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Abstract. In this paper, we present our approach for model view man-
agement in the context of Multi-View Visual Languages (MVVLs). These
are made of a number of diagram types (or viewpoints) that can be used
for the specification of the different aspects of a system. Therefore, the
user can build different system views conform to the viewpoints, which
are merged in a repository in order to perform consistency checking. In
addition, the user can define derived views by means of graph query pat-
terns in order to extract information from a base model (a system view
or the repository). We have provided automatic mechanisms to keep syn-
chronized the base model and the derived view when the former changes.
Predefined queries by the MVVL designer result in so-called audience-
oriented views. Finally, semantic views are used for analysing the system
by its translation into a semantic domain.

Our approach is based on meta-modelling to describe the syntax of the
MVVL and each viewpoint, and on triple graph transformation systems
to synchronize and maintain correspondences between the system views
and the repository, as well as between the derived, audience-oriented
and semantic views and the base models. We illustrate these concepts by
means of an example in the domain of security for web systems.

1 Introduction

Visual Languages (VLs) are extensively used in many engineering activities for
the specification and design of systems. As these become more complex, there is
a need to split specifications into smaller, more comprehensible parts that use the
most appropriate notation. Thus, there are VLs (such as UML) made of a family
of diagram types, which can be used for the description of the different aspects
of a system. We call such VLs Multi-View Visual Languages (MVVLs) [5]. In
these languages, the user has a need of building models (using the different
diagram types) and check their consistency; of querying models to obtain partial
models; and of transforming models into other formalisms. All these artefacts
can be considered different kinds of views of the system. This necessity has been
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recently recognised by the OMG by defining a standard language for expressing
Queries, Views and Transformations (QVT, see [11]).

Our approach for model view management is based on meta-modelling and
graph transformation. With meta-modelling, we define the syntax of the com-
plete MVVL. Each diagram type (or viewpoint) has its own meta-model too,
which is a part of the complete MVVL meta-model. At the model level, the
user builds different system views conform to a viewpoint meta-model. System
views are merged together in a unique model called repository. Triple Graph
Transformation Systems (TGTSs) automatically derived from the meta-models
perform the merging, allow incremental updates and relate the system views and
the repository. They also provide syntactic consistency and change propagation
from one view to the others (i.e. they are bidirectional). In addition, it is pos-
sible to generate TGTSs modelling different behaviours for view management
(e.g. cascading deletion vs. conservative deletion of elements).

We also present graph query patterns as a declarative visual query language
to obtain derived views (in the sense of QVT [11]) from a base model. Starting
from the patterns, a TGTS is automatically generated to build the derived view
and maintain it consistent with respect to changes in the base model (i.e. derived
views are incremental). If the query is predefined by the MVVL designer and
later used by a specific kind of user, we call it audience-oriented view.

Finally, the system views (or the repository) can be translated into another
formalism for dynamic semantics checking, analysis and simulation. We call the
target model semantic view. The MVVL designer defines the translation by
means of a TGTS that establishes correspondences between the elements in the
source model and its semantic view. Thus, the results of the analysis can be back
annotated and shown in the base model, likely more intuitive for the user.

The main contribution of this paper is the use of a uniform specification of the
different kinds of views by means of meta-modelling and TGTSs. Moreover, we
propose graph query patterns to specify derived views, together with mechanisms
to automatically obtain TGTSs that build the view. In [5] we presented the first
steps towards the definition of MVVLs, where we only considered system views.
We have extended previous work, as we now consider other kinds of views, and
improve system views by allowing configurable behavioural patterns. This work
is founded in an extension of the classical notion of Triple Graph Grammars
(TGGs) by Schürr [13]. In its original sense, a TGG is a grammar that generates
a language of triple graphs, from which triple rules implementing forward or
backward translations are derived. In our case, we generate the TGTSs that
implement translations and propagation of updates from meta-models or queries.
In addition, our TGTSs are formally defined in the double pushout approach
(DPO), and extend triple graphs with inheritance and more flexible morphisms
in the correspondence graph (see [6] for details).

