→M .

A pattern may be unsatisfiable if the structure required by positive regions is forbidden by negative
ones. In Section 3.2, we will define a certain class of morphisms between satisfiable patterns. In general,
satisfiability of pattern trees is undecidable, but it is decidable for a certain class of pattern trees, with
limited nesting of negative regions. Definition 6 introduces a class of trees with limited negative nesting.

Definition 6. (n-negation pattern trees)
Given a natural number n ∈ N0, a pattern treePT is called an n-negation pattern tree iff p ∈ Path(T) =⇒
(|{v | v ∈ p ∧ σ(v) = �}| ≤ n).

Example 3.4. The C/S pattern in Figure 1 is a 1-negation pattern tree, because it has at most one graph
with negative sign in each branch.

Intuitively, if PT has at most one negative region in each path, i.e., it is a 1-negation pattern tree,
satisfiability can be decided by building a graph made of the glueing of all positive regions, and then
checking whether some negative region occurs.

Theorem 3.2. (Satisfaction of 1-negation pattern trees)
Satisfaction is decidable for 1-negation pattern trees.

Proof:
See Appendix 9. ut

10 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Example 3.5. To check satisfiability of pattern C/S in Figure 1, we build the colimit of the maximal
subtree of C/S rooted in root and containing positive regions only (more details of this construction in
Appendix 9), leading to graph M0 in Figure 3(b). As M0 |= C/S, the pattern is satisfiable. One can also
easily note that M0 is the minimal graph satisfying C/S.

The source of difficulty in checking satisfaction of n-negation pattern trees with n > 1 lies with the
presence of nested negative regions (which we also call productive regions), which due to negation, have
a universal semantics. In particular, the problem arises from those nested regions demanding a certain
extra structure to form a match (and occurrence) for another nested negative region. The morphisms
defining nested regions are similar to those defining (non-deleting) graph transformation rules [21] and
satisfiability becomes similar to termination of graph transformations. We characterize nested negative
regions and their dependencies in Definition 7. A dependency arises if a region (vi, vj) contains in
γV (vj) some element x not mapped from γV (vi), and there is some element m in the graph γV (vk) of
some other nested region (vk, vl) with the same type as x.

Definition 7. (Negative nested region and dependency)
Given a pattern tree PT , (vi, vj) ∈ E is called a nested negative region, if σ(vi) = σ(vj) = �.
Given two nested negative regions (vi, vj), (vk, vl) ∈ E we say that (vk, vl) depends on (vi, vj), written
(vk, vl) ; (vi, vj) if ∃t ∈ TY PES[∃x ∈ γV (vj)[type(x) = t ∧ @x′ ∈ γV (vi)[γE((vi, vj))(x

′) =
x]] ∧ ∃m ∈ γV (vk)[type(m) = t]].

Remark 3.4. Regions (vi, vj), (vk, vl) ∈ E need not be different. A region (vi, vj) depends on itself if
it presents an element of type t in γV (vi) and an additional element of the same type in γV (vj).

Theorem 3.3. (Satisfaction of 2-negation pattern trees without dependencies)
Satisfaction is decidable for 2-negation pattern trees without negative region dependencies.

Proof:
See Appendix 9. ut

Example 3.6. In Figure 4(a) the C/S pattern of Figure 1 is modified to contain two productive regions.
For the nested region (connS,connCli) each client connected to a server must be connected to another
client. The nested region (cli,conn) demands that each client be connected to the server. Hence, the first
region demands some structure (another client), which could be part of a match for the second region,
which demands additional structure in its turn (a connection to the server). Therefore, there is a depen-
dency (cli,conn) ; (connS,connCli), and another dependency (connS,connCli) ; (cli,conn)
because (cli,conn) demands an arrow between each client and server, which could be part of a match
for γV (connS). Finally, there is a dependency of (connS, connCli) with itself, because the nested
region demands an extra client, which can be part of a match for connS. This situation is analogous to
those considered in termination criteria based on critical pair analysis for non-deleting graph transfor-
mation rules with NACs [19]. In this case, the pattern is finitely satisfiable (e.g. by the graph shown in
Figure 4(b)), but we show in Appendix 9 that there are patterns (with negative regions dependencies) that
are only satisfied by infinite graphs.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 11

s:Server

s:Server

c:Client
root

clients

c:Client

s:Server

c:Client

s:Server

cli

connS

c:Client

s:Server

c:Client

s:Server

:Client

conn

connCli

(a) (b)

:Server

d:Client

e:Client

Figure 4. A pattern with nested negative region dependencies (a); a graph that satisfies it (b).

3.2. Pattern Tree Morphisms

We next define two kinds of morphism between pattern trees. Morphisms of the first kind are defined
structurally only, identifying regions of source and target pattern trees, while those of the second type
are more restrictive, as they imply a relation between the semantics of their source and target patterns.

Definition 8. (Pattern Tree Morphism)
Given two pattern trees PT1 and PT2, a pattern tree morphism (or PT-morphism for short) m : PT1 →
PT2 is given by the tuple m = (mV : V1 → V2,mE : E1 → E2,mF), where:

• (mV ,mE) is a tree morphism that preserves the signs (σ2 ◦mV = σ1)

• mF is a family of graph morphisms containing a morphism mi
G : H1

i → H2
i from each graph

H1
i = γ1V (v

1
i) ∈ G1 into some graph H2

i = γ2V (mV (v
1
i)) ∈ G2 and preserving the morphism

structure, as the left of Figure 5 shows.

Remark 3.5. Making abuse of notation, but for simplicity, in Figure 5 we have depicted e1 = (v1i , v
1
j) ∈

E1 as an arrow E1 : v
1
i → v1j , and similarly for e2 = (v2i , v

2
j) ∈ E2. Note also that e2 = mE(e1) (not

indicated in the diagram) and m1
ij = γ1E(e1), m

2
ij = γ2E(e2).

v1i
γ1V //

E1

��

mV

&&
H1
i

mi
G //

m1
ij

��

H2
i

m2
ij

��

v2i
γ2Voo

E2

��

H1
i

mi
G //

m1
ij

��

P.B.

H2
i

m2
ij

��
v1j

γ1V //

mV

88H1
j

mj
G //

=

H2
j v2j

γ2Voo H1
j

mj
G // H2

j

Figure 5. Compatibility conditions for PT-morphisms (left) and for SPT-morphism semantics (right)

12 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Definition 9. (Semantic PT-morphism)
Given two satisfiable pattern trees PT1 and PT2, a semantic pattern tree morphism (or SPT-morphism
for short) is a PT-morphism m = (mV ,mE ,mF = {mi

G}) satisfying the following two conditions:

1. All negative regions of PT2 are the image of some negative region of PT1, i.e. ∀v2 ∈ V2[σ(v2) =
� =⇒ ∃v1 ∈ V1[mV (v1) = v2]].

2. The variability in regions is preserved: all commuting squares mj
G ◦m1

ij = m2
ij ◦mi

G induced by
the underlying PT-morphism are pullbacks (see the right of Figure 5).

Remark 3.6. Note that the direction of the graph morphisms in mF is from PT1 to PT2, even in case
of regions with negative sign. As the semantics of patterns and morphisms in Theorem 3.4 will clarify,
this is needed to ensure that for each graph satisfying the source pattern there is a morphism to a graph
satisfying the second pattern. For the same reason we require that PT2 does not contain negative regions
that are not mapped from any region of PT1.

Example 3.7. Figure 6(a) shows an example of SPT-morphism. Indeed, the 3T pattern does not add
unmapped negative regions, and each variability region in C/S is preserved in 3T. That is, the client c in
C/S and the edge to s are variable in C/S (because these are not mapped from the morphism from the
root), and are also variable in 3T. This is so as square (1) is not only commuting, but also a pullback.

s:Server

s:Server

c:Client

root

cclients

s:Server

root’

d:DataBase

s:Server

c:Client

cclients’

d:DataBase

s:Server

c:Client

queries

d:DataBase

q:Query

m1

m2

s:Server

c:Client

s:Server

c:Client

d:DataBase

q:Query

M1 L(C/S)

C/S 3T

M1 L(3T)

m12

(a) (b)

(1)

Figure 6. An SPT-morphism (a), and an element of its semantics (b).

Figure 7(a) shows a PT-morphism, which fails to be an SPT morphism due to the second condition in
Definition 9: some variable elements in C/S (the client c and the edge) are not variable in 3T, and hence
square (1), although commuting, is not a pullback (the root in C/S would need to be equal to cclients

for (1) to be a pullback).
Figure 8(a) shows a PT-morphism, which fails to be an SPT morphism due to the first condition in

Definition 9: the target pattern tree 3T has a negative region (nodup) which is not the image of any region
in the source pattern.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 13

s:Server

s:Server

c:Client

root

cclients

s:Server

root’

c:Client

s:Server

c:Client

cclients’

d:DataBase

s:Server

c:Client

queries

d:DataBase

q:Query

m1

m2

s:Server

c:Client

s:Server

c:Client

d:DataBase

q:Query

M1 L(C/S)

C/S 3T

M2 L(3T)

m12

(a) (b)

d:Client

d:Client

(1)

Figure 7. A PT-morphism that is not an SPT-morphism (a), failure of SPT semantics (b).

The semantic properties of SPT-morphisms are summarized by Theorem 3.4. The main idea is that
an SPT morphism m between two pattern trees PT1 and PT2 is “equivalent” to a set of morphisms,
containing morphisms bmijc between each graph M i

1 ∈ L(PT1) and some graph M j
2 ∈ L(PT2).

Moreover, such bmijc morphisms can be constructed from the SPT1,M i
1

and SPT2,M i
2

sets used in the
satisfaction checking of M i

1 |= PT1 and M i
2 |= PT2.

Theorem 3.4. (SPT-Morphism Semantics)
Given an SPT-morphism m : PT1 → PT2, we have that for each M1 ∈ L(PT1) there exist M2 ∈
L(PT2) and bm12c : M1 → M2 such that the diagram of Figure 9 commutes, where Di (for i = 1, 2)
is the diagram made of the graphs in Gi and the morphisms in Mori; SPTi,Mi is the set of morphisms
used in the satisfaction checking of Mi and mF is the set of graph morphisms in m (a set of morphisms
is indicated with a dotted double arrow).

Proof:
(Sketch) See Appendix 9. ut

The semantics of m is given by all such morphisms: JmK = {bm12c : M1 →M2 |M1 ∈ L(PT1) ∧
M2 ∈ L(PT2)}.

Example 3.8. Figure 6(b) shows an example of how an SPT-morphism m : C/S → 3T induces a graph
morphism bm12c : M1 → M2 between M1 ∈ L(C/S) and M2 ∈ L(3T). Actually, there are morphisms
from M1 into every M ′ ∈ L(3T) with at least one occurrence of γV (root′) and γV (cclients’) and an
arbitrary number of occurrences of γV (query).

The PT-morphism m : C/S → 3T of Figure 7(a) is not an SPT-morphism, and in this case there
exists an M1 ∈ L(C/S) for which there is no M2 ∈ L(3T) with a corresponding graph morphism
bm12c : M1 → M2, as illustrated in Figure 7(b). This is due to the fact that the variability of C/S is not
preserved in 3T, as any graph with some client not receiving a query does not belong to L(3T) (even
though it might belong to J3TK).

14 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

s:Server

s:Server

c:Client

root

cclients

s:Server

root’

s:Server

c:Client

cclients’

d:DataBase

m1

m2

s:Server

c:Client

s:Server

c:Client

d:DataBase

M1 L(C/S)

C/S 3T

M2 L(3T)

m12

(a) (b)

d:Client

d:Client

d:DataBase

s:Server

c:Client :Client

d:DataBase

nodup

Figure 8. A PT-morphism that is not an SPT-morphism (a), failure of SPT semantics (b).

D1
mF +3

SPT1,M1

��

=

D2

SPT2,M2

��
M1 bm12c

//M2

Figure 9. Compatibility conditions for SPT-morphism semantics.

The PT-morphism m of Figure 8(a) is not an SPT-morphism (as in this case 3T adds an unmapped
negative region). Figure 8(b) shows that there is some M1 ∈ L(C/S) (in particular those having two
or more clients connected to a server) for which there is no M2 ∈ L(3T) with a corresponding graph
morphism bm12c : M1 →M2, as such a M2 would not satisfy the unmapped negative region.

Example 3.9. Figure 10 shows an example of the construction of bm12c from m, SC/S,M1
and S3T,M2

(see Appendix 9 for details on the construction). The left shows an SPT-morphism, together with two
graphs M1 ∈ L(C/S) and M2 ∈ L(3T). The right shows a pattern making it explicit that M1 contains
two occurrences of cclient, so at least two are needed in M2. Morphism bm12c is then constructed
using the morphism m and the replicated morphisms m2 and m′2 by a colimit construction.

Note that the converse of Theorem 3.4 does not hold in general. Indeed, given an SPT-morphism
m : PT1 → PT2 and a graph M2 ∈ L(PT2), there might not exist a graph M1 ∈ L(PT1) and a
morphism bm12c : M1 → M2. The reason is that PT2 may have weaker negative regions (i.e., “bigger”
graphs), and hence L(PT2) may contain graphs that are not admissible by L(PT1). However, a weaker
version of this result holds, if we demand M2 ∈ JPT1K, because then it needs to satisfy all negative
regions in PT1. We will use this result in Section 5, when proving the correctness of pattern-based
rewriting with respect to graph abstraction.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 15

s:Server

s:Server

c:Client

root

cclients

s:Server

root’

d:DataBase

s:Server

c:Client

cclients’

d:DataBase

s:Server

c:Client

queries

d:DataBase

q:Query

m1

m2

s:Server

c1:Client

M1 L(C/S)

mroot m1
cclients

=

=

c2:Client

m2
cclients

s:Server

c1:Client c2:Client

d:DataBase

q2:Query

q1:Query

mroot

m1
cclients

m1
cclients’

m1
queries

m2
queries

M2 L(3T)

s:Server

s:Server

c:Client

root

cclients1

s:Server

root’

d:DataBase

s:Server

c:Client

cclients1’

d:DataBase

s:Server

c:Client

queries

d:DataBase

q:Query

m1

m2

=

s:Server

c:Client

cclients2

s:Server

c:Client

d:DataBase

s:Server

c:Client

queries’

d:DataBase

q:Query

cclients2’

m’2

=

s:Server

c1:Client c2:Client

s:Server

c1:Client c2:Client

d:DataBase

q2:Query

q1:Query

m12

(a) (b)

Figure 10. Semantics of SPT-morphisms: Constructing bm12c from m, SC/S,M1
and S3T,M2

.

