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Resumen

Las gramáticas de grafos triples fueron propuestas por Andy Schürr
con el objetivo de reescribir grafos triples [Schürr, 1994]. Son útiles
para mantener relaciones entre dos modelos que se están manipulando.
Este documento presenta una formalización de las gramáticas de grafos
triples basada en el enfoque algebraico Double Pushout. Comenzaremos
definiendo un grafo triple en base al concepto de E − grafo propuesto
en [Ehrig et al., 2004b], el cual nos permite tener atributos en nodos y
relaciones. A continuación usaremos los resultados obtenidos en [Ehrig
et al., 2004a], donde las categoŕıas y los sistemas de reemplazo de alto
nivel (HLR) adhesivos se utilizan como marco para la transformación de
grafos. De este modo, la mayoŕıa de los resultados obtenidos para la
categoŕıa de los grafos pueden ser extrapolados y aplicados a cualquier
categoŕıa HLR adhesiva. Por esta razón nuestra formalización demuestra
que grafos triples y morfismos de grafo triples son una categoŕıa HLR
adhesiva, demostrando para ello que grafos triples y morfismos de grafo
triples son isomorfos a una categoŕıa coma. Además, extendemos la noción
de regla de gramática de grafos triple con condiciones de aplicación, y con
un concepto de herencia similar al propuesto en [Bardohl et al., 2004],
pero permitiendo también herencia en relaciones.

Abstract

Andy Schürr proposed triple graph grammars with the purpose of
rewriting triple graphs [Schürr, 1994]. They are useful as a means to
maintain the relations between two models that are being manipulated.
This document presents a formalization of triple graph grammars based on
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the Double Pushout algebraic approach. We first start by defining triple
graphs using the concept of E − graph proposed in [Ehrig et al., 2004b],
which allows attributes in edges and nodes. Then, we use the results
in [Ehrig et al., 2004a], which introduce adhesive high-level replacement
(HLR) categories and systems as a framework for graph transformation.
In this way, most results from the category of graphs are lifted to adhe-
sive HLR categories. Therefore, our formalization uses the fact that triple
graphs and triple morphisms can be shown to be an adhesive HLR cate-
gory, by demonstrating that triple graphs and morphisms are isomorphic
to a comma category. In addition, we provide triple graph grammar rules
with application conditions, and with an inheritance concept similar to
the one proposed in [Bardohl et al., 2004], but allowing also inheritance
of edges.

1 Introduction

Graph transformation [Ehrig et al., 1999][Ehrig et al., 2006] is a formal, high
level, graphical and declarative means to manipulate graphs. Graph transfor-
mation systems are made of a set of graph transformation rules, each having
graphs in their left and right hand sides (LHS and RHS). In order to apply a
rule to a graph (called host graph), an occurrence of the LHS should be found
in it. If some is found, then the rule is applied by replacing such occurrence by
the RHS.

The theory of graph transformation has been developing in the last 30
years [Ehrig et al., 1999]. The available results allow checking if two rules can be
applied in any order yielding the same result (parallel and sequential indepen-
dence), to check confluence (if a graph transformation system is deterministic),
to amalgamate rules together through a common part (concurrency theorem),
to check termination (under certain circumstances [Ehrig et al., 2005b]), etc.
See [Ehrig et al., 2006] for a comprehensive review of the main results.

Andy Schürr proposed triple graph grammars with the purpose of rewriting
triple graphs [Schürr, 1994]. These are structures made of three graphs called
source, target and correspondence respectively. The latter is used to maintain
relationships between the elements of the other two graphs. Triple graph gram-
mars have been used for model transformation [Taentzer et al., 2005] (trans-
lation of models from a source to a target formalism) and have the potential
to be incremental. We have also used triple graphs to model multi-view visual
languages [Guerra et al., 2005] and to relate the concrete and abstract syntax
of visual languages [Guerra and de Lara, 2004].

