
GT-VMT 2006

Visual Specification of Metrics for Domain
Specific Visual Languages

Esther Guerra, Paloma Dı́az 1,2

Computer Science Department
Universidad Carlos III

Madrid, Spain

Juan de Lara 3

Polytechnic School
Universidad Autónoma

Madrid, Spain

Abstract

We present a Domain Specific Visual Language (DSVL) for the definition of metrics
for other DSVLs. The metrics language has been defined using meta-modelling,
and includes some of the more used types of product metrics. The goal is to make
the definition of metrics for a DSVL easy, reducing or eliminating the necessity of
coding. For this purpose, we rely on the use of visual patterns for the specification
of the properties that should be measured in each metric type.

These ideas have been implemented in the AToM3 tool, which allows the definition
of DSVLs by means of meta-modelling. In this way, with the new extension, the
DSVL designer is able to define a metrics suite for a DSVL. Then, an environment
is generated where a number of widgets allow taking actual measures of the defined
metrics on the models. We present some illustrative examples using the hypermedia
design language Labyrinth.

Key words: Domain Specific Visual Languages, Metrics,
Meta-Modelling, Graph Patterns, Code Generation.

1 Introduction

Diagramatic notations are pervasive in many software development activities.
They are used in the planning, analysis and design phases as a means to

1 Email:eguerra@inf.uc3m.es
2 Email:pdp@inf.uc3m.es
3 Email:jdelara@uam.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Guerra

specify, understand and reason about the system to be built. DSVLs are con-
strained diagramatic notations, oriented to a particular application domain.
They provide high-level, powerful primitives, having the potential to increase
the user productivity for the specific modelling task.

Measurement plays a central role in many engineering disciplines, such
as electrical, mechanical and civil engineering [6]. However, traditionally, it
has received little attention in the area of Software Engineering. The kind
of entities that can be measured in this area include processes, resources and
products [6]. In this paper we concentrate in the latter. Product metrics
measure features of software systems (e.g. complexity, cohesion, coupling or
maintainability) in order to control and improve their quality. One of the
factors that may improve the use of metrics in industrial practice is their
support by tools. Moreover, integrating a metrics tool in the early phases of
the development can help to detect defects prior to implementation, saving
time and budget. However, there is a proliferation of notations and tools
that the software engineers use, and adapting and implementing metrics for
them is a costly and time-consuming activity. Our goal is to provide a means
to reduce such cost, by making the customization of metrics for any kind of
DSVL easy (not only in the Software Engineering domain).

In this work, we propose using a DSVL (called Metrics) for the specifica-
tion of a metrics suite for other DSVLs. Metrics has been defined through
a meta-model which contains the main types of metrics we have identified.
These include metrics for global model properties (such as number of cycles
and size), single element features (e.g. methods of a class in object oriented
languages), features of groups of elements (e.g. their similarity or coupling)
and paths (e.g. hierarchies in object oriented languages, navigation paths in
web design languages). The DSVL designer is able to customize these met-
rics by providing a visual pattern with the property to be measured. Visual
patterns are graphical, declarative, user-friendly and intuitive. They have the
advantage of saving the user the necessity of coding the metrics procedure and
learning neither the API of the used tool nor the programming language in
which the tool was coded. In addition, since no coding is required, it can help
to minimize errors and reduce the development time, mainly when dealing
with complex metrics. Nonetheless, the Metrics language also allows creat-
ing new metrics (different from the ones we provide) in a procedural way by
coding in Python. In addition, it is possible to specify threshold values for
the metrics. Thresholds may have an associated action, described either in
Python or using a graph transformation system [13]. In this way, when a
metric reaches one of its threshold values, the user is asked whether he wants
to execute the action. This is useful if the action executes known design pat-
terns or redesigns that improve the quality of the final product. For space
constraints we concentrate only in the metrics aspect of the DSVL and leave
out the discussion on actions.

These ideas have been newly implemented in the AToM3 tool, and are

2

Guerra

illustrated with examples using the Labyrinth DSVL for hypermedia design [4].
The tool also gives support for the execution of metrics and report generation,
without the necessity of coding.

2 A Taxonomy of Product Metrics

In this section we present a classification of the main types of product metrics.
We have defined such a taxonomy by generalising metrics that are devoted
to a specific language, notation or domain (like [2][6][11][15][16]) so that we
provide an abstract metric language that is domain independent. We have
distinguished four types of metrics:

• Model-Oriented metrics allow taking measures of the whole model. These
include for example Mc Cabe’s cyclomatic number (number of cycles), which
is used in software engineering to measure the code complexity of a mod-
ule [11].