Lemma 3.1. (Source induced morphism)
Given an SPT-morphism m : PT1 → PT2 and a graph M2 s.t. M2 ∈ L(PT2) and M2 ∈ JPT1K, there
exist a graph M1 ∈ L(PT1) and a morphism bm12c : M1 →M2.

Proof:
(Sketch) We take M1 to be the subgraph of M2 for which the set of morphisms SPT1,M2 is jointly
surjective, and bm12c : M1 → M2 to be the inclusion. M1 exists due to Theorem 3.1. Note that, given
a set SPT1,M2 , the graph M1 is unique, but if M2 satisfies the pattern PT1 at several occurrences (i.e.,
more occurrences of the root exist), then we have different sets SiPT1,M2

making the pattern satisfied. ut

Definition 10. (Isomorphic Pattern (sub)Trees)
Two pattern (sub)trees PT1 and PT2 are isomorphic, written PT1 ∼ PT2 if there exist two injective PT-
morphismsm : PT1 → PT2 andm′ : PT2 → PT1 withm′(m(PT1)) = PT1 andm(m′(PT2)) = PT2.

Note that if two inverse morphisms m : PT1 → PT2 and m′ : PT2 → PT1 exist, then they should
be SPT-morphisms. This is so because every region (positive and negative) of both patterns should be
mapped, and moreover, variability has to be preserved to have the graph isomorphisms. Therefore, as a
corollary from Theorem 3.4, if PT1 ∼ PT2, then L(PT1) = L(PT2).

Theorem 3.5. (Pattern Tree Categories)
The collection of pattern trees and their PT-morphisms form the category PattTree = (PT, Hom(PT)).
The collection of satisfiable pattern trees and their SPT-morphisms form the category SPattTree, which
is a subcategory of PattTree.

Proof:
See Appendix 9. ut

16 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

4. Abstracting Graphs into Patterns

We introduce an abstraction operation for graphs allowing their manipulation by pattern rules (made of
pattern trees in left and right-hand sides). By abstracting, one takes a graph M satisfying a pattern PT
(M ∈ JPT K) and creates a pattern PT ′ with similar structure to PT , in the sense that it should allow
an SPT-morphism from PT to the abstracted pattern PT ′, but ensuring that M becomes a member of
L(PT ′). Once such an abstraction is performed, the graph M can be manipulated using a pattern rule.

While there are many strategies to abstract a graph into a pattern, here we provide a simple one,
restricted to pattern trees without nested negative regions. We leave a general abstraction procedure to
future work, as the current abstraction strategy is enough for many practical cases, as Section 7 shows.

The main idea of the strategy is to first choose a path p of the pattern tree, whose graphs will be
“enlarged” (in bottom-up order) to account for the graph M , and the graphs in other paths are adjusted
to reflect the modification of parent graphs (i.e., a top-down traversal is done).

Before defining abstraction, we first provide some auxiliary operations. First, we define some con-
structors of pattern trees given a set of graph morphisms with tree structure and a single graph. We say
that a set of morphisms Mo = {mj}j∈J has tree structure if the graph formed by taking the morphisms
in Mo as edges, and the set of graphs in Dom(mj) ∪ Cod(mj) (with mj ∈Mo) as nodes is a tree.

Definition 11. (Pattern tree constructors)
Given a set of graph morphisms Mo = {mj}j∈J with tree structure, the operation tree(Mo) produces
a pattern tree as follows: tree(Mo) = 〈V,E, root, V,Mo, σ, γV , γE〉 with:

• V = {Dom(mj) ∪ Cod(mj) |mj ∈Mo},

• E = {(Gi, Gj) |mij : Gi → Gj ∈Mo},

• root = Gi s.t. @mji : Gj → Gi ∈Mo,

• σ yields always �,

• γV = idV ,

• γE = {((Gi, Gj),mij) | (Gi, Gj) ∈ E}.

Given a graph M , tree(M, sign), with sign ∈ {⊕,	}, produces the pattern tree 〈V = {M}, E =
∅, root =M,G = V,Mor = ∅, σ = {(M, sign)}, γV = idV , γE = ∅〉.

Next, we define some operations to construct a pattern tree out of existing ones. The first operation
(concat) appends the second tree to the first one, at a given place. The second (fuse) works on two
patterns with isomorphic root nodes, and yields a tree with such root containing all subtrees of both
trees. The merge operation glues a given graph and the graph corresponding to some tree node, adjusting
the graphs in all the subtrees of said node. Finally remove deletes a given subtree of the pattern.

Definition 12. (Concatenation)
Let PT and PT ′ be two pattern trees, andm : γV (v)→ γ′V (root

′) a morphism between a graph γV (v) ∈
G of the first pattern and the root graph γV (root′) ∈ G′ of the second pattern. We define the operation
concat as follows:

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 17

concat(PT, PT ′,m : γV (v)→ γ′V (root
′)) = 〈V ∪ V ′,

E ∪ E′ ∪ {(v, root′)},
root,

G ∪G′,
Mor ∪Mor′ ∪ {m},
σ ∪ σ′,
γV ∪ γ′V ,
γE ∪ γ′E ∪ {((v, root′),m)}〉

The operation can be extended in a straightforward way to sets of tuples for the second and third
parameters, concat(PT, {〈PTi,m : γV (vin) → γ′V (rooti)〉}), by just iterating the concatenation on all
tuples in the set.

Example 4.1. Figure 11 shows an example of concatenation. The operation simply puts the second tree
as subtree of the first one, through the m morphism.

s:Server

s:Server

:Client

root

cclients

s:Server

root’

d:DataBase

s:Server

:Client

cclients’

d:DataBase

m

PT PT’

cclients

PT PT’

s:Server

s:Server

:Client

root

cclients

s:Server

root’

d:DataBase

s:Server

cclients’

d:DataBase

:Client

concat(PT,PT’,m)

Figure 11. Pattern tree concatenation example.

The fuse operation is defined in terms of concat by adding all subtrees of the root of the second
pattern to the first one.

Definition 13. (Fuse)
Given PT and PT ′ with root ∼= root′, fuse(PT, PT ′) is the pattern tree defined as follows:

fuse(PT, PT ′) = concat(PT, {〈Subtree(v′j), γE((root′, v′j))〉| v′j ∈ children(root′)})

The operation can be easily generalized for an arbitrary number of arguments.

The next operation merges a graph M along a morphism m : γV (v) → M with all graphs in the
subtree Subtree(v) of v, resulting in a pattern tree, with same structure as Subtree(v), but with those
graphs “enlarged” according to M .

18 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Definition 14. (Merge)
Given PT , a node v ∈ V , a graph M , and a morphism m : γV (v)→M , we define the pattern tree graph
merge as follows:

merge(PT, v,M,m : γV (v)→M) = concat(tree(M,σ(v)),

{〈merge(Subtree(vi), vi,Mi,mi : γV (vi)→Mi),

m′i : M →Mi〉 | vi ∈ children(v)})

where Mi and mi : γV (vi)→Mi are calculated by a pushout, as shown in Figure 12.

γV (v)

γE((v,vi))

��

m //

P.O.

M

m′i

��
γV (vi) mi //Mi

Figure 12. Step in the construction of the pattern tree graph merge.

We also use a variation of merge that accepts as extra argument a set EX ⊆ V of excluded nodes,
with v /∈ EX , as follows:

merge(PT, v,M,m : γV (v)→M,EX) = concat(tree(M,σ(v)),

{〈merge(Subtree(vi), vi,Mi,

mi : γV (vi)→Mi, EX),m′i : M →Mi〉
| vi ∈ children(v) ∧ vi /∈ EX})

Example 4.2. Figure 13 shows an example of merge. The operation results in a pattern tree with rootM
and same structure as Subtree(root), containing enlarged graphs of PT with the extra elements given
by M , each graph being obtained by iterated pushouts along the tree structure.

s:Server

s:Server

:Client

root

cclients

s:Server

M

d:DataBase

m

PT

:Client

:Client

s:Server

unconnected

s:Server

root’

d:DataBase

s:Server

:Client d:DataBase

:Client

:Client

s:Server

d:DataBase

unconnected’ cclients’

merge(PT,root,M,m)

Figure 13. Pattern tree merge example.

The next operation simply removes a subtree from a pattern tree.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 19

Definition 15. (Remove)
Given a pattern tree PT = 〈V,E, root,G,Mor, σ, γV , γE〉, and n 6= root ∈ V such that Subtree(n) =
〈Vn, En, n,Gn,Morn, σ|Vn , γV |Vn , γE |En〉, we define the operation remove as follows:

remove(PT, n) = 〈V ′, E′, root,G′,Mor′, σ|V ′ , γV |V ′ , γE |E′〉

with V ′ = V \ Vn, E′ = E \ En \ {(n′, n) ∈ E | n ∈ children(n′)}, G′ = G \ Gn, Mor′ =
Mor \Morn \ {γE((n′, n)) | (n′, n) ∈ E′}.

Next, we define a path abstraction operation, which abstracts a pattern with respect to a graph, along
a given path of the tree.

Definition 16. (Path abstraction)
Let PT be a pattern tree, Mj ∈ JPT K, vj ∈ terminal(PT) and mj : γV (vj) → Mj . We define the
path abstraction of Mj with respect to vj in PT , written pabs(PT,Mj , vj ,mj : γV (vj) → Mj), as
ppabs(PT,Mj , vj ,mj : γV (vj)→ Mj , path(vj)), where ppabs(PT,Mj , vj ,mj : γV (vj)→ Mj , EX)
is defined as follows:

1. if vj = root, then
merge(PT, vj ,Mj ,mj , EX)

2. if ∃Mi s.t. (1) in Figure 14 is a pushout, then

concat(ppabs(PT,Mi, vi,mi, EX∪Subtree(vj)V),merge(Subtree(vj), vj ,Mj ,mj , EX), nij)

3. else
remove(concat(PT,merge(PT, vj ,mj , EX),mj), vj).

γV (vi)

γE((vi,vj))

��

mi //

(1)

Mi

nij

��
γV (vj) mj //Mj

Figure 14. Step in the construction of the path abstraction.

Remark 4.1. The abstraction traverses, bottom-up, a given path, calculating the pushout complements
Mi according to Figure 14. At the same time, a top-down traversal with the merge operation is performed,
enlarging all nodes in sibling paths. The nodes in the original path, and every subtree of these nodes,
are excluded in this merge, as the enlargement of these graphs is already performed by the pushout
complement in Figure 14, and the merge operation in step 2. If no such pushout complement exists, the
graph γV (vj) is simply substituted by the graph Mj (see step 3), for which purpose the subtree of vj is
enlarged (via a merge), its result concatenated with PT , and the original subtree of vj removed.

20 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Example 4.3. Figure 15 shows a path abstraction example. In particular, the right part of the fig-
ure shows the result of evaluating pabs(PT, M, cclients,m). In a first step, the pushout complement
root′ of root → cclients → M is calculated, and a recursive call ppabs(PT, root′, root, root →
root′, {root, cclients}) is made. At this stage, we reach the top of the pattern tree, so that step 1 in
the previous definition returns the result of merging root′ with the tree made of root and unconnected

(because cclients is excluded). This amounts to performing the pushout of unconnected obtain-
ing unconnected′. Finally, the trees are concatenated, obtaining the pattern tree shown in the right of
the figure. Hence, it can be seen that a path abstraction involves a bottom-up traversal of a given path
(computing pushout complements), and then a top-down traversal of each subtree (computing pushouts).

s:Server

s:Server

c:Client

root

cclients

s:Server

M

d:DataBase

m

PT

pabs(PT,M,cclients,m)

:Client

:Client

s:Server

unconnected

s:Server

root’

d:DataBase

s:Server

:Client d:DataBase

:Client

:Client

s:Server

d:DataBase

unconnected’ cclients’

c:Client

Figure 15. Path abstraction example.

Now we are ready to define our abstraction operation. It makes use of the path abstraction operation,
computing the patterns resulting from all possible path abstractions.

Definition 17. (Abstraction)
Let PT be a pattern tree, and Mj ∈ JPT K. We define the abstraction of Mj with respect to PT , written
abs(PT,Mj) as follows:

abs(PT,Mj) = {pabs(PT, vj ,Mj ,m
i
j : γV (vj)→Mj) | vj ∈ terminal(PT) ∧mi

j ∈ SPT,Mj}

Remark 4.2. The abstraction operation yields a set of pattern trees, for each node in the terminal set
terminal(PT) and each morphism used in the satisfaction checking.

Example 4.4. Figure 16 shows an abstraction example. Abstracting M with respect to PT yields two
patterns, PT1 and PT2 shown to the right of the figure. PT1 is obtained by path abstraction using morphism
m1. This pattern reflects the fact that at least one database with a cache should exist, and then allows the
same variability as PT. PT2 is obtained by path abstraction using morphism m2. In this case, the pushout
complement of root→ dbs→ M does not exist, and so M replaces dbs in PT.