The aim of this report is to extend and formalize the concept of triple graph
grammar presented in [Schürr, 1994]. In this way, in the new extension, we
consider attributes in nodes and edges of triple graphs, and allow nodes in the
correspondence graph to have morphisms either to nodes or to edges of the
other graphs, as well as to remain undefined. We consider typing of triple
graphs by a triple type graph (similar to the concept of type graph [Corradini
et al., 1996] or meta-model [Atkinson and Kühne, 2002]). Type graphs are
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provided with node inheritance relations, in a similar way as done in [Bardohl
et al., 2004]. Moreover, we also provide edge type inheritance. We formalize
triple graph transformation using the double pushout approach [Ehrig et al.,
2006]. This is done by proving that triple graphs are indeed an adhesive HLR
category. Moreover, as we have inheritance in type graphs, we allow rules to
have abstract elements in their LHS. In this way, these elements can be matched
to an instance of their subtypes. For the theoretic discussions, we have followed
and extended the works in [Ehrig et al., 2006] and [Bardohl et al., 2004]. Triple
graph grammars were proposed as a means to derive lower-level, operational
rules to perform forward or backwards translations, incremental updates or so
called consitency observing analyzers. In the present work, we provide a richer
graph concept and a formalization of triple graph transformation in the DPO
approach. However, the algorithms for derivation of operational rules for this
richer graphs we propose are up to future work.

The rest of the document is organized as follows. Section 2 starts by pre-
senting attributed typed graphs, which will be used later for our formalization
of triple graphs. Section 3 formalizes triple graphs, with typing and attributes
in nodes and edges. Section 4 shows how to build pushouts and pullbacks in this
structure. These categorical constructions are needed in order to define graph
transformation systems. Section 5 proves that the category of triple graphs and
morphisms are indeed an adhesive HLR category. This means that we can use
most of the theory of graph transformation systems, which has been lifted from
graphs to HLR categories [Ehrig et al., 2004a]. Section 6 presents the basic
concepts of graph transformation explicitly for triple graphs. Although this is
not necessary, since one could follow the theory of HLR, we show it for illustra-
tive purposes. Section 7 adds the inheritance concept to triple graphs. Finally,
section 8 presents the conclusions.

2 Attributed Typed Graphs

In this section, we define node and edge attributed typed graphs, following the
notion of E − graph developed in [Ehrig et al., 2004b]. These definitions are
included here, as we will use them later in section 3 as a basis for triple graphs.
E-graphs are extended graphs that allow attributes in both nodes and edges.
Attribute values are stored in set VD, and two additional kind of edges model
attribution: the node and edge attribution edges. The first ones allow nodes to
have attributes, while the second ones model edge attributes.

Definition 1 (E-graph, taken from [Ehrig et al., 2006])
An E-graph is a tuple G = (VG, VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}),

where:

• VG is a set of graph nodes.

• VD is a set of data nodes.

• EG is a set of graph edges.
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• ENA is a set of “node attribution” edges.

• EEA is a set of “edge attribution” edges.

• sourceG : EG → VG, targetG : EG → VG.

• sourceNA : ENA → VG, targetNA : ENA → VD.

• sourceEA : EEA → EG, targetEA : EEA → VD.

EG

sourceG //
targetG

// VG

EEA

sourceEA

OO

targetEA ""EE
EE

EE
EE

ENA

sourceNA

OO

targetNA||yy
yy

yy
yy

VD

Figure 1: An E-graph.

Figure 2 shows an example of E-graph (using a graphical representation)
depicting a sequence diagram.

oname2
D

Graph Edges (E    )G

Node Attribution

NAEdges (E     )

Edge Attribution

EA Edges (E     )

GGraph Nodes (V   )

"msg0" synchronous

"msg1"

"object1" "class1" "object2" "class2"

StartPoint ActivationBox1 message

name type

ActivationBox2startMessage

objectLifeLine2objectLifeLine1
mname

class1

Object1

oname1 class2

Object2

Data Nodes (V   )

Figure 2: An E-graph representing a Sequence Diagram.

In addition to E-graphs, we also define mappings between two E-graphs. An
E-graph morphism is a tuple of set morphisms, one for each set in the E-graph
(VG, VD, EG, ENA, EEA). In addition, the structure of the E-graph should be
preserved, that is, the sourcei and targeti functions should commute with the
morphisms.

