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Models are the central assets in model-driven engineering (MDE), as they are actively used in all phases
of software development. Models are built using metamodel-based languages, and so, objects in models are
typed by a metamodel class. This typing is static, established at creation time, and cannot be changed later.
Therefore, objects in MDE are closed and fixed with respect to the class they conform to, the fields they
have, and the wellformedness constraints they must comply with. This hampers many MDE activities, like
the reuse of model-related artefacts such as transformations, the opportunistic or dynamic combination of
metamodels, or the dynamic reconfiguration of models.

To alleviate this rigidity, we propose making model objects open so that they can acquire or drop so-called
facets. These contribute with a type, fields and constraints to the objects holding them. Facets are defined by
regular metamodels, hence being a lightweight extension of standard metamodelling. Facet metamodels may
declare usage interfaces, as well as laws that govern the assignment of facets to objects (or classes).

This paper describes our proposal, reporting on a theory, analysis techniques and an implementation.
The benefits of the approach are validated on the basis of five case studies dealing with annotation models,
transformation reuse, multi-view modelling, multi-level modelling and language product lines.
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1. INTRODUCTION
Model-driven engineering (MDE) is a paradigm for software construction that fosters
an active use of models throughout the software development process [Schmidt 2006].
This way, models in MDE serve as abstractions and automation devices for many
development tasks, being used to specify, simulate, verify, generate code and maintain
the final system, among other activities. Models are created using a modelling language,
either general-purpose – like UML [UML 2017] – or domain-specific [Kelly and Tolvanen
2008]. In MDE, modelling languages are defined by a metamodel, a model itself that
contains the types of elements (classes, associations, attributes) that can be used to
create the models, and the constraints that the models should obey.

In standard MDE, classes in metamodels are used as templates to create objects. This
means that they dictate the structural properties that the objects of a class have and
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the wellformedness constraints they must comply with. When an object is created, it ac-
quires its type, fields and constraints from its class, and these cannot change afterwards.
This complicates some MDE activities. One of them is reuse since, for example, a model
transformation t defined over a metamodel MM cannot be directly applied to instances
of other metamodels [Bruel et al. 2020]. However, if we could assign types from MM to
the instances of other metamodels, we could reuse the transformation t as is on those
instances. Another case is model extension, i.e., increasing objects with additional fields.
This is useful to insert auxiliary model elements needed by a transformation [Kolovos
et al. 2010], or to enable layered modelling (i.e., building models incrementally according
to predefined information layers) [Hendrickson et al. 2006]. These scenarios typically
require merging the metamodels that define the allowed extensions (e.g., the auxiliary
or layer elements) a priori, which precludes the opportunistic and dynamic addition of
new information.

There are several proposals to enable more flexible modelling, most notably a-
posteriori typing and role-based modelling. In a-posteriori typing [de Lara and Guerra
2017], objects can be assigned new types, but cannot acquire or drop new features
dynamically. In role-based modelling [Bachman and Daya 1977; Steimann 2000; Kühn
et al. 2015], objects can acquire and drop roles dynamically, and such roles are typed by
role types and may have attributes. Still, role-based approaches lack declarative means
to specify how the roles are to be acquired or dropped by objects, how the fields provided
by a role relate to the object fields, or to impose additional constraints. Moreover, roles
must be designed a priori, using new constructs that increase accidental complexity
and are often difficult to integrate within existing metamodelling frameworks.

To overcome these problems we propose a new lightweight mechanism to bring
dynamism and flexibility to modelling: the facets. The approach is inspired by the
notion of roles and capitalizes on existing MDE works on metamodel extension and
model adaptation [Brunelière et al. 2015a; Madiot and Dupe 2018; Langer et al. 2012;
Barbero et al. 2007; Kolovos et al. 2006b; Brunelière et al. 2015b]. Our proposal goes
further than these approaches by considering objects as open elements. This way, objects
can dynamically acquire or drop types, features and constraints, which are provided
by facets. Facets are regular objects, so there is no need to introduce new concepts in
practice, and this is why we term our approach lightweight. We propose a new kind of
specification – facet laws – that govern when objects can take other objects as facets,
favouring separation of concerns [Dijkstra 1982]. Moreover, the value of fields of objects
and facets can be synchronized, and facets can be applied at any metalevel.

The approach is backed by a theory, while analysis techniques based on model
finding permit discovering conflicts between the conditions to acquire and drop facets,
and the metamodel integrity constraints. The approach is implemented on top of our
metamodelling tool METADEPTH [de Lara and Guerra 2010]. This tool is integrated
with the Epsilon language family [Paige et al. 2009], which includes languages for in-
place and model-to-model transformation and for code generation. Our implementation
permits their use taking into account the semantics of facets. As a validation, we show
how facets can tackle several MDE scenarios that normally would require building
dedicated tooling, like the handling of annotation models, the reuse of model-based
services and transformations [Bruel et al. 2020], multi-view modelling [Bruneliere et al.
2019], multi-level modelling [de Lara et al. 2014] and language product lines [White
et al. 2009].

Overall, the contributions of this paper are the following: (i) a new approach enabling
objects to dynamically acquire or drop types, fields and constraints depending on speci-
fied declarative conditions, which generalizes standard modelling; (ii) a synchronization
mechanism for acquired and owned fields which automates their update upon changes;
(iii) an implementation of these concepts atop the METADEPTH tool; (iv) an evaluation
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of the applicability of facets to solve six MDE scenarios. The latter evaluation aims
at answering the research question underlying this work: Can a dynamic mechanism
for object adaptation be used to solve MDE scenarios that are currently tackled using
dedicated, ad-hoc tooling? To answer this question, we compare our approach based
on facets with 25 other tools and approaches, most of them specifically built for one
specific scenario. This analysis shows that the mechanism of facets could have been
used instead of developing dedicated tools, which is an important finding for the MDE
research community and tool builders.

This paper is a further development of our preliminary work presented at the Software
Language Engineering 2018 conference (SLE’18) [de Lara et al. 2018b], which has been
extended as follows. First, we provide a formal foundation for facets, with proofs included
in the appendix. This theory generalizes the intuition provided in [de Lara et al. 2018b]
supporting facets over both classes and objects. We have incorporated intersection
types, and support for reactive field adapters in facet laws. We have developed analysis
techniques based on model finding [Jackson 2006; Kuhlmann and Gogolla 2012] and
realized them within the METADEPTH tool. Finally, we describe new applications of
facets to product lines of modelling languages and multi-level modelling.

The rest of the paper is organized as follows. Section 2 motivates our proposal using a
running example. Section 3 provides an overview of our proposal. Section 4 introduces
the notion of facet and a formal theory. Section 5 describes techniques for handling
facets. Section 6 defines two mechanisms to control how facets can be used: interfaces
and laws. Section 7 proposes analysis mechanisms for facet laws based on model finding.
Section 8 reports on tool support. Section 9 evaluates the approach on five scenarios and
discusses strengths and limitations. Section 10 compares with related research, and
Section 11 finishes with the conclusions and prospects for future work. An appendix
includes the proofs of the lemmas in Section 4.2.

2. MOTIVATION
This section introduces a running example to support the presentation of our approach.
While here we focus on an information integration scenario, Section 9 shows the benefits
of facets to solve five other MDE scenarios as well.

Assume a city hall needs a registry of the people living in the city, and for that
purpose it is using the Census metamodel depicted in Figure 1(a). The metamodel
allows creating Person objects with a fullName, an age, a female flag to indicate gender, a
mandatory address and optionally a spouse.

Person 

fullName : String 
age : int 
female : boolean 

Address 

street : String 
city : String 

address 

spouse 

0..1 

Census Employment 

Company 

name : String 
vatId : String 

employees * 

Owner 

name: String 

Employee 

name : String 
salary : double 
ssNumber : int 
active : boolean 

belongsTo 

minSalary inv: 
salary > 15000 

reportsTo 

(a)                      (b) (a) Census

Person 

fullName : String 
age : int 
female : boolean 

Address 

street : String 
city : String 

address 

spouse 

0..1 

Census Employment 

Company 

name : String 
vatId : String 

employees * 

Owner 

name: String 

Employee 

name : String 
salary : double 
ssNumber : int 
active : boolean 

belongsTo 

minSalary inv: 
salary > 15000 

reportsTo 

(a)                      (b) (b) Employment

Fig. 1: Metamodels for the running example.
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With the aim to provide tax calculation services to citizens, the city hall decides to
increase the existing Census models with employment data. The structure of these data
is captured by the metamodel in Figure 1(b). The intention is extending Person objects
representing employed people with the fields in Employee or Owner, where Person.fullName
corresponds to name in the other two classes. This extension should capture the dynamic
nature of employments, so that objects representing unemployed people should lack
information about employment.

Some existing techniques permit solving this task using different strategies. Next,
we discuss the most representative ones, which are illustrated in Figure 2.

(a) Static metamodel merge         (b) Cross-referencing 

Census Employment 

Person 
fullName: String 
age          : int 
 … 

Employee 
name: String 
salary: double 
… 

Jobs 

Job 
1 * 1 * 

(c) A-posteriori typing            (d) Roles 

Census Employment 

Person 
fullName: String  
age          : int 
… 

Employee 
name: String 
salary: double 
… 

Person.allInstances()->select(age>18)  Employee { 
   fullName     name 
   \fixWage:int = 16000   salary } 

retyping specification 

Person 

CensusWithEmployment 

Employee 

Employed 

fullName: String 
… 

name: String … 

Proprietor … Unemployed 

Owner 

Census 

Person 

fullName: String … 

EmploymentRT 

Employee 
name: String 
salary: double … 

RoleType 
fills 

Legend 

NaturalType 

… 

(a) Static metamodel merge(a) Static metamodel merge         (b) Cross-referencing 
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Proprietor … Unemployed 

Owner 

Census 

Person 

fullName: String … 

EmploymentRT 

Employee 
name: String 
salary: double … 

RoleType 
fills 
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NaturalType 
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(c) A-posteriori typing

(a) Static metamodel merge (b) Cross-referencing

Census Employment

Person
fullName: String
age: int
…

Employee
name: String
salary: double
…

Jobs

Job
1 * 1*

(c) A-posteriori typing (d) Roles

Census Employment

Person

fullName: String
…

Employee
name: String
salary: double
…

Person.allInstances()->
select(age > 18) → Employee {
fullName → name
\fixWage:int=16000  → salary }

retyping specification

Person

CensusWithEmployment

Employee

Employed

fullName: String
…

name: String…

Proprietor…Unemployed

Owner

Census

Person

fullName: String…

EmploymentRT

Employee
name: String
salary: double…

RoleType
fills

Legend

NaturalType

…

(d) Roles

Fig. 2: Some alternative solutions for the running example.

Metamodel merging. One option is merging the metamodels in Figures 1(a) and 1(b)
statically to obtain the metamodel in Figure 2(a) or a similar one, and then migrating
any existing Census model to become an instance of this new metamodel. How-
ever, this solution has some drawbacks. First, it is not modular because it requires
creating a new metamodel and resolving possible issues between attributes (e.g.,
Employee.name is deleted and superseded by Person.fullName). Second, model migration
cannot be fully automated, because each Person object may have to be converted into
Employed, Unemployed or company owner (Proprietor). Most importantly, this solution
does not account for the dynamic nature of employments, where a same Person object
should be able to take or leave employments without changing its identity, have
several jobs, or be both owner and employee. While the latter can be allowed by
adding a new subclass, the number of combinations may be exponential.

Views. We can tackle the scenario by means of views [Atkinson et al. 2015; Bruneliere
et al. 2019]. For example, relying on a single underlying model (SUM), we could adopt
a so-called essential approach [Meier et al. 2019]. This would require developing
an integrated metamodel like the one in Figure 2(a), and then define projections
onto two viewpoints defined by the Census and Employment metamodels of Figure 1.
However, this solution has the same limitations as metamodel merging: lack of
dynamicity for object types, fields and constraints.
Alternatively, using languages like ModelJoin [Burger et al. 2016], we can adopt a
pragmatic approach whereby a view joins the information from the given Census
and Employment models [Meier et al. 2019]. In the background, this solution creates
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a merged metamodel on the fly, as well as transformations from the models to the
view. However, the propagation of values from the view to the models needs to be
programmed by hand, and the limitation of non-dynamicity of types remains.

Cross-referencing. Another option is to keep the metamodels in Figure 1 separate,
and use a correspondence metamodel to declare cross-references between them, as
Figure 2(b) shows. This enables dynamicity, as Employees can be created and deleted
on demand, and be linked and unlinked to Person objects. However, this solution
complicates management by adding a level of indirection, because accessing the
salary of a Person or the age of an Employee requires navigating the correspondence
links explicitly. For example, the salary of a Person object p would be obtained
with an OCL [OCL 2014] expression like p.jobs→first().employee.salary. Instead, a
solution supporting transparent access to the fields of Person and those acquired
from Employee would use simpler expressions (e.g., p.salary in the given example)1.
Finally, cross-referencing makes it necessary to write a program that maintains the
models consistent, e.g., enforcing the fullName of a Person to be the same as the name of
the Employee objects it refers to, whenever any of the two changes. Instead, a native
solution for consistency is preferable.

A-posteriori typing. Figure 2(c) shows a solution based on a-posteriori typing. It re-
quires writing a specification of the conditions for a Person object to be assigned
Employee as additional type (in the figure, when age is bigger than 18). This addi-
tional typing is dynamic as it depends on the object properties, but it is not possible to
assign the a-posteriori type Employee to a specific Person object manually, as required
in this scenario. Moreover, each field in the a-posteriori type Employee needs to be
backed on a field of Person or on a (read-only) derived attribute. This is why the
specification creates the derived attribute fixWage mapped to salary, so that each
Person earns the same and this cannot be changed because the attribute is derived.
This is not satisfactory in our scenario, which requires adding new mutable fields to
Person objects.

Roles. Figure 2(d) sketches a solution based on roles. It requires the ad-hoc construction
of role types (e.g., Employee) that mimic the metamodel types in Figure 1(b). Some
approaches [Kühn et al. 2015] require role types to reside in compartment types, but
we omit this for simplicity. Then, it is necessary to declare that Person (a so-called
natural type) may fill the role type Employee. Hence, this solution is heavyweight and
intrusive as it relies on additional constructs. That is, the given metamodels cannot
be used out of the box, but a new model that uses role types, natural types and other
specialized constructs needs to be built. Finally, there is no way to express relations
between role type attributes and natural type attributes (e.g., name should be equal
to fullName), conditions for natural types to take role types (e.g., only adult Persons
can be Employees), or facilities to incorporate role type constraints into natural types.
Section 10 will present a more detailed analysis of roles.

Altogether, from the examined solutions to the presented scenario of information
integration, we favour a solution that meets the following requirements:

R1. Be modular and non-intrusive, so that there is no need to create or change existing
models or metamodels. This avoids having to migrate models, reorganize meta-
models or modify them to introduce non-standard constructs (e.g., roles, fills-in

1We could avoid modifying the Census and Employee metamodels by having unidirectional references from
Job to Person and Employee, instead of bidirectional associations. However, the navigation from Person ob-
jects to Employee objects would be more inefficient, as it would require iterating on all Job objects in
the worst case. The navigation expressions would be more complicated as well: p.salary would become
Job.allInstances()→any(j | j.person=p).employee.salary.
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relations), so that the approach can be applied to existing modelling artefacts as
they are.

R2. Allow objects to acquire new types, fields and constraints, likely specified in other
metamodels, and make them transparently accessible (i.e., avoiding explicit nav-
igation through correspondence links). This simplifies the code of the resulting
solution, since acquired types and fields would become seamlessly accessible from
constraints and transformation programs (i.e., we can write p.salary instead of
p.jobs→first().employee.salary).

R3. Support both automatic and manual acquisition and loss of types, fields and con-
straints. The former is useful to allow a declarative specification of the conditions
for an object to acquire and drop specific types. The latter enables a fine-grained
control of the types assigned to an object.

R4. Support for specification and automatic maintenance of relations (e.g., equality,
or user-defined relations) between owned and acquired fields. This avoids coding
attribute update procedures to be triggered upon attribute changes.

While these requirements are generic (in the sense that they are about the capabilities
of objects to acquire/drop fields and types dynamically, without changing existing
metamodels), Section 9 will introduce more specific criteria for other scenarios that
facets can handle. Table I summarizes the coverage of the requirements by the previous
approaches. As none of the analysed solutions support all these requirements, the rest
of the paper proposes facets as a solution to cover them.

Table I: Coverage of requirements by the analysed approaches.
Approach R1: modular, non-

intrusive
R2: acquisition of new
types, fields and con-
straints; their trans-
parent access

R3: dynamicity, both
manual and auto-
matic

R4: automatic main-
tenance of relations
between owned and
acquired fields

Metamodel merging No: requires creating new
metamodel and migrat-
ing existing models

Yes No: types are static No

Views/essential No: requires creating
SUM metamodel and
solving possible conflicts

Yes No: types are static Yes

Views/pragmatic Yes Yes: but views are read-
only (by default)

No: types are static Yes

Cross-referencing No: requires creating cor-
respondence metamodel

No: field access is not
transparent

Yes: but requires encod-
ing update programs

No

A-posteriori typing Yes Yes: but acquired fields
are read-only

Partially: only auto-
matic

No: acquired fields are
read-only

Roles No: requires creating role
types

Partially: constraints
cannot be acquired

No No

3. OVERVIEW OF FACET-ORIENTED MODELLING
Figure 3 depicts the high-level view of our facet-oriented modelling approach, introduc-
ing some terminology to facilitate the reading of the remainder of the paper. The figure
includes the number of the section that explains each concept.

Facets are objects that extend other objects (called host objects) with a new type,
fields and constraints. Facets are regular objects conformant to a regular standard
metamodel, that we call facet metamodel. In turn, we term the metamodel the host
objects are conformant to creation metamodel. Sections 4 introduces the basic working
mechanism of facets, and Section 6.1 describes how to restrict the classes from a facet
metamodel that can be used as facets, by means of facet interfaces.

Several management commands are available to users for adding and removing facets
from host objects (cf. Section 5.1). The fields contributed by a facet can be assigned a
value just at creation time, or else be synchronized with other field values by means of
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Facet: 
Host 

Object: 

scene 

visualize 

fa
ce
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in
te

rf
ac

e
 

facet laws 

commands 

FMM 

:FMM :CMM 

«instance of» «instance of» 

         extends 
    with type, fields,  
        constraints 

via 

Class 

a facet metamodel 
defines the types of 
the facets 

CMM 

Class 
a facet interface 
restricts the classes 
used to type facets 

facet laws are conditions 
to acquire (and loss) 
facets automatically 

  §4  

§6.1 

a creation metamodel 
defines the types of    
the host objects   §4  

§6.2 

a faceted model is a 
regular model where 
objects have facets   §4  

commands add or 
remove facets from 
objects on demand §5.1 

a scene is a view of a 
faceted model w.r.t.    
the facets it contains §5.3 

faceted model 

facet mm creation mm 

via 

adapters synchronize 
acquired fields with 
other fields §5.2 

Fig. 3: Facet-oriented modelling at a glance.

reactive adapters (cf. Section 5.2). The defined adapters can be analysed to ensure the
absence of infinite loops of field value computations (cf. Section 7.2). Models holding
host objects with facets are called faceted models. These can be sliced according to
various criteria to produce different types of scenes, which we introduce in Section 5.3.