Many other procedures and strategies for abstraction are possible. In particular, in the previous
example, one possible abstraction would yield a pattern like PT , but with graph dbs enlarged with a
cache object connected to the database object. While our abstraction uses information on one branch of

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 21

s:Server

s:Server

c:Client

root

cclients

s:Server

M

d:DataBase

m1

PT

abs(PT,M)

s:Server

root’

d:DataBase

s:Server

:Client d:DataBase

cclients’

c:Client

s:Server

:DataBase

dbs

m2

s:Server

:DataBase

:Cache

c:Cache

c:Cache

d:DataBase

c:Cache

dbs’

s:Server

s:Server

:Client

root

cclients

s:Server

:Client d:DataBase

:Cache

M

PT1 PT2

Figure 16. Abstraction example.

the pattern tree at a time, this abstraction would require a more complex analysis of several branches of
the pattern tree at the same time, which we leave for future work.

We next show that our abstraction strategy actually fulfils two desired properties for any abstraction
strategy. The first one states that the abstraction should be “exact”. That is, the graph should belong to
the language of the resulting abstracted pattern(s). The second property states that there should be an
SPT-morphism from the original pattern to the abstracted pattern(s). The existence of such a morphism is
naturally expected, as the original model M belongs to the semantics of PT by the existence of a family
of (graph) morphisms. Intuitively, such a family is included in the semantics of the SPT-morphism.

Theorem 4.1. (Abstraction implies language inclusion)
Let PT be a 1-negation pattern tree and G ∈ JPT K, then G ∈ L(PT ′) with PT ′ ∈ abs(G,PT).

Proof:
(Sketch) Let PT ′ ∈ abs(G,PT). If, in the construction of Definition 16, step 2 is taken, Mj is incorpo-
rated into PT ′, so it is clear that SPT ′,G is surjective, hence G ∈ L(PT ′). Similarly, if step 3 is taken,
then Mj is also incorporated into PT ′, and again SPT ′,G is surjective, so that G ∈ L(PT ′). ut

Theorem 4.2. (Induced abstraction SPT-morphism)
Let PT be a 1-negation pattern tree and G ∈ JPT K, then ∃m : PT → PT ′ with PT ′ ∈ abs(G,PT),
where m is an SPT-morphism.

Proof:
(Sketch) Each PT ′ ∈ abs(G,PT) is constructed by ppabs. Patterns PT and PT ′ are structurally equal,
but the graphs in PT ′ are those of PT enlarged, and a morphism between them exists as shown in
Figure 14 (where a PO-complement is built), and Figure 12 (where a PO is done, in the merge operations
in steps 1 and 3). The induced morphism is SPT because, assuming that the underlying graph category
used is adhesive, pushouts along monomorphisms are pullbacks, as required by the second condition of
SPT-morphism. In any case, PT ′ does not add new negative regions, and signs are preserved. ut

5. Pattern-based Rewriting

This section introduces a notion of rewriting on patterns, based on rules having patterns in their pre- and
post-conditions leveraging the theory of algebraic graph transformation [21], in which pushout comple-
ments are used to model deletion of elements, and pushout objects are used for the creation of elements.
Hence, we next show how pushouts for pattern trees are built.

22 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Definition 18. (Construction of Pushouts for Pattern Trees)
Given the span of PT − morphisms PT1

m1← PT0
m2→ PT2, the pushout PT1

m′1→ PT
m′2← PT2 is

calculated by the function glue(PT1
m1← PT0

m2→ PT2, γ
1
V (root

1)
mroot

1← γ0V (root
0)

mroot
2→ γV (root

2)),
defined as follows:

glue(PT1
m1← PT0

m2→ PT2, γ
1
V (v

1
i)

mi
1← γ0V (v

0
i)

mi
2→ γV (v

2
i)) = fuse(concat(tree(vi, σ

0(v0i)),

{〈glue(PT1
m1← PT0

m2→ PT2, γ
1
V (v

1
j)

mj
1← γ0V (v

0
j)

mj
2→ γV (v

2
j)), uj〉|

v0j ∈ children(v0i) ∧ v1j ∈ children(v1i) ∧ v2j ∈ children(v2i)}),
merge(PT1, v

1
i , vi, n

i
1, CodV (m

1)),

merge(PT2, v
2
i , vi, n

i
2, CodV (m

2)))

where each vi is the pushout object of γ1V (v
1
i)

m1← γ0V (v
0
i)

m2→ γV (v
2
i), uj : vi → vj uniquely exists due

to the PO universal property, (see Figure 17), and CodV (mk) is the set of graphs in the co-domain of
morphism mk, for k = 1, 2.

γ0V (v
0
i)

mi
1

rrr
r

xxrrr
r

��
mi

2

LLL
L

&&LL
LL

γ1V (v
1
i)

�� ni
1

LLL
LLL

LLL

&&LL

γ0V (v
0
j)

mj
1

rr

xxrrr
rrr

mj
2

LL

&&LL
LLL

L

γ2V (v
2
i)

��ni
2
rrr

rrr
rrr

xxrr
γ1V (v

1
j)

nj
2

MMM
MMM

M

&&MM

vi

uj

��

γ2V (v
2
j)

nj
2

qqq
qqq

q

xxqq
vj

Figure 17. Calculating a pushout on patterns

The glue function builds pushouts along the tree structure of PT0, by recursive calls. The subtrees
obtained in the recursive calls are added through the concat operation. In addition, we need to add the
non-mapped regions of PT1 and PT2, which is made by calling merge and then fusing the obtained trees
with the one originating from the concat.

Example 5.1. Figure 18(a) shows a pushout example and Figure 18(b) shows the details of the calcula-
tion. In particular, the extra region nodirect is added to PT via the merge operation.

Theorem 5.1. (Pushouts for Pattern Trees)
The category PattTree admits pushouts, built according to Definition 18.

Proof:
See Appendix 9. ut

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 23

s:Server

root0

s:Server

c:Client

clis0

s:Server

root2

s:Server

c:Client

clis2

d:DataBase

d:DataBase

s:Server

c:Client

d:DataBase

nodirect

s:Server

root1

s:Server

c:Client

clis1

p: Process

s:Server d:DataBase

root

s:Server

c:Client

p: Process d:DataBase

clis

s:Server

c:Client

p: Process d:DataBase

nodirect’

PT0

PT1

PT

PT2

P.O.

(a) (b)

m1

m2

m’2

m’1

s:Server

s:Server

c:Client

clis0

root0

s:Server

s:Server

c:Client

clis1

p: Process

s:Server

s:Server

c:Client

clis2

d:DataBase

d:DataBase

s:Server

c:Client

d:DataBase

nodirect

root1

s:Server d:DataBase

s:Server

c:Client

p: Process d:DataBase

clis

root

root2

u

mroot
2 mroot

1

nroot
1 nroot

2

n1
1 n1

2

s:Server

c:Client

p: Process d:DataBase

nodirect’

m1
1

m1
2

Figure 18. (a) Pushout example. (b) Details of the pushout construction.

If the two PT-morphisms in the span PT2
g← PT0

f→ PT1 are SPT-morphisms, then the complement
morphisms in the pushout are also SPT-morphisms if the resulting pattern is satisfiable.

Theorem 5.2. (Pushouts along SPT-Morphisms)
Given the pushout in Figure 19, f and g are SPT-morphisms iff f∗ and g∗ are SPT-morphisms.

PT0 f //

g

��

PT1

g∗
��

P.O.

PT2 f∗ // PT

Figure 19. Pushouts along SPT-morphisms

Proof:
(Sketch) If both f and g are SPT-morphisms, this means that every cube of the pushout is a van Kampen
square [40]. Hence, in Figure 17, the top and bottom faces are pushouts and the back faces are pullbacks,
hence the front faces are pullbacks. Moreover, from their being SPT-morphisms follows that all negative
regions of PT1 and PT2 are mapped from PT0, and so no new negative region appears in PT that is not
in both PT1 and PT2. Hence, we can conclude that f∗ and g∗ are SPT-morphisms.

Conversely, if f∗ and g∗ are SPT-morphisms, the front faces in Figure 17 are pullbacks, and therefore
by the van Kampen property so are the back faces. Moreover, all negative regions of PT are mapped
from both PT1 and PT2. Because of the pushout properties, this means that those negative regions

24 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

should be mapped from PT0 as well (otherwise they would not be mapped in PT from both PT1 and
PT2, but they would be replicated in PT) and so f and g are SPT-morphisms. ut

Example 5.2. Figure 20 shows an example of pushout merging two patterns: PT1, indicating that sev-
eral caches can be associated with the same database, and PT2, indicating that access to the database
occurs through a process, but not directly. Note that as it is not the case that both m1 and m2 are SPT-
morphisms (in particular m2 is not), then it is not the case that both m′1 and m′2 are SPT-morphisms (in
particular, m′2 is not).

s:Server d:DataBase

PT0

s:Server d:DataBase

PT1

s:Server

c:Cache

d:DataBase

root1

root0

caches

m1

s:Server d:DataBase

s:Server

c:Client p: Process

d:DataBase

root2

s:Server

c:Client

d:DataBase

nodirect procs

PT2

s:Server d:DataBase

s:Server

c:Client p: Process

d:DataBase

root2

s:Server

c:Client

d:DataBase

nodirect procs

PT

s:Server

c:Cache

d:DataBase

caches

m’1

m2

m’2

P.O.

Figure 20. Pushout example.

Next, we investigate a compatibility condition between pushouts for pattern trees (along SPT-morphisms)
and pushouts for graphs, which will be useful to ensure that the rewriting of abstracted graphs is correct.

Theorem 5.3. (Pushout compatibility)
Given a span of SPT-morphisms PT1

m1← PT0
m2→ PT2 and a span of injective graph morphisms G1

bm1c←

G0
bm2c→ G2 with Gi ∈ L(PTi) (for i=0, 1, 2), and bmjc ∈ JmjK (for j=1, 2), then G ∈ L(PT) with G

the pushout object graph of G1
bm1c← G0

bm2c→ G2 and PT the pushout pattern tree of PT1
m1← PT0

m2→
PT2 (see Figure 21).

Proof:
See Appendix 9. ut

Example 5.3. Figure 22 shows an example of pushout compatibility. Figure (a) shows a pushout on
pattern trees, where each morphism is an SPT-morphism. Figure (b) shows a pushout on graphs, where
Gi ∈ L(PTi), for i = 0, 1, 2, and bmic ∈ JmiK, for i = 1, 2. The resulting pushout object G ∈
L(PT). This is so as SPT-morphisms do not add new negative regions to PT , and negative regions
are only weakened. Moreover, as bmic ∈ JmiK, the morphisms ensure that there is no occurrence
of a variable region mapped by PT0 that is not mapped in G1 or G2. Should we make pushouts in

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 25

PT0 m1 //

m2
sss

s

yysss
s SPT0,G0

��

PT1

SPT1,G1

��

m∗2
ttt

yyttt

PT2

SPT2,G2

��

m∗1 // PT

SPT,G

��

G0

bm2c
sss
s

yysss
s

bm1c // G1

bm∗2c
ttt
t

yyttt
t

G2 bm∗1c // G

Figure 21. Pushout compatibility.

graphs through arbitrary morphisms, we would end up with a graph G /∈ L(PT), but in JPT K only, as
Figure 21 (c) shows. In that case, the resulting pushout pattern tree PT demands merging regions clis2
and clis1. However, at the graph level, the Client object in G2 was not identified by G0, and hence a full
synchronization of subgraphs satisfying regions clis2 and clis1 has not occurred.

s:Server

root0

s:Server

c:Client

clis0

s:Server

root2

s:Server

c:Client

clis2

d:DataBase

d:DataBase

s:Server

root1

s:Server

c:Client

clis1

p: Process

s:Server d:DataBase

root

s:Server

c:Client

p: Process d:DataBase

clis

PT0

PT1

PT

PT2

P.O.

(a) (c)

m1

m2

m’2

m’1

s:Server

d:DataBase

:Cache

cache2

s:Server

d:DataBase

c:Cache

cache

s:Server

c:Client

s:Server

c:Client p: Process

s:Server

c:Client

:DataBase

:Client :Cache

s:Server

c:Client p: Process

:DataBase

:Cache

:Client

P.O.

G0

G1

G2

G

s:Server

c:Client

s:Server

c:Client p: Process

s:Server

c:Client

:DataBase

:Cache

s:Server

c:Client p: Process

:DataBase

:Cache

P.O.

G0

G1

G2

G

(b)

m2

m1

m’2

m’1

m1

m2

m’2

m’1

Figure 22. Pushout compatibility example.

Next, we identify when pushout complements exist, as we need them to express deletion. To this
end, we first review the dangling edge condition for pushout complements on graphs, taken from [21]
(more precisely, see Definition 3.9 and Fact 3.11 there, where we do not need the identification condition,
as we work with injective morphisms). This condition basically states that if a node is “deleted” all its
stemming edges should be deleted as well.

26 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Theorem 5.4. (Pushout complements in graph)
Let K l→ L

m→ M be a chain of two graph morphisms, and let GN = {n ∈ LV \ l(KV)} be the set
of glueing nodes for l. The dangling edge condition is satisfied if ∀n ∈ GN [∀edge e ∈ M [src(e) =
m(n) ∨ tar(e) = m(n) =⇒ ∃edge e′ ∈ L[m(e′) = e]]]. If the dangling edge condition is satisfied, a

graph D and morphisms K d→ D
l∗→M exist, making the square a pushout.

Proof:
In [21]. ut

Now, we enumerate the conditions needed for the existence of pushout complements in pattern trees.

Theorem 5.5. (Pushout complements in pattern trees)
Given the chain of PT-morphisms K l→ L

m→M , the pattern D and the morphisms K d→ D
l∗→M exist,

making the square a pushout if:

1. The dangling edge condition is satisfied in every graph morphism mi
G ◦ liG with liG ∈ lF and

mi
G ∈ mF .

2. The dangling region condition is satisfied: Let the set of glueing regions be GR = {vi ∈ VL \
l(VK)}. This condition is satisfied if ∀vi ∈ GR[∀v ∈ children(m(vi))[∃v′ ∈ GR[m(v′) =
v ∧ v′ ∈ children(vi)]]].