• Element-Oriented metrics measure properties of individual elements in the
model. In object oriented systems, these include the number of methods of
a class.

• Group-Oriented metrics measure features of groups of elements in a system.
For example, in object oriented notations they can provide an idea of the
modularity (cohesion) of a system, by measuring the similarity between the
different attributes and methods of classes [15].

• Path-Oriented metrics gather measurements involving paths between ele-
ments of the same type (or any of their subtypes). Thus, a path is made
of instances of a certain type connected through some relation (which in
fact can be a “complex” relation, made of several connected elements). For
example, in web applications, a navigation path joins different pages by
means of hyperlinks. Inheritance-related metrics can also be included here.
In this group we find metrics for measuring the length of the path between
two elements, or to detect start points of paths.

3 The Metrics Domain Specific Visual Language

We have created a DSVL for metrics specification using meta-modelling. The
goal of the language is to be able to adapt to particular DSVLs some general
predefined metrics (or create new ones) in an easy way. Fig. 1 shows its
meta-model.

Abstract class Metric is the base class for all the metrics that the DSVL
designer may create. It has a name, which must be unique. Attribute vari-
ableTypes indicates the domain of the metric (i.e. the types for which the
metric is going to be calculated). For example, if the attribute contains the
name of two types, the metric is calculated for each combination of one in-
stance of the first type and another one of the second, resulting in a matrix.

3

Guerra

If no type is specified, the domain of the metric is the whole model, and a
scalar is obtained as a result. Attribute subtypeMatching specifies whether the
objects in the domain must have exactly the type specified in the previous list
(value false) or also its subtypes are allowed (value true). In addition, relation
dependency allows a metric to use results calculated by others. A constraint
in the meta-model forbids cycles of dependency relations.

+ name: String {keyword}

+ subtypeMatching: Boolean

+ variableTypes: List of String

Metric

+ name: String {kw}

Action

+ order: integer

firing

+ name: String {keyword}

+ description: String

+ condition: Text

Threshold

+ action: GraphGrammar

ActionGG

+ action: Text

ActionText

Pattern

Cyclomatic
Number

NumberOf
Elements

+ variableTypes: None

ModelOriented

c
y
c
le

e
le

m
e
n

t

+ calculation: Text

User Defined

Inherited
Elements StartPoints

Distance
Matrix

Path
DepthOf

Connections
Direct

+ variableTypes: String

PathOriented

e
le

m
e
n

t

s
te

p

1

Related
Elements

+ variableTypes: String

ElementOriented

re
la

te
d

E
le

m
e

n
t

+ orderType: integer

+ comparison: Enum

{reference,value}

property

Distance

Matrix
Based−Similarity

GroupOriented

0..*

1

1

1

1..* 0..*0..*

0..*

dependency

Fig. 1. Meta-Model for Metrics.

Thresholds can be associated to metrics, and contain a name, a description
and a condition. The latter is a logical expression over metric values. Thresh-
olds may have a number of associated actions that can be fired whenever the
metric makes the threshold condition true. Actions can be described by means
of procedural code (in Phyton), or by means of a graph transformation system.
For space limitations, we leave out the discussion on actions and concentrate
on metrics.

The four categories in our taxonomy of metrics are considered in the meta-
model, all of them inherit from class Metric. Class ModelOriented and its
children implement metrics of the first kind. The domain for the metric is
not a single type of element, but the model itself. That is the reason why
attribute variableTypes is empty. Our language contains two metrics of this
kind. Metric CyclomaticNumber gives the number of cycles in a model. The
user can customize what is considered a cycle by means of a pattern. This
is made of a graph that should be found in the model, and additional graphs
constraining the application of the pattern. We have used a similar approach
to [5] for graph constraints. The structure of patterns is shown in Figure 2 and
discussed in subsection 3.1. Metric NumberOfElements measures the number
of elements of certain type in a model. The elements to measure are given as
a pattern. In this way, we can constraint them (e.g. elements of some type
that are not related to elements of some other type).

4

Guerra

Class ElementOriented corresponds to the second subclassification in our
taxonomy, that is, metrics for properties of single model elements. Therefore,
only one type has to be specified in the domain. Subclass RelatedElements
measures the number of elements of certain kind related to a given one. The
way in which both are related is given as a pattern.