The paper is organized as follows. Section 2 presents an overview of our
formalization of TGTSs. Section 3 shows our approach for defining the syntax of
MVVLs and handling system views. In subsection 3.1, we describe several ways
of configuring the behaviour of a modelling environment to manage the system
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views. Section 4 describes graph query patterns and how TGTSs to build the
derived view are obtained from them. Section 5 shows how to define a semantic
view. Section 6 compares with related research. Finally, section 7 ends with the
conclusions and further research. In all sections, we illustrate the concepts with
an example of MVVL in the domain of security for web systems.

2 Triple Graph Transformation Systems

TGTSs model transformations of triple graphs, which are made of three separate
graphs: source, target and correspondence. As originally defined [13], nodes in
the correspondence graph had morphisms to nodes in the source and target
graphs. We have extended the notion of triple graph by allowing attributes on
nodes and edges. Moreover, the relation between the source and target graphs
is more flexible, as we allow morphisms from nodes in the correspondence graph
to nodes and edges in the other two graphs, as well as being undefined. Finally,
we also provide triple graphs with a typing by a triple type graph (similar to
a triple meta-model) which may contain inheritance relations between nodes or
edges. We follow the DPO approach [3] for the formalization of triple graph rules
(see [6] for details). Here, for space limitations, we only present a brief summary.

Our triple graphs are based on the notion of E − graph [3], which extends
regular graphs with node and edge attribution. Attribute values are indeed data
nodes, while attributes are edges connecting graph nodes and edges with data
nodes. We define a TriE − graph as three E-graphs (source, correspondence
and target) and two correspondence functions c1 and c2. The correspondence
functions are defined from the nodes in the correspondence graph to nodes and
edges in the other two graphs. In addition, the functions can be undefined.
This is modelled with a special element in the codomain (named “·”). Visually,
this is denoted as a correspondence graph node from which some of the corre-
spondence functions are missing (see for example rules in Fig. 7). TriE-graph
objects and morphisms form category TriEGraph. In order to structure the
data values in sorts and make operations available, TriE-graphs are provided
with an algebra over a suitable signature, resulting in category TriAGraph.
Finally, we provide TriAGraphs with a typing by defining a triple type graph
(similar to a meta-model triple). This is an attributed triple graph where the
algebra is final. The typing is a TriAGraph-morphism from the graph to the
type graph. Indeed, attributed typed triple graphs (short ATT-graphs) can be
modelled as objects in the slice category TriAGraph/TriATG, which we write
as TriAGraphTriATG. In [6] we extend type graphs and triple graph rules with
inheritance for nodes and edges.

Fig. 1 shows an ATT-graph that relates a source Role Based Access Con-
trol model [4] (up) and a target Coloured Petri Net [9] (down). Its meta-model
triple is not shown in the paper for space constraints, although the part that
corresponds to the source type graph is shown on the upper part of Fig. 4.

We manipulate ATT-graphs by means of DPO triple rules. In the DPO ap-
proach, rules are modelled using three components: L, K and R. The L compo-
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:Node

name = "info"
URL = "info.jsp"
homePage = false

:Permission

operation=editing

:User

name = "john"

:Role

name = "role1"

:Node

name = "login"
URL = "login.html"
homePage = true

:ArcIn

bind="(id,roles)"

:Transition

guard = "if roles.exists(’role1’):
                true
             false"

:ArcOut

expr="(id,roles)"

:Place

name = "info"
type = "STRING x list STRING"

:assigned :link
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:in:Token

type = "STRING x list STRING"
data = ("john",["role1"])

:Place

name = "login"
type = "STRING x list STRING"

Fig. 1. An Attributed Typed Triple Graph.

nent (or left hand side, LHS) contains the elements to be found in the structure
(a graph, a Petri net, etc.) where the rule is applied. K (the kernel) contains
the elements preserved by the rule application. Finally, R (the right hand side,
RHS) contains the elements that should replace the part identified by L in the
structure. Therefore, L−K are the elements that should be deleted by the rule
application, while R−K are the elements that should be added. Note that DPO
transformation has been lifted to work not only in the Graph category, but
also with any (weak) adhesive HLR category [3]. In [6] we show that category
TriAGraphTriATG is an adhesive HLR category. Therefore, in our case, L, K
and R are ATT-graphs.