3. The graphs inmV (GR) should be constructible by pushouts: ∀vLi ∈ GR, the diagram in Figure 23
is a pushout, where (vLj , v

L
i) ∈ EL, and (vMj , v

M
i) ∈ EM .

4. The graphs in VM \ mV (VL) should be constructible by pushouts. For this purpose, let GR′ =
{vMi ∈ VM \ m(VL)}. Let vj ∈ VM with vi ∈ GR′, and (vj , vi) ∈ EM . Let vLj ∈ VL with
m(vLj) = vj and vKj ∈ VK with l(vKj) = vLj , and vD the pushout complement of γMV (vj) ←
γLV (v

L
j) ← γKV (vKj). We require the dangling edge condition to be satisfied for γMV (vi) ←

γMV (vj)← vD.

γV (v
L
j)

//

ljG
��

γV (v
L
i)

liG
��

P.O.

γV (v
M
j) // γV (v

M
i)

Figure 23. Condition for pushout complements

Proof:
See Appendix 9. ut

Remark 5.1. In condition 4, the pushout complement vD exists, as according to property in item 1,
every graph satisfies the dangling edge condition.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 27

The dangling edge condition is the one for pushout complements in graphs. In pattern trees, it should
be satisfied in all regions of the pattern trees. The dangling region condition states that if some region is
deleted, all its nested regions should be explicitly deleted as well. The third and fourth conditions state
that the graphs in M that are not mapped from K should be constructible by pushouts. In particular, the
third condition states that the graphs “coming from L only” should be constructible by pushouts, while
the fourth condition states that the graphs “coming from D only” should be constructible by pushouts as
well. These last three conditions are specific to pattern trees and do not occur in pushouts for graphs.

Example 5.4. Figure 24 shows two examples where each of the two first conditions for existence of
pushout complements is violated. In the first case, the pushout complement has the effect of deleting the
database node d. However, this is not possible in the nested region, as a dangling edge would occur (the
edge connecting the client and the database). In the second case, the pushout complement deletes region
clisL. However, it is not possible to achieve a pushout, as region querysM would not be mapped from
the pushout complement D.

s:Server

rootK

s:Server

clisK

s:Server

rootL

s:Server

clisL

d:DataBase

d:DataBase

KL

l

c:Clientc:Client

s:Server

rootD

?
clisD

s:Server d:DataBase

rootM

s:Server

c:Client

d:DataBase

clisM

D
M

P.O.
dm

l*

(a) (b)

s:Server

rootK

s:Server

rootL

s:Server

c:Client

clisL

d:DataBase

d:DataBase

KL

P.O.

l

s:Server

rootD D

P.O.
d

l*

s:Server d:DataBase

rootM

clisM

Mm

s:Server

c:Client

d:DataBase

s:Server

c:Client

d:DataBase

q:Query

querysM
s:Server

c:Client

d:DataBase

q:Query

querysD?

(a) (b)

Figure 24. Conditions for existence of pushout complements (a) Violation of dangling edges condition. (b)
Violation of dangling regions condition.

Figure 25 shows other two examples violating conditions 3 and 4. Figure 25(a) shows that by deleting
region clisM it is not possible to obtain a pattern tree forming a pushout. This is so, as the pushout
construction requires graph clisM to be the pushout object of rootM

m← rootL
e→ clisL, but it is not

so, since it adds an edge between the client and the database. This means that we cannot remove one
region from D if such region is not matched with an identity morphism. Figure 25 (b) shows a violation
of condition 4, which can be seen as a deep deletion condition. The problem here is that, we are deleting
the DataBase from the root, but it produces a dangling edge in region clisM.

Next, we enunciate a similar compatibility property to the one for pushouts. However, in this case, we
need one more condition ensuring that if the pushout complement exists in patterns, it exists in graphs.
Again, this is needed to ensure correctness of rewriting of abstracted graphs.

28 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

s:Server

rootK

s:Server

rootL

s:Server

clisL

d:DataBase

d:DataBase

KL

le

s:Server

c:Client

s:Server d:DataBase

rootM

s:Server

c:Client

d:DataBase

clisM

M
P.O.

(a)

dm

l*
s:Server

rootD

D

e’

s:Server

s:Server

c:Client

s:Server

rootK

s:Server

rootL

d:DataBase

KL

l

(a) (b)

s:Server d:DataBase

rootM

s:Server

c:Client

d:DataBase

clisM

M
P.O.

dm

l*

rootD

D

e’

c:Client

s:Server

clisMe’

c:Client

?

Figure 25. Conditions for existence of pushout complements (a) Violation of condition 3. (b) Violation of condi-
tion 4.

Theorem 5.6. (Pushout complement compatibility)
Given a chain of SPT-morphisms PT0

m1→ PT1
m2→ PT2 and a chain of injective graph morphisms

G0
bm1c→ G1

bm2c→ G2 with Gi ∈ L(PTi) (for i=0, 1, 2), and bmjc ∈ JmjK (for j=1, 2), then if PT exists
s.t. the upper square in Figure 26 is a pushout, then G exists s.t. the bottom square in the figure is a
pushout, and G ∈ L(PT).

PT0 m1 //

m∗2
ttt

yyttt
SPT0,G0

��

PT1

SPT1,G1

��

m2
sss

s

yysss
s

PT

SPT,G

��

m∗1 // PT2

SPT2,G2

��

G0

bm∗2c
ttt
t

yyttt
t

bm1c // G1

bm2c
sss
s

yysss
s

G bm∗1c // G2

Figure 26. Pushout complement compatibility.

Proof:
See Appendix 9. ut

Example 5.5. Figure 27 shows an example of pushout complement compatibility. The pushout comple-
ment PT exists, because PT0 → PT1 → PT2 satisfies all conditions of Theorem 5.5. This means in
particular, that every square formed by the graph morphisms between the patterns is a pushout, and hence
satisfies the dangling edge conditions. For this reason, the pushout complement of G0 → G1 → G2

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 29

PT2

s:Server

s:Server

c:Client

d:DataBase

d:DataBase
s:Server

s:Server

c:Client

s:Server

PT0

s:Server d:DataBase

PT1

PT

s:Server s:Server d:DataBase

G0 G1

s:Server d:DataBase

G2

c1:Client c2:Client

s:Server

G

c1:Client c2:Client

SPT, G

SPT0, G0 SPT1, G1

SPT2, G2

Figure 27. Compatibility of pushout complements.

(graph G) exists. Intuitively, at the pattern level, building the pushout complement requires deleting the
database node. This action is ensured to be admissible in graphs belonging to the pattern language, be-
cause they do not have extra elements which could cause dangling edges, and therefore it is admissible
in G1, and so G can be constructed.

5.1. Pattern Rules

We use Double Pushout rules [21] made of a span of PT-morphisms: L l← K
r→ R. While rules

are sometimes equipped with NACs, expressing forbidden execution context, we omit them here for
simplicity. In any case, the fact that the left-hand side pattern L may contain negative regions allows
expressing forbidden context. We distinguish a special kind of rule, called SPT rule, in which the l and
r PT-morphisms are SPT-morphisms.

Definition 19. (Pattern rule)
A pattern rule p = 〈L l← K

r→ R〉 is made of a span of PT-morphisms. The rule p is an SPT rule, if l
and k are SPT-morphisms.

A pattern rule can be applied to a pattern PT if a PT-morphism m : L → PT is found, and the
pushout squares (1) and (2) in the diagram of Figure 28 can be built. In a first step, the pushout comple-
ment PT ′ is calculated. Such complement exists if the conditions of Theorem 5.5 are satisfied. Hence,
this first step (roughly) deletes the elements in L \K from PT , yielding PT ′. The second pushout adds
the elements in R \K to PT ′, yielding PT ′′.

Definition 20. (Rule applicability)
Given a pattern rule p = 〈L l← K

r→ R〉, and a pattern PT , we say that p can be applied at a PT-
morphism m : L→ PT , written m |= p, if m satisfies the dangling conditions of Theorem 5.5.

30 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

L

m
��

(1)

K

(2)d
��

loo r // R

h
��

PT PT ′l∗oo r∗ // PT ′′

Figure 28. Rule application.

Definition 21. (Rule application)
Given a pattern rule p = 〈L l← K

r→ R〉, a pattern PT , and a PT-morphism m : L → PT , s.t. m |= p,
p can be applied, written PT

p,m⇒ PT ′′, by constructing the pushouts shown in the diagram of Figure 28.

Example 5.6. Figure 29(a) shows an example pattern rule application. The rule reorganizes a database
server into a 2-tier architecture, by adding a backend server. The rule also adds a negative region for-
bidding direct accesses to the added backend server. Figure 29(b) shows a compact notation for rules,
which omits the intermediate pattern K, and shows the patterns themselves in a compact way. This is
the notation that we will use in Section 7.

s:Server

root

s:Server

c:Client

cl

s:Server

s:Server

c:Client

p: Process

L

PT

(a) (b)

m

d:DataBase

d:DataBase

s:Server

root

s:Server

c:Client

cl

K

d:DataBase

d:DataBase
s:Server

root

s:Server

c:Client

cl

R

d:DataBase

d:DataBase

db:Server

db:Server

c:Connection

d:DataBase

d:DataBase

s:Server

d:DataBase

db:Server

c:Client

noAcc

s:Server

s:Server

c:Client

p: Process

PT’

d:DataBase

d:DataBase

d

s:Server

d:DataBase

db:Server

c:Client

s:Server

c:Client

d:DataBase db:Server

c:Connection p:Process

PT’’ h

P.O. P.O. s:Server

c:Client

cl

L

d:DataBase

s:Server c:Client

cl

R

d:DataBase

db:Server c:Connection

noAcc

l r

l*
r*

:Client

s:Server d:DataBase

db:Server

Figure 29. (a) Pattern rule application example. (b) Pattern rule in compact notation.

Next, we show that rewriting using SPT rules is compatible with the abstraction. Assume that, given
an SPT rule p, and a graph G ∈ JLK, we abstract G according to the left hand side L of the rule p,
obtaining a set of patterns abs(G,L). According to theorem 4.2, for every pattern PTG ∈ abs(G,L)

there is an induced SPT-morphism m : L → PTG. We rewrite PTG through that morphism, PTG
p,m⇒

PT ′′G yielding PT ′′G. The compatibility condition must ensure that rewriting G using a graph rule p̂G
(derived from p) yields a graph G′′ s.t. PT ′′G ∈ abs(R,G′′). In order to show this result, we proceed in
two steps. First, we describe how to obtain a concrete rule p̂G, derived from a pattern rule p and a graph
G. Second, we show that the result of the rules on G and an abstraction of it are equivalent.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 31

Definition 22. (Concretized rule)
Given an SPT rule p = 〈L l← K

r→ R〉 and a graph G ∈ JLK, the set of concretized rules of p with

respect to G, written P̂G is given by the (possible infinite) set {p̂ij = 〈Lj
bljc← Kj

brijc→ Rij〉}, where the
rules are calculated as shown in Figure 30, and:

1. PTj ∈ abs(G,L),

2. mj : L→ PTj is the induced abstraction SPT-morphism, according to Theorem 4.2,

3. Lj and bmjc : Lj → G are calculated according to Lemma 3.1,

4. Kj and bljc : Kj → Lj are calculated according to Lemma 3.1,

5. Rij and brijc : Kj → Rij are calculated according to Theorem 3.4 (see Appendix).

L

mj
uuu
uu

zzuu
u

SL,Lj

��

Kloo r //

SK,Kj

��

R

S
R,Ri

j

��

PTj

SPTj,G

��

Lj

bmjc
vvv
v

zzvvv
v

Kjbljcoo brijc // Rij

G

Figure 30. Calculating a concretized rule.

Remark 5.2. The set in P̂G contains rules generated due to two factors. The first is the set abs(G,L),
as each PTj ∈ abs(G,L) induces a different mj : L → PTj . This reflects the fact that there may be
different occurrences of the rule in G, which means different concretized rules. The second is Rij , which
reflects the fact that the extra variable regions in R \ r(K) can be instantiated an arbitrary number of
times, leading to different rules.

Example 5.7. Figure 31 shows a rule concretization example. The rule is an SPT-rule, and is concretized
with respect to graph G. The abstraction yields two patterns, PT1 and PT2. The figure shows the details
of the calculation of the first rule concretized rule, while the second rule is the same as the first one.

Theorem 5.7. (Concretized and pattern rule execution)
Given an SPT rule p = 〈L l← K

r→ R〉 and a graph G ∈ JLK, we have that PTj
p,mj⇒ PT ′′j , with

PTj ∈ abs(G,L), then ∃p̂ij ∈ P̂G s.t. G
p̂ij ,bmjc
⇒ G′′ with G′′ ∈ JPT ′′j K, as Figure 32 shows.

Proof:
(Sketch) Follows from the compatibility of pushouts (Theorem 5.3) and pushout complements (Theo-
rem 5.6). ut

32 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

s:Server d:DataBase

L

s:Server

K

s:Server

c:Client

cl

d:DataBase

s:Server d:DataBaseG

s:Server

c:Client

cl

d:DataBase
PT1

:Cache

m1

s:Server

c:Client

d:DataBase

L1

s:Server

c:Client d:DataBase

K1

s:Server

c:Client

cl

d:DataBase

c1:Client

:Process

m1

SPT1, G

SL, L1 SK, K1

l

l1

s:Server

c:Client

d:DataBase

:Cache

G

c1:Client

:Process

s:Server

c:Client

Ls:Server

c:Client

cl

d:DataBase
PT2

:Cache

c1:Client

:Process

m1

R

db:Serverc:Connection

s:Serverc:Client

cl

d:DataBase

db:Serverc:Connection

d:DataBase

R1

s:Serverc:Client d:DataBase

db:Serverc:Connection

d:DataBase

SR, R1

r

r1

s:Server

c:Client

d:DataBase

L2

s:Server

c:Client d:DataBase

K2 R2

s:Serverc:Client d:DataBase

db:Serverc:Connectionl2 r2

Figure 31. Rule concretization example.