Class GroupOriented corresponds to the third subclassification in our tax-
onomy. We have included just one subclass, DistanceBased-SimilarityMatrix,
which uses the formula for distance presented in [15]. In this way, if two ob-
jects x and y are to be compared, and assume that function b(·) returns the

set of relevant properties for the comparison, function: sim(x, y) = |b(x)∩b(y)|
|b(x)∪b(y)|

gives the similarity between the two elements. The function returns a value
in the [0, 1] range. The lower the value, the less similar the two elements are.
Then, dist(x, y) = 1− sim(x, y) gives the distance between the two elements.
We have generalized this metric to an arbitrary number of elements of dif-
ferent or the same type. For each type, the set of properties to be measured
(function b(·) in the previous formula) has to be specified. This is done with
a pattern for each property and is modelled as a qualified relation between
the subclass and the pattern. Attribute orderType in the relation specifies the
type for which the pattern is given. In addition, the comparison can be made
by reference (i.e. two objects are considered equal if they are the same), or
by value (i.e. two objects are considered equal if all their fields have the same
value).

Class PathOriented represents metrics of the fourth type in the taxonomy.
Our DSVL allows customizing the type of the “node” in the path (attribute
variableTypes), as well as the fundamental step (by means of a pattern). The
result of metric DistanceMatrix is a matrix where each position (i, j) denotes
the distance between element i and j (i.e. the number of steps to reach j
starting from i). Metric StartPoints informs about the elements where a path
begins (these are called base classes for the case of inheritance). Metric Direct-
Connections measures the number of elements than can be directly reached
in one step (e.g. the number of direct children for the case of inheritance).
Metric DepthOfPath obtains the minimum number of steps that are necessary
in order to reach an element starting from a start point (for inheritance this is
the depth of inheritance tree). Finally, metric InheritedElements is applicable
only for inheritance. It measures the number of elements of certain type that
are inherited through an inheritance hierarchy. For example, the number of
methods that a class inherits from its parent classes. In this metric the re-
lation between the element in the path (e.g. class) and the element that is
propagated (e.g. method) has to be given as a pattern.

A fifth metric called UserDefined has been added, so that DSVL designers
can also define other domain specific metrics, different from the previous ones.
The class has a field named calculation that allows the designer to include
Python code to calculate the metric for a value in the domain. This code
is encapsulated in a method that receives as parameters an instance of each

5

Guerra

of the types defined in the inherited field variableTypes and also the hosting
model. The code should return a scalar value as a result of the calculation.
In execution time, the method is consecutively invoked once for each value in
the domain. Note that this is the only metric where the user has to code the
metrics computing procedure, since in the previous ones, the use of patterns
is enough for the customization (and subsequent execution) of the metrics.

3.1 Graph Patterns

premise

+ arguments: List of integer
+ output: List of integer

Pattern

0..*

10..1 positivePattern

applicationConditions
1

+ name: String {keyword}
+ graph: Model

BasicPattern

+ attributeCondition: Text

ApplicationCondition

0..1

0..*

0..1

0..1

consequences

(a)

=
p: P Xi

i
Yi, j

G

x i, j

m
p

x

i q
i, j

=

(b)

Fig. 2. (a) Meta-Model for Patterns and (b) Satisfaction of pattern p by Graph G.

Fig. 2 (a) shows the structure of a pattern. It is made of a positive graph
condition, and a number of extra graph application conditions composed of
a premise graph and a set of consequence graphs. In this way, in order for
a pattern to be satisfied by a graph, an occurrence of the positive graph
condition has to be found. Then, for each application condition, if the premise
graph is found, some of the consequence graphs have to be found as well.
The pattern can also be initialized with a partial match (whose elements are
given by arguments) and produce some output (the elements in the positive
graph condition identified by output). Note how a BasicPattern is made of a
graph condition and an attribute condition, which is expressed in some textual
language (Python in our case).

