
A Formal Approach to the Generation of Visual Language Environments
Supporting Multiple Views

Esther Guerra, Paloma Dı́az
Ingenierı́a Informática
Universidad Carlos III

Madrid, Spain
{eguerra, pdp}@inf.uc3m.es

Juan de Lara
Escuela Politécnica Superior

Universidad Autónoma
Madrid, Spain

jdelara@uam.es

Abstract

In this paper we present a formal approach, based on
meta-modelling and graph transformation, to the genera-
tion of environments for visual languages (VLs) support-
ing multiple views. The VL syntax is defined by means of
a meta-model. Views for the VL are created by selecting
the classes, associations, attributes and constraints that are
part of them. Once the environment is generated, the view
models are translated into a global, unique model where
consistency checking and further analysis can be performed
by means of graph grammars. These ideas have been newly
implemented in the AToM3 tool.

1. Introduction

As software and physical systems become increasingly
complex, notations able to describe them using different
views become necessary. In this way, modelling is shift-
ing from complex monolithic specifications towards sets of
smaller, heterogeneous, partial specifications, each one of
them describing some aspect or view of the system.

A usual approach to describe the syntax of a VL is to
build a specification showing the concepts and relations
present in the language. This specification is called a meta-
model, and describes all the valid models the user can build.
If the VL includes different diagrams to specify different
views of the system, the meta-model should contain all the
elements that may appear in each one of them. However,
several problems arise. First, the set of elements belonging
to each view has to be defined. Note that the same element
may be present in different views. Second, customized envi-
ronments for each view have to be generated and integrated.
Finally, the environmentsmust ensure that the system, made
up of the different view models, is consistent.

We propose a framework to generate environments sup-

porting VLs with multiple views. The VL is defined with
a meta-model, and the views are restricted parts of it.
Triple graph grammars [7] are used to translate each view
model into a unique model, instance of the whole VL meta-
model. Consistency between views is achieved by propa-
gating changes performed in one view to the global model,
and from there to the other views. Further checkings can be
performed on the global model using regular grammars.

2. A Formal Model of Views and Consistency

VLs are frequently described using meta-models. Meta-
modelling allows the definition of the structure of the ad-
missible VL models by defining a model of their (usually
abstract) syntax. This model is called a meta-model. It can
be expressed as a class diagram containing the entities and
relations of the VL syntax, together with their attributes.
When the meta-model is equipped with additional infor-
mation regarding visualization (concrete syntax) and ad-
ditional constraints, tools can automatically generate mod-
elling environments for the VL.

For VLs with multiple views, in the simpler case, views
are (possibly overlapping) parts of the global meta-model.
Thus, one has to specify the classes, relations and con-
straints that conform each view. Moreover, for each class
and relation, a view may show only a part of their attributes.
In categorical terms, the VL meta-model is the co-limit ob-
ject of each pair of views and their overlapping parts. This
can be seen as a pushout star. The user may build instances
of the different view meta-models, and a unique model (in-
stance of the global VL meta-model) can be built by apply-
ing some functions (that we implement using graph trans-
formation). The unique model, that we called repository, is
again the co-limit of all the created view models.

We use graph transformation [3] as a formal means,
based on rules, to manipulate graphs. Rules have graphs in
the left and right hand sides (LHS and RHS). When apply-



Figure 1. The View Specification Tool.

ing a rule to a graph, a morphism should be found between
the LHS of the rule and the graph. Then, the substitution by
the RHS can be performed. We follow the Double Pushout
Approach (DPO) [3] which is based on category theory to
formalize rules and rule applications. Similarly, triple graph
grammars [7] rewrite graph triples instead of simple ones.
In this work, we build graph triples made of two view mod-
els and an intermediate graph that relates objects of the two
views. Usually, one of the views is the repository model.
Thus, the triple graph grammar specifies how the “gluing”
of the view models in the repository should be done.

3. Implementation in AToM3

AToM3 [1] is a meta-modelling tool in which model
manipulation (simulation, optimisation, translation into an-
other formalism and code generation) can be expressed by
means of graph rewriting. Up to now, AToM3 only allowed
the definition of formalisms with a single view. Different
views of the same VL had to be defined in separate meta-
models. Thus, a number of different, independent tools
were generated. We have improved the tool incorporat-
ing a facility to overcome this problem. The new function
has been automatically generated from a meta-model built
in AToM3, and then integrated into it. The meta-model
was made of a single class (View) used to define the view
meta-models, and a relationship (view consistency) to spec-
ify consistency checkings by means of triple graph gram-
mars. The so-generated View Specification Tool is shown
to the left of Figure 1. It can be opened once the whole
meta-model of a VL has been defined. A view called repos-

itory, containing the complete meta-model, is always added
by default in the View Specification Tool. The repository
is used to keep the unique model containing the ”glued”
views. VL designers can add as many views as necessary.
New views initially contain the complete VL meta-model,
which can be edited afterwards. A restrictive approach has
been implemented, in the sense that view meta-models must
be subsets of the complete one.