In addition to commands, which must be issued by hand, it is possible to declare
facet laws specifying conditions for the automated acquisition and loss of facets (cf.
Section 6.2). Facet laws can be analysed for applicability, to detect situations in which
the laws collide with the creation metamodel constraints preventing the creation of any
faceted model (cf. Section 7.1).

4. FACETS
This section first introduces facets intuitively (Section 4.1) and then provides a formal
theory (Section 4.2). The aim of the theory is to precisely define the working scheme of
facets, to show that they generalize standard modelling, and to provide a blueprint for
builders of new modelling frameworks incorporating the notion of facet.

4.1. Facets by example
We define facets as follows:

A facet is an object, which becomes part of another one(s), called the host object(s),
such that the fields of the facet become transparently accessible from the host object,
which also acquires the type and constraints of the facet. Facets are dynamic, and so a
host object can acquire and drop facets dynamically.

Figure 4(a) shows an example of a host object homer with an attached facet of type
Employee. A facet is an object that relates to other objects (their hosts) in a special way.
This relation – represented with a dashed arrow – permits seeing an object and its
facets as a whole, as depicted in Figure 4(b). The host object acquires the type and fields
provided by the facet transparently. This means that, in Figure 4(b), homer.salary is a
valid feature access, and the OCL query Employee.allInstances() yields Set{homer}. Despite
Figure 4(b) shows the facet of the host object using physical containment, facets can be
shared among objects, and an object can have several facets of the same or different
type. If homer had additional facets, e.g., of type Owner, it would acquire their types and
fields as well.
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homer :Person :Employee 
homer :Person 

fullName= “Homer” 
age = 57 
female = false emp: Employee 

name =“Homer” 
salary =47500 
ssNumber =12345 
active =true 

Springfield :Census 

emp: Employee[1] 

: Employment 

Springfield 
:Census :Employment 

(a)           (b) 

host  
object facet 

age = 57 
female = false 
 
 
 
 

emp: Employee 

fullName = name= “Homer” 
salary =47500 
ssNumber =12345 
active =true 

(a) Internal representation

homer :Person :Employee 
homer :Person 

fullName= “Homer” 
age = 57 
female = false emp: Employee 

name =“Homer” 
salary =47500 
ssNumber =12345 
active =true 

Springfield :Census 

emp: Employee[1] 

: Employment 

Springfield 
:Census :Employment 

(a)           (b) 

host  
object facet 

age = 57 
female = false 
 
 
 
 

emp: Employee 

fullName = name= “Homer” 
salary =47500 
ssNumber =12345 
active =true 

(b) How an object and its facets are
externally perceived

Fig. 4: Adding an Employee facet to the host object homer.

Facets also bring the constraints defined in their type to the host object. In the
figure, the facet Employee adds constraint minSalary (cf. Figure 1(b)) to homer. Hence, the
assignment homer.salary:=13000 makes object homer violate the constraint.

Facet fields are exposed by the host object, but can also be synchronized with the fields
of the host. For example, in Figure 4(b), fullName (from Person) and name (from Employee)
are required to be equal. Hence, the assignment homer.fullName:=’Homer Simpson’ causes
homer.name to take the value ’Homer Simpson’ as well. Likewise, changing home.name
makes homer.fullName change its value in the same way. This equality relation is not
restricted to be binary, but as facets can be shared, it may involve several objects. For
example, assume that several people can share an employment because they work
part-time. This can be modelled with various Person objects (say o1, o2 and o3) sharing
the same facet of type Employee. This way, if we set o1.salary:=42567, the change will be
observed on o1, o2 and o3 as it is made on the field salary of the shared facet. Section 5.2
will show how to set arbitrary reactive relations between fields, in addition to equality.

Our approach is agnostic on how host objects are created. In Figure 4(a), we use a
creation metamodel (Census). While this is the standard approach to create objects in
MDE, some systems support objects with no ontological type (i.e., do not require any
class to create objects) [de Lara and Guerra 2010]. Such untyped objects may be host
objects as well, acquiring their type from the facets. Figure 5 illustrates this situation,
where homer is an untyped object with two facets of types Person and Employee. Under
this view, the notion of object can be diminished to a shell providing an identity for the
facets it hosts. This reflects our formalization presented in Section 4.2. Alternatively,
facets can be used in combination with standard metamodelling by enabling the creation
of host objects and facets from classes in standard metamodels. We call a metamodel
facet metamodel when it is used to define facet types, and creation metamodel when it is
used to define types for host objects, though the same metamodel can be used to define
both facet types and host object types.

cdata :Person 

fullName= “Homer” 
age = 57 
female = false 

emp: Employee 

name = “Homer” 
salary =47500 
ssNumber =12345 
active =true 

:Census : Employment 

homer: 

Springfield:  

person: Person[1] emp: Employee[1] 

host object 

facets 

Fig. 5: Host object ( homer) with no creation type but with two facets.
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Similar to host objects, facets may or may not have an ontological type. Untyped
facets are useful at the metamodel level (i.e., attached to classes) to share common
attributes among a set of classes, similarly to inheritance. In Figures 4 and 5, facets
are used at the model level to increase existing objects with additional fields, types and
constraints.

As facet fields are reexposed as host object fields, there may be collisions of field
names between a host object and its facets, or between different facets held by the same
host object. To disambiguate, we provide a mechanism to refer to object facets explicitly.
For example, assume object homer has two jobs, for which two Employee facets are
created. Facets are named, so we can call the two facets dayJob and nightJob. Accessing
homer.salary is ambiguous as it can refer to the field of either facet. Hence, the access
should use the explicit facet name: homer.dayJob.salary or homer.nightJob.salary.

Finally, as facets are regular objects, we allow facets to have facets. However, we
forbid cycles of facet relations.

Altogether, facets are modular and non-intrusive, satisfying requirement R1 de-
scribed in Section 2, while their characteristics can be seamlessly accessed from the
host objects, satisfying R2.

4.2. Formal foundation of facets
Once we have provided an intuition of facets and their usage, this section presents their
formal definition. Our goal is, on the one hand, to precisely define the meaning of facets,
and on the other hand, to show that standard modelling can be seen as a special case of
facet-oriented modelling.

In the following, given a relation r, we use r+ to denote its transitive closure, r∗ for
its reflexive transitive closure, r �A for the restriction of its codomain (the range) to
set A, and A� r for the restriction of its domain to set A.

We start by defining a faceted model.

Definition 4.1 (Faceted model). A faceted model is a tuple

M = 〈H,F, S, L, feats, tar , facets〉

made of:

— Disjoint sets H of host objects, F of facets, S of slots and L of links. We also define
the sets O = H ∪ F of objects and P = S ∪ L of properties or features.

— A surjective relation feats ⊆ F × P assigning each facet a set of features.
— A function tar : L→ F assigning each link a target facet.
— A surjective relation facets ⊆ O × F relating objects to facets, s.t. facets+ is acyclic.

In this definition, only facets hold features (slots, links), while host objects aggregate
facets. Facets can have facets, and every facet must be assigned at least to an object
(and so facets is surjective). A facet can be shared among several objects, and so facets is
a relation instead of a function. Feature ownership is captured by relation feats, which
allows sharing features among facets. The definition abstracts from slot values as they
are not relevant for the purpose of the theory.

Next, we define methods to access the features of a host object (featsH ) and the target
host objects of a link (tarH ).

featsH ⊆ H × P , feats ◦ facets+ (1)

tarH ⊆ L×H , (facets+
−1

◦ tar)�H (2)

Relation featsH retrieves all features of the facets assigned directly and indirectly to a
host object (hence the use of facets+). It can be seen as a delegation-based mechanism
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for feature access [Lieberman 1986]. Relation tarH returns the host objects that directly
or indirectly hold the facet a link points to. For this purpose, tarH needs to recursively
traverse facets backwards (hence the + and −1).
Example. Figure 6 shows two faceted models M1 and M2, where nodes are labelled with
the set they belong to (H, F , L), edges are labelled with the relation they represent (feats ,
tar , facets), and dashed edges correspond to the derived accessor methods featsH (for
host objects) and tarH (for links). The faceted models show to their right how they would
be externally perceived. Model M2 is a slice of the metamodel shown in Figure 1(a),
recasted as a faceted model. Our formalization does not distinguish models (M1) from
metamodels (M2) as both have the same structure. We do not consider inheritance
relations as these can be emulated with relation facets. This way, two host objects can
share the same facet, “inheriting” its content. Therefore, the facet notion generalizes
inheritance as it works at both the class level and the object level. While facets and
inheritance coexist in our implementation (see Section 8), future modelling frameworks
may consider replacing the notion of inheritance by that of facet.

homer: Person h: PersonFacet 

marge: Person m: PersonFacet 

facets 

facets 

feats 

tar 

featsH 

tarH 

Person: PersonFacet: 
H 

facets feats 

tar 

M1 

M2 

type=typeF={(h, PersonFacet), (m, PersonFacet)} 
            typeS={},  
            typeL={(sp, spouse)} 

typeH={(homer, Person),  
             (marge, Person)} 

featsH 

tarH 

F 

F 

F 

H 

H 

spouse: 

sp: spouse L 

L Person 

spouse 

homer: Person 

sp: spouse 

marge: Person 

Fig. 6: Example of faceted models and faceted model type.

Next, we define the type relation between two faceted models as three mappings
between facets, slots and links. Different from standard modelling approaches, we do
not type host objects, but their type is derived from that of their facets.

Definition 4.2 (Faceted model type). A faceted model type type = 〈typeF , typeS ,
typeL〉 : M1 → M2 between two faceted models Mi = 〈Hi, Fi, Si, Li, featsi, tar i, facetsi〉,
for i = {1, 2}, is made of three partial functions typeF : F1 7→ F2, typeS : S1 7→ S2 and
typeL : L1 7→ L2 s.t.:

∀f ∈ F1 • typeF (f) is defined =⇒ ∀p ∈ feats1(f) • typeP (p) ∈ feats2(typeF (f)) ∧
∀f2 ∈ facets1(f) • typeF (f2) ∈ facets2(typeF (f))

∀f ∈ F1 • typeF (f) is undefined =⇒ ∀p ∈ feats1(f) • typeP (p) is undefined ∧
∀f2 ∈ facets1(f) • typeF (f2) is undefined

∀l ∈ L1 • typeL(l) is defined =⇒ tar2(typeL(l)) ∈ facets∗2(typeF (tar1(l)))

(where we use typeP for typeS ∪ typeL).

The first two conditions in the definition demand compatibility of the type of a facet
with the type of each of its features, and with the type of each of its assigned facets.
The third condition demands compatibility of the type of the target of each link. Similar
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to inheritance, this means that the type of a link target should be either the target
facet of the link type, or a facet directly or indirectly assigned to this target facet. The
definition uses partial functions to allow a model M to have typings w.r.t. zero or more
other models Mi, where facets of M can be typed w.r.t. some of the Mi.

A faceted model type type = 〈typeF , typeS , typeL〉 : M1 →M2 induces a derived relation
typeH ⊆ H1×H2 assigning types to host objects. The types of a host object are computed
by collecting all facets assigned directly or indirectly to the host object, then retrieving
the type of these facets using typeF , and finally obtaining the host objects holding those
facet types. This can be formally defined as follows:

typeH , ((facets2
−1)+ �H2) ◦ typeF ◦ facets1

+ (3)

This derived relation allows objects to have no type (when they lack facets, or their
facets have no type), one type (when the types of all facets they hold belong to exactly
one host object), or multiple types (when the types of all facets they hold belong to more
than one host object).
Example. Figure 6 shows a faceted model type example, where we use the object
diagram notation to denote the types of facets, features and objects. Facets h and m in
M1 are typed by PersonFacet in M2. The type of objects homer and marge, which is Person,
is derived according to typeH .

Faceted models are a generalization of standard models in MDE. Figure 7 illustrates
the extra possibilities that facet-oriented modelling brings. Model (a) shows that a host
object can acquire facets whose type is held by different host objects. This makes the
host object h to have two derived types through typeH : Person and Employee. We call this
multiple heterogeneous typing. Model (b) is similar to model (a), but this time the host
object holds two facets of the same type. We call this case multiple homogeneous typing.
As mentioned in Section 4.1, this may produce an ambiguous access to the facet fields
from the host object, which is solved by prefixing the field name with the facet name.
Model (c) contains two host objects sharing a facet, which is similar to inheritance but
agnostic on the metalevel: for models, it means that the host objects share the feature
value, and for metamodels, it means that the host objects share the feature. Model (d)
illustrates a more fine-grained control of sharing at the level of individual features.
Model (e) shows that facets can have facets, which can be used to provide a hierarchical
structuring mechanism for features.

The last model (f) is equivalent to a standard model in MDE. In standard models,
objects have exactly one type and contain all their features, while features only belong
to one object. This can be emulated by host objects having exactly one facet that cannot
be shared and cannot be added or removed dynamically. This way, a standard model
can be defined as a tuple SM = 〈Ob,Pr , feats ⊆ Ob ×Pr〉, where Ob is the set of objects,
Pr is the set of features, and feats assigns features to objects and is left-injective (no
feature sharing) and surjective (no dangling features). The next lemma states that such
standard models are a special case of faceted models.

LEMMA 4.3 (FACETED STANDARD MODEL). A faceted model M = 〈H,F, S, L, feats,
tar , facets〉 is equivalent to a standard model if:

(1) H � facets is a bijective function,
(2) F � facets is empty, and
(3) feats is left-injective.

PROOF. In appendix

Example. The faceted models in Figures 6 and 7(f) are standard models, since facets
restricted to H is bijective. This means that each host object has exactly one facet, and
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(f) Standard model

Fig. 7: Possibilities that facets bring to modelling.

each facet is assigned to exactly one host object. Moreover, the restriction of facets to
F is empty as no facet has another facet. Finally, feats is left-injective as facets do not
share any feature. In contrast, the faceted models in Figures 7(a-e) are not standard
models because, in (a) and (b), the host objects have two facets (and so facets is not
a function); in (c), two host objects share a facet (and so facets is non-injective and
therefore not bijective); in (d), facets share a slot (and so feats is not left-injective); and
in (e), one of the facets has another facet (and so F � facets is not empty).

In MDE (see, e.g., [Ehrig et al. 2006; de Lara et al. 2007]) a standard model
type between two standard models SM1 and SM2 is typically represented as a tu-
ple of functions type = 〈typeOb , typePr 〉 : SM1 → SM2, with typeOb : Ob1 → Ob2 and
typePr : Pr1 → Pr2. These functions preserve the compatibility of objects and their
features: feats2 ◦ typeOb = typePr ◦ feats1, as the commuting diagram in Figure 8 shows.

Ob2

feats2 //

=

Pr2

Ob1

typeOb

OO

feats1 // Pr1

typePr

OO

Fig. 8: Compatibility condition for standard model types.

Given a faceted model type type = 〈typeF , typeS , typeL〉 : M1 →M2, with Mi standard
models, and typeF a total function, we obtain a standard model type. This means that
typeH is a total function that commutes with featsH , as required by Figure 8.

LEMMA 4.4 (STANDARD TYPE FOR STANDARD MODELS). Given standard models
M1 and M2, a faceted model type type = 〈typeF , typeS , typeL〉 : M1 →M2 is equivalent to
a standard model type iff typeF is a total function.

PROOF. In appendix
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Altogether, we have seen how faceted models extend standard MDE models. Addition-
ally, faceted models allow dynamic typing by considering the type typeH of host objects
a derived relation, and by enabling objects to acquire and drop facets. This acquisition
and loss of facets should be consistent with Definition 4.1. Specifically, when a facet is
no longer assigned to any object, it should be removed to keep relation facets surjective.

Interestingly, it is possible to build a facet-oriented modelling framework on top of
existing standard modelling frameworks, by enabling the use of objects as facets. This
can be achieved by setting H = ∅ in Definition 4.1, providing a delegation mechanism
to fetch the features from hosted facets, and considering multiple types for objects (as
in the case of multiple heterogeneous typing). This setting has the practical advantage
that there is no need to introduce new constructions, but regular objects can be used as
facets. In the following, we assume this working scheme, which maximizes compatibility
with existing modelling frameworks.

5. FACET MANAGEMENT
Next, we introduce some techniques for facet handling. In particular, Section 5.1 pro-
poses a language to attach and detach facets from objects, Section 5.2 describes how
to establish and maintain relations between features, and Section 5.3 shows different
ways to extract views from faceted models.

5.1. Adding and removing facets
To simplify facet management, we have designed a language to manipulate facets. This
relies on the use of queries to select the host objects to which facets should be attached or
detached. The designed language is a domain-specific transformation language [Sánchez
Cuadrado et al. 2014] (i.e., a constrained transformation language [Czarnecki and
Helsen 2006]) with some singularities. First, we may need to refer to specific existing
objects, and so, object identifiers may appear in queries. Second, any object can be used
as a facet, as stated at the end of Section 4.2. Third, the facets may be existing objects,
may be created uniquely for each selected host object, or may be created and shared
by several host objects. Finally, it is possible to specify field value assignments and
relations among fields that should be kept (e.g., equality of field values).

The language has two primitives to create and delete facets, whose structure is
shown in lines 1–2 of Listing 1. Both primitives support four types of queries to select
host objects (line 3): providing an object identifier, a collection of object identifiers, an
OCL expression, or a pattern. The last three query types return a collection of objects.
Primitive addFacet (line 1) adds a collection of facets to the selected objects. The facets
can be existing objects (line 4) or new objects created by instantiating some class within
a facet metamodel (line 5). In the former case, all selected host objects will share the
existing facet; in the latter case, sharing the new facet among the selected host objects
is done with the reuse option (see line 5), while omitting this option adds a new facet to
each selected host. When the facet is a new object, it is possible to specify a value for
its fields, or to define relations between its fields and the ones in the host object or its
current facets. Section 5.2 will explain in more detail the handling of fields.

1 addFacet 〈query〉 〈facet〉 (, 〈facet〉 )∗

2 removeFacet 〈query〉 ( 〈facetName〉 | 〈facetType〉 )+

3 〈query〉 ::= 〈objId〉 | 〈objList〉 | 〈OCLexpression〉 | 〈pattern〉
4 〈facet〉 ::= 〈facetName〉: 〈objId〉 |
5 〈facetName〉: 〈facetType〉 ( with { 〈assignments〉 } reuse? )?

Listing 1: Structure of the facet management primitives.

Primitive removeFacet (line 2) permits deleting facets from a set of host objects selected
by a query. The facets to delete can be specified by name or by type. In the latter case, all
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facets of the type are removed from the selected objects. If after applying this primitive,
a facet is no longer assigned to any host object, the facet gets removed from the model.

As an example, Listing 2 adds a new facet of type Employee to object homer. Line
1 contains the object selection query, made just of the object identifier homer. We
assume a unique way to identify objects. While this is native in our tool METADEPTH,
metamodelling frameworks like EMF [Steinberg et al. 2008] may require selecting
objects interactively by clicking on the user interface. Line 2 creates a new facet named
emp of type Employee (a class from the metamodel Employment). Lines 5–7 assign a value
to the facet fields. In addition, line 4 establishes an equality relation between the
fields homer.fullName and emp.name. Removing the annotation “[equality]” from line 4
would copy the value of homer.fullName to emp.name, but the equality relation between
both fields would not be maintained whenever either of them changes. Section 5.2 will
provide more details on field assignment semantics.

1 addFacet homer
2 emp: Employment.Employee
3 with {
4 name = fullName [equality]
5 salary = 22345
6 ssNumber = 12345
7 active = true
8 }

Listing 2: Adding a new Employee facet to homer.