Formally, a pattern p is defined using a similar approach to [5] for ap-
plication conditions, as p = (P,

∧
i∈I(xi ⇒ ∨j∈Ji

xi,j)), where P is the main
positive pattern (positivePattern in the meta-model) and xi : P → Xi and
xi,j : Xi → Yi,j are injective morphisms (Xi is the premise and Yi,j are the
consequences in the meta-model). In this way, a graph G satisfies p (written
G |= p), if a morphism m : P → G is found. In addition, if an xi is specified
and a morphism pi : Xi → G is found, then some morphism qi,j : Yi,j → G
must also be found, such that both triangles in Fig. 2 (b) commute. Techni-
cally, morphisms m, pi and qi,j are clan-morphisms [1], as instances of abstract
classes may appear in P , Xi and Yi,j, which are mapped into instances of some
class in their inheritance clan. We also require the typing of Yi,j be more con-
crete than the type of Xi, and this one more concrete than the type of P .

There are two special cases in the application conditions. If for some i
no consequence graph is specified, then Xi is a negative application condition
(NAC). On the other hand, if for some i, P ∼= Xi and xi = id, then Yi,j (for

6

Guerra

j ∈ Ji) are positive application conditions.

4 Implementation in AToM3 and Example

AToM3 [9] is a meta-modelling tool for the specification of multi-view DSVLs [7].
It has a generative approach, because starting from a meta-model, it generates
an environment for the defined language. We have recently improved AToM3

by adding a tool for the specification of metrics. In this way, the Metrics
tool enrichs the generated environments for the DSVLs with the possibility
to apply customized metrics to the models. This tool was created in AToM3

itself, using the meta-model in Fig. 1. We completed the meta-model with
some elements for the customization of the DSVL environments where the
metrics are to be executed. In particular, we added an abstract class UIBut-
ton (with a single boolean attribute button) as the parent of classes Metrics
and Actions. Attribute button is set to true if we want to generate a button
to execute the metric or action in the DSVL environment. In addition, class
Metric was provided with two additional attributes. The first one (genReport)
is of type boolean and is selected in order to obtain a report in pdf format
with the metric result. Finally, report is an enumerate type to select whether
the report should show all the obtained values, or only the ones making some
threshold condition true. From the Metrics meta-model, we used AToM3’s
code-generating capabilities to obtain a tool for metrics specification. How-
ever, code had to be added by hand for metrics execution control and pattern
matching.

Labyrinth [4] is a DSVL for the design of hypermedia and web applica-
tions. Hypermedia systems are described as a set of nodes where contents
(text, images, etc.) are placed. Links establish the way in which users can
navigate in the system. Besides, users can assume roles and belong to different
teams from which they receive a set of permissions. Roles and teams can ex-
ecute certain functions if a relation permission exists between them. Besides,
roles and teams can be nested in hierarchical structures by means of relation
composition.

The Ariadne Development Method [3] is based on Labyrinth to build hy-
permedia and web applications. It proposes a set of artefacts or diagrams
that are views of the Labyrinth meta-model. We have used AToM3 to develop
an environment supporting the different Ariadne artefacts. The first step was
defining the meta-model for Labyrinth, as it is shown in the background win-
dow in Fig. 3. More details regarding the definition of this multi-view DSVL
can be found in [7]. Once the meta-model was created, nine different met-
rics were defined using the Metrics tool. This tool can be opened using the
button labelled as “Metrics&Redesign” to the left of the window at the back-
ground. The Metrics tool is shown in the window labelled “2”, and contains
the specification of the metrics.

One of the defined metrics is called Subject Similarity, and is of type

7

Guerra

Fig. 3. Metrics Definition for the DSVL Labyrinth.

DistanceBased-SimilarityMatrix. The dialog box to the right (window 3) cor-
responds to the customization of the attributes for this metric. Attribute
variableTypes contains type lb Subject twice, as we want to compare subjects
to subjects. As it is shown in the meta-model of the main window, a subject
is an abstract class that has two concrete subclasses: lb Role and lb Team.
In fact, we really want to compare subclasses lb Role and lb Team, because
subject is abstract and never appears in any diagram. Therefore, the attribute
subtypeMatching is checked. The list of properties for evaluating the similarity
has also to be customized. In this case we take into account permissions and
attributes for the comparison. This is the reason why the list “properties”
in window 3 contains items Permission and Attribute twice (once for each
subject). Window 4 shows the specification of the property Permission. The
visual pattern that describes such property is shown in windows 5 and 6. In
particular, window 6 shows the positive graph condition of the pattern. It col-
lects the permissions of a certain subject for function execution. In this way,
the access policy can be validated at design time. The argument of this pat-
tern is the element labelled “1” (the subject to be compared) and the output
is element “3” (the function). That is, the subject to be compared is passed
as a partial match to the pattern, and all connected functions are returned as
the result. Nonetheless, these details are hidden to the DSVL designer, who
only has to specify the properties as patterns.

