
A Framework for the Verification of UML

Models. Examples using Petri Nets

Esther Guerra and Juan de Lara �

Escuela Politécnica Superior, Ingenieŕıa Informática
Universidad Autónoma de Madrid

Esther.Guerra Sanchez@ii.uam.es, Juan.Lara@ii.uam.es

Abstract. This paper presents a framework for the verification of UML
models. Our approach is to build meta-models for the different UML
diagrams and translate them into formalisms (whose syntax is also spec-
ified with a meta-model) in which properties of interest can be proved.
The translation (denotational semantics) as well as the formalisms oper-
ational semantics are formally described by means of graph grammars.
We show the implementation of these concepts in the Multi-Paradigm
tool AToM3 together with an example in which we translate a UML de-
sign (composed of Statecharts, Class and Sequence diagrams) into Petri
nets for subsequent verification using model checking.

Keywords: Graph Rewriting, Meta-Modelling, UML, Petri Nets, Model Checking.

1 Introduction

UML is the de-facto standard for the analysis and design of object-oriented
systems. It offers a number of diagrams that can be used for the modelling of
different aspects of the application. Ever more frequently, these diagrams are not
a mere documentation of the system’s features, but are used for code generation,
simulation, or verification. The current trend in hiding the verification process
behind well-known notations – such as UML – has the potential to reduce some
of the discouraging aspects of classical formal methods. Although they offer
significant benefits in terms of improved quality, some of the reasons for which
they are not broadly used are the need of expert personnel in a certain formal
method. This expert knowledge is seldom found between the average software
engineers.

In this paper, we propose hiding the verification process by letting the de-
velopers specify the system in a well-known modelling language (UML) and
then automatically translating these models into a semantic domain for further
analysis. Once this analysis is performed, feedback can be given back to the
developers. The process is implemented in an open, formal framework: both
source and target formalisms are meta-modelled, and the transformation be-
tween them is formally specified using graph grammars [10]. This is possible as
�

Partially sponsored by the Spanish Ministry of Science and Technology (TIC2002-01948)



(meta-)∗models can be represented as attributed typed graphs, and thus can be
manipulated using graph grammars.

AToM3 [1] [4] is a tool for Multi-Paradigm modelling which we have de-
veloped in collaboration with the MSDL Lab at McGill University. This tool
allows the user defining formalisms by building models of its (possibly graphi-
cal) syntax by means of meta-modelling. In AToM3 models are stored as graphs
and their manipulation is expressed by means of models in the graph grammar
formalism [10]. Typical manipulations include defining operational semantics
(specifying a simulator), denotational semantics (translating the model into an-
other formalism preserving behaviour, and code generation for another tool) and
optimising the model (for example, reducing its complexity). We have used the
tool to define some of the diagrams of the UML standard, and defined graph
grammars to perform the translation of these diagrams into Petri nets. Once
the diagrams have been translated into a single Petri net, we can use simula-
tion, or analysis techniques (such as the ones that use the reachability graph)
to check properties of the whole system (horizontal coherence between the UML
diagrams, deadlock, state reachability, etc.) In particular we have implemented
Model-Checking techniques [3] that can be used on the resulting reachability
graph.

2 A Framework for the Verification of Software Models

The approach we propose in this paper is an adaptation of the ideas of Multi-
Paradigm modelling [12] (for physical systems) to the verification of software
models. In Multi-Paradigm modelling each component of the system can be
described using the most appropriate formalism. For the processing of such a
system (understanding it as a whole), one has to translate each component into
a common formalism. This translation must preserve the properties under inves-
tigation. The target formalism must provide the necessary tools to answer the
question we are interested in the original system.