In addition, we provide triple rules with a set of application conditions that
restrict their applicability. An application condition c = (X, X

yi−→ Yi) has
a premise ATT-graph X, a set of consequent ATT-graphs Yi, and morphisms
yi from X to each Yi. In order to apply a rule, if a match of X is found in
the host ATT-graph, then a match of some Yi has also to be found. If the
application condition does not have any consequent ATT-graph, finding a match
of the premise forbids the rule application. This is a special case of condition
called negative application condition (NAC). On the contrary, if the premise is
isomorphic to the LHS, then this is a positive application condition (PAC). We
use a shortcut notation for application conditions: the subgraph of L (resp. X)
that does not have an image in X (resp. Yi) is isomorphically copied into X
(resp. Yi) and appropriately linked with their elements.

Fig. 2 shows a triple rule. It creates a place in the target graph (lower part)
and relates it with an existing node in the source graph (upper part). The NAC
forbids the rule application if the node is related to a place. The K component
is omitted for clarity. It contains the common elements of LHS and RHS (i.e.
node labelled “1”). We will use such notation throughout the paper.

3 Multi-View Visual Languages: System Views

MVVLs are made of a set of diagram types, each one of them defined by its own
meta-model and dealing with a different viewpoint of the system [5]. However,
all these separate definitions are based on a unique meta-model that relates



5

1

T
ar

ge
t G

ra
ph

:Node

name = nName

LHS:

4

5

:Node

name = nName

:Place

name = nName
type = "STRING x list STRING"

RHS:
1

2

3

S
ou

rc
e 

G
ra

ph

Nodes2Places:

:Node

name = nName

:Place

NAC:
1

Fig. 2. An Attributed Typed Triple Graph Rule.

their abstract syntax concepts. This is for example the approach of UML2.0.
The different viewpoints may overlap in this unique meta-model. It is key to
identify the overlapping parts for each pair of viewpoints in order to be able
to maintain them coherent through their common elements. Fig. 3 expresses
this situation in categorical terms. Thus, a MVVL is defined by means of an
attributed type graph TGMV V L (i.e. its meta-model). The different viewpoints
TGV P are inclusions of it, although in a more general approach they can be any
function. For each two viewpoints TGV Pi and TGV Pj , the overlapping part Ii,j

is calculated as the pullback of its respective type graphs and TGMV V L. Thus,
idi ◦ oi,j = idj ◦ oj,i. At the model level, the user builds system views conform
to some viewpoint (i.e. a typing morphism exists from each system view to a
viewpoint). Note how there might be more than one system view for the same
viewpoint. In order to guarantee syntactic consistency, a repository model is built
by merging all the system views. The repository is the colimit of the views, and
there is a typing morphism from it to the MVVL type graph.
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Fig. 3. Multi-View Visual Language Definition in Categorical Terms.

In our approach, the merging operation is performed by TGTSs automatically
derived from the meta-model information. Note how updating the repository
(because of a system view modification) may leave other views in an inconsistent
state. At this point, other automatically generated TGTSs update the rest of
the views. The identification of the overlapping of each two viewpoints helps to
minimize the rules that must be tried in this change propagation. In this way,
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we have TGTSs that propagate changes in the two directions in consecutive
steps: first from the views to the repository, and then the other way round
(if necessary). This is similar to the Model-View-Controller pattern. For static
semantics consistency the MVVL designer may provide additional triple rules.
In this way, both syntax and static semantics can be checked in a uniform way.

In order to illustrate these concepts, as well as the ones presented in the
following sections, we introduce a case study for modelling a Role Based Access
Control (RBAC) [4] for web systems3. Its meta-model is shown in the upper
part of Fig. 4. Briefly, a web application is made of nodes with a name and a
URL, where one of the nodes is the home page. Navigation between nodes is
modelled by means of relation “link”. In addition, roles can be defined with a
set of permissions for accessing nodes. Roles are nested in hierarchies through
relation “contains”, and inherit all permissions of reachable roles through such
relation. Finally, users can be assigned a set of roles, from which they obtain the
permissions for interacting with the system.