Consistency mechanisms between views can be provided
by means of relationship view consistency, where triple
graph grammars [7] can be defined with this purpose. At
least two consistency relations between each view and the
repository must be defined. The first one must copy the
changes performed in the view models to the repository,
in order to build a unique model gluing all the view mod-
els. The second one must propagate changes from the
repository to the other views, if necessary, to maintain the
view models consistent. The tool automatically generates
all these basic rules for consistency (those which are per-
formed when some element is added, deleted or modified
in a view model). They can be complemented with other
more complex specific domain consistency rules for check-
ing static semantics (well-formedness). Furthermore, once
the repository model has been created, we can use regu-
lar graph grammars to transform it into a semantic domain,
with the purpose of functional verification [5].

Figure 1 shows the edition of the view consistency rela-
tion between one view called Structural and the repository.
A dialog box (on top of the window in the background)
shows the relation (c0) and a button to edit the triple graph
grammar. The dialog box to its right is used to edit the



triple graph grammar properties. The dialog box on top of
it shows the edition of one of the rules. This rule simply
copies a newly created node to the repository. The RHS
of the rule is being edited in the right-most window. Here
we show a triple graph where the lower part is an instance
of the Structural view and the upper part an instance of the
whole meta-model.

As a proof of concept of our approach, we show the gen-
erated environment for Labyrinth [2], a domain-specific lan-
guage for hypermedia design. The language has 16 views
of the VL meta-model. A snapshot of part of its definition
is shown in Figure 1. All the consistency relations between
views on the View Specification Tool were automatically
generated by the tool. Starting from this definition, the mod-
elling tool in Figure 2 was generated. AToM3 generates a
button for each view, as it is shown on the left of the back-
ground window. Users can add a new diagram of a certain
view by clicking the corresponding button and then the can-
vas. The newly created diagram is shown as an icon.

Figure 2. The Generated Environment.

If the user clicks on some diagram icon, a control dialog
allows editing the view attributes, as well as the model. The
latter is edited in a new AToM3 window. The upper window
on the right of Figure 2 shows the edition a view model.
The repository model is built by executing the defined graph
grammars, which are executed whenever a window contain-
ing a modified view is closed.

4. Related Work

Some approaches for consistency checking in VL with
multiple views implement the idea of a common repository

where the different view models are somehow related. The
way in which these relations are built can be specified by us-
ing either a textual or a graphical notation. Examples of the
former include MetaEdit+ [6] and Pounamu [8]. Examples
of the latter include JComposer [4] and our tool AToM 3.
In JComposer the change propagation and response graphs
allow visually attach events to the elements of the models,
performing actions in response to user actions. In AToM 3

triple graph grammars are used for consistency and change
propagation. They are a graphical and natural way to ex-
press relations between models, and in addition its theoret-
ical background makes transformations subject to analysis.

5. Conclusions

In this work, we have presented a formal approach for
the definition of VLs with multiple views, and subsequent
generation of customized modelling environments. Consis-
tency is maintained by gluing the view models into a global
model, by means of triple grammars. We have implemented
these concepts in AToM3, and built a modelling environ-
ment for a hypermedia VL called Labyrinth.

Acknowledgements: This work has been supported by
the Spanish Ministry with project TIC2002-01948.

References

[1] de Lara, J., Vangheluwe, H. 2002. AToM3: A Tool
for Multi-Formalism Modelling and Meta-Modelling.
LNCS 2306, pp.: 174 - 188. Springer.

[2] Dı́az, P., Aedo, I., Panetsos, F. 2001. Modeling the
Dynamic Behavior of Hypermedia Applications. IEEE
Transactions Software Engineering, 27(6). 550-572.

[3] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.
1999. Handbook of Graph Grammars and Computing
by Graph Transformation. (1). World Scientific.

[4] Grundy, J.C., Mugridge, W.B., Hosking, J.G. 1998 Vi-
sual Specification of MultiView Visual Environments.
IEEE Symposium on Visual Languages, 236-243.

[5] Guerra, E., de Lara, J. 2003. A Framework for the Ver-
ification of UML Models. Examples using Petri Nets.
Proc. JISBD’03. pp.: 325-334. Alicante.

[6] http://www.metacase.com/

[7] Schürr, A. 1994. Specification of Graph Translators
with Triple Graph Grammars. LNCS 903, pp.: 151-
163. Springer.

[8] Zhu, N., Grundy, J.C. and Hosking, J.G., 2004.
Pounamu: a meta-tool for multi-view visual language
environment construction VL/HCC, pp. 254-256.