The excerpt in Listing 3 illustrates the use of OCL to define object selection queries.
In this case, a different facet emp is added to every Person object with age bigger than or
equal to 18. We use the symbol ‘$’ to delimit the OCL expressions.

1 addFacet $ Person.allInstances()→select(p | p.age>=18) $
2 emp: Employment.Employee ...

Listing 3: Adding a new Employee facet to every adult.

While the previous query style facilitates selecting homogeneous objects (i.e., with
same or compatible type), a pattern-like query may be more appropriate to select objects
that are heterogeneous or need to satisfy complex relations. Hence, we support pattern-
based selection using object tuples over which conditions can be specified using the
keyword where. As an example, the query in Listing 4 selects every two Person objects,
and if married, assigns a single facet named emp to each of them.

1 addFacet <h:Person, w:Person> where $ h.spouse=w $
2 emp: Employment.Employee ...

Listing 4: Adding a new Employee facet to every married Person.

Objects receive the types of the facets they hold, and hence, they may have multiple
types. To select objects with multiple types, we support intersection types [Reynolds
1998] in patterns, specified as 〈obj〉 : 〈Type1〉 & ... & 〈Typen〉. This returns the objects having
all types Type1, ...,Typen, and the fields declared in those types can be used safely. Pattern
declarations can also include type negation (!〈Type〉) to demand that an object does not
have the given type. Listing 5 shows an example where object h is required to have
Person and Owner types, while w must be a Person but not an Employee.

1 addFacet <h:Person & Owner, w:Person & !Employee> where $ h.spouse=w $
2 emp: Employment.Employee ...

Listing 5: Using intersection types and type negation.
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Objects can also be added more than one facet at a time. For example, Listing 6
creates two Employee facets for homer. Both facets share the fields ssNumber and active
(lines 11-12), while their field name is synchronized with the field fullName of homer.

1 addFacet homer
2 dayJob: Employment.Employee with {
3 name = fullName [equality]
4 salary = 15000
5 ssNumber = 12345
6 active = true
7 }
8 nightJob: Employment.Employee with {
9 name = fullName [equality]

10 salary = 16400
11 ssNumber = dayJob.ssNumber [equality]
12 active = dayJob.active [equality]
13 }

Listing 6: Making homer a moonlighter.

Finally, several objects can share a facet. This can be done in three ways. The
first one is to assign an existing facet to another host object. For example, by using
addFacet marge emp: homer.dayJob, the object marge is added homer’s facet dayJob (created
in Listing 6) renamed as emp. The second is to use a pattern-like query, as all objects in
every match of a pattern share the same facet. For example, in Listing 4, the two Person
objects of each married couple share a same Employee facet. The third way is to use
the keyword reuse, as this adds the same facet to all objects returned by a query. For
example, adding reuse after the command in Listing 3 makes all adult Persons share
the same facet, and adding reuse to Listing 4 makes all married Persons share the facet.

Regarding the requirements established in Section 2, the presented primitives permit
the manual acquisition and loss of facets, covering R2 and partially R3. Section 6.2 will
propose an automated facet management mechanism to fully satisfy R3.

5.2. Field assignment semantics
This section details the two possible semantics for field assignment in primitive
addFacet: value semantics and reference semantics. In the first case, a literal or the
result of an (OCL) expression is assigned to a facet field at creation time. Lines 3 and 4
of Listing 7 illustrate value semantics. In line 3, a literal is assigned to ssNumber, while
in line 4, the value resulting from the expression 100 * self.age is assigned to salary when
the facet is created. The value of self.age (which corresponds to homer.age) is assigned
when the addFacet primitive is executed. We use the “$” delimiter to denote value
semantics, where the delimiters can be omitted for literals, so that ssNumber = 12345 is a
shortcut for ssNumber = $12345$.

1 addFacet homer
2 job: Employment.Employee with {
3 ssNumber = 12345 // value semantics: literals
4 salary = $ 100 ∗ self.age $ // value semantics: expressions
5 name = fullName [equality] // reference semantics: bi-directional synchronization
6 active = [self.age < 65] // reference semantics: reactive field adapter
7 }

Listing 7: Different field assignment semantics.
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In contrast, an assignment with reference semantics establishes the value of a field
in reference to other fields, not only at creation time, but also later whenever the
other fields change their value. Assignments with reference semantics can be arbitrary
expressions delimited by “[” and “]”, as in line 6 of Listing 7. We call these expressions
reactive field adapters. In the example, whenever the value of homer.age changes, the
adapter is evaluated and the result is assigned to field active. This assignment creates a
unidirectional dependency: if age changes, then the value of active is updated, but active
is not a derived attribute because its value can be changed manually and such changes
are not propagated to age.

N-ary dependencies between fields of either facets or host objects are possible by
defining several adapters. As an example, consider Listing 8 where we assume that
class Person has a field rich. In line 3, the adapter salary = [100 * self.age] initially sets slot
salary in the facet to 100 * self.age, and whenever homer.age changes, salary is updated
using this expression. The subsequent adapter [rich = self.salary > 10000] sets homer.rich
to true whenever salary in the facet changes to become bigger than 10000, and to false
when salary becomes smaller than or equal to 10000. The adapter is within brackets
since the assigned variable rich belongs to the host object homer and not to the facet.

1 addFacet homer
2 job: Employment.Employee with {
3 salary = [100 ∗ self.age] [rich = self.salary > 10000]
4 }

Listing 8: Reactive field adapters for slots.

As this example shows, there may be dependencies between adapters. We say that
a dependent set of adapters is ill-behaved if changing a field x triggers a sequence of
updates that leads to having to update the field x again (with a different value), with
the risk of creating an infinite cycle of updates. For example, name = [fullName] [fullName =
‘Mr. ’.concat(name)] is not well-behaved as setting fullName to ‘Homer’ triggers an update of
name to ‘Homer’ due to the first adapter, which in turns causes an update of fullName to
‘Mr. Homer’ due to the second adapter, and this triggers again a modification of name due
to the fist adapter. At run-time, we use a safe policy where each field changes at most
once in a cycle, to avoid infinite cycles of changes. However, these situations may signal
an error in the facet specification. In Section 7, we provide mechanisms to study if a
cycle of field computations is well-behaved.

As demanding equality of field values is common, we have introduced the equality
shortcut notation for the case of simple bi-directional (bx) synchronization adapters.
This way, name = fullName [equality] is a shortcut for name = [fullName] [fullName = name].
This theoretically corresponds to feature sharing, as Section 4.2 described. Other bx
synchronization relations between two fields need to be established explicitly with a
pair of reactive adapters. For example, salary = [100 * self.age] [age = salary/100] updates the
salary when the age changes, and vice versa. We leave for future work the possibility of
an improved syntax, and mechanisms enabling the specification of one acausal relation
between fields instead of two adapters.

Reactive adapters for links and slots behave similarly. As an example, the command
in Listing 9 adds a Company facet to every Address object, and populates the employees
link with all Employee objects living in the address. Theoretically, this link would be
updated whenever the adapter yields a different value. In practice, for efficiency reasons,
our implementation only performs the update if the adapter is type-local, meaning that
it only uses fields of the object that acquires the facet (a in the example). Section 8 will
provide more details about this. The adapters in Listings 7 and 8 are type-local. However,
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the one in Listing 9 is not because it involves a global query (Person.allInstances()), and
so, employees is assigned the result of the adapter when the facet is created, but this
value is not updated automatically later. Hence, when adapters are not type-local, the
reference semantics behaves as the value semantics.

1 addFacet <a:Address>
2 comp: Employment.Company with {
3 employees = [Person.allInstances()→select(p | p.isKindOf(Employee) and p.address=a)]
4 }

Listing 9: Reactive field adapter for a link.

Finally, the fields of shared facets can use the collection shortcut notation to assign
them either all elements retrieved in the command query, or another facet in the same
command. For example, Listing 10 adds a shared facet with type Company to all adult Per-
son objects, and its field employees will contain all such persons matched by the command.
Hence, employees = p [collection] is a shortcut for employees = [Person.allInstances()→select(p
| p.age>=18)]. Alternatively, we could have used employees = job [collection] with the same
result, as this would assign all facets named job, created in line 2, to employees. Sec-
tion 9.2 provides more examples of this shortcut.

1 addFacet <p:Person> where $ p.age>=18 $
2 job: Employment.Employee with { ... }
3 comp: Employment.Company with {
4 employees = p [collection]
5 } reuse

Listing 10: Reactive adapter using the collection shortcut.

Overall, facet sharing and field adapters lead to a reactive approach to maintain
consistency relations. While in standard MDE, one can set OCL constraints demanding
some relation between fields across objects, there is no standard way to enforce those
constraints. Our proposal is a novel way to do so.

With regards to the requirements in Section 2, our support for both predefined and
user-defined relations between owned and acquired fields meets R4.

5.3. Model scenes
Once we enrich objects with facets, it is natural to have means to visualize faceted mod-
els according to several slicing criteria regarding facets. This way, we propose different
manners to visualize a model with faceted objects. We say that they deliver a scene of a
model, as they effectively look at a model under a certain angle, utilizing the facets as
visualization criterion, similar to read-only non-materialized model views [Atkinson
et al. 2015; Bruneliere et al. 2019]. Next, we present the three kinds of scenes we
consider: total, sliced and granulated.

Total scene. The default visualization shows each host object reexposing the types and
fields of its facets, as if the types and fields were owned. We call these scenes total.
Figure 9(a) shows a total scene of the Springfield model, where homer has the two
Employee facets created in Listing 6 (dayJob and nightJob). In the figure, fields show
their facets to the right.
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(b) Sliced by Employment
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(c) Granulated by Employment

Fig. 9: Three scenes of the same model.

Sliced scene. Since a model may have objects with facets typed by different facet meta-
models, we enable slicing a model with respect to a facet metamodel. Specifically, a
sliced scene visualizes all objects of a model that are typed by a given facet meta-
model. The slicing preserves the host objects, but it only shows the types and fields
coming from the facet metamodel the model is sliced to, while objects without facets
from this metamodel are omitted. Using model view terminology, a sliced scene is a
projection of a model using a facet metamodel, where each host object displays its
facets aggregated within the object. For example, Figure 9(b) shows a sliced scene
of the Springfield model with respect to the Employment metamodel. homer is an object
and not a facet, but it shows the type and fields from the Employment metamodel,
and omits the type and fields from the Census metamodel. The scene does not show
the simsHome object because it has no facet from the Employment metamodel. Sliced
scenes are formally defined next.

Definition 5.1 (Sliced scene). Given a faceted model M = 〈H,F, S, L, feats, tar ,
facets〉 and a set T = {typei : M → Mi}i∈I of faceted model types, a sliced scene of
M w.r.t. typej ∈ T , written SLICE (M, typej) = 〈H ′, F ′, S′, L′, feats ′, tar ′, facets ′〉, is a
faceted model defined as follows:
— F ′ = {f ∈ F | typej

F (f) is defined},
— H ′ = {h ∈ H | ∃f ∈ facets+(h) ∩ F ′},
— S′ = {s ∈ S | typej

S(s) is defined},
— L′ = {l ∈ L | typej

L(l) is defined},
— feats ′ = F ′ � feats � P ′, tar ′ = L′ � tar � F ′, facets ′ = O′ � facets � F ′.

Granulated scene. A granulated scene visualizes all facets of a model that are typed
by a given facet metamodel. For this purpose, it reifies those facets as host objects,
and then, it slices the model with respect to the facet metamodel. Using model view
terminology, a granulated scene is a projection of a model using a facet metamodel,
where each facet within a host object is displayed disaggregated. As an example,
Figure 9(c) shows a granulated scene of Springfield with respect to the Employment
metamodel, where the two facets of homer become visible as first-class objects, and
homer itself is not visible. This way, the scene provides detailed employment data of
Springfield. Granulated scenes are formally defined next.
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Definition 5.2 (Granulated scene). Given a faceted model M = 〈H,F, S, L, feats,
tar , facets〉 and a set T = {typei : M → Mi}i∈I of faceted model types, a granu-
lated scene of M w.r.t. typej ∈ T , written GRAN (M, typej) = 〈H ′, F ′, S′, L′, feats ′,
tar ′, facets ′〉, is a faceted model defined as follows:
— F ′ = {f ∈ F | typej

F (f) is defined},
— H ′ = {(f, 0) | f ∈ F ′},
— S′ = {s ∈ S | typej

S(s) is defined},
— L′ = {l ∈ L | typej

L(l) is defined},
— feats ′ = F ′ � feats � P ′, tar ′ = L′ � tar � F ′, facets ′ = {((f, 0), f) | f ∈ F ′}.

Granulated scenes produce standard models, as each typed facet is promoted to a
host object that contains exactly that facet, except for possible facet sharings.

Models can be filtered using OCL prior to scene generation. For example,
to create a scene that only includes adult persons, we can define the fil-
ter Person.allInstances()→reject(p | p<18). Scenes are visualization devices, so Em-
ployee.allInstances() returns Set{homer} on model Springfield regardless of the scene. To
account for facets, we extend OCL with the primitive 〈type〉.allFacets(). This way, Em-
ployee.allFacets() evaluated on Figure 9 returns Set{dayJob, nightJob}.

6. FACET LAWS AND INTERFACES
The previous section explained how to add facets to objects in an opportunistic way.
In addition, we provide support for planned or systematic facet-based modelling. This
is useful to control which elements can be used as facets, establish which facet types
can be combined within a host object, or specify declarative conditions for acquiring or
dropping facets so that they are enacted automatically. For this purpose, we propose
facet interfaces and facet laws.

Figure 10 shows a scheme of these two mechanisms. It contains two metamodels, one
playing the role of creation metamodel (CMM), and the other defining classes to be used
as facet types (FMM). A facet interface for FMM specifies the classes of FMM that can be
used to create facets (white boxes in the interface), identifies the classes that can be
compatible facets of a same object, and may declare OCL constraints to be satisfied by
any model that uses facets of FMM.

:CMM :FMM 

FMM CMM 

Facet Interface 

«
co

n
fo

rm
s to

»
 

«
co

n
fo

rm
s to

»
 

Creation MM Facet MM 

model with facets 

Facet Law 

Fig. 10: Facet interfaces and laws.

Facet laws are specifications of how/when objects in the instances of CMM can acquire
and drop facets from FMM. Laws can be used to check that addFacet commands issued
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manually obey the laws, to complete new facets with default field values, and to trig-
ger the acquisition and loss of facets automatically (which leads to fully satisfy the
requirement R3 specified in Section 2).

Our approach does not force the use of facet interfaces or laws, which remain optional.
Next, Section 6.1 describes facet interfaces, while Section 6.2 introduces facet laws.

6.1. Facet interfaces
A facet interface restricts how a metamodel can be used for facet-based modelling. It
declares the classes that can be used to create facets, their allowed combinations, and
extra wellformedness constraints. The latter are useful to ensure additional require-
ments that arise when a same host object combines facets of different types, but which
make no sense when the facet metamodel is used in a standard way.

Listing 11 shows the structure of a facet interface specification. It declares the public
classes that can be used to create facets, either all or a list of them (line 2). It may define
sets of compatible classes, i.e., classes whose instances can be facets of the same host
object (line 3). Classes not defined compatible are incompatible. Finally, the interface
may declare constraints that facets and their host objects should obey (line 4, where
type is the context of the constraint and cName is the constraint name).
1 FacetInterface for 〈MM〉 {
2 public: all | 〈typeList〉
3 (compatible: 〈typeList〉 (, 〈typeList〉)∗)?
4 (constraints: (〈type〉.〈cName〉 = 〈OCLexpression〉)+ )?
5 }

Listing 11: Structure of a facet interface.

Listing 12 shows an example of interface specification for the Employment metamodel.
Line 2 indicates that all its classes can be used as facets. Line 3 states that host objects
can take Employee and Owner facets simultaneously, and implicitly, precludes all other
facet combinations. For example, objects cannot have facets of Employee and Company
at the same time. Line 4 declares a constraint named repToIrreflexive in the context of
class Employee, which forbids an employee reporting to itself. This cannot happen if
Employment is used as a standard metamodel because classes Employee and Owner are
disjoint, but the interface allows that possibility, so the constraint requires that reportsTo
is irreflexive. Interestingly, the OCL expression seamlessly interprets that self is both
an Employee (in self.reportsTo) and an Owner (in excludes(self)).
1 FacetInterface for Employment {
2 public: all
3 compatible: [Employee, Owner]
4 constraints: Employee.repToIrreflexive = $ self.reportsTo.excludes(self) $
5 }

Listing 12: An interface for using facets of Employment.

6.2. Facet laws
A facet law specification is a metamodel-level specification governing how instances of
a creation metamodel can use facets of a facet metamodel. It is made of a set of facet
laws which are mappings between classes in the creation and facet metamodels, to be
either mandatorily or optionally satisfied by the instances of those classes. Each law can
assign a default value to the facet fields, establish field relations, and define constraints.
In addition, each facet law must respect the interface of the facet metamodel, if it exists.

Listing 13 shows the structure of facet law specifications. For generality, laws can
apply to any number of creation and facet metamodels (see line 1). Hence, it is possible
to specify laws for a metamodel that has facets from other metamodels; and to specify
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1 FacetLaws for 〈MM〉 ( ( (, 〈MM〉)∗ with 〈MM〉 (, 〈MM〉)∗ ) | extensions ) {
2 ( (must | may) extend 〈query〉 with 〈fctName〉: 〈fctType〉
3 (with { 〈assignments〉 〈constraints〉 } reuse? )? )+

4 }

Listing 13: Structure of a facet law specification.

laws for several creation metamodels. Section 9.3 will present an example of this.
Moreover, using the keyword extensions permits applying a facet law to the subclasses
of a given class, as we will illustrate in Section 9.4. The structure of mappings in a facet
law (lines 2–3) is similar to the addFacet primitive, but in addition, they specify an
optionality (must or may) and can add constraints to the facets.

Listing 14 shows a facet law specification governing Employment facets over Census
models. Lines 2–3 specify that every adult person (age>17) must have an Employee facet.
Alternatively, we could specify that a Person may have a facet Employee. If there is no
law specifying that some objects (may or must) take a facet of a certain type, then it is
forbidden. For example, Address objects cannot have any facet, and neither can Persons
with age<=17. Lines 4–5 assign default values to the facet fields, and lines 6–7 define
two constraints. The first one is a more restrictive constraint for the salary than the
one in the Employment metamodel. The second one states that people over 65 cannot be
active.

1 FacetLaws for Census with Employment {
2 must extend <p:Person> where $ p.age>17 $
3 with work:Employee with {
4 name = fullName [equality]
5 salary = 24000
6 minLocalSalary: $ self.salary>16000 $
7 retirement: $ self.age>65 implies not self.active $
8 }
9 }

Listing 14: Laws for Employment facets in Census models.

Facet laws are useful in the following scenarios:

— To check manually issued facet management commands. After issuing an addFacet or
removeFacet command, every facet law that involves facet or creation types specified
in the command is checked for consistency. This way, the command is not applied to
the objects that do not satisfy the law condition (under-age persons in Listing 14).

— To check faceted models for consistency. Given a model with facets and a facet law, we
can check if each object has the facets that the law establishes.

— To complete addFacet commands. A law establishes default values for facet fields (see
lines 4–5 of Listing 14), so that they need not be repeated in every manual addFacet
command. Thus, laws make knowledge on how facets should be created explicit.

— To constrain facets. By adding extra constraints to created facets (see lines 6–7 of
Listing 14), facets are ensured to be consistent with their host objects.