User

+ name: String {keyword}

contains

assigned

User Diagram Meta−Model

Role

+ name: String {keyword}

Node

+ name: String {keyword}

Permission

    {browsing,editing}

+ operation: Enum

Node

Node

+ homePage: Boolean

+ name: String {keyword}

+ URL : String
link

Navigation Diagram Meta−Model

Role

+ name: String {keyword}

+ homePage: Boolean

+ name: String {keyword}

+ URL : String
contains link

assigned

Viewpoint Viewpoint Viewpoint

Permission Diagram Meta−Model

VL Meta−Model
Complete

Role

+ name: String {keyword}

User

+ name: String {keyword}

Permission

    {browsing,editing}

+ operation: Enum

Fig. 4. Definition of a Role Based Access Control for Web-Based Systems.

This meta-model comprises the structure of the web system as well as its
security policy. However, it is more suitable to handle each aspect in separate
diagrams. Thus, we specify three viewpoints on the MVVL meta-model. The
first one (Navigation Diagram) is used for specifying the web structure, and it
only contains nodes and links. The second one (User Diagram) is used for speci-
fying role hierarchies and their assignment to users. It contains roles, users, and
relations “contains” and “assigned”. The third viewpoint (Permission Diagram)
allows assigning permissions to roles. It contains roles, nodes and permissions.

3 We do not consider the internal structure of web pages for simplicity.
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Note how in this view we are only interested in identifying the node, therefore
only its attribute “name” is relevant.

From this definition, a TGTS is automatically generated between each view-
point and the repository. Their purpose is building the repository model from
the system views. The transformation systems contain the rules shown in Fig. 5
for each concrete class and association4 in the viewpoint. We only show the rules
for class “Role”. The first creation rule adds a role to the repository if, given
a new role in a view, it does not exist in the repository yet (NAC1). NAC2 is
needed to prevent creating a new role in the repository when changing the name
of an existing role in the view (i.e. with an associated role in the repository).
The second creation rule relates a new role in a view with the same role in
the repository. This means that the role was previously created and added to
the repository from another view. Attribute “refcount” counts how many times
a role appears in different views. When a role is added to the repository, the
counter is set to 1; each time the same role is added to any view, the counter
is incremented. The first deletion rule detects when a role is removed from a
view (i.e. the correspondence function to the view is undefined for a role in the
repository), and decrements the “refcount” attribute. When the counter reaches
zero, this means that the role does not appear in any view, so it is removed from
the repository by the second deletion rule. Finally, the editing rule propagates
changes in the attributes from the roles in the views to the corresponding roles
in the repository.
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CONDITION: x!=y

Editing Rule:

:Role

name = rName
refcount = 1

:Role

name = rName

Fig. 5. Triple Graph Rules for Building the Repository.

4 An association is not unambiguously identified by its source and target. Thus, we
relate associations in views with the corresponding ones in the repository for change
propagation. This is possible as we allow correspondence functions to edges [6].
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Other TGTSs (one for each viewpoint) are automatically generated which
propagate changes in attribute values from the repository to the other system
views. These are made of just one kind of rule, like the one shown in Fig. 6.
These transformation systems are applied only when the repository has changed
due to the execution of one of the former TGTSs.

:Role

attribute = x

Propagation Rule:

:Role

attribute = y

:Role

attribute = x

RHS:

3

2

1

CONDITION: x!=y

S
ys

t. 
V

ie
w

R
ep

os
ito

ry

LHS:

3

2

1

:Role

attribute = x

Fig. 6. Triple Graph Rules for Change Propagation.

3.1 Configurable Behavioural Patterns

The presented TGTSs determine the behaviour of the MVVL modelling tool.
However, a different behaviour can be more appropriate for a given MVVL. For
this reason, we provide a catalogue of different behavioural patterns to configure
the behaviour of the modelling tool. Different sets of automatically generated
rules are added to the consistency TGTSs depending on the desired behaviour.