Definition 2 (E-graph morphism, taken from [Ehrig et al., 2006])
Given two E-graphs Gi = (V i

G, V i
D, Ei

G, Ei
NA, Ei

EA, (sourcei
j , targetij)j∈{G,NA,EA}),

with i = 1, 2, an E-graph morphism f : G1 → G2 is a tuple (fVG
, fVD

, fEG
, fENA

, fEEA
)

with fVi : V 1
i → V 2

i and fEj : E1
j → E2

j with i ∈ {G,D}, j ∈ {G, NA,EA},
where f commutes for all source and target:
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• fVG ◦ source1
G = source2

G ◦ fEG

• fVG
◦ target1G = target2G ◦ fEG

• fEG
◦ source1

EA = source2
EA ◦ fEEA

• fVD
◦ target1EA = target2EA ◦ fEEA

• fVG
◦ source1

NA = source2
NA ◦ fENA

• fVD
◦ target1NA = target2NA ◦ fENA

E1
G

source1
G //

target1G

//

fEG

$$
V 1

G

fVG // V 2
G

source2
G //

target2G

// E2
G

E1
EA

source1
EA

OO

target1EA !!B
BB

BB
BB

BGF

@A BC
fEEA

ED
ooE1

NA

fENA //

source1
NA

OO

target1NA}}||
||

||
||

E2
NA

source2
NA

OO

target2NA !!B
BB

BB
BB

B
E2

EA

source2
EA

OO

target2EA}}||
||

||
||

V 1
D

fVD // V 2
D

Figure 3: An E-graph morphism.

Figure 4 shows an example of E-graph morphism. Nodes and edges in the
E-graphs have been provided with a numeric label for matching purposes. Note
that this is a non-injective morphism since graph nodes 2 and 3 have the same
image.

E-graphs and E-graph morphisms form a category, where the former are the
objects and the latter the arrows. It is indeed a category, as the identity arrow
is the identity morphism, and the composition of morphisms is associative.

Definition 3 (Category EGraph, taken from [Ehrig et al., 2006])
E-graphs together with E-graph morphisms form the category EGraph.

Although E-graphs allow attributes in nodes and edges, we combine E-graphs
together with an algebra over an appropriate signature in order to structure the
attribute values (the elements of VD). Having an algebra allows us to distin-
guish types (sorts like integer, string, and so forth) for attribution, as well as
operations. Therefore, we assume that an E-graph has an associated data signa-
ture DSIG, which contains the appropriate declaration of sorts and operations.
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StartPoint

"msg0"

ActivationBox

synchronous

"msg1"
name

1’
startMessage 6’

message
7’

2’

3’
8’

type

mname

4’

5’

10’

9’

StartPoint

"msg0"

ActivationBox1 ActivationBox2

synchronous "msg1"

1
startMessage 7

2

name
4

9

3

5
type

6
mname

message 8

1110

E
EA

f       = {(9, 8’), (10, 10’), (11, 9’)}

V
G

f       = {(1, 1’), (2, 2’), (3, 2’)}

V
D

f       = {(4, 3’), (5, 5’), (6, 4’)}

E
G

f       = {(7, 6’), (8, 7’)}

E
NA

f       = { }

Figure 4: An E-graph morphism.

Some of the declared sorts will be used for attribution, and the carrier sets of
the attribution sorts must be exactly the elements of VD. Please note that it
may be possible to have an infinite number of elements in VD.

Definition 4 (Attributed Graph, taken from [Ehrig et al., 2006])
Given a data signature DSIG = (SD, OPD) which contains sorts for attri-

bution S′D ⊆ SD, an attributed graph AG = (G,D) consists of an E-graph G
and a DSIG− algebra D with

⊎
s∈S′D

Ds = VD.

Figure 5 shows an example of attributed graph AG = (G,D) representing a
sequence diagram. It uses a data signature DSIG, which is defined as:

DSIG = Char+String+
sorts : MessageType
opns :
synchronous: → MessageType
asynchronous: → MessageType
destroy: → MessageType

That is, sort MessageType declares three constants synchronous, asynchronous
and destroy. The data sorts used for attribution are S′D = {String, MessageType};
Char is an auxiliary type.