— To automate facet acquisition and loss. Every mandatory (must) mapping in a law can
be enforced automatically. For this purpose, an addFacet command is automatically
issued whenever the mapping conditions are met, and a removeFacet is automatically
issued when they no longer hold. For example, if we enforce the law in Listing 14, every
adult Person object receives an Employee facet and two constraints (minLocalSalary and
retirement). If we change the salary of an adult Person object to 14000, then the object
violates the metamodel constraint minSalary and the law constraint minLocalSalary. If
we decrease the age of an adult Person to 17, then the object automatically drops the
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facet Employee. If we create a new Person with age 18, then it automatically acquires
an Employee facet.

7. FACET ANALYSIS
This section presents two analysis techniques for facet laws based on model finding. The
first one (described in Section 7.1) targets the analysis of their satisfiability, and the
second one (shown in Section 7.2) analyses the well-behavedness of reactive adapters.

Both techniques are “push-button” analyses, fully automatic, so that the software
engineer does not need to deal with the internal technicalities they involve. The first
analysis returns a model demonstrating the applicability of the laws, and the second
a model exemplifying an ill-behaved adapter, if such models exist. Both techniques
are based on model finding using constraint solving [Jackson 2006]. This performs
a bounded search up to models of a limited size. Therefore, our techniques are semi-
decidable: finding a model demonstrates the analysed property, but the analysis result is
inconclusive when the finder finds no model as some may exist outside the search scope.
Anyhow, constraint solvers rely on the commonly agreed “small scope hypothesis” [Jack-
son and Damon 1996; Andoni et al. 2003], which assumes that most constraints are
satisfied by models of limited size.

7.1. Facet law satisfiability
Our first analysis aims at answering whether a facet law specification is applicable
to some instance of the creation metamodel. A facet law is not applicable if its query
condition always returns no object regardless of the queried model, and is applicable oth-
erwise. In addition, as lines 4–7 of Listing 14 illustrate, a facet law may add constraints
to the objects to which it is applied, and initialize the facet fields. Hence, borrowing
terminology from instantiability analysis of metamodels [Cabot et al. 2014], we say
that a facet law is satisfiable if (1) it is applicable, and (2) the resulting model of some
application satisfies the added constraints and the creation metamodel wellformedness
constraints. We call a specification where at least one facet law is satisfiable weak
satisfiable. We call a specification strong satisfiable if all its facet laws are satisfiable.
Example. The bottom of Figure 11 shows three facet laws defined over the simplified
creation and facet metamodels on top. These are excerpts of the Census and Employment
metamodels of Figure 1, where we have added a constraint diffNames requiring Persons
to have distinct fullNames. The first law is not applicable because its query looks for
pairs of Person objects with same fullName, but Persons have different fullNames due to
constraint diffNames. The second law is applicable but not satisfiable because it assigns
a salary that violates constraint minSalary. Finally, the third law is satisfiable because
there are models where it can be applied (e.g., any model with an adult Person) and the
result does not violate any constraint.

Census 

Person 

fullName : String 
age : int 

Employee 

name : String 
salary : double 

minSalary inv:   
  salary > 15000 

Employment 

diffNames inv: 
  Person.allInstances()->forAll (p| 
     p<>self implies  p.fullName<>fullName) 

[1] must extend <p1: Person, p2: Person> where $p1.fullName=p2.fullName$ with … -- not applicable 
[2] must extend <p: Person> where $p.age>17$ with work: Employee with { salary = 12000 … } -- not satisfiable 
[3] must extend <p: Person> where $p.age>17$ with work: Employee with { salary = 16000 … } -- satisfiable 

Fig. 11: Examples of facet laws: [1] not applicable; [2] applicable and not satisfiable; [3] satisfiable.
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Our method to analyse law applicability and satisfiability is based on recasting facet
laws as a constraint satisfaction problem and using model finders for the analysis [Jack-
son 2006; Kuhlmann and Gogolla 2012; Cabot et al. 2014]. An (OCL) model finder
is a program that takes as input a metamodel with (OCL) integrity constraints, and
outputs a valid instance model, if one exists within the search bounds. More in detail,
our method builds a so-called analysis metamodel which “merges” the creation and
facet metamodels, and is enriched with OCL constraints for representing the facet laws.
Then, it uses a model finder to look for a valid instance of the analysis metamodel, in
which case, the instance is a witness of the law applicability (or satisfiability).

Next, we explain in detail the steps in our analysis. The explanation will sometimes
refer to Figure 12 as it summarizes the scheme to build the analysis metamodel and
OCL constraints for a given facet law specification. As an illustration, we will use the
example in Figure 13 to demonstrate how to analyse a facet law specification.

FacetLaws for CMM with FMM {  
  (must | may) extend ob1: ObType1 ,…,obn: ObTypen where cond  with fctName : FctType 
   with { 
      assignments 
 constraints 
   } reuse? 
} 

ObType1 

CMMWithFMM 

ObTypen 

… FctType 

fctName 

fctName 

y 

y 

x 

x 

x= reuse ? ObType-arity..* : ObType-arity 

CMM FMM 

facetSharing inv: 
  FctType.allInstances()->one( f | 
    ObType1.allInstances()->forAll( ob1 | 
      … 
        ObTypen.allInstances()->forAll( obn |     
          cond  implies ( 
            ob1.fctName=f and…  
            obn.fctName=f))…) 

RootClass 
[1] 

5 facetApp inv: 
  ObType1.allInstances()->exists( ob1 | 
    … 
      ObTypen.allInstances()->exists( obn |     
         ob1<>ob2… and ob1<>obn … 
 and cond )…) 

2 

facetDrop inv: 
  ObType1.allInstances()->forAll( ob1 |… 
    ObTypen.allInstances()->forAll( obn | 
      not (ob1<>ob2… and ob1<>obn …and cond) implies 
         not FctType.allInstances()->exists( f | 
          ob1.fctName = f and … obn.fctName = f )…) 

facetAcq inv: 
  ObType1.allInstances()->forAll( ob1 | … 
    ObTypen.allInstances()->forAll( obn | 
 ob1<>ob2… and ob1<>obn … and cond implies   
 FctType.allInstances()->exists( f | 
           ob1.fctName = f and … obn.fctName = f and 
           assignments[f, ob1, …, obn/self] and  
 constraints [f, ob1, …, obn/self]))…) 

analysis 
metamodel 

1 

only for satisfiability analysis only if reuse semantics 

y= query tuple of arity greater than two ? * : 0..1 

3 

4 

Fig. 12: Analysis scheme for satisfiability of facet laws.

(1) Construction of the analysis metamodel. In a first step, with label 1 in Figure 12, the
method builds an analysis metamodel which contains the following classes:
— all classes in the creation metamodels (〈ObTypei〉).
— an auxiliary class RootClass that will hold the invariants generated from each

facet law, as we will explain in step (2).
— the class of all facets involved in the specification (〈FctType〉). The class of the

facets that do not appear in any law are omitted, as they are unnecessary for the
analysis. This reduces the analysis search space.

In addition, for each facet law, the analysis metamodel includes a link from the
class of the objects selected by the facet law to the mapped facet classes. Figure 12
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CensusWithEmployment 

Person 

fullName : String 
age : int 
female : boolean 

Employee 

name : String 
salary : double 
ssNumber : int 
active : boolean 

work 

0..1 1..* 

minSalary inv:  salary > 15000 

p1: Person 

fullName =“P1” 
age =18 
female =true 

p2: Person 

fullName =“P2” 
age =18 
female =true 

e: Employee 

name = 
salary =24000 
ssNumber =123 
active =true 

diffNames inv: 
  Person.allInstances()->forAll (p| 
     p<>self implies  p.fullName<>fullName) 

:CensusWithEmployment «conforms» 

facetApp inv: 
  Person.allInstances()->exists(p | p.age>17) 
 
facetAcq inv:  
  Person.allInstances()->forAll( p | 
    p.age > 17 implies ( 
      Employee.allInstances()->exists(f |  
        p.work=f and f.name = p.fullName and  
        f.salary=24000 and f.salary>16000 and 
        p.age>65 implies not f.active))) 
 
facetDrop inv: 
  Person.allInstances()->forAll(p | 
    not (p.age > 17) implies  
    not Employee.allInstances()->exists(f| p.work=f)) 
 
facetSharing inv:  
  Employee.allInstances()->one( e | 
    Person.allInstances()->forAll ( p | 
      p.age > 17 implies p.work = e )) 

RootClass 

: RootClass 

spouse 

0..1 

Address 

street : String 
city : String 

address 

FacetLaws for Census with Employment {  
  must extend p: Person where $ p.age>17 $  
    with work: Employee with { 
      name = fullName [equality] 
  salary = 24000 
  minLocalSalary = $ self.salary>16000 $ 
  retirement = $ self.age>65 implies not self.active $ 
    } reuse 
} 

Fig. 13: Example of satisfiability analysis for a facet law specification.

assumes a facet law with a pattern-based query. In case of an OCL query, the class
of the objects selected by the query needs to be identified in order to create the link
from this class. For example, in the OCL query Person.allInstances()→select(...), the
selected objects are of type Person.
The link cardinality to the side of the facet classes is set to optional, with unbounded
maximum in case of a pattern-based query with arity bigger than one, and 1 other-
wise. The reason is that in a pattern with more than one element, the same element
in the model can be matched several times in different combinations. To the side of
the creation classes, the minimum link cardinality is set to the arity of the given
type in the pattern (i.e., the number of times the type appears in the pattern), and
the maximum is set to * in case of reuse and to the minimum otherwise. The role
name to the side of the facet class is the facet name 〈fctName〉.
Example. Figure 13 shows the analysis metamodel CensusWithEmployment, built from
the facet law specification on top. This metamodel represents the facet relation
between Person (creation class) and Employee (facet class) as a standard link (work).
The cardinality to the side of Person is 1..∗ since Persons are selected individually
and not in tuples (hence the 1), and the law has reuse semantics (hence the ∗). The
cardinality to the side of Employee is 0..1 since each Person is selected at most once by
the query (i.e., the query is not based on patterns with arity bigger than one).

(2) Encoding of the facet law semantics. Next, the method adds to class RootClass three
invariants (with labels 2–4 in Figure 12) for each facet law, plus an additional one
(with label 5) in case the law has reuse semantics.
— The invariant facetApp asks for a set of host objects satisfying the law query,

i.e., it encodes the conditions for law applicability. If the query is pattern-based,

24



as is the case in the figure, then the invariant consists of nested exists clauses
demanding the set of objects to be disjoint and to satisfy the condition 〈cond〉,
similarly to [Guerra and Soeken 2015]. If the query includes an intersection
type, then the invariant checks the existence of links from the creation to the
facet types specified in the intersection type. For example, p: Person & Employee
would be encoded as: Person.allInstances()→exists(p | p.work→notEmpty()). If the query
includes a type negation (e.g., p: !Employee), then the invariant requires an object
with no link to any facet of the given type.

— The invariant facetAcq expresses the constraints that a facet imposes to any host
object that acquires the facet, i.e., it specifies the conditions for law satisfiability.
The invariant selects the host objects satisfying the law query by using nested
forAll clauses and checking the condition 〈cond〉. Then, it requires the existence
of a facet connected to the selected objects, satisfying the conjunction of the
assignments and constraints within the “with” clause of the law. In the law, the
assignments and constraints are defined in the context of the facet, and so the
invariant replaces “self” with f (the name of the selected facet object) or with the
object name (ob1, ..., obn) depending on the owner of the slot. If the maximum
cardinality to the side of the facet is “*”, then the invariant checks that the host
objects have the facet using obi.〈fctName〉 →includes(f), instead of obi.〈fctName〉= f.

— The invariant facetDrop is the converse of facetAcq, and ensures that the host
objects that do not satisfy the law conditions do not have an attached facet.

— The invariant facetSharing is created only when the law has reuse semantics. It
ensures that all host objects satisfying the law condition share the same facet
instance.

Example. Figure 13 shows the four invariants needed to analyse the satisfiability
of the facet law specification on top. The invariant facetSharing is necessary because
the law includes the keyword reuse. To analyse applicability but not satisfiability,
facetApp would be the only generated invariant. Invariant facetAcq checks, among
other things, that the constraint retirement introduced by the law is satisfied. For this
purpose, the procedure substitutes self.age by p.age and self.active by f.active.

(3) Model finding. As a last step, the method resorts to a model finder to look for an
instance of the analysis metamodel. The sought metamodel instance is demanded to
contain exactly one RootClass object (represented in Figure 12 as a cardinality “[1]”
in the top-right corner of the class) in order to ensure the non-vacuous satisfaction of
its invariants. In addition, it must contain at least one instance of each creation and
facet class in the facet law specification, and in case of reuse semantics, then it must
contain at least two objects of the affected creation classes to effectively force facet
sharing. If the model finder finds an instance of the analysis metamodel, then the
applicability/satisfiability of the facet law specification is demonstrated; otherwise,
the specification is not applicable/satisfiable within the search bounds.

Example. The facet law specification in Figure 13 has reuse semantics. Hence, the
search configuration requires at least two objects of type Person, and at least one
Employee. As the figure illustrates, the analysis metamodel is not instantiable within
these search bounds because the facet requires name equality of each Person with
the shared Employee facet, but invariant diffNames requires all Person names to be
different. However, if we delete the keyword reuse in the facet law specification and
repeat the analysis, then the search scope only requires at least one Person and one
Employee. This search does return a model instance which demonstrates that the new
specification is satisfiable within the new search bounds.
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7.2. Well-behavedness of reactive adapters
As discussed in Section 5.2, facet laws may include expressions (adapters) triggering a
change in one field as a reaction to changes in other fields. When there is a cyclic depen-
dency in the adapter expressions, they may yield different values in each computation
iteration. In that case, the adapters are ill-behaved. In practice, we do not update a
field twice in a cycle, and so, infinite recursion is not possible. However, ill-behaved
adapters may be a symptom of a mistake in a facet law, and therefore, we provide
analysis support for their discovery.

The analysis is based on model finding. It extends the analysis presented in Section 7.1
as depicted in the scheme of Figure 14(a), which assumes the generation of an analysis
metamodel as in Figure 12 but replacing invariant facetAcq by invariant facetAcq’ (for
simplicity, we assume just on creation class ObType).

When a field is assigned a dependent cycle of adapters, our new analysis: (i) creates
a duplicate of the field that causes the cycle (obField’ in Figure 14(a)); (ii) assigns to
the duplicate field the result of the adapter that causes the cycle (last line of invariant
facetAq’); and (iii) checks whether the duplicate and original fields can have different
values (invariant illBehaved), as this would indicate that the adapter is ill-behaved.

ObType 

CMMWithFMM 

FctType 

fctName 

y x 

CMM FMM 

RootClass 
[1] 

… 
obField 

obField’ 
… 

fctField 

…  

  with { 

     fctField = [exp1] … [obField = expn] 

  }} 

facetAcq’ inv: 
  ObType.allInstances()->forAll( ob | 
    cond  implies (  
       FctType.allInstances()->exists( f | 
         ob.fctName = f and 
         fctField  = exp1[f, ob/self] and … 
         obField’ = expn[f, ob/self] ))) 
 
illBehaved inv: 
  ObType.allInstances()->exists( ob | 
    FctType.allInstances()->exists( f | 
      ob.fctName=f and  
      ob.obField <> ob.obField’ )) 

CensusWithEmployment 

Person 

age           : String 
fullName : String 
fullName’ : String 
… 

Employee 

name: String 
… 
 

work 

0..1 1 

RootClass 

FacetLaws for Census with Employment {  
  must extend p: Person where $ p.age>17 $  
    with work: Employee with { 
      name = fullName [fullName = ‘Mr. ’.concat(name)] 
    }} 

facetAcq’ inv: 
  Person.allInstances()->forAll( p | 
    p.age > 17  implies (  
      Employee.allInstances()->exists(f | 
        p.work = f and f.name = p.fullName and 
        p.fullName’ = ‘Mr. ’.concat(p.name))) 
 
illBehaved inv: 
  Person.allInstances()->exists( p | 
     Employee.allInstances()->exists(f | 
       p.work = f and p.fullName <> p.fullName’ 
)) 

… 

(a)         (b) 

Fig. 14: Well-behavedness analysis of reactive adapters. (a) Scheme. (b) Example.

Figure 14(b) exemplifies the analysis for the field assignment name = [fullName] [fullName
= ’Mr. ’.concat(name)]. The two adapters in the assignment have a dependency cycle since
the first adapter uses fullName to compute name, and the second adapter assigns a new
value to fullName. To check whether the adapters are ill-behaved, our method creates
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an analysis metamodel where: (i) class Person has an extra attribute fullName’; (ii) the
invariant modelling facet acquisition (facetAcq’) uses fullName’ to set the value of the
second adapter; and (iii) the invariant illBehaved checks whether it is possible that
fullName and fullName’ have different values in Persons with an Employee facet.

Using a model finder to seek an instance of the analysis metamodel yields a non-
empty solution (e.g., a model containing a Person with fullName=’Homer’ and fullName’=’Mr.
Homer’). This indicates that the adapters are ill-behaved.

8. TOOL SUPPORT
We have implemented facets, facet interfaces, facets laws and their analyses on top of
our tool METADEPTH [de Lara and Guerra 2010]. The tool and the examples in this
paper are available at http://metadepth.org/mtl.

METADEPTH is a textual modelling tool that supports an arbitrary number of met-
alevels [Atkinson and Kühne 2001; de Lara et al. 2014]. Elements at every metalevel
can be both classes (i.e., types of lower level elements) and objects (i.e., instances of
upper level elements). For this reason, they are called clabjects, from the union of the
words class and object. This makes METADEPTH level-agnostic [Atkinson et al. 2010a].

Listing 15 shows the definition of the Census metamodel in METADEPTH’s syntax,
and Listing 16 has an excerpt of a Census model called Springfield. The keyword to
declare a metamodel (more precisely, a model with no ontological type) is Model, and
the one to create classes (i.e., clabjects with no ontological type) is Node. Their name
can be used to create instances as in Listing 16, where line 1 creates an instance
of Census called Springfield, and lines 2–8 create an instance of Person called homer.

1 Model Census {
2 Node Person {
3 fullName: String;
4 age: int;
5 female: boolean = true;
6 spouse: Person[0..1];
7 address: Address[1];
8 }
9 Node Address {

10 street: String;
11 city: String;
12 }
13 }

Listing 15: Census metamodel.

1 Census Springfield {
2 Person homer {
3 fullName= "Homer";
4 age= 50;
5 female= false;
6 spouse= marge;
7 address= simsHouse;
8 }
9 Address simsHouse {

10 street= "Evergreen Terrace";
11 city= "Springfield";
12 }
13 ... }

Listing 16: Springfield model.

We have extended METADEPTH to support the definition of facets as a special re-
lationship between clabjects, to incorporate into host clabjects the types provided by
their facets, and to make the access to facet fields from host clabjects transparent using
delegation. Figure 15 shows a high-level excerpt of the design, where the dark classes
are new additions.

In this design, Clabjects may own facets, which are simply other Clabjects accessible
via class FacetRef. Clabject methods querying for owned fields (like method fields in the
figure) have been extended to query the fields of owned facets as well, implementing a
delegation mechanism for field access.