In an analogy to the formalism transformation graph for physical systems [12],
one can imagine a “formalism space” whose elements are the different possible
formalisms for software systems (a very small fragment of it is depicted in Fig-
ure 1). Some of the formalisms are expressive, high-level, and appropriate for
modelling. Some others are lower-level, but good for analysis (due to existing
mathematical analysis methods and tools) or simulation. Behaviour preserv-
ing transformations can be found between some of these formalisms (shown as
thin arrows). Sometimes when transforming a model, information can be lost
(abstracted), but this is acceptable if we do not need this information for the
question we are trying to answer. In our framework, we formally specify the
formalisms by means of meta-modelling.

The thicker, dotted vertical arrows in the figure denote a transformation of
the model to the “traces” formalism (its execution). Whereas the transformation
arrows can be thought as expressing the denotational semantics of a formalism
in terms of another, the execution transformations correspond to the operational



Optimization

Nets

Temporal
Logic

Petri−
Nets

TimedSimulation
Formalisms

Analysis&

UML Behavioural Diagrams

Statecharts

High Level Modelling Formalisms

AlloyZ

Diagrams
Collaboration

Diagrams
Sequence

Diagrams
Activity

DEVS

State
Automata

CSP

State Trajectory (Execution Traces) 
Transformation

Execution

Petri−

Fig. 1. Formalism Transformation Graph for Software Systems.

semantics of the formalism. The dark arrow that departs and arrives to the
Petri net formalism means the existence of an “optimising” transformation. For
example, we have implemented the complexity reduction transformations pro-
posed in [8], which reduce the size of the Petri net model, preserving liveness,
safeness and boundedness. We usually apply this transformation before calcu-
lating the reachability graph ro reduce the search space. In our framework, we
formally specify the three types of transformations (optimising, operational and
denotational semantics) as graph grammars.

When describing software systems (in UML for example), one usually has a
number of views describing different aspects of the system, which may overlap.
The “connection” of the different views of the system becomes a non-trivial
problem: some parts of the system may have been specified several times (in
several ways, in different views), while others may have not been specified at
all. In any case, we have to verify that the union of all the views results in a
consistent description of the system. We tackle these problems in the paper.

3 Meta-Modelling Sequence Diagrams

This section shows the definition of a meta-model for sequence diagrams us-
ing AToM3 [1]. This tool allows defining formalisms using Entity-Relationship
or UML class diagrams. In both formalisms we can use constraints (OCL or
Python) to deal with dynamic restrictions (“well-formedness rules”). To define a
formalism, the user has to include abstract syntax (entities, attributes, relation-
ships and constraints) as well as graphical information. The latter includes the
appearance of entities and relationships and the possible graphical constraints,
that is, concrete syntax. Once the formalism is defined, AToM3 generates some
(Python) files that can be loaded again on top of the tool (bootstrapping) to



change its behaviour, in such a way that it accepts valid models according to
the formalism definition. The advantage of this approach is that it dramatically
enhances the productivity in creating domain-specific tools.

Sequence diagrams represent the flow of messages between some of the objects
of the system. Objects are usually arranged horizontally, whereas the time flows
in the vertical direction. Figure 2 shows to the left the meta-model we have
defined using AToM3. The iconic buttons to the left (“Entity” and “Rel”) are
used to create the meta-model in the canvas, and are specific to the Entity-
Relationship formalism. The user interface shows other buttons depending on
the loaded formalism. This part of the user interface is indeed a model, which
the user can change, and that is interpreted when the formalism is loaded.

Fig. 2. A Meta-Model for Sequence Diagrams (left) and the Generated Tool (right).

The entities included in the meta-model are Objects (entity sdObject), Acti-
vation Boxes (sdActivationBox in the figure), Iterations (sdIteration in the figure,
these allow the iterative execution of several messages), and sdStartPoint (repre-
senting the starting point of the diagram). Messages between objects have been
implemented by means of the sdMessage relationship. More details about this
meta-model can be found at [2].

Figure 2 shows on its right a sequence diagram built with the previously
described meta-model. The user interface buttons have changed (to the left)
with respect to the previous formalism, and they allow the user to create the
entities defined in the meta-model. Additionally, we have added a button that
executes a graph grammar to convert the sequence diagram into a Petri net.
Graph grammars and their use in AToM3 are explained in the following section.