We define attributed graph morphisms between two attributed graphs as a
tuple of two mappings. The first one is an E-graph morphism, the second one
is an algebra homomorphism.

Definition 5 (Attributed Graph morphism, taken from [Ehrig et al., 2006])
Given two attributed graphs AGi = (Gi, Di) with i = 1, 2, an attributed

graph morphism f : AG1 → AG2 is a pair f = (fG, fD) where fG : G1 → G2
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name

StartPoint ActivationBox1

Object1

"msg1":String synchronous:MessageType

"class1":String"object1":String

ActivationBox2

Object2

"object2":String "class2":String

"msg0":String

objectLifeLine1

class1oname1

mname type

message

objectLifeLine2

class2oname2

startMessage

Figure 5: An attributed graph.

is an E-graph morphism and fD : D1 → D2 is an algebra homomorphism, such
that the diagram in Figure 6 commutes for all s ∈ S′D.

D1
s

fD,s //
Ä _

²²

D2
sÄ _

²²

=

V 1
D

fG,VD // V 2
D

Figure 6: Condition for attributed graph morphisms.

Note how, in Figure 6, the inclusion of Di
s in V i

D is given by the definition of
attributed graph. Attributed graphs and attributed morphisms form a category,
where the former are the objects and the latter the arrows. As before, it is indeed
a category as the identity arrow is the identity attributed morphism, and the
composition of attributed morphisms is associative.

Definition 6 (Category AGraph, taken from [Ehrig et al., 2006])
Given a data signature DSIG as above, attributed graphs together with at-

tributed graph morphisms form the category AGraph.

For the typing of attributed graphs we use the concept of type graph [Cor-
radini et al., 1996]. This can be modelled as a distinguished attributed graph
ATG, which is attributed over the final DSIG−algebra Z. That is, the carrier
sets of each sort in Z have a unique element, which is the type name. Note
how, the concept of type graph is similar to the one of meta-model [Atkinson
and Kühne, 2002], but the latter includes inheritance, multiplicities and other
constraints, possibly using a constraint language. In section 7 we extend (triple)
type graphs with inheritance of nodes and edges.

Definition 7 (Attributed Type Graph, taken from [Ehrig et al., 2006])
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An attributed type graph is an attributed graph ATG = (TG, Z), where Z is
the final DSIG− algebra with carrier sets Zs = {s} ∀s ∈ SD.

Figure 7 shows an example of attributed type graph ATG = (TG, Z) for
the definition of UML sequence diagrams, where Z is the final algebra for the
signature DSIG = Char + String + MessageType used in the example corre-
sponding to Figure 5. This type graph models the concrete syntax of sequence
diagrams, that is, it is not equal to the UML meta-model since this latter mod-
els the abstract syntax, but not the concrete one. Basically, the type graph
declares objects that can be linked to activation boxes. Activation boxes can
be linked through life lines and through messages. They can also be linked to
objects through create messages. Finally, the sequence diagram should have a
start point with a start message.

oname

Graph Nodes (V   )G

Data Nodes (V   )D

Graph Edges (E    )G

Node Attribution

NAEdges (E     )

Edge Attribution

EA Edges (E     )

String

ActivationBoxStartPoint Object

MessageType

name message

startMessage createMessage

objectLifeLine

typemname

lifeLine

class

Types for

Figure 7: Attributed type graph for Sequence Diagrams.

Now, we define graphs conformant to a type graph. This notion is similar
to the relation between a model and its meta-model. We say that a graph is
conformant to a type graph (or is an instance of it) if there is an attributed
morphism from the graph to the type graph. In fact, from now on, we will work
with tuples where the first element is the graph itself and the second one the
typing morphism. This indeed can be formalized as a slice category.

Definition 8 (Attributed Typed Graph, taken from [Ehrig et al., 2006])
An attributed typed graph over ATG is an object TAG = (AG, t) in the

slice category AGraph/ATG, where AG = (G,D) is an attributed graph and
t : AG → ATG is an attributed graph morphism called the typing of AG.

Now, we define morphisms between attributed typed graphs. These are
attributed morphisms with the restriction that the typing should be preserved
from the source to the target graph.