L

mj
ttt
tt

zzttt
t SL,Lj

��

Kloo r //

SK,Kj

��

d
ttt

tt

zzttt
t

R

S
R,Ri

j

��

h
ttt

tt

zzttt
t

PTG

SPTG,G

��

PT ′G
oo //

SPT ′
G

,G′

��

PT ′′G

SPT ′′
G

,G′′

��

Lj

bmjc
uuu
u

zzuuu
u

Kjbljcoo brijc //

bdc
uuu
u

zzuuu
u

Rij

bhc
uuu
u

zzuuu
u

G G′oo // G′′

Figure 32. Concretized and pattern rule execution.

Example 5.8. Figure 33 shows an example of execution of a pattern rule and a concretized rule, showing
their compatibility.

6. Pattern Variants

A number of design patterns [25] occur in variants, the most notable being those based on distinguish-
ing between inheritance and delegation. A typical example is the Adapter pattern, where a class, the
adapter, is created to compound the gap between the interface of an offered operation and the signature
of an available method implementing the semantics of the operation.

In other occasions, the difference between two pattern variants lies in the degree of variability offered
by each pattern version. For example, in the Adapter pattern we may require all operations to be
implemented by one class, or require a different class to implement each method.

Hence, we can build pattern variants in two ways. The first is by applying a pattern rule to an existing
base pattern. The second is by changing the variability offered by the pattern. While the techniques for

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 33

s:Server d:DataBase

L

s:Server

K

s:Server

c:Client

cl

d:DataBase

s:Server

c:Client

cl

d:DataBase
PT1

:Cache

m1

s:Server d:DataBase

L1
s:Server

K1

s:Server

c:Client

cl

d:DataBase

c1:Client

:Process

S

l

l1

s:Server

c:Client

cl

d:DataBase
PT’1

:Cache

c1:Client

:ProcessSL, L1

s:Server

c:Client

d:DataBase

:Cache

G

c:Client c:Client d:DataBase

c1:Client

:Process

m1

SPT1, G
l1

s:Server

c:Client

d:DataBase

:Cache

G’

c1:Client

:Process

SPT’, G’

R

db:Serverc:Connection

s:Serverc:Client

cl

d:DataBase

db:Serverc:Connection

R1
db:Serverc:Connection

d:DataBase
r

r1

PT’’ 1

s:Serverc:Client

cl

d:DataBase

db:Serverc:Connection

c1:Client :Process

SK, K1
SR, R1

d:DataBase s:Serverc:Client d:DataBase

r1

G’’

s:Serverc:Client d:DataBase

db:Serverc:Connection

c1:Client:Process

SPT’’, G’’

Figure 33. Pattern rule and concretized rule execution example.

applying pattern rules have been studied in the previous section, this section introduces an operation to
derive a set of pattern variants, which differ in the allowed variability. The main idea of the operation is
shown in the following example.

Example 6.1. Figure 34 shows some variants of the base pattern PT0, resulting from choosing different
variability from the root. PT1 allows several DBServers connected to the s Server, each with one
DataBase. PT2 is derived from PT1 by allowing several DataBases in each DBServer. Finally, PT3 is
derived from PT0, enabling one DBServer only, but each with one or more DataBases.

s:Server

d:DataBase

b:DBServer

root

s:Server

root

s:Server

d:DataBase

:DBServer

DBs

s:Server

root

s:Server b:DBServer

DBServs

s:Server

d:DataBase

b:DBServer

DBs

s:Server b:DBServer

root

s:Server

d:DataBase

b:DBServer

DBs

(a) (b) (c) (d)

PT0 PT1
PT2

PT3

Figure 34. Pattern variants example.

Now, we define the operation to increase the variability of a pattern. The operation takes as param-
eters a pattern tree PT and two morphisms a : γV (vi) → M , b : M → γV (vj), where M is the extra
variability to be inserted.

34 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Definition 23. (Insert variability)
Let PT be a pattern tree. The insert variability operation is defined as:

insert(PT, a : γV (vi)→M, b : M → γV (vj)) = remove(concat(PT,

concat(Tree(M,�), Subtree(vj), b), a),

vj)

with a : γV (vi)→M , b : M → γV (vj) injective, (vi, vj) ∈ E, vi, vj 6= root and σ(vi) = σ(vj) = �.
For the case of insertion of variability from the root, we define another version of insert as follows:

insert(PT, b : M → γV (root)) = concat(Tree(M,�), PT, b)

Insertion simply occurs by substituting Subtree(vj) in PT by a subtree rooted in M and with
Subtree(vj) as child. The operation distinguishes when the variability is to be inserted between two
elements vi, vj with (vi, vj) ∈ E, and when it is to be inserted atop the root.

Example 6.2. In Figure 34, PT1 = insert(PT0, b : Server → root), with Server the graph made
of just the server node. Similarly, PT2 = insert(PT1, DBServs, a : root → DBServs, b : DBServs →
DBs), with DBs the root graph of PT0 and DBServs the root graph of PT3, and PT3 = insert(PT0,
b : DBServs→ root).

The set of pattern variants of a pattern PT , var(PT), is the set of all patterns that can be constructed
in this way. Next, we investigate the effects of the variant pattern with respect to satisfaction of the
original pattern.

Theorem 6.1. (Variant Language)
If PT does not have negative regions, L(PT) ⊂ L(PT ′), for each PT ′ ∈ var(PT).

Proof:
(Sketch) Let G ∈ L(PT) and take PT ′ ∈ var(PT) assuming just one inserted graph M between vi
and vj . For all occurrences of γV (vi) in G there is at least one occurrence of the whole γV (vj). Now,
in any G′ ∈ L(PT ′), for each occurrence of γV (vi) there is at least one occurrence of M and for each
occurrence of M there is at least one occurrence of the whole γV (vj). As in PT we can identify a chain
of subgraphs γV (vi)→M → γV (vj) for each occurrence of γV (vi) (or no occurrence of γV (vi) at all),
we have that G ∈ L(PT ′), where γV (vj) occurs once for each occurrence of M . Note that we do not
have equality of languages, because L(PT ′) admits graphs with several occurrences of γV (vj) for each
occurrence of M . The reasoning can be completed by induction on the inserted graphs. ut

7. Case Studies

In this section, we show the applicability of our approach by defining some pattern-based rules enabling:
(a) the description of refactorings of models towards patterns, (b) modelling how to reconfigure a system
by changing one pattern by an alternative one, and (c) explaining how to define pattern variants and to
alternate between them. The examples used are in the domain of enterprise application architecture [23],
and object-oriented design [25].

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 35

7.1. Refactoring towards patterns and pattern-based reconfiguration

Different patterns have emerged over the years to help in architecting enterprise applications [23]. They
consider general principles, like layering, and must address all aspects of the enterprise application, like
the domain organization, persistence, presentation, concurrency, efficiency and distribution. In many
cases, the architect needs to decide between several options. For example when organizing the domain
logic, it is possible to follow the transaction script, domain model or table module patterns [23], each
one with different trade-offs depending on how complex the domain logic is. For this purpose, a way
to understand, and automate, how to change a design for the usage of different patterns, or refactor an
existing design towards a certain pattern would be helpful in this situation. This subsection shows how
our pattern rules can describe and automate these two activities.

Distribution patterns provide strategies aimed at improving performance when there is a need to ac-
cess remote objects. One of such patterns is Remote Facade, which is recommended whenever one needs
to access fine-grained remote objects [23]. In this case, the pattern proposes the use of a coarse-grained
facade for the remote objects to improve efficiency over the network, since methods in the facade can
encapsulate a number of invocations to the fine-grained objects. Figure 35 (a) shows this distribution pat-
tern expressed as a pattern tree. For the examples in this section we use stereotypes (like local or facade)
as a way to annotate the roles of the different elements in the pattern. Figure 35 (b) shows another dis-
tribution pattern called Data Transfer Object, which encapsulates the data interchanged between classes
into a single object to reduce the number of method calls [23], as well as the number of parameters in
the calls. The pattern includes a data transfer object (DTO) that holds all data for the method call, and
an assembler class in the server in charge of transferring data between the data transfer object and the
domain objects. In the pattern trees of this section, the underlying graph category that we use here is
attributed typed graphs [21] and hence we use variables as values of attributes, like n and m.

remote-
methods

facade-
methods

<<remote>>

:Class

:Method :Method

<<facade>>

:Class
<<local>>

:Class

call

<<local>>

:Class

remote

atts

<<remote>>

:Class

name=n

:Attribute

name=m

:Attribute

name=n+m

<<assembler>>

:Class

<<dto>>

:Class

(a) (b)

Figure 35. (a) Remote Facade pattern. (b) Data Transfer Object pattern.

It is interesting to have a means to structure an existing design towards these patterns. As an example,
the rule in Figure 36 refactors a model towards the Data Transfer Object pattern. In this way, it applies
the pattern to a particular class annotated as “remote”, and a non-empty set of its attributes annotated
as “accessed”. The rule creates an assembler class for the remote class, and data transfer object with
attributes for all accessed ones.

In addition to refactoring an architectural model towards a pattern, sometimes it may be necessary
to reconfigure the actual architecture by changing one architectural pattern by another one. For this

36 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

L R

<<local>>

l:Class

remote

atts

<<remote>>

r:Class

name=n

a’:Attribute

name=n+m

<<assembler>>

as:Class

<<dto>>

d:Class

<<local>>

l:Class

remote

atts

<<remote>>

r:Class

name=n

<<accessed>>

a:Attribute

name=m

<<accessed>>

a:Attribute

name=m

Figure 36. Refactoring towards the Data Transfer Object pattern.

purpose, we can use pattern rules describing a possible migration strategy for reconfiguring a system that
uses the first pattern, into a system that uses the second one. This kind of rules are useful for analysing
the impact of every design decision, and are especially valuable in software evolution, migration and
modernization, to reduce effort and errors [50].

For instance, Figure 37 shows two rules to switch between the remote facade and data transfer object
architectural options. In particular, rule (a) identifies all remote classes that are accessed by a local class
through remote facades (variable region remote). This rule removes the facade as well as its methods
(variable region methods, appearing in L but not in R, so that the matched methods are deleted all
together). Note that by deleting these methods we do not lose any functionality, as the domain logic
remains in the methods of the remote classes which are preserved. In place of the facade, the rule creates
a data transfer object class (labelled dto), with copies of a subset of the attributes in the remote classes
(variable region atts). The name of the created attributes is built by concatenating the names of the
remote class and the remote attribute, to avoid duplicate attribute names in the data transfer object class.

L R

methods

<<local>>

l:Class

<<remote>>

r:Class

name=n

<<facade>>

:Class

remote

:Method
<<accessed>>

a:Attribute

name=m

attrs

<<local>>

l:Class
remote

atts

<<remote>>

r:Class

name=n

:Attribute

name=n+m

<<assembler>>

:Class

<<dto>>

:Class

<<accessed>>

a:Attribute

name=m methods

L R
<<local>>

l:Class

atts

<<remote>>

r:Class

name=n

:Attribute

<<assembler>>

:Class

<<dto>>

:Class <<accessed>>

m:Method

name=m

remote

methods

<<local>>

l:Class

<<remote>>

r:Class

name=n

<<facade>>

:Class

<<accessed>>

m:Method

name=m

remote

:Method

name=n+m

call

(a) (b)

Figure 37. Some rules for architectural reconfigurations: (a) from Remote Facade to Data Transfer Object, (b)
from Data Transfer Object to Remote Facade.

Figure 37(b) shows a rule for the reverse situation: given a local class that is using a dto, the rule
deletes the dto and its attributes, and substitutes it by a remote facade. In this case, the facade object is
created within the remote region, so that every remote class is assigned a facade.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 37

Note that these two rules do not simply have the source pattern (e.g., Remote Facade) as left hand side
and the target pattern (e.g., Data Transfer Object) as right hand side, but describe a migration strategy.
Hence, they need to relate elements that are preserved in both patterns, consider just relevant fragments
of the patterns that need to be refactored, and possibly use pattern variants to describe the changes. For
example, the rule (a) in Figure 37 uses a variant of the pattern in Figure 35(a) with an extra nested region.

Domain logic patterns express strategies for organizing the domain logic, according to different
styles. For example, while the Transaction Script pattern advocates the use of procedures handling
each request from the presentation, the Domain Model pattern proposes the use of objects modelling
the domain, which incorporate both behaviour and data. In a sense, the Domain pattern is opposed to
the Transaction Script, because the former really promotes an object-oriented conceptualization of the
domain. However, a problem with the domain logic pattern is that it complicates the definition of the in-
terface with a database. Hence, the Table Module pattern can be used, which organises the domain logic
with one class per table in the database: a single instance of such classes contains the various procedures
manipulating the data [23]. Figure 38 shows a description of both patterns with our formalism.

:Database

<<domain>>

:Class

1 <<strategy>>

s:Class

isAbstract = true

classes

strategies

<<conc-strategy>>

sc:Class

isAbstract = false

<<identifiable>>

m:Method

methods

db:Database

<<table>>

c:Class

table-classes

<<identifiable>>

m:Method

:Parameter

name=«ID»

methods

<<class>>

t:Table

(a) (b)

Figure 38. Some domain logic patterns: (a) Domain model pattern, (b) Table module pattern.

Figure 39(a) shows a pattern rule to migrate from the architectural style Domain Model into Table
Module. Its left hand side looks for all classes that conform to the domain model pattern (i.e., they
use a strategy class and are annotated as “domain”). For those classes, the rule deletes the strategies
they use (both abstract and concrete classes), and transforms the methods in the concrete strategies into
methods of the class, thus preserving the logic in the methods. Moreover, the methods are added a new
parameter, ID, to be consistent with the Table Module pattern. Note that the variable region strategies

in R is empty because the rule deletes the concrete strategies, but we maintain the region to preserve
the tree morphism from K (not shown in the figure) to R. Also, the rule renames the methods to avoid
duplication, by adding the name of the concrete strategy initially defining the method as prefix to the
method name. This is possible even if the concrete strategy is not present in R, as m is a variable which
gets initialised in L with the name of the concrete strategy, and is available in R.