4 Graph Grammars

Graph grammars [10] are a generalization of Chomsky grammars for graphs.
They are composed of rules; each having graphs in their left and right hand
sides (LHS and RHS). Rules are evaluated against an input graph (called host
graph). If a matching is found between the LHS of a rule and a zone in the host
graph, then the rule can be applied and the matching subgraph of the host graph



is replaced by the RHS of the rule. Rules can have applicability conditions, as
well as actions to be performed when the rule is applied. Some graph rewriting
systems have control mechanisms to decide which rule should be checked next. In
AToM3 rules are ordered according to a user-assigned priority, and are checked
from higher to lower priority. If a rule makes a match, after its application the
system starts trying again the higher priority rule in the list. The execution ends
when no rule can be applied.

On the one hand, graph grammars have some advantages over specifying the
computation to be done in the graph using a regular programming language.
Graph grammars are a natural, formal, visual, declarative and high-level rep-
resentation of the computation. Computations thus become high-level models,
expressed in the graph grammar formalism. The theoretical foundations of graph
rewriting systems may assist in proving correctness and convergence properties
of the transformation. On the other hand, the use of graph grammars is con-
strained by efficiency as subgraph isomorphism testing is NP-complete. However,
the use of small subgraphs on the LHS of graph grammar rules, as well as using
node and edge types and attributes can greatly reduce the search space. This is
the case with the vast majority of formalisms.

In the following subsection, due to space constraints, we briefly sketch a
transformation from sequence diagrams (whose meta-model was described in
the previous section) into (black and white) Petri nets.

5 Transforming Sequence Diagrams into Petri Nets

The tool we obtained in section 3 by means of (static) Meta-Modelling only
allows the user to create, load and save models, verifying that they are correct.
In this section, we improve these capabilities by means of graph rewriting. In
particular, we present a graph grammar that translates a sequence diagram
into an equivalent Petri net for further analysis. During the graph grammar
execution, the model is indeed a blend of sequence diagrams and Petri nets,
but when the graph grammar execution finishes, the resulting model is entirely
expressed in the Petri nets formalism. The main idea of the transformation is
to replace each message between two activation boxes by three places, which
represent the point in which the message has not been sent, the sending of the
message, and the reception of the message and its subsequent processing.

Figure 3 shows one of the rules for transforming messages into places. Other
rules to transform messages are related to the transformation of initial, creation
and destroy messages, and they are very similar to the one we show. Due to
space constraints we only show this rule, the interested reader can consult [2]
for a complete description of the transformation, together with another grah
grammar to transform Activity Diagrams into Petri nets. The rule is applied for
each message of type “expression” in the diagram and replaces the message by
three places connected by transitions. Node and connection attributes in the LHS
must be provided with values that will be checked with the node and connection
attributes of the host graph in the matching process. These attributes can be set



to any or have specific values. In Figure 3, the text shown as “〈ANY〉” specifies
that any name of the message will make a match. Nodes and connections have
numbers. If the number appears in both LHS and RHS it means that the node
(or connection) is preserved if the rule is applied (although its attribute values
may change, and this is specified in the RHS). If the number appears in the LHS
but not in the RHS, then the node (or connection) is deleted if the rule is applied.
Finally, nodes (or connections) that are newly created by the application of the
rule only appear in the RHS, thus, its numbers do not appear in the LHS. In the
RHS, we can specify a change in the value of the attributes of the nodes that
also appear in the LHS, and certainly we have to specify the attribute values of
the newly created nodes or connections. In AToM3 we can either copy the value
of the attributes of the LHS, specify a new value, or associate a piece of Python
code to calculate the attribute value (possibly using other nodes’ attributes).

Fig. 3. One of the Rules to Convert Messages into Places.