To implement the dynamic acquisition and loss of facets according to a facet law, we
add to all clabjects mentioned in the law condition two constraints that we call triggered
(class TriggeredConstraint). The first one checks the OCL condition stated in the law, and
triggers the creation of the facet upon the condition satisfaction. The second one checks
the negated OCL condition and triggers the facet deletion. While we have developed
triggered constraints specifically for facets, their design is general (e.g., they hold a
collection of actions instead of one). However, they currently need to be “type-local”,
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Fig. 15: Design of the realization of facets in METADEPTH (excerpt).

i.e., they are restricted to conditions on fields of the clabjects that acquire/drop the
facet. For example, given the facet law in Listing 14, the condition p.age>17 in line 2 is
type-local (p is of type Person, which is the type that acquires the facet), but the condition
Address.allInstances()→exists(a | a.city=’Springfield’) is not. Non type-local conditions would
require a static analysis to select the context clabject for the triggered constraint, or
decide to place it in the model. This is left for future work.

METADEPTH featured a change notification mechanism, whereby changes in any
field value (via method set in class FieldValue) are notified to the field owner (via method
valueChanged in class Field). We have profited from this mechanism to implement reactive
field adapters (class AdapterSyncField). These may need to trigger (push) recomputations
to other fields, using an ExecutableSnippet. The equality relation between facet and host
clabject fields is performed more efficiently by means of mirror fields (class MirrorField).
These are field wrappers that allow sharing the value of a field with other field(s), so
that there is only one FieldValue from which all fields in the relation read and set values.

In addition, we have extended the command set of METADEPTH to allow adding
and deleting facets (addFacet, removeFacet), defining facet laws (FacetLaws), defining
facet interfaces (FacetInterface), and enforcing facet laws (addFacet all). We have also
extended the existing dump command – which produces a textual read-only represen-
tation, similar to Figure 16(b), of one or all the models currently loaded – to support
scenes (cf. Section 5.3). This way, a command like dump using Employment shows the model
sliced by Employment, while the command dump facets Employment shows a granulated
scene using Employment. The command can also receive an OCL query, so that only the
objects selected by the query are added to the scene. For example, dump using Employment
$Person.allInstances()->select(p | p.female)$ only displays female Person objects in the scene.

METADEPTH integrates the Epsilon family of languages [Paige et al. 2009]. This
permits defining in-place model transformations with EOL [Kolovos et al. 2006a], model-
to-model transformations with ETL [Kolovos et al. 2008], and code generators with
EGL [Rose et al. 2008]. Facets are transparent to all these languages, so they can be
seamlessly used within Epsilon programs. For example, assume that we enforce the law
in Listing 14, which adds an Employee facet to adult persons automatically. Then, the
EOL program in Listing 17 causes the creation of a new facet Employee associated to p
when line 2 is executed. Line 3 succeeds because p has now the field salary and can be
accessed transparently. If we evaluate the correctness of the model at this moment via
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1 var p : Person := new Person;
2 p.age := 23; // implicitly creates an Employee facet (as p.age > 17)
3 p.salary := 15100; // OK, as p has now an Employee facet
4 p.age := 16; // p loses its Employee facet (as p.age <= 17)
5 p.salary := 21000; // Error! p has no Employee facet

Listing 17: EOL program showing facet dynamicity.

the command verify, METADEPTH reports an error because the minLocalSalary constraint
specified in the law (line 6 of Listing 14) fails. Line 4 makes the object p drop its facet
Employee because it stops satisfying the law condition (i.e., the age is not greater than
17). Hence, line 5 causes an error due to an access to the undefined field salary.

Note that a static type checker may not be able to detect issues related to the dynamic
nature of facets. For example, a static type checker would report an error in line 3 of
Listing 17 because clabject Person lacks field salary (though a facet provides this field).
Instead, we resort to dynamic type checking at run-time. The execution semantics of
the language itself, be EOL or OCL, does not change though. This is so as the semantics
of facets is handled by the modelling framework, which provides the information on the
object types (which can be multiple and change at run-time) and fields (which may also
change dynamically).

Finally, we have added to METADEPTH the new command lawsat that auto-
mates the analyses presented in Section 7. We rely on the USE validator as model
finder [Kuhlmann and Gogolla 2012], which receives a class diagram with OCL con-
straints as input, and returns an instance of the class diagram if any exists within
the given bounds. Internally, there are (Java) translators that transparently convert
between the representations of USE and METADEPTH.

As an example, Figure 16(a) shows the result of the satisfiability analysis for the
facet law in Listing 14, visualized within USE. The model illustrates the sharing of
an Employee facet by every adult Person2. It is an instance of the synthesized analysis
metamodel (cf. Section 7.1), and hence, it includes instances of the facet metamodel (like
Employee) as well as a unique RootClass object. This model is parsed and represented
back in METADEPTH as the faceted model in Figure 16(b). Facets are not shown as
objects but embedded within their hosts as annotations [Sánchez Cuadrado and de Lara
2018]. This way, the annotation in line 2 states that object person4 has at least one facet
of type Employee, and the annotations in lines 8, 10, 12 and 14 identify the slots of the
work facet. The faceted model can be visualized in several ways using scenes, e.g., slicing
by Employment.

9. CASE STUDIES
To evaluate the usefulness of facets, we now present five illustrative scenarios: handling
of annotation models (Section 9.1), reuse of model management operations (Section 9.2),
multi-view modelling (Section 9.3), multi-level modelling (Section 9.4), and language
product lines (Section 9.5). Our goal is to showcase the benefits of our proposal, and
to compare with other techniques for resolving the same scenarios. The selection of
techniques is based on literature search, personal knowledge and availability of a tool.
The comparison is based on requirements R1–R4 listed in Section 2 and on more specific
criteria for each scenario. The section concludes with a summary of this qualitative
evaluation, and discussing strengths and limitations of our approach (Section 9.6).

2To reduce the search space, we have represented salaries in thousands of euros.
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(a)         (b) 

1 Census tempPersonWithEmployment { 
2  Address address2 { 
3     city="string1"; 
4    street="string1"; 
5   } 
6   @Facets(Employee) 
7   Person person4 { 
8    fullName=“string2”; 
9     address=address2; 
10    female=true; 
11     age=28; 
12     @Facet(work,Employee) 
13      salary=24;   
14     @Facet(work, Employee) 
15      name=“string2”; 
16     @Facet(work, Employee) 
17      ssNumber=30; 
18     @Facet(work, Employee) 
19     active=false; 
20 } 
21 … 
22 } 

(a) Result visualized in USE(a)         (b) 

1 Census tempPersonWithEmployment { 
2   @Facets(Employee) 
3   Person person4 { 
4    fullName=“string2”; 
5     address=address2; 
6    female=true; 
7     age=28; 
8     @Facet(work,Employee) 
9      salary=24;   
10     @Facet(work, Employee) 
11      name=“string2”; 
12     @Facet(work, Employee) 
13      ssNumber=30; 
14     @Facet(work, Employee) 
15     active=false; 
16 } 
17  Address address2 { 
18     city="string1"; 
19   street="string2"; 
20   } 
21 … 
22 } 

(b) Result visualized in METADEPTH (excerpt)

Fig. 16: Satisfiability analysis.

9.1. Integrating annotation models
Several scenarios require annotating a domain model with additional information,
e.g., regarding concrete syntax [Guerra and de Lara 2007], uncertainty [Famelis and
Chechik 2019], access control [Bergmann et al. 2016], configuration of abstraction
operations [de Lara et al. 2013] or variability [Salay et al. 2014]. This extra information
can be provided as a separate annotation model that references the domain model.
Then, services defined on the annotation model (e.g., reasoning services for uncertainty
annotations [Famelis and Chechik 2019]) become available for the domain model.

Facets can be used for this purpose, which in addition provides dynamicity and a
seamless connection between the annotated and the annotation model (since there is no
need to explicitly navigate from the annotated objects to the annotations to access their
fields). As an example, we show how to use facets to provide a graphical concrete syntax
to domain models. The metamodel in Listing 18 defines simple graphical representations
to be used as facets, like rectangles and circles, as subclasses of Element. These have a
position (x, y, in lines 4–5), background and line colours (lines 6–7), a label (line 8) and
can be connected (line 9).

A facet interface, shown in Listing 19, exposes Rectangle and Circle and makes them
compatible, so that objects can be represented by none, either of them, or both.

Finally, Listing 20 contains the laws for adding ConcreteSyntax facets to Census models.
They add Circle facets to female Person objects, and Rectangle facets to males. In both
cases, the label in the concrete syntax is the person name, persons are linked to their
spouse, and the size (radius or height/weight) is given by the age. Since the laws
have reactive field adapters, changing the age or name of a Person updates the visual
representation, changing the graphical size modifies the age, and changing the label
modifies the name.

As a proof of concept, we have implemented a new METADEPTH command, called
draw, which creates a visualization like the one to the left of Figure 17, from a Con-
creteSyntax model. ConcreteSyntax models are made of facets over objects of another
model, like Springfield. This provides a textual/graphical synchronization for free, as

30



1 Model ConcreteSyntax {
2 enum Color { red, green, blue, black, white, lightgrey }
3 abstract Node Element {
4 x: int;
5 y: int;
6 bckColor: Color = white;
7 lineColor: Color = black;
8 label: String;
9 linkedTo: Element[∗];

10 }
11 Node Rectangle : Element {
12 width: int;
13 height: int;
14 }
15 Node Circle : Element {
16 radius: int;
17 }
18 }

Listing 18: Metamodel for graphical concrete syntax.

1 FacetInterface for ConcreteSyntax {
2 public : all
3 compatible : [Circle, Rectangle]
4 }

Listing 19: Facet interface for graphical concrete syntax.

1 FacetLaws for Census with ConcreteSyntax {
2 must extend <p:Person> where $ p.female $
3 with c:Circle with {
4 label = fullName [equality]
5 linkedTo = spouse [equality]
6 radius = [2∗age] [age = radius/2]
7 }
8 must extend <p:Person> where $ not p.female $
9 with r:Rectangle with {

10 label = fullName [equality]
11 linkedTo = spouse [equality]
12 height = age [equality]
13 width = age [equality]
14 }
15 }

Listing 20: Laws to add graphical concrete syntax to Census models.

for example, the graphical view is updated when a new Person is created textually, the
graphical representation of a Person object changes from a circle to a rectangle (or vice
versa) when the value of its female field changes, and the fields of Person objects are
modified whenever some graphical field (like the radius) changes. Facets provide this
synchronization natively, which otherwise need to be implemented ad hoc.

9.1.1. Comparison with other model extension approaches. Next, we compare several ways
to extend a domain model with an annotation model, based on requirements R1–R4
and the following specific criteria:

— Dynamicity: whether the approach permits adding/deleting annotations to/from
domain objects at runtime, as well as annotating new objects automatically.

— Sharing: whether a domain object can have several annotations, or an annotation
can be shared by several objects.
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Census Springfield {  
  Person marge { 
    fullName = "Marge"; 
    age      = 47; 
    spouse   = homer; 
    address  = simsHouse; 
  } 
  … 
} (scene sliced by Census) 

Synch. 

Fig. 17: Concrete syntax of the Springfield model via facets.

— Field access: whether accessing the fields of an annotation from a domain object (or
vice versa) is done explicitly (e.g., navigating a link) or transparently.

— Typing: if the domain objects can be recovered using the type of the annotations.
— Bi-directional and reactive change propagation: whether the domain objects can get

updated upon annotation changes, and vice versa (i.e., in a bi-directional way, bx in
short). We only consider that this criterion is fulfilled when the support is native.

Dynamicity and bx change simplify the coordination of domain and annotation
models; otherwise, workarounds like re-generation of the annotation model upon domain
model changes may be necessary. Sharing enhances expressivity; otherwise, a domain
object cannot have two annotations, or vice versa. Support for typing and field access
simplifies the definition of transformations over annotated models; if unsupported, a
transformation language able to cope with several input models (the annotated and the
annotating models) is required, and the transformation becomes more complex due to
the explicit navigation from the objects to their annotations and vice versa.

Table II compares facets with other approaches to solve this scenario using both the
specific criteria listed above and the requirements listed in Section 2. Cross-referencing
is the baseline. It consists in having a separate annotation model that refers to the
objects in the domain model, and vice versa, similarly to Figure 2(b). This approach is
not dynamic, as creating annotations automatically for new domain objects is possible,
but requires manual encoding. The approach allows any kind of sharing. However, field
access is not transparent as one needs to navigate from the object to the annotation,
and domain objects cannot be retrieved using the type of the annotations. Finally, there
is no native support for bx change propagation.

Table II: Comparison of approaches for model annotation.
Specific criteria General criteria

Approach Dynamic Sharing Field access Typing Bx change R1 R2 R3 R4
Cross-references (baseline) no yes navigation no no × × X ×
EMF profiles [Langer et al. 2012] limiteda yes navigation no no X × ∼ ×
Decorator models [Kolovos et al. 2010] no limitedb transparent no no X ∼ X ×
A-posteriori [de Lara and Guerra 2017] limitedc limitedd transparent yes limitede X X ∼ ×
Facets yes yes transparent yes reactive adapters X X X X
a No mechanism to automatically attach and drop stereotypes. b Non-resolvable ambiguous access errors may occur when several
annotation objects decorate the same domain object. c Annotation types cannot be assigned to objects manually, but automatically
based on a specification. d Annotations cannot be shared among domain objects (but these may have several annotations).
e Annotation objects cannot have state, but this has to be mapped to attributes of domain objects.

Stereotypes can be used to emulate annotations. This approach would add a profile
(the annotation metamodel) to the domain metamodel. Dynamicity is limited, since
there is no mechanism to automatically attach and drop stereotypes, but they have
to be manually handled. Several stereotypes can be added to the same domain object,
and stereotypes can be shared. Field access is not transparent as the stereotype and
the domain object are different objects. Domain objects cannot be directly retrieved
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from annotation types. Bx change propagation is not supported as the fields in classes
and stereotypes cannot be synchronized natively. While profiles were proposed to
extend the UML metamodel [UML 2017], some proposals have adapted them to EMF
metamodels [Langer et al. 2012]. The underlying mechanism of EMF profiles consists
of models with cross-references, having benefits over the baseline in terms of the
specification of the correspondences and tooling.

Decorator models are proposed in [Kolovos et al. 2010] as a means to decouple a
model from its annotations (e.g., performance annotations on an activity diagram).
Decorations have their own metamodel and are persisted separately, cross-referencing
the domain model. A transparent access to decoration fields from the domain model
objects is possible using Epsilon’s connectivity layer [Paige et al. 2009]. However, the
approach does not allow bx synchronization of decorator and host object fields, multiple
typing, or dynamicity of decorations based on conditions. Decorator sharing is limited
as non-resolvable ambiguous access errors occur if several decorator objects of the same
type decorate the same host object.

A-posteriori typing [de Lara and Guerra 2017] permits typing a domain model with
respect to the types of an annotation metamodel. Dynamicity is limited because the
new typing is automatic based on a specification, but new annotation types cannot be
assigned to objects manually. Sharing is limited too, since annotations cannot be shared
between objects. Field access is transparent, but annotations cannot add new fields to
objects, i.e., all state must reside in the domain model. Domain objects receive the type
of the annotation objects, and so these can be retrieved using that typing. Bx change
propagation is limited as all state must reside in the domain model.

With respect to facets, they are dynamic, can be shared among host objects, and
host objects can have several facets. Field access is transparent, domain objects can be
retrieved by the annotation types, and bx change is supported natively.

Regarding requirements R1–R4, all approaches but cross-referencing are modular
and non-intrusive (R1). Cross-referencing typically implies modifying the domain meta-
model to add navigation links to the annotation metamodel, as otherwise, obtaining the
annotations of a domain object would be inefficient (see footnote 1 in Section 2). Require-
ment R2 asks for the possibility of objects to acquire new types, fields and constraints,
and their transparent access. Using cross-referencing and profiles, accessing fields of
annotations is not transparent but requires explicit navigation. Decorator models make
this access transparent but objects cannot acquire new types (hence the ∼ in the table).
R3 demands both automatic and manual acquisition/loss of types, fields and constraints.
EMF profiles do not provide automatic mechanisms for attaching/dropping stereotypes,
while a-posteriori typing does not support manual acquisition of a-posteriori types. As
for R4, only facets support synchronization between fields natively.

Coming back to our example of graphical/textual syntax synchronization, its imple-
mentation using cross-references would need to provide ad hoc support for bx. Table III
shows the artefacts that need to be created or modified for adding the required bx
support using either cross-references or facets. In the first case, we base on a full
implementation developed within METADEPTH using cross-references and the Epsilon
languages3. First, we had to modify the Census and ConcreteSyntax metamodels to include
a reference to the Element a Person is represented by, and the object that an Element
represents. Another option would be creating a new metamodel pointing to the other
two, as in Figure 2(b), but this would complicate model synchronization. In addition,
we implemented an ETL transformation that creates a graphical model from a Census
model, and has to be manually re-executed when the Census model changes; and an EOL

3Available at http://metadepth.org/mtl/eval.
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program to update the Census model upon changes in the graphical model. Finally, we
modified the draw command to execute the EOL program upon changes in the graphical
model. To synchronize models conformant to other metamodels than Census, we would
need other transformations and some mechanism to identify the one to use in each case.
Overall, the solution based on cross-references required modifying existing artefacts
(metamodels, METADEPTH’s Java code), creating new ones on four technologies (meta-
modelling language, Java, ETL, EOL), and some tasks are still manual (updating the
graphical model). In contrast, in the solution using facets, we just need to write a facet
law, and optionally a facet interface. The latter would be written by the designer of the
ConcreteSyntax metamodel, and not by a developer that wants to add a concrete syntax
to his/her language.

Table III: Artefacts required for implementing the graphical/textual syntax synchronization
example (see Figure 17) using cross-references and facets.

Approach Modified/required artefact Purpose Size
(LOC)

Cross-
references

r Modified census and graphical
metamodels

r Add cross-references 2

r New model-to-model transfor-
mation (ETL)

r Create graphical model from census model, manual
re-execution upon census model changes
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r New program (EOL) r Update census model upon graphical model changes 10r Modified draw command (Java) r Re-execute EOL program if the graphical model changes 8
Facets r New facet law r Automatic consistency of census and graphical models 15r New facet interface (optional) r Guide developers in creating facet law 4

Regarding the other approaches, a-posteriori typing is not fully applicable as it does
not permit mapping facet fields like x or y onto the host object fields. Decorator models
permit transparent field access, but do not allow bx field synchronization or changing
the decorators automatically depending on conditions of the source model (e.g., changing
the female field value). Stereotype-based approaches do not support conditional graphical
styles (e.g., based on the female field). Overall, existing approaches either should be
augmented with manually written code, or do not fully cover this scenario. Hence, we
conclude that facets have advantages to tackle this scenario, and may simplify works
like [Bergmann et al. 2016; Famelis and Chechik 2019; Guerra and de Lara 2007;
de Lara et al. 2013; Salay et al. 2014].

9.2. Reuse of model management operations
Models are manipulated using model management operations, like model transforma-
tions and code generators. Such operations are defined over a metamodel and cannot
be directly reused for a different one [Bruel et al. 2020]. Without proper reuse support,
developers that want to reuse an existing operation typically clone the operation and
adapt it for the new metamodel manually. Next, we show that facets can provide support
for reuse that avoids this potentially costly and error-prone manual adaptation.

As an example, Listing 21 shows a simple metamodel to represent (not necessarily
disjoint) groups of elements having an integer field. The goal of the metamodel is
being able to generically define different metrics. Listing 22 contains an EOL oper-
ation defined over the class Group that computes the average of a group of elements.

1 Model Metrics {
2 Node Group { elems : Element[∗]; }
3 Node Element { quantity : int; }
4 }

Listing 21: Metrics metamodel.