For example, the deletion rules in Fig. 5 perform a conservative deletion
(i.e. a role is deleted from the repository only when the user has deleted all
its instances from the views). On the contrary, cascading deletion implies that
when an element is removed from a view, it is also removed from any other view
and the repository. Such behaviour can be provided by replacing the previous
deletion rules by the ones shown in Fig. 7. The first two rules belong to the
TGTS for building the repository. The first one detects when a role has been
removed from a view (i.e. the correspondence function to the view for the role
in the repository is undefined), and then removes it from the repository. The
dangling condition forbids the rule application when the role has incoming or
outgoing relations. The second rule handles the deletion of one of such relations.
Similar rules are generated for each possible incoming and outgoing relation to
a role. Note how the rule is applied to the triple graph relating a particular view
and the repository; therefore, correspondence relations from the same node to
elements in other views are not part of the graph.

Other rules propagate the deletion of elements from the repository to the
other views. Some of them are shown to the right of Fig. 7. The first rule deletes
a role from a view if it is not in the repository. The dangling condition forbids the
rule application if the role has some incoming or outgoing relation. The following
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Fig. 7. Cascading Deletion by means of Triple Graph Rules.

rule (and other similar ones for each possible type of relation) handles this. It
can be noted how this behavioural pattern does not need attribute “refcount”.

The presented TGTSs are asynchronous. They are executed when the user
finishes editing a system view and validates the changes. In addition, there are
also synchronous behavioural patterns that execute a TGTS in response to a user
action (e.g. a creation). One example is the behavioural pattern for intelligent
creation. This creates one rule for each type in the complete MVVL meta-model
that is immediately executed after creating a new element of such type in a view
and specifying its keyword. The rule copies the value of the attributes from the
same element in the repository (if exists) to the element in the view.

4 Derived and Audience-Oriented Views

In addition to adding information to the system, there is a necessity of extracting
information from it. In this way, a derived view is defined as a sub-model that
contains part of another model, called base model. The users of a modelling tool
can define derived views. However, there is also the possibility for the MVVL
designer to predefine derived views oriented to certain type of final user. We
call them audience-oriented views. For both kinds of views, we propose the use
of a kind of declarative, visual queries called graph query patterns. These are
evaluated on a base model G (a system view or the repository) to obtain the
derived view V Q. A query pattern Q = (TGQ, {(PQ

i , Pi)}i∈I , {(NQ
j , Nj)}j∈J ) is

made of:

– a meta-model TGQ. It is a restriction of the base model’s meta-model TG.
– a set of positive restrictions Pi. They are patterns that have to be present

in the base model for an element to be included in the derived view. PQ
i

contains the element of Pi to which the restriction is applied. Whereas Pi is
typed over TG, PQ

i is typed over TGQ. Several positive restrictions applied
on the same type have a meaning of “or”; if the restrictions apply on different
types, they have a meaning of “and”.

– a set of negative restrictions Nj . They are patterns that must not be ful-
filled by the elements included in the derived view. As before, a subgraph
NQ

j contains the element where the restriction is applied. Several negative
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restrictions applied on the same or different types have a meaning of “and”
(all have to be fulfilled).

Fig. 8 shows a diagram with a query pattern evaluated on a base model G
(the typing of the restriction graphs has been omitted for clarity). In a first
step, the pullback object V G of idTGQ : TGQ → TG and typeG : G → TG is
calculated (square (1) in the figure). V G is the restriction of G by meta-model
TGQ. In a second step, graph V G is further restricted to take into account the
restrictions of the query pattern. Thus, for each match pil of a positive restriction
Pi, the element identified by PQ

i has to be included in V Q, such that square (2)
commutes5. Moreover, if a matching nQ

jk from a negative restriction NQ
j is found

on V Q, then no matching njk must be found from Nj to G such that square
idV G ◦ idV Q ◦ nQ

jk = njk ◦ idNQ
j

commutes. Thus, for an element x with type

typeV Q(x) to be included in V Q, it has to fulfill some of the positive restrictions
and all the negative ones defined in the query pattern for such type6.