The second block of rules transforms the activation boxes into Petri net tran-
sitions. When none of the previous rules can be applied, then the next step is
to eliminate the return messages (which signal the invoking method the termi-
nation of the invoked operation), linking appropriatelly the Petri net transitions
obtained so far. Finally, the graph grammar is completed with a couple of rules
for removing all the remaining life lines and auxiliary transitions.

The application of this graph grammar to the example shown in Figure 2
results in a sequential connection of thirteen places terminated in a transition,
in which the first place has a token, as there are no conditional messages or
iterations. Next section shows how to link the Petri net model obtained from the
transformation of a sequence diagram with the Petri net models obtained from
the transformation of other UML diagrams.

6 An Example

As an example, we translate a toy UML design composed of Statecharts, Class
and Sequence diagrams into Petri nets. We reproduce a very typical situation
with UML modelling: some parts of the system are overspecified, while others are
not specified enough. That is, some classes have an associated Statechart, while



others do not and in addition, some of the information in the Statechart (mes-
sages sent in response to other messages) are repeated in some of the sequence
diagrams. The example is shown in Figure 4 and represents a Sales Company
with a number of Customers, which can buy goods, resulting in the creation
of an Order. This Order is sent to one of the Stockrooms for its processing. If
there are enough goods in the stockroom, the Order can be served, and later
the Customer has to pay for it. Note how some of the classes have an associated
Statechart specifying its behaviour, while some others do not. The diagrams for
this example should be complemented with the sequence diagram presented in
Figure 2, which presents a scenario in which the customer buys an item, and the
the stockroom fills the order.

...

Waiting

Idle

Stockroom

+ Process()
+ Serve()

New

Filled

Served

Payed

Fill()

Serve()

Pay()
+ Buy(cID, pID): identifier
+ Pay(amount, orderId)
+ Register(name): Customer

Pay(A
m

ount, orderId) Sales Company

Customer
− id: identifier
− name: string
+ Buy(pID)
+ Pay(amount, orderId)

1 shop 1

0..*

O
id

=
sh

op
.B

uy
(i

d,
 p

ro
dI

d)
B

uy
(p

ro
dI

d)
/

Statechart

Class Diagram Statechart

1

0..*

...

...

Order

+ Pay()
+ Serve()
+ Fill()

...

0..*

− id: identifier

Fig. 4. A Part of the UML Design to be Verified.

The first step is to convert the Statecharts associated with each class into
Petri nets. We have already shown how to automate this process using graph
grammars in [5]. Each state in the Statechart is converted into a place. The
methods defined in the associated class are also converted into places. These
places are used as an “interface” for the Petri net. When an entity wants to make
a method invocation, it puts a token in the corresponding place. The Statecharts
of the different classes can be coupled if they send methods to each other. It may
be possible for a certain class to not have an associated Statechart. In this case,
we add a simple Petri net with a place for each method in the class and a single
place representing the only object state. Thus, we are modelling the fact that
we do not have any information about the class behaviour, and therefore we
assume that the class accepts any method invocation at any moment. When
more information becomes available (if the user specifies a Statechart for the
class), a new refined Petri net for the behaviour can replace this simple net.
The converted Statecharts are shown on top of Figure 5. The sub-model on
the left represents the Statechart of the Order class; the sub-model on its right
represents the Statechart for the Customer; the next one, the Statechart for the
Sales Company and the right-most sub-model, the Statechart for the Stockroom.
As the Sales Company and the Stockroom do not have an associated Statechart,
they are given two simple sub-models with only one state.

The next step is to convert the sequence diagram and join the resulting model
with the Petri net that we have obtained so far. The automation of this process
was shown in section 5 (some rules for linking the Petri nets resulting from the



Statecharts and the sequence diagrams have been added). The resulting model
is shown in the lower “trail” of transitions and places in Figure 5. The place
named “(Customer)proc.buy” (in the lower- left corner) is the only one that can
initiate the Petri net execution, and it corresponds with the initial message in the
sequence diagram. That is, the net execution is driven by the scenario specified
in the sequence diagram. Note how, if we have several sequence diagram, they
should be verified one by one with the Statecharts using this process.