1 operation Group average () : Real {
2 if (elems.isEmpty()) return 0;
3 return elems.collect(quantity).sum()/elems.size();
4 }

Listing 22: Metrics operation.
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We would like to reuse the operations defined over the Metrics metamodel to measure
Census models. With our approach, this can be done by adding Element facets to the set
of Person objects of interest, and mapping Element.quantity to the property to be measured.
Listing 23 shows a facet law specification that creates a group with all adult Persons,
mapping Element.quantity to Person.age. All adult Persons share a Group facet (see reuse in
line 8), and have a different Element facet that belongs to the field elems of the group. By
using [collection] in line 7 (cf. Section 5.2), every time there is a new adult Person, it is
automatically added a new Element facet, which in turn is added to field elems.

1 FacetLaws for People with Metrics {
2 must extend <p:Person> where $ p.age>17 $ with
3 ageMetric: Element with {
4 quantity = age [equality]
5 },
6 averageAge: Group with {
7 elems = ageMetric [collection]
8 } reuse
9 }

Listing 23: Laws to make Census models measurable.

After defining the laws, we can execute the EOL program in Listing 24 over any
Census model to compute the average of all objects with facet Group, without the need to
adapt the original operation in Listing 22. In this case, it returns the average age of all
adults. Moreover, if the age of a Person changes, the corresponding field quantity changes
as well. If a new adult Person is created, the appropriate Group and Element facets are
automatically added/deleted.

1 operation main() {
2 for ( m in Group.allFacets() )
3 (’Average ’+m.average()).println();
4 }

Listing 24: Reusing operation average for Census.

9.2.1. Comparison with other reuse approaches. Next, we compare with other approaches
to reusing model operations and transformations across metamodels. We base the
comparison on R1–R4 and on the following subset of criteria identified in [Bruel et al.
2020]:

— Reuse interface: this is the exposed reuse interface of the reusable operation.
— Checking type: whether it is possible to validate that an operation is being correctly

reused, either enabling static checking (simple type-checking) or semantic checking
(e.g., wellformedness constraints).

— Style: whether the objects over which an operation is to be reused are specified by
extension (i.e., enumerating them) or by intension (i.e., providing selection conditions).

— Multiple occurrences: whether it is possible to define multiple reuse contexts for an
operation within a metamodel.

— Adaptation: whether there are means to bridge the heterogeneities between the
metamodel over which an operation is defined, and the metamodel where it is reused.

Table IV compares several reuse approaches according to the specific criteria listed
above and the requirements of Section 2. We take model adaptation as the baseline. This
consists in translating the models to be manipulated into instances of the metamodel
over which the reused operation is defined. In our example, it means transforming the
Census models into Metrics models. Thus, reuse is achieved by means of a transformation,
and so, any adaptation of the source model is possible by using an intensional style.
However, there is no specific checking of the transformation correctness (thorough
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testing is required). Multiple occurrences are allowed; e.g., to measure the average
age and weight of Persons, these can be transformed into Elements within two different
Groups. However, this solution is heavyweight and complicates management, because
when the Census model changes, we need to re-execute the adaptation transformation
before running the metrics operation. Furthermore, if the reused operation makes
in-place modifications, then another transformation is needed to propagate the changes
backwards.

Table IV: Comparison of approaches for model management operation reuse.
Specific criteria General criteria

Approach Reuse
interface

Checking
type Style Mult.

occur. Adaptation R1 R2 R3 R4
Model adaptation (baseline) MM no intension yes arbitrary X X × ∼
A-posteriori [de Lara and Guerra 2017] MM syntactic extension

intension no arbitrary, bx,
derived feats X X ∼ ×

Concepts [Sánchez Cuadrado et al. 2014] MM syntactic extension no arbitrary,
derived feats/classes X X ∼ X

Model typing [Guy et al. 2012] MM syntactic
semantic extension no renaming,

derived feats X X ∼ X

Facets MM,
interface

syntactic
semantic

extension
intension yes arbitrary, bx X X X X

A-posteriori typing can assign types of the Metrics metamodel to the Census models, so
that the metrics operations can be applied directly on them. Compared to the baseline,
this approach is bx as the operation is executed directly in the Census models, but
considering the assigned Metrics typing.

Concepts [Sánchez Cuadrado et al. 2014] is a reuse approach inspired by generic
programming. Model operations are defined over concepts (simple metamodels), which
need to be bound to a concrete metamodel in order to reuse the operation. This binding
induces a high-order transformation that rewrites the operation to make it applicable
to the metamodel.

Model typing [Guy et al. 2012] requires specifying a subtyping relation between the
metamodel where an operation wants to be reused, and the metamodel for which the
operation is defined. This enables a safe reuse of the operation over instances of the for-
mer metamodel. Differently from the previous approaches, it supports pre/postcondition
semantic checks.

Facets can be seen as an extension of a-posteriori typing with increased control of
the reuse interface by facet interfaces; support for semantic checking expressed as OCL
constraints; more expressive mappings through sharing and reactive field adapters;
and support for multiple occurrences of the reused operation (e.g., to compute metrics
by several criteria). In particular, the latter has been identified as a lacking feature in
current approaches to transformation reuse [Bruel et al. 2020].

Regarding the requirements R1–R4, all approaches are modular and non-intrusive
(R1) and can emulate the acquisition of types, fields and constraints by objects (R2).
Concerning R3, all approaches provide some automated mechanism for the acquisition
of types, fields and constraints (a transformation in model adaptation, a retyping
specification in a-posteriori typing, a binding in concepts, a subtyping specification in
model typing, and laws in facets). However, in model adaptation, the acquired types,
fields and constraints are not updated automatically upon model changes, but the
transformation needs to be re-executed. In contrast, this update is automatic in the
other approaches as they do not rely on a pre-processing of the manipulated model.
Regarding the manual selection of individual objects, it is only supported by facets.
Finally, with respect to R4, model adaptation permits arbitrary relations between the
fields of the original and adapted models, but restoring these relations upon model
changes is not automatic (hence the ∼ in the table). Instead, restoring these relations
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1 Model MedicalRecords {
2 Node Patient {
3 name : String;
4 insurance : boolean;
5 surgeries : Surgery[∗];
6 }
7 Node Surgery { desc: String; }
8 }

Listing 25: Facet metamodel for health.

is automatic in concepts, model typing and facets, while in a-posteriori typing acquired
fields are read-only.

To deal with the example in Listing 24, model adaptation requires transforming the
Census models into Metrics models, and reapplying the transformation whenever the
Census models change. A-posteriori typing and model typing cannot directly deal with
Group objects as the Census metamodel lacks an equivalent class. While concepts can
tackle Group objects by defining a derived class, the approach is currently only applicable
to the ATLAS Transformation Language (ATL) [Jouault et al. 2008].

9.3. Multi-view modelling
Frequently, complex systems are modelled by separate descriptions in different views.
This permits separation of concerns and helps tackling the system complexity [Atkinson
et al. 2015; Bruneliere et al. 2019]. While each view is understandable on its own, to
achieve a meaningful description of the system, views need to be consistent with each
other. Facets, scenes and laws can support multi-view modelling, as we describe next.

Building on the running example, assume we would like to describe a system made of
three types of views: a Census view, an Employment view and a MedicalRecords view. Each
view is specified according to its metamodel, while facet laws describe how they relate
to each other. The metamodels for Census and Employment were presented in Figure 1.
Listing 25 shows an excerpt of the metamodel for MedicalRecords, where Patients may
have an insurance and go through surgeries.

Facet laws can be used to specify how different view types are related and can
overlap. For example, the laws in Listing 14 describe how a Census view is related to the
Employment view, and in particular, they overlap in classes Person and Employee under
certain conditions. In addition, facet laws also permit specifying constraints involving
several views, as Listing 26 shows. These laws specify the relation of the Census and
Employment views with MedicalRecords. The law in lines 2–6 specifies that any Person that
is an Employee (i.e., has a facet Employee) needs to have a medical record (i.e., it must
have a Patient facet). To specify that the object has both types Person and Employee, we
use an intersection type (cf. Section 5.1). The law in lines 7–12 states that Persons who
are not Employees (i.e., Person & !Employee) may have a private insurance. Finally, the
law in lines 13–17 specifies that spouses of Employees have a medical record and get the
insurance of their partner.

Once view types and their relations are defined, views are given by models. Overlap-
ping in view types is realized by objects with facets. Views can be separated in different
models, as Figure 18 shows. The figure depicts three models: Springfield, SpHealth, and
SpCompanies. The first model imports the other two, creating a common name space. It
shows the object homer with facets of types Employee and Patient, where the link surgeries
is due to its facet of type Patient.

9.3.1. Comparison with other multi-view approaches. Next, we compare with some multi-view
modelling approaches (see Table V). There are many proposals to handle multiple views
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1 FacetLaws for Census, Employment with MedicalRecords {
2 must extend <p:Person & Employee> // Persons that are employees get job insurance
3 with healthRecord : Patient with {
4 name = name [equality]
5 jobInsurance : $ self.active implies self.insurance $
6 }
7 may extend <p:Person & !Employee> // Persons that are not employees can get private insurance
8 with healthRecord : Patient with {
9 name = name [equality]

10 insurance = true
11 privateInsurance : $ self.insurance=true $
12 }
13 must extend <p:Person> where $ p.spouse.isDefined() and p.spouse.isKindOf(Employee) $
14 with healthRecord : Patient with { // Spouses of employees get insurance from partners
15 name = name [equality]
16 partnerInsurance: $ self.spouse.insurance implies self.insurance $
17 }
18 }

Listing 26: Laws for adding MedicalRecords facets to Census with Employment models.

plant :Company 

name= “nuclear plant” 

SpCompanies: 
Employment 

 homer :Person  
:Employee :Patient 

Springfield  
:Census :Employment 
:MedicalRecords 

tbp: Surgery 

desc= “triple bypass” 

SpHealth: 
MedicalRecords 

:employees :surgeries 

«import» «import» 

Fig. 18: Models depicting different views of Springfield.

(see [Bruneliere et al. 2019] for a recent survey), so we just revise some representative
ones. We use the features identified in [Atkinson et al. 2015] as specific comparison
criteria:

— View types: in projective approaches, there is a single underlying model (SUM) for the
system from which views are derived using a projection/filtering mechanism. Synthetic
approaches use no SUM, but the system is synthetized by integrating its views.

— View correspondences: views can be related by explicit traces, or their relation may be
implicit.

— Correspondence definition: correspondences between elements of multiple views may
be defined at the instance level (extensional) or at the type level (intensional).

— SUM type: in projective approaches, the SUM may be free of internal redundancies
(essential), or it may be structured as an amalgamation of numerous, inter-related
submodels which may store redundant information (pragmatic).

Table V: Comparison of approaches for multi-view modelling.
Specific criteria General criteria

Approach View types View corr. Corr. definition SUM type R1 R2 R3 R4
Central repository synthetic explicit extensional n/a X × × ×
OpenFlexo [Golra et al. 2016] synthetic explicit extensional n/a∗ × X ∼ X
OSM [Atkinson et al. 2010b] projective implicit intensional essential × X × X
Vitruvius [Kramer et al. 2013] projective implicit intensional pragmatic X X × X
Facets both both both pragmatic X X X X

Our baseline for comparison is the central repository approach, which stores all mod-
els/views of a system in a central location. The views are synthetic, and correspondences
must be explicitly managed at the level of models (extensional).
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OpenFlexo [Golra et al. 2016] is a model federation framework that supports the
gathering of data from base models expressed in heterogeneous technical spaces (EMF,
XML, OWL, Excel, etc.) into virtual views. Correspondences are explicitly managed and
specified at the level of models (extensional). Through views it is possible to propagate
changes from one base model to the others, a feature that can be used to create the
illusion of an essential SUM (hence the ∗ in Table V).

Orthographic Software Modelling (OSM) [Atkinson et al. 2010b] implements the clas-
sic SUM approach, where views are dynamically generated based on transformations
from and to the SUM. Hence, OSM is projective with implicit correspondences that are
typically intensional. The SUM in OSM is minimalistic, hence it is an essential SUM.

In Vitruvius [Kramer et al. 2013], all the system information is accessed through
views. It adheres to the ideas of OSM by providing means to construct and maintain
a modular, virtual SUM consisting of individual models expressed in different mod-
elling languages. Views are projections, and correspondences between elements are
implicitly defined using one of three languages: an imperative language to specify uni-
directional consistency enforcement from one view to another, a language for specifying
bi-directional mappings, and a third language for specifying parameterized consistency
invariants. The specifications are defined between view metamodels, and hence are
implicit and intensional. The virtual SUM is pragmatic, as the views might contain
duplicate information.

While facet-oriented modelling follows primarily a synthetic approach to view defini-
tion, our scenes also permit projecting selected facet information from objects. Facet
laws can specify correspondences implicitly and intensionally (with the construct must
extend), or allow a modeller to define them explicitly (using may extend and then the
command addFacet). While it would be possible to build an essential SUM using facets,
it is more likely that some facets duplicate information stored in other facets, hence we
classify facets as providing a pragmatic SUM.

Regarding the general requirements of Section 2, the central repository approach,
Vitruvius and facets are modular and non-intrusive (R1) as they permit connecting
existing models externally. Instead, OSM and OpenFlexo are intrusive: OSM requires
building a SUM metamodel, and OpenFlexo requires defining a virtual model that relies
on role-based modelling [Drouot et al. 2019]. All approaches but the baseline enable
objects to acquire types, fields and constraints (R2). In the central repository approach,
this needs to be manually implemented. No approach but OpenFlexo and facets allows
objects to change their type dynamically (R3). Instances in OpenFlexo can change their
role on the fly, but this needs to be programmed at the implementation level [Drouot
et al. 2019] (hence the ∼). Finally, all approaches except the baseline support some kind
of bx field synchronization (R4).

9.4. Multi-level modelling
Multi-level modelling [Atkinson and Kühne 2001; González-Pérez and Henderson-
Sellers 2006; de Lara et al. 2014; de Lara and Guerra 2018] enables the use of multiple
metalevels instead of just two (models and metamodels) as is common in MDE practice.
The use of multiple metalevels results in simpler models in scenarios that involve the
type-object pattern or some of its variants [de Lara et al. 2014].

As an example, suppose we need a metamodel that allows the dynamic creation of
product types (e.g., books) which have a value added tax (VAT), and products of those
types which have a price. In addition, product types may define specific attributes (e.g.,
the number of pages), which receive a value in products.

Figure 19(a) shows a solution metamodel using standard modelling. It contains the
classes ProductType and Product, a relation emulating a typing relation between them,
and the classes Attribute and Slot to emulate the definition of attributes in ProductTypes
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and their instantiation in Products. This way, the metamodel contains two instances
of the type-object pattern [Martin et al. 1997]: ProductType/Product and Attribute/Slot. The
latter instance is called dynamic features pattern in [de Lara et al. 2014].

ProductType 

vat: double 

Product 

price: double 

«powertype» 

Book: ProductType 

vat =24 
pages : int 

othello: Book 

pages =264 
price  = 9 

Commerce 
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Shak: Bookstore 

ProductType@2 
vat@1 : double 
price@2 : double 

Book: ProductType 
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pages : int 
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Fig. 19: Dynamic product types: (a) type-object pattern, (b) multi-level modelling, (c) powertypes.

Figure 19(b) shows an alternative multi-level solution. The top level declares the class
ProductType, which is instantiated by Book one level below, which in turn is instantiated
at the bottom level by othello. Since elements (like Book) can be types for the level below,
and instances of the level above, they are called clabjects (by the contraction of the
words class and object) [Atkinson 1997]. To characterize the instances beyond the next
level, elements (models, clabjects, fields) can declare a potency [Atkinson 1997; Atkinson
and Kühne 2001]. This is shown in the figure after the “@” symbol. The potency is a
natural number, or zero, controlling how deep an element can be instantiated. Instances
always have the potency of their type minus one. Elements with potency zero cannot be
instantiated, and in case of attributes, they can receive a value. In the figure, model
Commerce has potency 2, and so it can be instantiated in the two subsequent levels.
Clabject ProductType declares vat with potency 1, so it receives a value at the next level,
and price with potency 2, so it receives a value two levels below. Clabjects may declare
new fields at any level. This is why Book can declare the new field pages. This is called
linguistic extension in [de Lara et al. 2014].

Powertypes are another approach to multi-level modelling [Odell 1994; González-Pérez
and Henderson-Sellers 2006]. A powertype is a type, whose instances are subtypes of
another type. Figure 19(c) shows a solution to the example using powertypes. ProductType
is the powertype of Product because the instances of ProductType (like Book) become
subtypes of Product. This way, powertypes make explicit the dual type/object nature of
elements by combining inheritance and instantiation.

The goal of this case study is to show that metamodelling frameworks enriched with
facets can emulate multi-level modelling within two metalevels following a powertype
approach. Figure 20 shows how to realize multi-level modelling using facets. We exploit
the fact that facets can be added to classes and objects, and hence, we model the instance
nature of elements by using facets, and their type nature by using classes. Moreover,
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the powertype relation becomes a facet law. This states that, whenever an element c
has Product as supertype, a facet of type ProductType must be added to c.

ProductType 

vat: double 

Product 

price: double 

FacetLaws for Commerce extensions { 
  must extend <c:Node> where $ c.hasSuperType(‘Product') $  
    with tax : Commerce.ProductType with { 
       vat = 24 
    } 
} 

Commerce 

Bookstore «imports» 

Book 

pages: int 

:ProductType 

vat=24 
tax 

Shak : Bookstore 

othello: Book 

pages=264 
price  = 9 

«conforms» 

Fig. 20: Support for multi-level modelling using facets.

This example illustrates the use of facets at the metamodel level. In this case, the
defined laws apply to extensions of the Commerce model (i.e., to models that import the
Commerce model). Instead, when facets are used at the model level, the facet laws apply
to instances of a certain metamodel (e.g., to instances of Census, as in Listing 26).

1 Model Commerce {
2 Node ProductType { vat : double; }
3 Node Product { price : double; }
4 }
5
6
7 Model Bookstore imports Commerce {
8 Node Book : Product {
9 pages : int;

10 vat = 24;
11 }
12 }
13
14
15 Bookstore Shack {
16 Book othello {
17 price = 9;
18 pages = 130;
19 }
20 }

Listing 27: Facet-based multi-level model.

1 Model Commerce@2 {
2 Node ProductType@2 {
3 vat@1: double;
4 price@2 : double;
5 }
6 }
7
8 Commerce Bookstore {
9 ProductType Book {

10 pages : int;
11 vat = 24;
12 }
13 }
14
15 Bookstore Shack {
16 Book othello {
17 price = 9;
18 pages = 130;
19 }
20 }

Listing 28: Potency-based multi-level model.

For comparison, Listings 27 and 28 show the facet-based and potency-based solutions
to the example encoded in METADEPTH. Both solutions are similar, but with facets, the
Commerce metamodel needs two classes to hold the attributes of ProductType and Product,
while in the potency version, ProductType defines all attributes with a different potency.
Model Bookstore is very similar in both solutions, but the facet version uses inheritance
(written Book : Product, denoting that Book inherits from Product) instead of instantiation
(written ProductType Book, denoting that Book is an instance of ProductType). The facet
law adds a facet of type ProductType to Book, and so the assignment vat=24 in line 10 of
Listing 27 is valid. Finally, model Shak is the same in both solutions.