TGQ Â Ä
id

T GQ // TG

V Q

type
V Qyyy

<<yyy

Â Ä
id

V Q // V G Â Ä
id

V G //

type
V GEEE

bbEEE
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n
Q
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º w
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Q
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44P Q
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Q
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Â Ä id
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Q
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//
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pil~~~~

>>~~~~

Nj

/

ll

njk

Fig. 8. Query Pattern Evaluated on graph G to obtain the Derived View V Q.

As an example, Fig. 9(a) shows a graph query pattern to be executed on
the repository model. It defines a derived view, which should contain nodes and
links (modelled by graph TGQ in the query pattern). The derived view should
include nodes for which no role is allowed to access (negative restriction N1), and
which are source or target of a link (positive restrictions P1 and P2). That is, the
derived view contains those nodes that are not isolated in the navigation design
but for which nobody has been granted access permission. On the other hand,
Fig. 9(b) contains a graph query pattern defining an audience-oriented view
with the role hierarchy extracted from the repository. In this case, it is enough
to express the TGQ component, since no additional restriction is imposed.

5 In general, P Q
i is not the pullback object of TGQ, Pi and TG

6 By now, we only allow subgraphs P Q
i and NQ

j to contain either a node for specifying
restrictions on the node, or an arrow between two nodes for specifying restrictions
on the arrow. Restrictions that apply to more complex graphs are up to future work.
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N   :1 :Node
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(a) Derived View Definition.

TG   :

Role

+ name: String {keyword}
contains

Q

(b) Audience-Oriented
View Definition.

Fig. 9. Graph Query Patterns for the Example.

In order to evaluate a graph query pattern on a base model, a TGTS is
automatically generated from the pattern. This TGTS creates the derived view,
as well as correspondences between its elements and the base model elements.
Afterwards, if the base model changes, the TGTS also propagates the changes
to the derived view, taking into account the negative and positive restrictions.

Formally, given a query pattern Q to be applied on a base model typed
over TG, the triples rules generated for it can be expressed as TGTS(Q,TG) =
{CN , CE , EN , EE , DN , DE}. Set CN (resp. CE) contains the rules that copy
the nodes (resp. edges) of the types in TGQ from the base model to the derived
view. Sets EN and EE contain the rules that copy the attributes from nodes and
edges in the base model to the derived view. Finally, DN and DE contain rules
that delete nodes and edges from the derived view when they are removed from
the base model, or when they (or their context) change and are not consistent
with the query pattern restrictions. Positive restrictions in the query pattern
are transformed into PACs of the rules in Ci, and into NACs of additional
deletion rules in Di. More precisely, an extra deletion rule is added to Di for each
set of positive restrictions applied on the same type. On the contrary, negative
restrictions are transformed into NACs of the rules in Ci, and into PACs of
additional deletion rules in Di. This time one deletion rule is created for each
negative restriction, independently of the type where the restriction is applied.
Due to the simplicity of our rules, we can easily translate the graph constraints
into application conditions [7].

Fig. 10 shows the derived rules for class “Node” from the query pattern in
Fig. 9(a). The lower part of the rules corresponds to the base model, and the
upper part to the derived view to be created. Creation rules, as the one in the
figure, always contain the LHS, RHS and NAC1 by default. In addition, for this
example, the positive restrictions P1 and P2 are transformed into the application
condition (X3, X3 → Y 31, X3 → Y 32). Thus, a node is added to the derived
view only if it is source (Y 31) or target (Y 32) of a link. Besides, the negative
restriction N1 is transformed into the application condition NAC2. Thus, a node
is not added to the view if some role can access it. The editing rule simply copies
the value of the attributes from the nodes in the repository to the nodes in the
derived view.
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Fig. 10. Triple Graph Transformation System Derived from a Graph Query Pattern.