There are two ways of synchronizing the sub-model representing the sequence
diagram and the sub-models representing the classes’ Statecharts. The first case
(“under-specification”) arises when the Statechart does not give all the details
about sending methods in the transitions. In this case, the sequence diagram
sub-model has to put a token in the corresponding interface place. We have four
cases of this in Figure 5: the incoming arc to the interface places “Buy”, “new”,
“fill” and “Process”. Other form of “under-specification” arises when there are
method invocations in the Statecharts that are not reflected in the sequence
diagrams. In this case, the simulation traces or the reachability graph of the
resulting Petri net shows the user the methods that are really invoked.

The second situation (“over-specification”) arises when a method invocation
has been specified both in the sequence diagram and in the Statecharts. We
must ensure that the sub-model representing the sequence diagram and the sub-
models representing the Statecharts are synchronized at that moment. This is
performed by introducing an extra place connected to both the sequence diagram
sub-model and to the Statechart sub-model. This occurs once in the example, as
in the Statechart associated with the customer we have specified that message
“Buy” (salesc.Buy place) must be sent to a Sales Company object when the
Customer receives a Buy message, and this is also specified in the sequence
diagram. In the Petri net this is specified by adding the place “seqDiagram buy”
connected to both the sequence diagram and the Sales Company sub-model.

Once we have the complete Petri net, we can simplify it using the simpli-
fication grammar mentioned in section 2 and calculate the reachability graph
(another formalism transformation). This transformation is only possible if the
net is simple (in our case the reachability graph has 13 states), due to the state
explosion problem. For more complex nets, other symbolic techniques should be
used. Additionally, we have implemented an explicit model checker [3] which
allows verifying properties of a model (in our case a reachability graph). The
properties to be checked are expressed using Computational Tree Logic (CTL)
formulas. The basic predicates are named like the places in the Petri net, and
they become true in the graph if a token is present in the corresponding place.
In the example, we may for example ask whether an object reaches a certain
state (for example, if the order always gets filled A(True U filled)), if a certain
method is always invoked (for example, the Process method, A(True U Process)),
if the execution always terminates (A(True U Deadlock)) and whether an object
leaves a state (for example, if the customer can leave the waiting state E(True
U (waiting AND AX NOT waiting))). All of them, but the last one evaluate
to true in the given scenario. We are able to check method invokations as we



represent them as places. This checking is useful as a certain method invokation
could have not been modelled in some of the diagrams (“under-specification”).

new
0

fill
0

filled
0

serve
0

served
0

pay
0

payed
0

idle
1

waiting
0

Buy
0

Pay
0

salesc.idle
1

salesc.Buy
0

salesc.Pay
0

Process
0

Serve
0

stockr.idle
1

(Customer)proc.buy
1

(Customer)send.buy
0

Message Buy
0

seqDiagram Buy
0

(Sales Company)recv.buy
0 (Sales Company)send.creat

0

Message Create
0

(Order)recv.Create
0

(Sales Company)send.Proce
0

Message Process
0 (Stockroom)recv.Process

0
(Stockroom)send.fill

0

Message fill
0

(Order)recv.fill
0

Trans.fill

Trans.serve

Trans.pay

Trans.buy

Trans.Pay

Trans.salesc.Buy

Trans.salesc.Pay

Trans.Process

Trans.Serve

proc cust.buy send cust.buy rec comp.buy prep comp.creat
send comp.creat

rec order.creat order created send comp.process

rec stock.process prep stock.fill

send stock.fill
rec order.fill end

Fig. 5. The Petri Net before simplification.

7 Related Work

Most analysis tools available to the software designer are embedded in a CASE
tool in a closed way. The disadvantage of this approach is that one cannot change
either the source formalisms or the semantic domain into which these formalisms
are transformed. This is necessary, on the one hand, as the source formalism may
change (as UML has been changing for the last few years). On the other hand,
one would like to use different semantic domains to verify different kinds of
properties. On the contrary AToM3 is open: both source and target formalisms
can be defined by the user by means of meta-modelling.