Regarding field access, in the potency-based multi-level model, the expression oth-
ello.vat is valid because a lookup mechanism fetches fields first in the object, and if not
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found, it traverses the type hierarchy, returning Book.vat in this case. Facets have a
similar mechanism: if the facets of an object lack a field, this is fetched in the facets
of the type. Finally, note that the use of facets is not restricted to models with three
metalevels, but the powertype pattern can be iterated to consider arbitrary metalevels.

9.4.1. Comparison with multi-level modelling approaches. Table VI compares some multi-level
modelling approaches – including the native potency-based support of METADEPTH –
using the general requirements of Section 2 and specific criteria related to the handling
of the classification relation [Atkinson and Kühne 2017; Jácome-Guerrero and de Lara
2020]:

— Metalevels: whether the approach supports splitting a model into an arbitrary number
of metalevels or if such a number is fixed (e.g., 1 in case of EMF).

— Potency: if the approach supports potency as deep characterization mechanism [Atkin-
son 1997; Atkinson and Kühne 2001].

— Multi-typing: whether objects can have multiple types (including no type), or exactly
one type is required.

— Dynamic typing: if the types of objects can change dynamically.

All approaches can use an arbitrary number of metalevels, but while the first three
are potency-based, ML2 [Fonseca et al. 2018] and facets are based on powertypes.
Altogether, facets can emulate approaches for multi-level modelling like powertypes.
However, the facet-based mechanism is more powerful than both potency and power-
types in two aspects: facets can be added and deleted dynamically, and elements can
have several facets. This means that the type of an element can change dynamically
depending on conditions established in facet laws, and that an element can have several
types. In contrast, inheritance and typing are static in standard potency-based multi-
level modelling and powertypes, and objects have at most one type. As an exception,
MultEcore supports supplementary typing dimensions that cannot change dynamically.

Table VI: Comparison of approaches for multi-level modelling.
Specific criteria General criteria

Approach Metalevels Potency Multi-typing Dynamic typing R1 R2 R3 R4
METADEPTH (without facets) arbitrary yes no no X X ∼ ×
Melanee [Atkinson and Gerbig 2016] arbitrary yes no no X × × ×
MultEcore [Macías et al. 2018] arbitrary yes yes no X X × ×
ML2 [Fonseca et al. 2018] arbitrary no yes no X X × ×
Facets arbitrary no yes yes X X X X

Regarding the general requirements, all approaches to multi-level modelling are mod-
ular (R1). Acquiring new types, fields and constraints (R2) is possible in METADEPTH
as it supports a-posteriori typing; in MultEcore by means of supplementary typing
dimensions; and in ML2 where it can be emulated with inheritance. Only facets and par-
tially METADEPTH support dynamicity (R3). Finally, the maintenance of field relations
is only available in facets (R4).

9.5. Language product lines
This section demonstrates the use of facets to define language families, based on the
notion of product line (PL). A PL is a set of related software artefacts, each implementing
some variation [Northrop and Clements 2002]. The variability space is often defined
through a feature model [Kang et al. 1990] which specifies the available features and
their allowed combinations. Then, different techniques permit deriving an artefact out
of the chosen feature configuration.
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PLs have been used in MDE to describe variants of modelling languages [White et al.
2009; Méndez-Acuña et al. 2016; Guerra et al. 2020], model variants [Czarnecki and
Pietroszek 2006] and transformation variants [de Lara et al. 2018a]. Here, we focus on
PLs of modelling languages (more specifically, PLs of metamodels) whose configuration
can change at run-time and trigger a model reconfiguration. Such dynamic PLs are
useful to realize models at run-time for adaptive applications [Blair et al. 2009], where a
model of the running (adaptive) system is used at run-time with the purpose of analysis,
reasoning or monitoring.

To illustrate the use of facets to realize this scenario, we are defining a simple PL of a
component-based language where components have input and output ports, and the
latter ports can be connected to the former. Listing 29 shows the base metamodel for
this language PL.

1 Model Components {
2 abstract Node NamedElement {
3 name : String;
4 }
5
6 Node Component : NamedElement {
7 ports : Port[1..∗];
8 }
9

10 abstract Node Port : NamedElement ;
11
12 Node InputPort : Port;
13
14 Node OutputPort : Port {
15 target : InputPort[1..∗];
16 }
17 }

Listing 29: Components metamodel.

1 Model ComponentFeatures { // feature model
2 Node FeaturedElement {
3 security : boolean = false;
4 monitoring : boolean = true;
5 }
6 }
7
8 Model ComponentFacets { // facet metamodel
9 Node Cipher {

10 blockSize : int;
11 key : String;
12 nRounds : int;
13 }
14 Node Monitor {
15 activeRate : double = 0.0;
16 powerConsumption : double = 0.0;
17 }
18 }

Listing 30: Feature model and facets for the variants.

There are many variants of component-based languages [Malavolta et al. 2010]. For
simplicity, we just consider two features in the PL, security and monitoring, which can
be combined to yield four language configurations. Lines 1–6 of Listing 30 define the
features in a class named FeaturedElement. If needed, the class can include constraints
to forbid incompatible feature combinations. Next, lines 8–18 of Listing 30 declare a
metamodel with the facets that will be compositionally added to component models
upon the selection of features. Choosing the feature security implies providing the ports
with parameters needed to cipher the messages (we assume the RC5 algorithm, which
requires defining a block size, a key size and a number of rounds [Rivest 1994]). Choosing
monitoring adds a (shared) monitor to the system to calculate run-time statistics. Our
approach is compositional and uses positive variability: when a configuration is selected,
facets of types Cipher and Monitor can get woven into component models.

We use the facet law specification in Listing 31 to automate the management of facets.
Its first law (lines 1–6) creates a facet of type FeaturedElement (defined in Listing 30)
to hold the selected feature configuration. This facet is shared by all elements of the
component model. The second law (lines 8–20) adds a Cipher facet to Ports when the
feature security is selected, and a Monitor shared facet to Components when the feature
monitoring is selected. While the law conditions check for the value of a feature, any
arbitrary logic formula can be required.

The adaptations occur at the model level, and the metamodels for the components and
the facets are never explicitly woven together, remaining modular. This PL is dynamic
because, when the feature configuration of a model is changed by setting the fields
security or monitoring to a different value, appropriate facets are added to or removed
from all model objects accordingly.
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1 FacetLaws for Components with ComponentFeatures {
2 must extend <n:NamedElement> with cfg: FeaturedElement with {
3 security = false
4 monitoring = true
5 } reuse
6 }
7
8 FacetLaws for Components, ComponentFeatures with ComponentFacets {
9 must extend <p:Port & FeaturedElement> where $ p.security $

10 with c : Cipher with {
11 blockSize = 32
12 key = "915F4619BE41B2516355A50110A9CE91"
13 nRounds = 12
14 }
15 must extend <c:Component & FeaturedElement> where $ c.monitoring $
16 with m: Monitor with {
17 activeRate = 0
18 powerConsumption = 0
19 } reuse
20 }

Listing 31: Facet law specification for component PLs.

9.5.1. Comparison with other model-based and language PL approaches. Table VII compares
several approaches to define language variability, focusing on the general requirements
R1–R4 and the following specific aspects:

— Level at which the adaptation occurs. This may be at the meta level, to obtain variants
of a language description; or at the model level, to obtain variants of a model without
changing the language description.

— Variability refers to the mechanism to express the adaptation. It is negative if the ini-
tial artefact contains all variants and the unselected ones are removed; positive if the
variants are separate and the selected ones are woven together; and transformational
if it supports defining creation and deletion operations over a base artefact.

— Adaptation of the artefact can be either explicit (e.g., through weaving) or implicit.
— Dynamicity indicates whether run-time reconfigurations of a selected variant are

supported (where the working models are adapted to the new language features), in
addition to adaptations at design time (where models are not adapted).

Table VII: Some model-based and language PL approaches.
Specific criteria General criteria

Approach Level Variability Adaptation Dyn. R1 R2 R3 R4
Model templates
[Czarnecki and Pietroszek 2006] meta, model negative explicit (PCs) no × X × ×
DeltaEcore [Seidl et al. 2014] meta, model transformational explicit (DSL) no X X × ×
VML∗ [Zschaler et al. 2009] meta, model transformational explicit (DSL) no X X × ×
SmartAdapters [Perrouin et al. 2012] meta, model negative explicit (aspects) no × X × ×
Metamodel PLs [Guerra et al. 2020] meta negative explicit (PCs) no × X × ×
Featured model types [Perrouin et al. 2016] meta negative explicit (PCs) no × X × ×
Facets meta, model positive implicit (meta)

explicit (model) yes X X X X

Model templates [Czarnecki and Pietroszek 2006] can be applied to metamodels or
models, but adaptations do not affect lower levels, so the existing instances are not
co-evolved. The variability space is specified through a feature model. This variability
is negative: there is a so-called 150% model where all variants are superimposed, and
its elements can define boolean formulae over the features, called presence conditions
(PCs). When a feature configuration is selected, the elements whose PC evaluates to
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false are deleted from the 150% model to obtain a variant. The approach is not dynamic,
since model variants cannot be reconfigured once generated.

DeltaEcore [Seidl et al. 2014] is an approach to generate delta languages for spe-
cific metamodels. A delta language permits specifying transformations to be executed
over models when a feature configuration is selected. The approach is similar to
VML∗ [Zschaler et al. 2009]. None of them are dynamic.

The SmartAdapters [Perrouin et al. 2012] approach weaves metaclasses into the
domain metamodel to obtain variability on its instances. As in the previous cases, by
weaving the variability elements at the meta-metamodel, it is possible to obtain a
metamodelling language with possibilities to define variability.

Metamodel PLs [Guerra et al. 2020] and feature model types [Perrouin et al. 2016]
target the definition of PLs of metamodels. In both cases, the variability is negative, and
the elements of the metamodel that contains all possible variants can define PCs. None
of them consider the adaptation of existing models when the metamodel is reconfigured,
and choosing a new configuration requires re-generating the metamodel variant.

In contrast to the previous approaches, when using facets to model language vari-
ability, the language definition does not change (i.e., the creation and facet metamodels
are not woven together) but the models do change (through the acquisition and loss
of facets). This approach is dynamic because whenever a new configuration is cho-
sen, the model is reconfigured. These characteristics make facets a suitable basis for
model-based dynamic PLs [Capilla et al. 2014; Cetina et al. 2009].

Regarding the general requirements, all approaches based on negative variability are
intrusive (R1) as they require either adding PCs to existing (meta)models (metamodel
PLs, featured model types) or weaving variability primitives on the metamodels (Smar-
tAdapters). Transformational approaches are non-intrusive since products are derived
using external languages. All approaches permit objects to take new types, fields and
constraints (R2), but only facets provide dynamicity (R3). While all approaches permit
assigning values to object fields, only facets support the maintenance of field relations
(R4).

9.6. Discussion
To conclude, we reflect on the benefits and limitation of facets based on the case studies.

9.6.1. Benefits of facet-oriented modelling, and answer to the research question. So far, we
have explored the use of facets on a running example and five scenarios. Table VIII
summarizes the benefits that using facets brings to them.

Table VIII: Benefits of facets in relation to the case studies.

Case study Facilitated activity Benefits
Information integration
(running example)

Model/metamodel extension Extended (meta)models do not change, seamless access to
extensions, dynamicity, field synchronization

Annotation models Model extension Declarative specification of annotations, seamless access to
annotations, dynamicity, annotation-field synchronization

Transformation reuse Model adaptation Adaptation is virtual (does not create a separate adapted
model), in-place, bx

Multi-view modelling Viewpoint/view definition
View consistency management

Declarative specification of consistency relations between
types and fields

Multi-level modelling Add instance features to types Multiple typing, dynamic typing, dynamic acquisition/loss
of instance features

Language product lines Define language variants Dynamic selection of variants, automatic model adaptation

In the running example, an existing Census model is enriched with Employment infor-
mation. This entails both metamodel extension (facet metamodels “virtually” extend
the creation metamodel) and model extension (facets are acquired and dropped by host
objects). Our solution based on facets does not require modifying existing metamodels

45



or creating new ones, the facet types and fields can be seamlessly accessed from the
host objects, model extension is dynamic, and fields can be synchronized via adapters.

The case study on annotation models (Section 9.1) deals with the extension of mod-
els with additional data. When using facets, these data can be added and removed
dynamically to the model objects based on declarative conditions. Moreover, the access
to annotations is transparent, and there is the option to synchronize annotations and
host object fields via adapters.

For transformation reuse (Section 9.2), facets allow adapting models “virtually” so
that they can be seen as instances of the metamodel the transformation works on. The
advantage is that this adaptation is in-place and bx, i.e., there is no need to build a
separate adapted model and then translate changes in the adapted model back to the
original one. As we will see in Section 9.6.2, this improves the performance.

Multi-view modelling (Section 9.3) involves the definition of viewpoints, views and
consistency relations. Facet-oriented modelling can be seen as an alternative to other
existing approaches, by which facet metamodels define viewpoints, scenes produce
views, and facet laws stablish consistency relations via constraints and reactive field
adapters that maintain field values synchronized.

In multi-level modelling (Section 9.4), clabjects are both types and instances. Facets
enable multi-level modelling within two-level architectures, as classes can be added
facets with slots, so that they effectively become clabjects. Moreover, clabjects can have
several facets (multiple typing) dynamically added and removed (dynamic typing).

As for language product lines (Section 9.5), they require defining and selecting
variants of a language. The advantage of using facets for this purpose is being able to
select the variants dynamically, so that the models are automatically adapted without
having to explicitly weave metamodel variants or slice a base metamodel.

Altogether, we have compared facets against 25 approaches to solve 6 different
scenarios. Most of the approaches have been built to solve a specific scenario, like
transformation reuse. A few approaches, like a-posteriori typing, can be applied to
several scenarios (information integration, model annotation, transformation reuse), but
cannot solve them all (multi-view modelling, multi-level modelling, language product
lines). In contrast, a facet-based approach is able to handle all of them without requiring
ad-hoc extensions. This shows that adding a dynamic object adaptation mechanism atop
modelling frameworks avoids the need to construct dedicated tools to support these
diverse scenarios. Hence, we can answer positively the research question formulated in
the introduction (can a dynamic mechanism for object adaptation be used to solve MDE
scenarios that are currently tackled using dedicated, ad-hoc tooling?).

9.6.2. Quantitative evaluation. Next, we analyse whether a facet-based solution to a given
scenario can be as performant as other techniques. Even though our current imple-
mentation is not optimized for performance, this evaluation gives a rough estimation
and can serve as a reference for tool builders wanting to port facets to other modelling
frameworks, like EMF. Our goal is not to be exhaustive, but rather to identify possible
performance issues.

First, we compare the cost of model adaptation either by adding facets to the model
or by creating a separate adapted model (Section 9.2). For this purpose, we adapted
models of increasing size (from 10 to 20000 objects) using two approaches: applying
the facet law of Listing 23, and creating an adapted model via an ETL transformation
executed within METADEPTH. The models contained 40% objects matching the facet
law/transformation. We used a Windows 7 computer with an intel i7-2600 CPU and
12GB of RAM, and run each experiment 7 times, taking the median. The results,
displayed in Figure 21, show that both techniques perform similarly for small models,
while for big models, the overhead of creating a new model is higher than using facets.
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Fig. 21: Execution time for facet laws vs. an ETL transformation, both running on METADEPTH.

The access to facet fields relies on delegation (see Figure 15). This incurs a higher
cost than accessing a field owned by the host object. We have quantified this penalty
by monitoring an EOL program that accesses 1000 times a facet field on a host object,
and an object field. We repeated this experiment 70 times, taking the median. Overall,
accessing an object field required 0,028 ms, and the time to access a facet field was 0,04
ms (an increase of 0,012 ms). This time increases when the delegation chain has several
navigation steps (i.e., facets with facets). While this penalty time may be acceptable,
it can be reduced by caching the facet fields in the host object. However, this would
increase the facet creation time.
Threats to validity. We have used just one facet law to measure the times in Figure 21,
so other law specifications may yield different results. However, the law characterizes
typical facet behaviours (creating a facet, reusing a facet).

9.6.3. Limitations of facet-oriented modelling. As we have seen in the previous section,
accessing facet fields from a host object incurs in a penalty time, although this overhead
can be reduced by caching the facet fields in the object. Moreover, given a program, it
is difficult to statically type check that any defined access to facet types and fields is
legal, as these are acquired dynamically. Instead, dynamic type checking (e.g., in the
style of [Millan et al. 2017] for OCL) is required. This is consistent with the dynamic
nature of prominent model management languages, like ATL [Jouault et al. 2008] and
the Epsilon languages [Paige et al. 2009].

Regarding the analysis methods presented in Section 7, they are semi-decidable as
they perform a bounded search and hence may miss solutions that fall outside these
bounds. However, these analyses rely on the “small scope hypothesis” assumption [Jack-
son and Damon 1996; Andoni et al. 2003] which argues that most solutions can be found
within some small scope. Another limitation of the analysis of reactive adapters is that
it currently works just for fields whose value may change when traversing twice a cycle
of dependencies. This captures some problems like non-converging field values or fields
which take alternating values. However, networks of transformations may have other
problems [Klare et al. 2019]. We leave to future work the improvement of our analyses
with more sophisticated techniques.

Regarding practicality, we would like to investigate how software engineers react to
facet-oriented modelling by conducting a user study. Our plans also include testing our
approach on larger case studies, and analysing its application to other MDE artefacts
like code generators.
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10. RELATED WORK
In this section, we discuss additional related works to compare facets with the notion
of role in conceptual modelling (Section 10.1); with prototype, delegation-based and
reactive languages (Section 10.2); and with specific MDE techniques (Section 10.3).

10.1. Roles
Facets are similar to roles and fulfil most features of role languages [Kühn et al. 2015;
Steimann 2000; Kühn et al. 2014; Jodlowski et al. 2003; 2004]. Table IX summarizes
these features. Features #1–#14 were identified by Steimann [Steimann 2000], and
#15–#18 have been added by us to illustrate the differences between roles and facets.

Table IX: Comparison of some modelling approaches supporting roles. The symbol ’∼’ means that
either the feature is not native but reasonably possible, or it is partially supported. N.A. means
not applicable.

# Feature Facets Lodwick CROM ORM 2 Entity
Types

Roles on
VODAK

1 Roles have properties and behaviours y y y n y y
2 Roles depend on relationships y y y y y y
3 Objects may play different roles simultaneously y y y y y y
4 Objects may play the same role several times y y y y n y
5 Objects may acquire and abandon roles dynamically y y N.A. y y y
6 The sequence of role acquisition/drop may be restricted y ∼ y ∼ y y
7 Unrelated objects can play the same role y y y n n n
8 Roles can play roles y n n n y y
9 Roles can be transferred between objects ∼ ∼ N.A. ∼ ∼ ∼
10 The state/features of an object can be role-specific y ∼ y n n y
11 Roles restrict access y N.A. N.A. ∼ y y
12 Different roles may share structure and behaviour y ∼ n n y y
13 An object and its roles share identity y y y y n n
14 An object and its roles have different identities y n y n y y
15 Facets/roles bring types to objects (R2) y y n n n n
16 Facets/roles can be applied at any metalevel y n n n n n
17 Facets/roles are modular and non-intrusive (R1) y n n n n n
18 Automated maintenance of relations between owned

and acquired fields (R4)
y n n n n n

While most features are typical of all role approaches, some are more specific.
Steimann [Steimann 2000] describes them as follows. Roles have properties and can be
assigned behaviours (#1). Roles are relevant in the context of a relation with an object
(#2). Objects may play different roles at the same time (#3) and the same role multiple
times (#4), e.g., a Person with several employments. Roles are dynamic, so that objects
may acquire and drop roles during their life-cycle (#5). Developers may need to specify
valid sequences of role acquisition/drop (#6). Objects of unrelated types can play the
same role (#7). Roles can play roles (#8), e.g., an employee – the role of a Person – can
play the role of a project manager. In some approaches, a role dropped by an object can
be acquired by another (#9). The state and features of an object can be role-specific
(#10), which means that the object acquires the properties of the role. When an object is
accessed using the role, some of its features remain invisible (#11). For example, from
an Employee role of Person, one cannot access the Person age. Roles can be defined using
inheritance-like mechanisms (#12). Roles can be part of an object and share identity
(#13), or alternatively, an object and its roles have different identity (#14).