Metrics Number Of Nodes and Number Of Contents in window “2” are cus-
tomizations of the model-oriented metric NumberOfElements. They count the
number of nodes and contents in our system, providing a measure of its size.
In both cases the pattern element simply contains an element of the type to
be counted.

Metric Navigation Paths is used to calculate the length of navigation paths.
It is a customization of metric DistanceMatrix. This metric gives a measure
of the minimum number of hyperlinks that a user has to navigate from a

8

Guerra

page to another one. It is very useful to detect isolated pages or pages of
hard access. For this metric, variableTypes contains a node of information.
Hyperlinks in Labyrinth are expressed with a class named Link connected to
source and target classes Anchor, which in their turn are connected to the
source and target Nodes. This navigation step has been easily expressed with
a pattern, as it is shown in Fig. 4. The argument of the pattern is the element
labelled “1”, and the output is the one labelled “9”. Thus, the target node of
a navigation step (output) will be the source of the following step (argument).
As before, the implementation details are hidden to the DSVL designer, who
only has to specify the navigation step as a visual pattern, without coding.

Fig. 4. Pattern for the Specificacion of a Step in Metric Navigation Paths.

User defined metrics Stratum and Compactness [2] are oriented to the hy-
permedia domain. The first one is a measure of the linearity of the navigation
path and may take values between 0 and 1. The lower the value, the less lin-
ear is the path. Compactness is a measure of the degree of connectivity of the
navigation graph and also takes values between 0 and 1. The lower the value
the less connected is the graph. Both metrics are based on the calculation
of a distance matrix using the length of the paths between two nodes. This
is the reason of the dependency relations between these two metrics and the
distance matrix Navigation Paths.

Finally, we have defined three metrics that are generalizations of existing
metrics in the object oriented domain. Metric Permission Inh Factor (PIF)
calculates the inherited permission ratio, being an indicator of the reuse. It is
a particularization of metrics Method and Attribute Inheritance Factor (MIF
and AIF respectively) in the object oriented domain [16]. It is the sum of all
the permissions inherited by subjets (roles and teams) divided by the total
number of defined permissions (locals and inherited). We have defined auxil-
iary metrics Subject Inh Permissions and Subject Permissions to calculate the
factors of this division. The first one is a customization of the path-oriented
metric InheritedElements, and the second one of the element-oriented metric
RelatedElements. Then, the PIF metric can be calculated from them using
a couple of dependency relations. For the two auxiliary metrics no button is
generated in the final environment (attribute button is set to false).

Fig. 5 (a) shows the environment generated for Labyrinth from the previous
definition. In the window at the background, the buttons in white allow
the creation of new instances of the Ariadne artefacts. A new artefact is
represented as a box in the window canvas, which later can be edited to

9

Guerra

(a) Generated Environment (b) Generated Report

Fig. 5. Calculation of Metric Subject Similarity on a Model.

include the model. The buttons in grey allow executing the previously defined
metrics on the current models. The execution of a metric on a model generates
a pdf document where the result is shown as a table. For example, Fig. 5 (b)
shows the document obtained after executing metric Subject Similarity on the
model shown in the foreground window to the left. It can be observed that
roles Coordinator and Teacher are quite similar (distance of 0.167) because
they share four functions and one attribute. On the other hand, these two
roles are quite different from role Student. The application designer could use
these results to improve the design by adding a parent role common to both
Coordinator and Teacher, and pulling up the common properties. This could
be done using the actions in our Metrics DSVL. Note also how sometimes (as
in the present case), metrics are not taken on isolated diagrams (which may
only contain partial information), but on a repository model (see [7]), which
contains the union of all the diagrams created by the user.

Fig. 6 shows another sample of metrics execution. To the right it is partially
shown the report generated by the execution of metric Navigation Paths on
the model to the left. The report shows the minimum number of steps to
reach a node from another one. A number of steps equals to -1 indicates that
the second node is not reachable from the first one. Node Services is isolated
since it has a distance -1 from and to any other node.

10

Guerra

(a) A Model (b) Generated Report

Fig. 6. Calculation of Metric Navigation Path on a Model.