Other approaches also use graph transformations for translating models be-
tween formalisms [7]. They express the denotational semantics of single UML
diagrams (single Statecharts). Other approaches aim to directly verify UML
models with graph transformations [6], employing graph grammars to specify
the operational semantics of UML. In our approach, we use graph rewriting
to specify the denotational semantics of combinations of different UML dia-
grams, translating the UML models into appropriate semantic domains. Other
approaches [9] modify the UML notations to incorporate Petri net concepts for
the modelling of the dynamic parts of the system. In [11] the OASIS notation is
transformed into Object Petri nets for simulation. Our approach has the advan-
tage of using the standard UML notation, and then automatically transforming



these models into a semantic domain, Petri nets in this paper. To our knowledge,
this is the first time that this combination of UML diagrams considering over-
and under-specification have been automatically translated into B&W Petri nets
for analysis.

8 Conclusions and Future Work
In this paper we have presented a general framework based on Meta-Modelling
and Formalism transformation (formally implemented using graph grammars)
for the analysis of software systems. As an example we have shown how to
transform a UML design composed of class, Statecharts and sequence diagrams
into Petri nets for further analysis using Model-Checking. Another important
issue that distinguishes our work is that these UML models do not need to
be fully specified (some classes may not have an associated Statechart, or the
diagrams may not reflect the full details about the method invocations) in order
to perform this initial verification.

We are currently working in completely hiding the verification process to the
user. In this way, he will not be aware that in order to verify some property, a
transformation into a certain semantic domain is performed. In this direction,
we are working in back-annotating the model resulting from the transformation,
so the result of the analysis in the target formalism can be translated back and
given to the user in the context of the source formalism. We plan to continue
working on some of the formalisms and transformations depicted in Figure 1,
and to include a module in AToM3 to reason about the best transformation to
be performed given the question to be answered.

References

1. AToM3 home page: http://atom3.cs.mcgill.ca.
2. AToM3 for Verification: www.ii.uam.es/∼jlara/investigacion/UMLandATOM3.html
3. Clarke, E. M., Grumberg, O., Peled, D. A. 1999. Model Checking. MIT Press.
4. de Lara, J., Vangheluwe, H. 2002 AToM3: A Tool for Multi-Formalism Modelling

and Meta-Modelling. In ETAPS/FASE’02, LNCS 2306, pp.: 174 - 188. Springer.
5. de Lara, J., Vangheluwe, H. 2002 Computer Aided Multi-Paradigm Modelling to

process Petri-Nets and Statecharts. ICGT’2002. LNCS 2505. Pp.: 239-253.
6. Gogolla, M., Ziemann, P., Kuske, S. 2002. Towards an Integrated Graph Based

Semantics for UML. Electronic Notes in Theoretical Computer Science Vol 72(3).
7. Heckel, R., Küster, J., Taentzer, G. 2002. Towards the Automatic Translation of

UML Models into Semantic Domains AGT’02/ETAPS’02. Pp.:12-22.
8. Murata, T. 1989. Petri Nets: Properties, Analysis amd Applications. Proceedings

of the IEEE, Vol 77(4). pp.: 541-579.
9. Philippi, S. 2000. Seamless Object-Oriented Software Development on a Formal

Base. Proc. of the Workshop on Petri-Nets and Software Engineering. pp.: 75–94.
10. Rozenberg, G. (ed.) 1999. Handbook of Graph Grammars and Computing by Graph

Transformation. Vol. 1 World Scientific.
11. Sánchez Palma, P. Animación de Especificaciones OASIS mediante redes de Petri

orientadas al Objeto. PhD Thesis at Univ.Polit. Valencia.
12. Vangheluwe, H., de Lara, J., Mosterman, P. 2002. An Introduction to Multi-

Paradigm Modelling and Simulation. Proc. AIS2002. Pp.: 9-20. SCS International.