Creation and editing rules are enough for building the derived view. However,
a subsequent change in the base model may produce the addition of an element
in the view if it fulfills the query pattern; or its deletion if it does not fulfill
the query pattern anymore. The former is taken into account by the creation
and editing rules. The latter is provided by the deletion rules. The first deletion
rule in Fig. 10 removes a node from the view if it does not appear in the base
model (i.e. the correspondence function to the base model is undefined). The
second rule is derived from the positive restrictions P1 and P2. In this way, if a
node is neither source nor target of a link, but it appears in the view, it has to
be removed from it. The third rule is derived from the negative restriction N1.
Note how a change in any system view is propagated by the consistency TGTSs
(Fig. 5) to the repository, and from there, to the derived view by this TGTS.

Fig. 11 shows the derived view that results from the application of the query
pattern in Figure 9(a) to a repository model. It contains all the repository nodes
except “login” (since it does not satisfy the negative restriction, that is, a role has
an editing permission on it) and “admin” (since it does not satisfy the positive
restrictions, that is, it is neither source nor target of a link). The links between
the nodes are also copied to the view, since they were specified in the TGQ

component of the query pattern. No other types are copied.

5 Semantic Views

Semantic views are parts of the system expressed in other formalism for dynamic
semantics checking, analysis and simulation. With this purpose, the MVVL de-
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signer can define a TGTS to generate the target model (or semantic view) from
a source model (usually the repository, but also audience-oriented and system
views). This allows keeping correspondences between the elements of both mod-
els, in such a way that the results of analysing the semantic model could be back
annotated to the source model.

For example, rules in Figs. 2 and 12 form a TGTS that generates a semantic
view of the repository by translating it into a Coloured Petri Net (CPN) [9].
Thus, source graphs in the rules (up) have to conform to the complete MVVL
meta-model shown in Fig. 4. Target graphs (down) have to conform to a CPN
meta-model, not shown in the paper for space constraints. This contains places
with a type, transitions with a guard, tokens with a type and data value, and arcs
from places to transitions and the other way round (the former with a binding
of the token data values to variables, and the latter with an expression that is
evaluated on such data values to change its value). There is also a meta-model
for the correspondence graph, which is not shown.

Rule Users2Tokens creates a token for each user. The token has type STRING
× list STRING and stores the user name and a list with its assigned roles (ini-
tially empty). The NAC forbids multiple applications of the rule for the same
user. Next, rule Assignments2DataValues builds such list of assigned roles. Thus,
each role assigned to a user is added to the second component of the data value
of the corresponding token. Rule Nodes2Places in Fig. 2 creates a place for each
node in the source model. Its type is STRING×list STRING, since it will con-
tain tokens of such type. Rule UsersAtHome puts tokens into the place that cor-
responds to the homepage. Rule Links2Transitions translates each link between
two nodes into a transition between the places that correspond to the nodes.
The incoming arc to the transition binds the type of tokens to the variables id
and roles. Their value does not change when the transition is fired. However,
the transition has a guard that forbids tokens without certain permissions to
pass through. Note how, in this rule we associate nodes of type Transition with
edges of type link. Rule Permissions2Guards builds the guard expression. Thus,
each permission given to a role to access a node is transformed into a condition
that is evaluated to true in the guard. If a token has one of the roles allowed by
the transition, it can pass through. Finally, rule InheritedPermissions2Guards
allows inheritance of permissions. Thus, if a role contains another role that can
access certain node, then the former can access it as well. The rule modifies the
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Fig. 12. Semantic View Definition by means of a Triple Graph Transformation System.

guard of the transition in order to allow the container access the place related to
the node. Note how, this TGTS has the potential to be incremental by adding
rules for creation, deletion and edition (as previously done for system views) for
each element in the source model meta-model.

Fig. 1 shows the ATT-graph resulting from the application of this TGTS to
the source model in the upper part. Thus, the lower model is its CPN semantic
view. It is possible to analyse the CPN, for example, to check the navigation
paths for a certain user or to find unreachable nodes for any user.