5 Conclusions and Future work

In this work, we have presented a taxonomy of product metrics, together
with a DSVL (called Metrics) for specifying metrics for other DSVLs. Our
language makes easy the customization of metrics by means of graph patterns.
We have implemented these concepts in the meta-modelling tool AToM3 and
shown some examples in the hypermedia domain. The example showed how
the use of metrics is especially interesting in the early phases of development in
order to improve the design or detect quality defects prior to implementation.

There are a variety of tools which incorporate functionalities for obtain-
ing metrics. Some of them are for the implementation phase [8], and some
others for the analysis and design phases [14]. Nonetheless, the set of metrics
they provide is usually hard-coded and the possibilities of extension are very
limited. One exception is the SDMetric tool [14], which allows the definition
of metrics for UML using a relational-like language based on XML. Our ap-
proach is more general, as we are not restricted to UML, but we can define
metrics for any DSVL. In addition, our Metrics language is visual, allowing
the customization of metrics in a graphical and declarative way. In the area
of meta-CASE tools, our work is also original. There is a plethora of this kind
of tools (such as GME [10] or MetaEdit+ [12]), but to our knowledge none of
them support the definition of metrics.

The presented meta-model is complete in the sense that it is possible to
define any metric different from the already generalized ones by using the
UserDefined metric. Nonetheless, we are currently working in generalizing
additional metrics, and on their application to the hypermedia domain. We
are also working in general analysis techniques for multi-view DSVLs.

Acknowledgements: This work has been partially supported by the
Spanish Ministry of Education and Science with projects MD2 (TIC200303654)
and MOSAIC (TSI2005-08225-C07-06).

11

Guerra

References

[1] Bardohl, R., Ehrig, H., de Lara, J. and Taentzer, G. 2004. Integrating Meta-
Modelling Aspects with Graph Transformation for Efficient Visual Language
Definition and Model Manipulation. FASE. LNCS 2984, pp.: 214-228. Springer.

[2] Botafogo, R. A., Rivlin, E., and Shneiderman, B. 1992. Structural analysis of
hypertexts: identifying hierarchies and useful metrics. In ACM Trans. Inf. Syst.,
10(2):142–180.

[3] Dı́az, P., Montero, S., Aedo, I. 2005. Modeling hypermedia and web applications:
the Ariadne Development Method. Information Systems, Vol 30(8). pp.: 649-673.

[4] Dı́az, P., Aedo, I., Panetsos, F. 2001. Modeling the Dynamic Behavior of
Hypermedia Applications. IEEE Trans. on Soft. Eng., 27 (6). pp.: 550-572.

[5] Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H. 2004. Constraints and
Application Conditions: From Graphs to High-Level Structures. ICGT’04, LNCS
3256, pp.: 287-303. Springer.

[6] Fenton, N. E., Pfleeger, S. L. 1998. Software Metrics: A Rigorous and Practical
Approach (2nd edition). PWS.

[7] Guerra, E., Dı́az, P., de Lara, J. 2005. A Formal Approach to the Generation
of Visual Language Environments Supporting Multiple Views. Proc. of IEEE
VL/HCC’05, Dallas, USA, pp.: 284-286.

[8] Jmetric home page: http://www.it.swin.edu.au/projects/jmetric

[9] de Lara, J., Vangheluwe, H. 2002. AToM3: A Tool for Multi-Formalism
Modelling and Meta-Modelling. FASE’02, LNCS 2306, pp.: 174-188. Springer.

[10] Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., Nordstrom, G., Sprinkle, J.,
Karsai, G. 2001. Composing Domain-Specific Design Environments. IEEE
Computer. pp.: 44-51.

[11] McCabe, T. J. 1976. A complexity measure, IEEE Transactions on Software
Engineering SE-2, 308–319.

[12] Pohjonen, R., Tolvanen, J-P. 2002. Automated Production of Family Members:
Lessons Learned. Proc. of PLEES’02, Seattle, USA. pp.: 49-57.

[13] Rozenberg, G. (ed). 1999. Handbook of Graph Grammars and Computing by
Graph Transformation. Vol 1. World Scientific.

[14] SDMetric home page: http://www.sdmetrics.com

[15] Simon, F., Löffler, S., Lewerentz, C. 1999. Distance Based Cohesion Measuring.
Proc. 2nd European Software Measurement Conference, pp.: 69-83.

[16] Vázquez, P.J., Moreno, M. N., Garćıa, F. J. 2001. Métricas Orientadas a
Objetos. (In Spanish). Technical Report DPTOIA-IT-2001-02. University of
Salamanca.

12