Definition 9 (Attributed Typed Graph morphism, taken from [Ehrig et al.,
2006])

Given two attributed typed graphs TAGi = (AGi, ti) over ATG, an attributed
typed graph morphism f : (AG1, t1) → (AG2, t2) is an attributed graph morphism
f : AG1 → AG2 such that t2 ◦ f = t1 as Figure 8 shows.
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AG1

t1

##HH
HH

HH
HH

H

f

²²

ATG

AG2

t2

;;vvvvvvvvv

Figure 8: Condition for attributed typed graph morphisms.

Figure 9 shows an attributed typed graph (AG, t). Nodes and edges are la-
belled with its type (in the usual UML notation for instances). As stated before,
attributed instance graphs can be infinite, since data set String for attribution
is infinite and all the values have to be part of the graph. Otherwise, attribute
computation is not possible. In the figure, we only show those data elements
used for attribution.

: oname

: StartPoint : ActivationBox : ActivationBox

"msg0":String

: startMessage

: name

"msg1":String synchronous:MessageType

: mname : type

: message

: Object

"class1":String"object1":String

: Object

"class2":String"object2":String

: objectLifeLine

: class: oname

: objectLifeLine

: class

Figure 9: Attributed typed graph, with respect to the attributed type graph in
Figure 7.

Attributed typed graphs and attributed typed morphisms form a category,
where the former are the objects and the latter the arrows. As before, it is indeed
a category as the identity arrow is the identity attributed typed morphism, and
the composition of attributed typed morphisms is associative.

Definition 10 (Category AGraphATG, taken from [Ehrig et al., 2006])
Attributed typed graphs over an attributed type graph ATG, together with

attributed typed graph morphisms, form the category AGraphATG.

3 Attributed Typed Triple Graphs

In this section, we use the previous concepts in order to formalize triple graphs.
We start by defining the notion of TriE-graph, which is made of three E-graphs
and two correspondence functions c1 and c2. One of the three graphs is called
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correspondence graph. The correspondence functions are defined from the nodes
in the correspondence graph to the nodes and edges in the other two graphs.
In addition the functions can be undefined, what is modelled with a special
element in the codomain (named “·”). Therefore, we have extended the actual
notion of triple graphs [Schürr, 1994] in several ways. On the one hand, we use a
definition that contemplates attributes in nodes and edges. On the other hand,
our correspondence functions are more flexible as the codomain includes nodes,
edges, and the special element for modelling that the function is undefined.

Being able to relate links with either nodes and edges is crucial in our ap-
proach. Suppose we have two edges with certain attributes in the source graph,
that we want to relate with other edges (also with attributes) in the target
graph. Relating only the source and target nodes is not enough, as then we do
not know which edge in the source graph is related to which one in the target
graph. Therefore it is necessary to be able to directly map edges. On the other
hand, as the user interacts with the concrete graph, he may delete elements
which are already related to elements in the abstract graph. When such oper-
ation is performed, the mapping of the correspondence node is left undefined.
Keeping the correspondence node with just one mapping is useful as we may
later want to delete the element in the target graph, and probably some others
related to it. Moreover, being able to know that a mapping is undefined is also
a very useful negative test in triple graph grammar rules.

Definition 11 (TriE-graph)
A TriE-graph TriG = (G1, G2, GC , c1, c2) is made of three E-graphs Gi =

(VGi , VDi , EGi , ENAi , EEAi , (sourceji , targetji)j∈{G,NA,EA}) for i ∈ {1, 2, C},
with VD1 = VD2 = VDC

, and two functions cj : VGC
→ VGj ∪ EGj ∪ {·} (for

j = 1, 2).
Graph G1 is called source, G2 is called target and GC is called correspon-

dence. Functions c1 and c2 are called source and target correspondence func-
tions respectively. We use the auxiliary sets edgesi = {x ∈ VGC |ci(x) ∈ EGi},
nodesi = {x ∈ VGC

|ci(x) ∈ VGi} and undefi = {x ∈ VGC
|ci(x) = ·} for

i = 1, 2. The latter set is used to denote that the correspondence function ci for
an element x is undefined. The previous two sets are used to denote that the
codomain of the correspondence function ci for an element x are edges or nodes,
respectively.