Features #15, #17 and #18 come from requirements R1–R4 in Section 2, and feature
#16 shows a difference between facets and some role approaches. Feature #15 (part
of R2) states that facets bring types to their host objects, which entails multiple
classification. While according to feature #3, objects can play several roles at a time,
some approaches like EntityTypes [Cabot and Raventós 2006] do not support multiple
classification. R2 also requires facets/roles to bring properties and behaviour to objects,
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but this is covered by feature #1. Facets can be applied at any metalevel (#16), but in
contrast, most role approaches have been devised for the model level. We can use the
creation and facet metamodels in a modular, non-intrusive way (#17, R1) as facet laws
can specify relations without modifying these metamodels. Instead, as roles depend on
relationships (#2), some role approaches need to modify the metamodels to add those
relationships. Finally, feature #18 (R4) is the ability to establish and automatically
maintain relations between fields of facets and objects.

In the following, we focus on the most representative role-based modelling ap-
proaches (see [Cabot and Raventós 2006] for a comparison with further works). Lod-
wick [Steimann 2000] is a theoretical proposal that unifies features of several role-based
languages. The theory is based on declaring inheritance hierarchies for natural and role
types defined as distinct relations, and on an explicit role-filler relation indicating which
natural types can play which role type. Being a theory, it does not have a practical imple-
mentation, and does not consider model management operations as we do. One salient
feature of Lodwick is that roles are not instantiated, but their properties are taken
by the instances of the natural types, hence roles and objects share identity (features
#13 and #14). Regarding features #15–#18, roles bring their type to the object. They
are defined at the class-level and instantiated one level below, hence they cannot be
applied at arbitrary metalevels. Lodwick’s formalization distinguishes between natural
and role types and requires explicit relations, so existing metamodels cannot be used
modularly. Finally, there is no equivalent to our field adapters.

ORM 2 [Halpin 2005] is a well-established modelling language, but it sees roles as
relationship ends, similarly to languages such as UML or MOF. It does not fulfil any of
the specific features of facets (#15–#18).

Dahchour et al. propose a role model, and a metaclass-based implementation on
top of the VODAK modelling language [Dahchour et al. 2004]. The approach is based
on establishing a special role relationship between object and role classes. As this
relation is binary, a role class is related to exactly one object class (feature #7). Role
classes are instantiated to become part of objects, which then can access their properties
through delegation. Role acquisition and loss can be controlled by specifying meaningful
role combinations and transition predicates. Being based on single classification, roles
cannot bring their types to the objects (#15), roles cannot be applied at the class-level
(#16), role definitions cannot be used modularly since declaring explicit relationships is
required (#17), and there is support for field adapters (#18).

Cabot et al. define several conceptual modelling patterns to emulate roles [Cabot and
Raventós 2006], like using names in plain associations, subtypes, interfaces and associ-
ation classes. They present a solution called EntityTypes based on stereotypes, by which
associations can be stereotyped as «roleOf» and declare the properties the role adopts
from the class. In addition, stereotyped operations can establish the conditions for role
acquisition and drop. The authors do not provide automated support, but describe how
to implement the patterns in Java. Regarding features #15–#18, since Java does not
support multiple classification, roles do not bring types to objects. Moreover, objects
cannot access the role properties transparently, roles are not metalevel independent,
they cannot be used modularly but require declaring explicit metamodel relations and
operations, and there is no mechanism to synchronise fields.

CROM [Kühn et al. 2015; Kühn et al. 2014; Kühn et al. 2016] is a more recent proposal
to cover most features of role modelling languages. It provides a graphical editor for role
types [Kühn et al. 2016], but the support for role instances is still incipient. While it is
a rich language with sophisticated concepts (compartment types, constraint groups), it
lacks some essential elements for its use in MDE, like inheritance, explicit attribute
handling, OCL constraints, or integration with model management languages as facets
provide. Regarding features #15–#18, roles do not bring types to the object, cannot
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be applied at any metalevel, cannot be used modularly (since explicit role types and
relations need to be defined), and no synchronization of fields is possible.

Regarding facets, the main limitation is the lack of native support for transferring
facets between objects, but this would be easy to add. While features #13 and #14
are normally consequences of different design decisions, we support idioms to model
both. On the one hand, facets can be seen as parts of host objects and therefore share
identity with them. On the other hand, granulated scenes promote facets to objects,
hence providing distinct identities.

10.2. Prototype, delegation-based and reactive programming languages
Some programming languages support incremental class definitions, like open classes
(e.g., Ruby) and partial classes (e.g., C#). In our case, facets can work both at the class
and object levels. Several programming languages have experimented with roles. For
example, in [Pradel and Odersky 2008], roles are emulated in Scala using a lightweight
mechanism based on compound objects with dynamic proxies, which avoids changing
the language. This increases flexibility by enabling objects to change their type. Regard-
ing facet acquisition, our laws permit specifying declarative conditions for acquiring
facets, while programming languages use imperative commands (which we also support
with addFacet/removeFacet). Moreover, we handle constraints, field relations, and can
configure the usage of facet metamodels by means of interfaces.

Objects in dynamic programming languages are open: it is possible to add and remove
fields at run-time. The advantages are reduced code size and increased reuse and
flexibility [Cox et al. 2014] at the cost of less static assumptions and difficulty of
analysis. Some modelling systems, like METADEPTH, permit adding fields to objects at
design time [de Lara and Guerra 2010]. Instead of dealing with single fields, facets are
regular objects that encapsulate fields, constraints and typing. Moreover, as facets are
defined by a metamodel, defining operations over them is simple.

Prototype and delegation-based programming languages share similarities with
facets [Lieberman 1986; Dony et al. 1992]. Different from class-based languages, objects
are created “ex-nihilo” (from scratch) by cloning a prototypical instance or by extending
an existing object. The languages often rely on delegation, so that if an object does not
understand a method, it delegates the method call to its parent. Examples of delegation-
based languages are SELF [Ungar and Smith 1987] and JavaScript. Facets can also be
seen as a prototype-based mechanism with implicit delegation. However, facets have
characteristics not found in this kind of languages, such as the ability to provide a type
(leading to multiple classification), create facets based on classes, define conditions for
facet acquisition, and automate field synchronization.

Some approaches combine classes and prototypes. For example, in [Bettini et al.
2011], incomplete classes can be instantiated to yield incomplete objects. These can be
composed with complete objects to yield new complete objects at run-time. Method body
lookup uses similar mechanisms to delegation. Object specialization [Sciore 1989] allows
creating both class and object inheritance hierarchies. Hierarchies at the object level can
be dynamically changed, and objects can have multiple parents. This approach is similar
to ours, but we also propose facet laws, interfaces, and field adapters. Furthermore,
facets can be applied to any metalevel, and can emulate clabjects (cf. Section 9.4).

Regarding reactive languages [Bainomugisha et al. 2013], they have primitives to
express computations as reactions to external events. Examples of reactive systems
include user interfaces (which react to user inputs) and embedded systems (which
react to hardware signals) [Salvaneschi et al. 2015]. A prototypical example of reactive
language is the spreadsheet (where cells are updated upon changes in other cells)
but many libraries and languages have reactive capabilities [Bainomugisha et al.
2013; Salvaneschi et al. 2014; Elliott and Hudak 1997]. Different from event-based
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languages, reactive languages support the declarative specification of reactive values,
their composition, and automatic update [Salvaneschi et al. 2014]. Reactive languages
may follow a push or a pull model of reaction [Bainomugisha et al. 2013]. The former is
eager (reactions occur as soon as possible) and the latter is lazy (there may be latency
between event and reaction). Some reactive languages support multidirectionality, so
given an expression like F = C ∗2+7, whenever C or F change, the other one is updated.
Reactive languages may require lifting operators (like + or *) or functions to operate
on continuous time-varying values. Facets also support the definition of reactive field
adapters to specify field value recomputations in reaction to changes. We implement
a push model, as field changes immediately trigger the evaluation of the appropriate
field adapters. The syntax of our adapters is not multidirectional, but there must be
an adapter for each variable that needs recomputation (e.g., we would need to specify
F = C ∗ 2 + 7 and C = (F − 7)/2 in the previous example). Finally, lifting an expression
to a reactive one is done by enclosing the expression between “[” and “]”.

10.3. MDE techniques
Next, we compare facets with works specifically devised for MDE. We revise techniques
for metamodel integration or extension, approaches on model extension or merging, and
related works on (bx) model transformation languages and analysis techniques.

10.3.1. Metamodel-level techniques. Several researchers have proposed techniques to
extend metamodels and sometimes co-evolve their instances.

In [Burmester et al. 2004], the authors propose patterns for metamodel extension and
metamodel integration that facilitate (modelling) tool interoperability. The patterns
exploit the possibility to extend a base metamodel via inheritance. The approach is
implemented in Fujaba, which has a core metamodel that needs to be extended to create
domain-specific metamodels. The approach is static (extensions cannot be added and
dropped dynamically), object field access is not transparent (one needs to navigate bx
associations), and multiple types are not allowed.

The lightweight metamodel extension mechanism proposed in [Brunelière et al.
2015a] targets metamodel evolution. It provides a list of metamodel extension operators
(addition, update, filtering) and a DSL for specifying the extensions. The extensions keep
existing models compatible and avoid migrations, since models are extended virtually.
The approach requires the definition of a new concept – the metamodel extension – and
does not allow objects with several types or dynamic types (extensions are not based on
conditions). While facets can be shared by several host objects, and a host object can
have several facets of the same type, this is not possible with this approach.

EMF-facet [Madiot and Dupe 2018; Pepin et al. 2018] is an Eclipse project to extend
metamodels externally. Extensions are defined for individual classes using so-called
EFacets that can add read-only derived fields, and optionally, a subtype to a class. The
goal is producing customized tabular views of models. Instead of introducing new
concepts (the EFacet), our facets are created using regular metamodels. Facets can be
acquired or dropped both manually or automatically via facet laws, and provide a type,
full-fledged fields and constraints to the host objects. Facets are objects and can be
shared, which is not possible with EFacets. Finally, our facets are transparent to the
model management languages, while this is not the case for EMF-facet, which persists
extended models using a specific tabular metamodel.

As discussed in Section 9.1, EMF profiles [Langer et al. 2012] adapt the notion of
stereotype to metamodels. This permits applying profiles to metamodels and extending
models using the profile information. However, their working scheme is based on models
with cross-references, with no support for transparent field access, dynamicity or field
synchronization (cf. Table II).
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Wende et al. take inspiration from roles to enable modular language definition [Wende
et al. 2010], including the abstract syntax, concrete syntax and semantics. This way,
metamodels defining the abstract syntax can declare role classes as placeholders to
enable composition with other metamodel classes. Such role classes may declare op-
erations that the bound metamodel classes need to implement. Hence, roles act like
interfaces which are bound to classes and then statically woven.

10.3.2. Model-level techniques. A second set of approaches work with standard metamod-
els, and propose techniques to define extensions or views of models.

Barbero et al. [Barbero et al. 2007] propose the relation “extensionOf” between
models, so that the extension model cross-references the base model. The extension
model conforms to a metamodel that extends the base one, and a composition operator
merges them. In a similar vein, decorator models [Kolovos et al. 2010] decouple a model
from its annotations, which are persisted separately, and a delegation mechanism
provides transparent access to the decoration fields (cf. Section 9.1). Both approaches
are static (extensions/decorators at the model level cannot be obtained or dropped
dynamically) and do not support multiple types or automatic field synchronization.

Model merging languages, like EML [Kolovos et al. 2006b], permit comparing two
models of the same or different metamodels, and produce a new model. While model
merging has similarities with facet-based modelling, the crucial point is that a facet
and its hosts can be instances of different metamodels, and the hosts acquire the facet
fields. This is not possible in standard model merging, as the extended object would not
conform to the metamodel. Moreover, facets are dynamic.

EMF views [Brunelière et al. 2015b] offers a dedicated language and tool for defin-
ing views on potentially heterogeneous models. The approach adapts the concept of
database views to models. View models behave as any regular model, but views are not
materialized. A DSL similar to SQL enables defining viewpoints and generating views.
Compared to our approach, EMF views are static and do not support multiple types or
automatic field synchronization via adapters.

10.3.3. Model transformation and analysis. The MDE community has proposed a plethora
of approaches, languages and tools to manipulate models [Kahani et al. 2019; Hidaka
et al. 2016; Czarnecki and Helsen 2006]. Our language to manipulate facets can be
considered a domain-specific transformation language [Sánchez Cuadrado et al. 2014].
The addFacet and removeFacet commands are rule-based, with selection patterns
based on object identifiers, OCL queries, or tuples. Laws are a higher level specification
mechanism, enforced via addFacet and removeFacet commands. This is reminiscent of
the OMG standard QVT-Relational (QVT-R) transformation language [QVT 1.3. 2016],
where specifications can be used to check the consistency of a set of models, and be
transformed into QVT-Core for execution. In addition, facets can be shared between
objects. Some transformation languages also have the ability to reuse objects created
by different rules, more prominently QVT-R and its check-before-enforce policy.

Our reactive field adapters are used to maintain field values consistent. This feature
is typical of bx transformation languages. For example, some triple graph grammar
approaches use bx constraints to specify field relations [Anjorin et al. 2012]. Instead,
our approach requires specifying a reactive adapter per field, and the support for bx
adapters is future work. Reactivity has also been investigated in the context of model
transformations, specifically for ATL [Perez et al. 2017]. That works aims to perform
minimal recomputations in a target model when the source model changes. Instead, the
goal of reactive field adapters is to keep fields in host objects and facets synchronized.

Our analysis techniques rely on model finding and the construction of an analysis
metamodel. This is similar to the notion of transformation model [Bézivin et al. 2006],
which has been used in the MDE community to analyse model transformations [Cabot
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et al. 2010]. In our case, we need to deal with the semantics of facet reuse, and analyse
well-behavedness of reactive adapters. This latter analysis permits detecting poten-
tial non-terminating cycles of updates. However, researchers have investigated and
classified other error types that may arise in networks of transformations [Klare et al.
2019]. We plan to provide more comprehensive analysis support for reactive adapter
specifications in the future.

11. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced facets as a way to add flexibility to modelling. In
contrast to standard MDE practice, facets effectively make objects open, so that they
can acquire and drop types, fields and constraints. We provide management commands
for the opportunistic reuse of metamodels to create facets; facet interfaces and laws for
planned facet-oriented modelling; and analysis mechanisms to check the applicability
and satisfiability of facet laws, and to discover ill-behaved field adapters. We have
discussed scenarios where facets have advantages with respect to current solutions,
and shown an implementation atop METADEPTH.

Some elements of our approach can be improved. At the technical level, we would
like to extend the triggered constraints mentioned in Section 8 so that they do not need
to be type-local. This will require a static analysis of the facet law conditions. At the
conceptual level, our field adapters are unidirectional, and so, two adapters are required
to synchronize two fields (except for equality). Inspired by lenses [Foster et al. 2007], we
aim at developing mechanisms that enable bidirectional synchronization expressions.
Our analysis techniques can also be strengthened, e.g., checking conflicting constraints
in interfaces.

Facet-oriented modelling brings dynamicity to modelling and opens the door to
new possibilities. Our next goal is a deeper exploration of facets to solve other MDE
problems, like hierarchical modelling. In this paper, we have been concerned mostly
about model structure, and so the next focus will be on behaviour. We are working
on suitable concepts – akin to the notions of method redefinition and delegation in
object orientation – for combining operations defined in the host and facet objects. We
also plan to develop static analysis techniques for the analysis of model management
programs that manipulate models, especially in-place transformations.
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Appendix
This appendix contains the proofs of the lemmas of Section 4.2.

Proof of Lemma 4.3. Given a faceted model M , we construct a standard model SM =
〈H,S∪L, featsH〉. Then, we need to show that featsH is (1) left-injective and (2) surjective.

(1) The lemma demands F � facets to be empty, and hence no facet has other facets. This
way, featsH = feats ◦ facets+ = feats ◦ facets, and H � facets = facets. The lemma also
demands facets to be bijective and feats to be left-injective, which entails that featsH
is left-injective.

(2) In faceted models, both feats and facets are surjective, and hence so is feats ◦ facets.

�

Proof of Lemma 4.4. Given standard models M1 and M2, and a faceted model type
type = 〈typeF , typeS , typeL〉 with typeF total, we can build a standard model type type =
〈typeH , typeP 〉 : SM1 → SM2, where SM1 and SM2 are built as described in the proof of
Lemma 4.3.

For the “if” part, we need to show that (1) typeH and typeP are total functions, and (2)
they commute as in Figure 8.

(1) According to Equation 3, typeH , ((facets2
−1)+ �H2) ◦ typeF ◦ facets1

+. First, typeF

is a total function, and facets1 is a bijective function. This means that typeF ◦ facets1
+

is total. Since H2 � facets2 is bijective, and F2 � facets2 is empty, each facet is owned
by exactly a host object, and so (facets2

−1)+ �H2 is a bijective total function. Hence,
we have that ((facets2

−1)+ �H2) ◦ typeF ◦ facets1
+ is a total function from H1 to H2.

Now, typeF is a total function, and so, according to the first item of Definition 4.2,
typeP is defined for each feature of each facet. Since feats1 is surjective, this means
that typeP is total.

(2) We need to show that typeH and typeP commute with featsHi
(see the left of Figure 22).

Since typeF is total, by the first item in Definition 4.2, square (2) in Figure 22
commutes. Now, taking into account that M1 and M2 are standard models, typeH is
constructed as facets2

−1 ◦ typeF ◦ facets1. This is so as F1 � facets1 is empty, and so
facets+1 = facets1. Similarly, F2 � facets2 is empty and H2 � facets2 is bijective. This
means that (facets2

−1)+ = facets2
−1, and facets2

−1 is a function. Now, if typeH =
facets2

−1 ◦ typeF ◦ facets1, then facets2 ◦ typeH = typeF ◦ facets1, and square (1) in
Figure 22 commutes. Finally, since both M1 and M2 are standard models, featsHi

=
featsi ◦ facetsi, and since the composition of two commutative squares is commutative,
we have the desired compatibility.

H2

featsH2 //

=

P2 H2

facets2 //

=

(1)

F2

feats2 //

=

(2)

P2

H1

typeH

OO

featsH1 // P1

typeP

OO

H1

facets1 //

typeH

OO

F1

feats1 //

typeF

OO

P2

typeP

OO

Fig. 22: Required compatibility condition for standard model types (left). Composing the compati-
bility condition (right).

For the “only if” part, let’s assume that typeF is not a total function. This may be
because some facet f has no type, or has more than one. In the first case, the owner host
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object of the facet does not receive a type through typeH . In the second case, it receives
two. In neither case typeH becomes a total function. �
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