Figure 39(b) shows a rule implementing the reverse reconfiguration: from table module to domain
model. The rule matches all table-classes (variable region classes), and removes the ID parameter from

38 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

db:Database
<<domain>>

c:Class

1
<<strategy>>

:Class

name = n

<<identifiable>>

m:Method

db:Database

<<table>>

c:Class

<<conc-strategy>>

:Class

name = m
name = m+n

<<identifiable>>

m:Method

:Parameter

name=«ID»

L R

methods

strategies

classes

methods

strategies

classes

db:Database

classes

:Parameter

name=«ID»

<<table>>

c:Class

<<identifiable>>

m:Method

methods

1

L R

db:Database

classes

<<domain>>

c:Class

<<identifiable>>

m:Method

methods

<<strategy>>

s:Class

isAbstract = true

<<conc-strategy>>

sc:Class

isAbstract = false

(a) (b)

Figure 39. Some rules for architectural reconfigurations: (a) from Domain Model to Table Module, (b) from
Table Module to Domain Model.

their methods (variable region methods) as they were required by the table module pattern, but not by
the domain model pattern that is being applied. Instead, the class is associated with a new strategy.

7.2. Alternating between variants for design patterns

In this section we capitalize on the notion of pattern variant, applied to object oriented design patterns.
As previously stated, some design patterns can occur in variants, the most notable being those based on
distinguishing between inheritance and delegation. Figure 40 illustrates the two meta-model representa-
tions of the inheritance- and delegation-based variants of the Adapter pattern. In both cases, the pattern
is defined only by its root part.

(a)

offer:Interface implementer:Class

requested:Operation

feature

:InterfaceRealization

adapter:Class

contract

implementingClassifier

provided:Operation

:Generalization

general

specific

ownedOperation

provided:Behavior

specification

method

adapterViaSpecialisation (abstract syntax)

client:Classifier

:Relationship

pre:Constraint

post:Constraint

precondition precondition

postcondition postcondition

(b)

offer:Interface implementer:Class

requested:Operation

feature

:InterfaceRealization

adapter:Class

contract

implementingClassifier

provided:Operation

:Property

ownedAttribute

ownedOperation

provided:Behavior

specification

method

adapterViaDelegation (abstract syntax)

client:Classifier

:Relationship

pre:Constraint

post:Constraint

precondition precondition

postcondition postcondition

type

Figure 40. The two variants for the Adapter pattern: inheritance (a) and delegation (b).

As stated in Section 6, variants can be created either by applying pattern rules to a given pattern, or
by increasing its variability. Figure 41 represents the two rules (one inverse of the other) to transform one
variant into the other. In this case the rules can be automatically obtained: each rule is the minimal rule
derived from the span G ← D → H , following the construction in [6], where the two whole patterns

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 39

play the role of G and H , exchanging them depending on the direction of the transformation. In this
case, since the semantics of the left and right hand sides is correct within the language of patterns, we do
not need any additional context. Because of the localisation of the transformation, the two rules have the
same interface graph K, while the other two graphs play the role of L or R, depending on the direction
of the transformation. Note that when applied to the patterns of Figure 40, the class identified by 2 will
play the role of the implementer, while the one identified by 1 the role of the adapter.

2:Class

1:Class

:Generalization

general

specific

2:Class

1:Class

:Property

type

ownedAttribute

Rules for alternating between variants (DPO style)

K

2:Class

1:Class

Figure 41. A representation of the two rules for going from one variant to the other.

Consider now the two variants of the Adapter pattern, in its inheritance version, shown in Figure 42,
where the possibility of adapting the interface of a class to multiple operations, rather than just one is
modelled. The variant (a) requires that, for each operation that is offered, a distinct class will provide
that operation, while in the variant (b) a single class provides all the needed operations. In both cases,
a single adapter class is needed, using multiple inheritance for the first variant. In this case, the variants
are constructed by increasing the variability of the pattern in Figure 40(a), using the operation insert in
Definition 23. Similar variants for the delegation version of the Adapter could be constructed.

(a)

offer:Interface implementer:Class

requested:Operation

feature

:InterfaceRealization

adapter:Class

contract

implementingClassifier

provided:Operation

:Generalization

general

specific

ownedOperation

provided:Behavior

specification

method

adapterViaSpecialisation: multiple operations, one implementer for each of them

client:Classifier

:Relationship

pre:Constraint

post:Constraint

precondition precondition

postcondition postcondition

Operations

(b)

offer:Interface implementer:Class

requested:Operation

feature

:InterfaceRealization

adapter:Class

contract

implementingClassifier

provided:Operation

:Generalization

general

specific

ownedOperation

provided:Behavior

specification

method

adapterViaSpecialisation: multiple operations, one implementer for all of them

client:Classifier

:Relationship

pre:Constraint

post:Constraint

precondition precondition

postcondition postcondition

Operations

Figure 42. Variants of the Adapter pattern (inheritance version) for multiple operations.

The rules in Figure 41 can be adapted to rules performing the same function, i.e. transforming
inheritance into delegation, or vice versa, for the case of the variants for multiple operations. In particular,
one obtains a new rule by identifying the highest node in the tree structure where subgraphs of the
original pattern are isomorphic to subgraphs in the variant, and placing elements of the rule according
to the resulting structure. For the case of a single class implementing all the methods (pattern (b) on
Figure 42) the original rules remain unaltered, since it matches to a subgraph which remains in the root
of the transformed pattern. For the case of multiple classes (pattern (a) in Figure 42), we obtain the rules
in Figure 43, since the node matched by the class identified by 2 is found in the root in all cases, while

40 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

all the other elements appear in the Operations region in the two variants.

K

Rules for alternating between variants , many class version

1:Class

2:Class

Ops

:Generalization

general

specific

1:Class

2:Class

Ops

1:Class

:Property

type

ownedAttribute

2:Class

Ops

Figure 43. The variants of the rules of Figure 41 for multi-class adapters.

8. Related Work

Various meta-models for patterns have been proposed, usually relative to some specific modelling lan-
guage, typically UML [24, 22]. In [9] we provide a language-independent meta-model for patterns,
which can be specialised to any language, through a suitable vocabulary of roles.

Rensink et al. have developed a line of research based on expressing constraints on the shape of
graphs, thus identifying abstract representations of them [41]. This is aimed at the verification of graph
transformation systems, by abstracting them into systems operating on abstract representations. In [5, 42]
the authors present some abstractions that can be applied on graphs, while labelling nodes and edge
ends with upper bounds, where two graphs are abstracted into the same shape if they have equal local
neighbourhoods. A logic is also presented which is preserved and reflected by the abstractions. Similar
to our approach, in [7] the authors show that if a graph G can be transformed by a rule, yielding graph
H , then G’s abstraction can also be transformed by the same rule, yielding H’s abstraction.

The use of pattern rules to substitute occurrences of a source pattern with occurrences of a target
pattern is analogous to the use of nested rules in [43], where all the occurrences of single rules are
applied in an amalgamated way. In the case of [43], however, a single structure accommodates the
different rules, whereas pattern rules, having patterns in both their left- and right-hand sides (which may
contain nested positive and negative regions), can indicate variations of the overall pattern structure.
Since our rules are defined as pattern morphisms, they are more expressive than rules defined by graph
morphisms. Moreover, rules can be applied both to concrete models, after abstracting them, and directly
to patterns, for example to produce variants.

A notion of pattern and of abstraction close to ours is given in [44], where a pattern is defined as
a directed acyclic graph (DAG), with each node in the DAG associated with a graph and each edge
in the DAG with a morphisms between the corresponding graphs. The authors adopt a more limited
form of pattern morphism than ours, mapping nodes to nodes with isomorphic graphs. They derive a
canonical representation for patterns, which is however not preserved by pattern transformations, so that
the patterns resulting from a transformation must be normalised back.

In the version without variability equations presented in this paper, pattern trees are a simple form
of nested graph constraints, extensively discussed in [28], where their relation with general application
conditions on rule application is also discussed. More precisely, pattern trees represent a form of nested
constraint where only ∃ (for positive regions) and @ (for negative regions) operators are used in the
formulae associated with each constraint. In this way, one does not have to deal with logical formulae,

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 41

as only graph morphisms are used in the definition of the pattern; morphisms can be directly defined
between patterns, thus giving rise to a category, which is not the case for general nested constraints. In
addition [28] does not present rules made of constraints in left and right hand sides, or abstraction of
graphs into constraints. Moreover, the full version of patterns presented in [9] further allows additional
positive and negative constraints to be added to individual graphs in the tree.

A mechanism based on graph transformations is that of shapely graph grammars [29], where rewrit-
ing has to maintain conformance to some shape, e.g. a chain or a star configuration. Similarly, adaptive
star grammars enrich rule schemes with the possibility of cloning, thus allowing the generation of graphs
in which some relations between parts are maintained [17]. The relation between pattern trees and these
generative mechanisms has to be explored.

Finally, parallel graph transformations [46] enable the definition of complex rules made of an in-
teraction scheme, rules, and subrules. Complex rules can be applied to a standard graph, enabling the
identification of all occurrences of some subrule. While this is somewhat similar to our pattern rules,
patterns may include negative regions. Moreover, we define the semantics of a pattern by means of a
language, and define compatibility conditions for the rewriting of patterns and standard graphs.

Formalisations of patterns based on textual, logical representations have also been proposed. In this
line, Zhu and Bailey have recently proposed a number of operators on specification of design patterns
given in algebraic form. These operators typically restrict or extend the variability of parts of the pattern,
add further constraints or compose different patterns [51]. They thus define a set of algebraic laws for
these operators and use them to reduce patterns to canonical forms, which can be checked for equivalence
through logical inference. While the possibility of reducing to a canonical form patterns expressed in
our language is still under investigation, our definition of pattern morphism allows us to reason about the
preservation of some properties of the transformed patterns without resorting to external inference mech-
anisms. As hinted at in Section 2, logical approaches require modellers to master different formalisms
than those typically used in MDD, and do not lend themselves well to the expression of rules taking pat-
tern specifications in their left- and right-hand sides. For a more thorough discussion on the differences
between a graph-based and a logical-based approach to pattern definition, we direct the reader to [9].

A distinct, but related, notion of pattern language has been originally introduced in the area of formal
(string) languages, to synthetically describe the (non context-free) structure of sentences in a language
through the use of variables, where the presence of several occurrences of the same variable in a pattern
expression indicates that each occurrence must be instantiated with an identical substring in a string be-
longing to the language [2]. The field has developed along several lines, considering expressive power,
ambiguity (when a string can be decomposed in different ways with respect to the same pattern), de-
cidability, complexity of analysis and formal devices for generation and recognition of languages based
on patterns (see e.g. [30, 38]). Languages defined by different composition of patterns have been stud-
ied (see e.g. [34]) and hierarchies deriving from allowing operations on variables have been identified
in [10]. These results might be adapted to the definition of languages formed by paths on labelled graphs,
where patterns might be used to define path expressions. In this line, Santini has recently proposed the
use of variables in regular expressions to extract sub-paths in queries on labelled graphs [45].

In formal languages, pattern expressions rely on the linear structure of the string to constrain the
position in which an occurrence can happen. Barred ambiguity, this simplifies the problem with respect to
graph or tree structures, where the problem of finding repeated occurrences of identical subgraphs within
a graph would be at least as hard as subgraph-isomorphism [11]. Attempts to constrain the development
of different parts of the graph to achieve similar effects have been proposed by imposing hierarchical

42 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

structures on graphs, e.g. with Distributed Graphs [47], where a node at the network level is associated
with a whole graph at the local level, Hierarchical Graphs [18], where specific types of hyperedges
contain entire graphs, and multi-level graphs [37], where some nodes hide parts of a graph at some level
of abstraction. In all these cases some further constraint could be added on the high-level structure to limit
the possible instantiations of the low-level structure. Note that in these two-level mechanisms the form
of the high-level graph is also subject to manipulation and is important in defining the overall resulting
graph. Pattern trees, on the contrary, are only a way to represent a diagram defined by a collection of
nested morphisms, and do not really provide a superior level with respect to the object graph level.

The notion of pattern presented in this paper could be lifted to define an abstract algebra of hierar-
chical graphs, as presented in [12, 13]. In this case, the overall structure of a graph can be specified as a
term over this algebra. Specific graph languages can then be represented in the algebra by establishing a
mapping between language and algebra constructors. This would allow us to extend pattern rules across
different meta-models, by giving an abstract notion of “shape change” which could be concretised on
source and target models. This would also open the way to setting an abstract logic on patterns, based
on institutions [26, 14], where satisfaction of a source pattern in a source model would entail satisfaction
of the target pattern in the target model. As we are currently dealing with models and patterns built on
single meta-models, we leave this development to future work.

9. Conclusions

In this paper, we have presented a formalization of patterns over graphs, intended to allow their integra-
tion in model-driven approaches, and defined rewriting rules with such patterns in left- and right-hand
sides. An abstraction operation for graphs permits an abstract form of rewriting for classes of graphs. We
have shown how to define pattern variants, by either defining pattern rules, or changing the variability
offered by the pattern. We have shown the applicability of the approach in the area of enterprise archi-
tecture, by defining rules for refactorings of architectures towards a design pattern, and for architecture
reconfiguration. We have illustrated the notion of pattern variant with object oriented design patterns.