6 Related Work

TGTSs are a natural approach to handle views and model transformations. For
example, [8] proposes TGGs for view creation. They work with views that can
be considered model transformations, similar to our semantic views. They do
not consider neither system nor derived views. Moreover, our formalization of
triple rules [6] is more expressive as we allow attributes on nodes and edges,
more flexible correspondence functions, application conditions and inheritance.
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This work is also related to views in database systems [14]. These are virtual
relations over a set of real data that are made visible to the user with the purpose
of hiding information, or presenting such information in a more adequate way.
Such views are defined as the result of a query (in a similar way as our derived
views), and present problems for updating the real data as a result of a change
in the view [10]. Our work is also related to the problem of consistency of repli-
cated and fragmented data in distributed databases [14]. However, our concept
of repository (i.e. we have a centralized control) and the model view controller
approach we follow permits an easy solution to the consistency problem.

There are other approaches in the literature to express queries with graphs.
For example, in VIATRA [1], queries on graphs can be expressed by generalized
(recursive) graph patterns, which may contain a nesting of positive and negative
patterns of arbitrary depth. Rensink [12] showed that this possibility is indeed
equivalent in expressive power to first order logic. However, incremental trans-
formations are not supported in VIATRA. Other possibility for queries is to use
a textual notation, such as OCL [15]. We believe using a graphical approach
makes the expression of complex structural patterns easier (in OCL it has to be
coded by navigating between the relations), and may be more appropriate for
non-computer scientists (patterns use the graphical notation of the given VL).
On the other hand, OCL is much more expressive than our patterns (with only
one level of nesting), and allows for example to express the absence of cycles.
Graph patterns have been discussed extensively in the literature [3], especially
its connection with application conditions for rules [7].

The QVT [11] specification includes a facility for queries (in addition to
OCL), the helper, which allows combining blocks of expressions in a procedural
way. Besides, it is also possible to define transformation rules to extract a derived
view from a base model in the way we have presented here. Nonetheless, our
approach is higher-level and declarative: starting from visual patterns, the rules
that perform the transformation are automatically generated. By using QVT,
the transformation to extract the view has to be coded by hand. As in our
approach, QVT provides a mechanism (similar to the correspondence graph in
triple graphs) for leaving traces (mappings) between the source and the target
model, which allows a bidirectional update.

7 Conclusions and Future Work

In this paper we have proposed an approach for the uniform specification and
handling of the different kind of views in MVVLs. The approach is based on meta-
modelling for describing the syntax of the MVVL and its different diagram types.
From the meta-models, triple rules are derived in order to build a unique model
from the different system views that the user inputs, and to keep them consistent.
Several alternative rules allow configuring the behaviour of the MVVL modelling
environment. Derived and audience-oriented views are specified through graph
query patterns. From these, a TGTS is generated that builds the derived view
and keeps it consistent with the base model. Semantic views result from the
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transformation of a base model into another formalism. Altogether, our approach
makes emphasis on using visual, declarative techniques (meta-models, patterns),
from which TGTSs are derived. However, for the case of semantic views, the
TGTS has to be specified by the MVVL designer.

There is an ongoing implementation in the meta-modelling tool AToM3 [2] [5].
Up to now, it is possible to define MVVLs and automatically generate the consis-
tency triple rules for several behavioural patterns. Besides, it is also possible for
the MVVL designer to define extra static semantics consistency rules as well as
semantic views. It is up to future work to implement the graph query patterns.
In addition to this, we are studying ways of improving the expressivity of the
graph query patterns, and of DPO rules for model transformation.

Acknowledgements: This work has been sponsored by the Spanish Min-
istry of Science and Education, projects TSI2005-08225-C07-06 and TSI2004-
03394. The authors would like to thank the referees for their useful comments.

References
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13. Schürr, A. 1994. Specification of Graph Translators with Triple Graph Grammars.

In LNCS 903, pp.: 151-163. Springer.
14. Silberschatz, A., Korth, H., Sudarshan, S. 2005. Database System Concepts, 5th

Edition. McGraw Hill.
15. Warmer, J., Kleppe, A. 2003. The Object Constraint Language: Getting Your Mod-

els Ready for MDA, 2nd Edition. Pearson Education. Boston, MA.