In the future, we will extend this formalization for richer forms of patterns, where the variability of
the regions is governed by equations, as in [9]. We are also working on other strategies for abstraction,
e.g., taking into account several branches of the tree at the same time, and for the construction of pattern
variants. We would also like to check the feasibility of learning abstractions from a set of (plain) graphs
sharing commonalities. That is, to derive a pattern PT from a representative subset of its entailed
language L(PT). It would also be interesting to explore other less standard ways of rewriting, but that
would provide some more flexibility. For example, deleting by constructing a pullback, e.g., so that a
final pullback complement is constructed [15] (and not a pushout complement) would probably weaken
conditions for rewriting (especially condition 3 in Theorem 5.5). Finally, we would also like to provide
tool support for the presented concepts.

Acknowledgements. This work has been partially supported by the Spanish Ministry of Economy and
Competitivity with projects Go-Lite (TIN2011-24139) and Flexor (TIN2014-52129-R), the Madrid Re-
gion with project SICOMORO (S2013/ICE-3006), and the EU commission with project MONDO (FP7-
ICT-2013-10, #611125).

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 43

References

[1] C. Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, 1977.

[2] D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62, 1980.

[3] T. Arendt and G. Taentzer. Integration of smells and refactorings within the eclipse modeling framework. In
Proc. WRT’12, pages 8–15. ACM, 2012.

[4] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based modeling and refinement of service-oriented
architectures. a graph transformation-based approach. Journal on Software and Systems Modeling, 5(2):187–
207, 2005.

[5] J. Bauer, I. Boneva, M. E. Kurbán, and A. Rensink. A modal-logic based graph abstraction. In ICGT’08,
volume 5214 of LNCS, pages 321–335. Springer, 2008.

[6] D. Bisztray, R. Heckel, and H. Ehrig. Verification of architectural refactorings: Rule extraction and tool
support. ECEASST, 16, 2008.

[7] I. B. Boneva, A. Rensink, M. E. Kurban, and J. Bauer. Graph abstraction and abstract graph transformation.
Technical Report TR-CTIT-07-50, Centre for Telematics and Information Technology University of Twente,
Enschede, July 2007.

[8] P. Bottoni, E. Guerra, and J. de Lara. Formal foundation for pattern-based modelling. In M. Chechik and
M. Wirsing, editors, FASE’09, volume 5503 of LNCS, pages 278–293. Springer, 2009.

[9] P. Bottoni, E. Guerra, and J. de Lara. A language-independent and formal approach to pattern-based mod-
elling with support for composition and analysis. Information & Software Technology, 52(8):821–844, 2010.

[10] P. Bottoni, A. Labella, and G. Paun. Chomsky hierarchies of pattern languages. Annals of the Bucharest
University, 47:27–34, 1998.

[11] P. Bottoni and F. Parisi Presicce. Patterns on graphs. In GRATRA 2000 Workshop, pages 180–188. Tech. Rep.
2000-02 Fachbereich Informatik, Tech.Univ. Berlin, 2000.

[12] R. Bruni, F. Gadducci, and A. Lluch-Lafuente. An algebra of hierarchical graphs. In Proc. TGC 2010, volume
6084 of LNCS, pages 205–221. Springer, 2010.

[13] R. Bruni, F. Gadducci, and A. Lluch-Lafuente. An algebra of hierarchical graphs and its application to
structural encoding. Sci. Ann. Comp. Sci., 20:53–96, 2010.

[14] A. Corradini, F. Gadducci, and L. Ribeiro. An institution for graph transformation. In Proc. WADT 2010,
volume 7137 of LNCS, pages 160–174. Springer, 2012.

[15] A. Corradini, T. Heindel, F. Hermann, and B. König. Sesqui-pushout rewriting. In ICGT’06, volume 4178 of
LNCS, pages 30–45. Springer, 2006.

[16] B. Courcelle. The Expression of Graph Properties and Graph Transformations in Monadic Second-Order
Logic., volume 1, pages 313–400. World Scientific, 1997.

[17] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. V. Eetvelde. Adaptive star grammars. In ICGT’06,
volume 4178 of LNCS, pages 77–91. Springer, 2006.

[18] F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transformation. J. Comput. Syst. Sci., 64(2):249–
283, 2002.

[19] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay. Termination criteria for model
transformation. In FASE’05, volume 3442 of LNCS, pages 49–63. Springer, 2005.

44 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

[20] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Theory of constraints and application conditions: From
graphs to high-level structures. Fundam. Inform., 74(1):135–166, 2006.

[21] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation. Springer,
2006.

[22] M. Elaasar, L. C. Briand, and Y. Labiche. A metamodeling approach to pattern specification. In MoDELS
2006, number 4199 in LNCS, pages 484–498, 2006.

[23] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 1edition, 2002.

[24] R. B. France, D.-K. Kim, S. Ghosh, and E. Song. A UML-based pattern specification technique. IEEE Trans.
Soft. Eng., 30(3):193–206, 2004.

[25] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley, 1994.

[26] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming. J.
ACM, 39(1):95–146, 1992.

[27] A. Habel and K.-H. Pennemann. Nested constraints and application conditions for high-level structures. In
Formal Methods in Software and Systems Modeling, volume 3393 of LNCS, pages 293–308. Springer, 2005.

[28] A. Habel and K.-H. Pennemann. Correctness of high-level transformation systems relative to nested condi-
tions. Mathematical Structures in Computer Science, 19(2):245–296, 2009.

[29] B. Hoffmann. Shapely hierarchical graph transformation. In HCC’01, pages 30–37. IEEE Computer Society,
2001.

[30] L. Kari, A. Mateescu, G. Paun, and A. Salomaa. Multi-pattern languages. Theor. Comput. Sci.,
141(1&2):253–268, 1995.

[31] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley-IEEE CS,
2008.

[32] S. Mac Lane. Categories for the Working Mathematician. 2nd Edition. Graduate Texts in Mathematics Vol 5.
Springer, 1998.

[33] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Trans. Software Eng., 30(2):126–139, 2004.

[34] V. Mitrana, G. Paun, G. Rozenberg, and A. Salomaa. Pattern systems. Theor. Comput. Sci., 154(2):183–201,
1996.

[35] OMG. MDA home page. http://www.omg.org/mda/, 2009.

[36] F. Orejas, H. Ehrig, and U. Prange. Reasoning with graph constraints. Formal Asp. Comput., 22(3-4):385–
422, 2010.

[37] F. Parisi-Presicce and G. Piersanti. Multilevel graph grammars. In WG’94, volume 903 of Lecture Notes in
Computer Science, pages 51–64. Springer, 1995.

[38] G. Paun, G. Rozenberg, and A. Salomaa. Pattern grammars. Journal of Automata, Languages and Combina-
torics, 1(3):219–242, 1996.

[39] D. Plump. Termination of graph rewriting is undecidable. Fundam. Inform., 33(2):201–209, 1998.

[40] U. Prange, H. Ehrig, and L. Lambers. Construction and properties of adhesive and weak adhesive high-level
replacement categories. Applied Categorical Structures, 16(3):365–388, 2008.

[41] A. Rensink. Canonical graph shapes. In ESOP’04, volume 2986 of LNCS, pages 401–415. Springer, 2004.

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 45

[42] A. Rensink and D. Distefano. Abstract graph transformation. Electr. Notes Theor. Comput. Sci., 157(1):39–
59, 2006.

[43] A. Rensink and J. Kuperus. Repotting the geraniums: On nested graph transformation rules. ECEASST, 18,
2009.

[44] A. Rensink and E. Zambon. Pattern-based graph abstraction. In ICGT’12, volume 7562 of LNCS, pages
66–80. Springer, 2012.

[45] S. Santini. Regular languages with variables on graphs. Inf. Comput., 211:1–28, 2012.

[46] G. Taentzer. Parallel and distributed graph transformation - formal description and application to
communication-based systems. Berichte aus der Informatik. Shaker, 1996.

[47] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change management by distributed graph transformation:
Towards configurable distributed systems. In TAGT’78, volume 1764 of LNCS, pages 179–193, 1998.

[48] D. Tamzalit and T. Mens. Guiding architectural restructuring through architectural styles. In ECBS’10, pages
69–78, 2010.

[49] M. Völter and T. Stahl. Model-driven software development. Wiley, 2006.

[50] I. Warren and J. Ransom. Renaissance: A method to support software system evolution. In COMPSAC’02,
pages 415–420. IEEE Computer Society, 2002.

[51] H. Zhu and I. Bayley. An algebra of design patterns. ACM Trans. Softw. Eng. Methodol., 22(3):23, 2013.

Appendix

This appendix presents the details concerning the proofs of the different theorems of the paper.
First of all, we discuss satisfiability of pattern trees. There are pattern trees that only admit infinite

graphs in their semantics, as for example the one in Figure 44. This example follows the same idea as
the one presented in [36]. The pattern models the class of graphs made of chains of infinite length. This
is so, as it requires at least one node (region a), where each node has no multiple outgoing (region b) or
incoming edges (region c), there is at least one node with no predecessor node (regions d and d’), and
each node has exactly one successor node (regions e and e’).

root

x

x

x

x

a
b c

d e

d’ e’

Figure 44. A pattern that only admits infinite graphs as models.

Theorem 3.2 (Satisfaction of 1-negation pattern trees). Satisfaction is decidable for 1-negation pattern
trees.

46 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

Proof:
(Sketch) Let PT = (V,E, root,G,Mor, σ, γV , γE), and PT+ be the biggest subtree of PT , rooted in
root, where every node of PT+ has positive sign. More precisely PT+ = (V +, E+, root,G+,Mor+,
σ|V + , γV |V + , γE |E+), with:

• V + = {v ∈ V | ∀ vi ∈ path(v) [σ(vi) = �]} ⊆ V ,

• E+ = {(vi, vj) ∈ E | {vi, vj} ⊆ V +} ⊆ E,

• G+ = {γV (vi) | vi ∈ V +} ⊆ G,

• Mor+ = {Gi
m→ Gj ∈Mor | {Gi, Gj} ⊆ G+} ⊆Mor,

Let C be the colimit of all graphs and graph morphisms of PT+ (i.e., in G+ and Mor+). Clearly,
C contains all necessary nodes and edges requested by the pattern, as satisfaction demands at least
one occurrence of each positive variable region of PT (which is given by the colimit). Let M+ =
{M | ∃m : C →M withm surjective}. The size ofM+ is finite, as there is only a finite number of ways
for “folding” M in C, i.e., a finite number of non-isomorphic graphs M and surjective morphisms m.

PT is satisfiable iff ∃M ∈ M+ s.t. M |= PT . The “if” part is obvious. For the “only if” part, if
6 ∃M ∈ M+ s.t. M |= PT , then it means that there is an occurrence of some negative region of PT in
every graph of M+. Hence, any other graph M ′ bigger than those in M+ will also have an occurrence
of such a negative region. Therefore no graph can satisfy PT , which is then unsatisfiable. ut

Theorem 3.3 (Satisfaction of 2-negation pattern trees). Satisfaction is decidable for 2-negation pattern
trees without negative region dependencies.

Proof:
(Sketch) We transform this satisfiability problem to that of termination of a particular kind of graph
transformation system, resulting from the transformation of the pattern. Termination is undecidable for
general graph transformation systems [39], but some classes of terminating transformation systems have
been characterized [19]. In particular, for a transformation system TS with non-deleting rules only,
in [19] it is shown that TS terminates if each rule has a NAC which is included in the right-hand side of
the rule and the rule does not create any element with a type that is in the left-hand side of another rule.
A nested negative region e = (vi, vj) is equivalent to a set of graph transformations rules Rij given by
{〈Lk → R = γV (vj), n : Lk → R〉} where:

• The left hand sides are all graphs Lk s.t. γV (vi) ↪→ LK ↪→ γV (vj), with LK � γV (vj).

• The right-hand side R of every rule is γV (vj).

• n is a NAC.

LetRPT be the set of all the rules generated from PT’s nested negative regions. If the pattern does not
have negative region dependencies, the resulting graph transformation system satisfies the termination
criterion of [19] and hence it terminates.

We construct the set N = {Hi | G ⇒∗RPT
Hi ∧ G ∈ M+}, with M+ constructed as in the proof

of Theorem 3.2. PT is satisfiable iff ∃G ∈ N s.t. G |= PT . The “if” part is obvious. For the “only

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 47

if” part, first note that each Hi has all elements required by the positive part of PT (as rules in RPT are
non-deleting). Then, some of the Hi satisfy the conditions given by the nested regions, because some of
the derivations apply the rules to all matches. If 6 ∃M ∈M+ |= PT , it is because there is an occurrence
of some negative region of PT in every graph of N . Hence, any other graph H ′ bigger than those in
N will also have an occurrence of such negative region. Therefore no graph can satisfy PT , which is
then unsatisfiable. Please note that, as we have 2-negation pattern trees, if some negative region is not
satisfied in some graph Hi, it cannot be made satisfied by further application of the rules in the sets Rij ,
and hence at most one application of the rules in each set Rij is enough. ut

Theorem 3.4 (SPT-Morphism Semantics).

Proof:
(Sketch) Given an SPT-morphism m = (mV ,mE ,mF) : PT1 → PT2 and an arbitrary graph M1 ∈
L(PT1), we construct the graph M2 and the morphism bm12c : M1 →M2 as shown next.

First, we define the expansion set of PT , as the set of all patterns resulting from duplicating any
subtree of PT an arbitrary number of times. More precisely:

EXP0(PT) = {PT} (3)

EXPn+1(PT) = {concat(PTi, Subtree(v), γE((r, v))) | PTi ∈ EXPn(PT) ∧ (r, v) ∈ E} (4)

EXP (PT) =
⋃

n=0..∞
EXPn(PT) (5)

Let D = 〈G,Mor〉 be the diagram made of the graphs and graph morphisms of PT . Given any
PTi ∈ EXP (PT), with diagram Di = 〈Gi,Mori〉 we can build a family of identity graph morphisms
RMori, where there is one morphism from γV (v) ∈ G to each replica γiV (vj) of γV (v) in PTi.

We now take a pattern PT ′1 ∈ EXP (PT) s.t. (1)M1 |= PT ′1, and (2) there is at most one morphism
in SPT ′1,M1

, from each graph Gi in PT ′1 i.e. we have chosen an expansion of PT1 replicating each
Subtree(n1i) with n1i ∈ V1 as many times as different morphisms mj

i : γV (n
1
i)→M1 are in SPT1,M1 .

We now choose a pattern PT ′2 ∈ EXP (PT2) where each Subtree(n2i) is replicated as many times
as mj

i : γV (ni) → M1 are in SPT1,M1 with m(n1i) = n2i . As subtrees in PT1 and PT2 have been
replicated the same number of times, there is an SPT-morphism m′ : PT ′1 → PT ′2. At this stage, there
may be several patterns PT ′2 that can be chosen, resulting from an arbitrary expansion of the subtrees of
PT2 not mapped from PT1.

Figure 45 depicts the construction, where D′1 is the diagram made of the graphs and morphisms of
PT ′1, where we remove the graphs γ1V (v

1
i) for which there is no morphism γ1V (v

1
i) → M1. Similarly,

D′2 is the diagram made of the graphs and morphisms of PT ′2, where we remove the graphs γ2V (v
2
i)

s.t. m(v1i) = v2i and γ1V (v
1
i) was not included in D1. Graph M2 is calculated as the colimit of M1 ⇐

D′1 ⇒ D′2. Then, we have that M2 ∈ L(PT2), because we can build the set of morphisms SPT2,M2 by
composing the morphisms in S′PT2,M2

with those of RMor2, and the morphisms in S′PT2,M2
are jointly

surjective, because, due to the colimit construction, so are those of SPT2,M2 .
ut

Remark 9.1. In the previous proof sketch, we cannot directly build M2 from the colimit of M1 ⇐
D1

mF⇒ D2, because the different occurrences of the graphs of PT1 in M1 would be folded in M2.

48 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

D1

RMor1

z�

mF +3

SPT1,M1

��

D2

SPT2,M2

�

RMor2

z�
D′1

S′PT1,M1

�$

m′F
+3 D′2

S′PT2,M2

��
M1 bm12c //M2

Figure 45. Building bm12c.

Theorem 3.5 (Pattern Tree Categories).

Proof:
(Sketch) We first show that PattTree = (PT, Hom(PT)) is a category. We have to show: (1) how
morphism composition is performed, (2) the existence of the identity morphism, and (3) associativity.

• Composition Given two PT-morphisms f : PT1 → PT2 and g : PT2 → PT3, their composition
is given by the composition of the set functions and the corresponding graph morphisms: g ◦ f =

(gV ◦ fV , gE ◦ fE , {gfV (i)
G ◦ f iG : γ1V (v

1
i)→ γ3V (gV ◦ fV (v1i)) | v1i ∈ V 1}).

• Identity Morphism. Given PT ∈ PT, there is an identity morphism idPT : PT → PT for
PT , s.t. given any f : PT1 → PT2, we have idPT2 ◦ f = f = f ◦ idPT2 . The identity mor-
phism can be constructed as idPT = (idV , idE , idF = {idiG : γV (vi) → γV (vi) | vi ∈ V }).
Given any f : PT1 → PT2, by composition of set and graph functions, we have idPT2 ◦ f =
(idV2 , idE2 , idF2 = {idiG : γ2V (vi) → γ2V (vi) | vi ∈ V2}) ◦ (fV : V1 → V2, fE : E1 → E2, fF =
{f iG : γ1V (v

1
i) → γ2V (fV (v

1
i)) | v1i ∈ V1})) = (idV2 ◦ fV : V1 → V2, idE2 ◦ fE : E1 →

E2, {idiG ◦ f iG : γ1V (v
1
i) → γ2V (fV (v

1
i)) | v1i ∈ V1}) = (fV : V1 → V2, fE : E1 → E2, fF =

{f iG : γ1V (v
1
i) → γ2V (fV (v

1
i)) | v1i ∈ V1}) = f . The right-composability of set and graph identity

morphisms leads to f = f ◦ idPT2 .

• Associativity. Given three PT-morphisms f : PT1 → PT2, g : PT2 → PT3 and h : PT3 → PT4
we have to show associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f . Hence, we have h ◦ (g ◦ f) = (hV ◦ (gV ◦
fV) : V1 → V4, hE ◦ (gE ◦ fE) : E1 → E4, {hiG ◦ (giG ◦ f iG) : γ1V (v1i)→ γ4V (hV ◦ (gV ◦ fV)(v1i)) |
v1i ∈ V1}), which by associativity of set and graph functions is equal to (h ◦ g) ◦ f = ((hV ◦ gV) ◦
fV : V1 → V4, (hE ◦ gE) ◦ fE : E1 → E4, {(hiG ◦ giG) ◦ f iG : γ1V (v

1
i)→ γ4V ((hV ◦ gV) ◦ fV (v1i)) |

v1i ∈ V1}),

It is easy to show that SPattTree is a subcategory of PattTree, with all satisfiable patterns as
objects and SPT-morphisms as arrows. Hence, the inclusion functor I : SPattTree → PattTree is
injective on objects and faithful (injective on morphisms), but it is not full, as some PT-morphisms are
not SPT-morphisms. Please note that the identity morphism is an SPT-morphism. ut

Theorem 5.1 (Pushouts for Pattern Trees)

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 49

Proof:
(Sketch)

In order to show that the construction in Definition 18 yields a pushout, we have to show: (a) that the
square (1) to the left of Figure 46 commutes, and (b) that for eachPT ′ s.t. g′◦f = f ′◦g, ∃!u : PT → PT ′

making the diagram in the left of the figure commute.

PT0

f
~~
~~
~

��~~
~~
~ g

@@
@@

@

��@
@@

@@

(1)

γ0V (v
0
i)

f i
yy
yy
y

||yyy
yy

gi
EE

EE
E

""E
EE

EE

��
PT1

g∗
??

??
?

��?
??

??

g′

��

PT2

f∗
��
��
�

����
��
�

f ′

��

γ1V (v
1
i)

gi∗
EE

EE
EE

EE
E

""EE��

γ0V (v
0
j)

fj
yy

||yy
yy
yy
y gj

EE

""E
EE

EE
EE

γ2V (v
2
i)

f i∗
yy
yy
yy
yy
y

||yy ��
PT

u

��

γ1V (v
1
j)

gj∗
EE

EE

""E
EE

EE
E

||yy
yy
yy
yy
yy
y

vi

��

γ2V (v
2
j)

fj∗
yy
yy

||yy
yy
yy

""E
EE

EE
EE

EE
EE

PT ′ γ1V (v
1
k)

##G
GG

GG
GG

GG
GG

G
vj

{{ww
ww
ww
ww
ww
ww
w

##G
GG

GG
GG

GG
GG

GG
γ2V (v

2
r)

{{ww
ww
ww
ww
ww
ww

vk vr

Figure 46. Pushouts for Pattern Trees (left). Detailed construction (right).

(a) It is easy to see that (1) commutes, because the glue function creates a pattern tree PT resulting
from the pushout of every graph span γ1V (v

1
i) ← γ0V (v

0
i) → γ2V (v

2
i). Moreover, at each stage of

the procedure (at each level of the traversal of PT0), we fuse the subtrees resulting from the merge
operation on those graphs that are not in Cod(f) and Cod(g), see the right of Figure 46. This
means that, every graph in PT comes either from a pushout of γ1V (v

1
j)← γ0V (v

0
j)→ γ2V (v

2
j), or a

pushout of γ1V (v
1
k)← γ1V (v

1
j)→ vj , where vj is a graph of PT , and v1k /∈ Cod(f), or a pushout of

vj ← γ2V (v
2
j)→ γ2V (v

2
r), where vj is a graph of PT , and v2r /∈ Cod(g) (see the right of Figure 46).

(b) Assume there is a PT ′, g′ : PT1 → PT ′ and f ′ : PT2 → PT ′ such that g′ ◦ f = f ′ ◦ g. Assume
that PT ′ has the same regions as PT . Then, the existence and uniqueness of u follows from the
fact that every graph in PT has been built by a pushout. If PT ′ has more regions than PT , there
is a morphism from PT , where those extra regions do not belong to Cod(u). ut

Theorem 5.3 (Pushout compatibility)

Proof:
(Sketch) In order to show G ∈ L(PT), we construct the necessary morphisms in SPT,G. The proof
proceeds, with reference to Figure 47, by cases on the variable regions of the pushout pattern tree PT .

50 P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction

1. In the first case, we consider regions vi ∈ ni1(PT 1
V) ∩ ni2(PT 2

V). As the left of Figure 47 shows,
for every occurrence f1i , f0i , f2i , we obtain a unique fi : γV (vi) → G. This is so as the top and
bottom squares are pushouts, and by the pushout universal property we obtain the unique fi.

2. In the second case, we consider regions vj ∈ nj1(PT
1
V), and vi /∈ nj2(PT

2
V). These are regions

added to PT due to its presence only in PT1 (the case for regions coming from PT2 is analogous).
The right of Figure 47 shows the situation, where the top squares are pushouts, and fj exists due
to the universal pushout property.

γ0V (v
0
i)

mi
1

��
��

����
��

mi
2

??
??

��?
??

?f i0

��

γ1V (v
i
j)

��?
??

??
??

??
?

f i1

��

γ1V (v
1
i)

oo

��?
??

??
??

??
??

f1j
��

����
��
��
��
��
��
��
��
��
��
�

γ0V (v
0
i)

oo

��?
??

??
??

??
?

��

γ1V (v
1
i)

ni
1

@@
@@

@@

 @
@

f i1

��

G0

bm1c
~~

~~~~
~~
~~
~

bm2c
@@

  @
@@

@@
@@

γ2V (v
2
i )

ni
2

~~
~~
~~

~~~~
f i2

��

γV (vj)

fj

��

γV (vi)oo

fi

~~

γ2V (v
2
i)

oo

��

G1

bn1c
AAA

AA

 A
AA

AA

γV (vi)

f i

��

G2

bn2c
}}}
}}

~~}}}
}}

G1

 A
AA

AA
AA

AA
AA

G0

 A
AA

AA
AA

AA
AA

oo

G G G2
oo

Figure 47. Case 1 in compatibility condition (left). Case 2 in compatibility condition (right).

Finally, we have to show that the set SPT,G is jointly surjective. This property holds, because bmic
(for i=1,2) are not arbitrary SPT-morphisms, but bmic ∈ JmiK. This means that the morphisms bmic
have been built as described in the proof of Theorem 3.4 (see Figure 45), and so each occurrence of any
γ0V (v

0
j) in G0 is coordinated with an occurrence of γiV (v

i
j) in Gi. In particular, this means that there

cannot be more occurrences of γiV (v
i
j) in any Gi than occurrences of γ0V (v

0
j) in G0 (see the colimit

construction of Theorem 45). As these extra occurrences are the only possible cause for SPT,G of not
being jointly surjective, we can conclude that SPT,G is jointly surjective, and hence G ∈ L(PT). ut

Theorem 5.5 (Pushouts complements)

Proof:
(Sketch) With reference to Figure 48, in order for D to be a pushout object, we need (a) that D seen
as a tree (abstracting from the fact that it contains graphs associated to every node of it) is a pushout
complement, and (b) that every graph in D is actually a pushout complement with the right conditions.

(a) By condition 2, there are no “dangling regions”. This means that, if we look at K, L, D and M
as trees (by abstracting from the fact that they also have graphs and morphisms), and take l and
m as tree morphisms, we can find a tree D and tree morphisms d and l∗ so that D is a pushout
complement (because a tree is a particular case of graph).

P. Bottoni, E. Guerra, J. de Lara / Pattern-based Rewriting through Abstraction 51

(b) Next, we have to check every graph of M and ask for specific conditions so that a pushout com-
plement D exists. We first look at the graphs in mV ◦ lV (K), which are those that should be
“merged” from D and L. Those graphs should satisfy the dangling edge condition in graphs. In
effect, by condition 1 of the theorem, the dangling edge condition is satisfied in each graph mor-
phismmi

G ◦ liG with liG ∈ lF andmi
G ∈ mF (where lF is the family of graph morphisms of the tree

morphism l, and mF is the family of graph morphisms of the tree morphism m). According to the
conditions for the existence of pushout complements in graphs [21], a pushout complement graph
exists for every liG ∈ lF , and so we can build γKV (vKi)→ γDV (vDi)→ γMV (vMi) (see Figure 48).

K l //

d

��
P.O.

L

m

��
D l∗ //M

Figure 48. Pushouts complements for Pattern Trees.

Then, we look at the graphs in m(GR) (with GR = {vi ∈ VL \ l(VK)}). These are the re-
gions added from L only (not common to D). Condition 3 of the theorem demands that they
are constructible by pushouts. Then, the only remaining graphs to consider in M are those in
VM \mV (VL). Each of those graphs needs to form a pushout with some graph ofDV , which is ex-
actly condition 4 of the theorem. The main point is that the nodes inMD = c(γV (v

L
k \lk(γKV (vKk)))

are those to be “deleted” from γMV (vMi), and so every edge in γMV (vMi) cannot start and end (or
vice versa) in a node in MD and a node out of this set. ut

Theorem 5.6 (Pushout complement compatibility)

Proof:
(Sketch) If the pattern tree pushout complement PT exists, then PT0 → PT1 → PT2 satisfies the
conditions of Theorem 5.5. In particular, this means that the dangling edge condition is satisfied in
every square produced by the morphism m∗1 : PT → PT2. Hence, we can build G by deleting from G2

the necessary elements, as given by bm1c : G0 → G1. No dangling edges can occur in such deletion,
because G2 ∈ L(PT2), which means that SPT2,G2 is jointly surjective, and hence G2 does not contain
extra elements that may cause dangling edges, other than those in PT2. Now, SPT,G can be constructed,
since we maintained in G the occurrences of the regions of PT2 in G2. ut