Morphisms c1 and c2 represent m-to-n relationships between nodes and edges
in G1 and G2 via GC in the following way: x ∈ VG1 ∪ EG1 is related to y ∈
VG2 ∪EG2 ⇐⇒ ∃z ∈ VGC

| x = c1(z) and y = c2(z). Note also that all the data
sets VDi are assumed equal. We could have used just one set for each one of the
three graphs, but having independent E-graphs makes it possible to reuse some
of the concepts developed in [Ehrig et al., 2004b] for E-graphs.

Figure 11 shows a TriE-graph for the definition of the abstract and concrete
syntax of UML sequence diagrams. The source graph G1 in the upper part
corresponds to the abstract syntax, the target graph G2 in the lower part cor-
responds to the concrete syntax, and finally, the correspondence graph GC in
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{·}

EG1

sourceG1 //
targetG1

// VG1 EGC

sourceGC //
targetGC

// VGC

c1|undef1

OO

c1|nodes1

yy

c1|edges1

||

c2|edges2

//

c2|nodes2

%%

c2|undef2

OO

EG2

sourceG2 //
targetG2

// VG2

EEA1

sourceEA1

OO

targetEA1 ÃÃ@
@@

@@
@@

ENA1

sourceNA1

OO

targetNA1~~~~
~~

~~
~

EEAC

sourceEAC

OO

targetEAC ÃÃA
AA

AA
AA

A
ENAC

sourceNAC

OO

targetNAC~~||
||

||
||

EEA2

sourceEA2

OO

targetEA2 ÃÃ@
@@

@@
@@

ENA2

sourceNA2

OO

targetNA2~~~~
~~

~~
~

VD1 VDC
VD2

Figure 10: A TriE-graph.

SynchronousInvocationAction1

Message1

Stimulus1

"object1"

Object1

"class1"

Class1

"msg0"

Message2

Stimulus2

SynchronousInvocationAction2

"msg1"

Class2

"class2"

Object2

"object2"

action1

receiver1

conformingStimulus1

oname1

cname1

classifier1

mname1

action2

receiver2

conformingStimulus2

mname2

sender

cname2

classifier2

oname2

Corr_StartMessage Corr_Object1 Corr_Message Corr_Object2

Object1

"object1" "class1"

synchronous"msg1"

ActivationBox1

"msg0"

StartPoint

Object2

"object2" "class2"

ActivationBox2

class1oname1

typemname

startMessage

name

message

class2oname2

objectLifeLine2objectLifeLine1

Figure 11: TriE-graph for the concrete and abstract syntax of Sequence Dia-
grams.
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the middle contains elements relating G1 and G2 by means of the correspon-
dence functions. Note that, although VD1 = VD2 = VDC

, for clarity, we have
represented the elements of these sets in each one of the E-graphs. However,
the elements of the three sets are the same. Therefore, node “class1′′ in VD2 is
the same as node “class1′′ in VD1 .

Now, we define mappings between two TriE-graphs. These are made of three
E-graph morphisms plus additional constraints regarding the preservation of the
correspondence functions.

Definition 12 (TriE-graph morphism)
Given two TriE-graphs TriGi = (Gi

1, G
i
2, G

i
C , ci

1, c
i
2) with i = 1, 2, a TriE-

graph morphism f : TriG1 → TriG2 is a tuple f = (f1, f2, f c) made of three
E-graph morphisms f i : G1

i → G2
i (i ∈ {1, 2, C}) such that:

• f i
VGi

◦ c1
i |nodes1

i
= c2

i ◦ fC
VGC

|nodes1
i

for i = 1, 2.

• f i
EGi

◦ c1
i |edges1

i
= c2

i ◦ fC
VGC

|edges1
i

for i = 1, 2.

• c1
i |undef1

i
= c2

i ◦ fC
VGC

|undef1
i

for i = 1, 2.

as shown in Figure 12.

E1
Gi

fi
EGi// V 2

Gi
∪ E2

Gi
∪ {·} V 1

Gi

fi
VGi // V 2

Gi
∪ E2

Gi
∪ {·}

V 1
GC

c1
i |edges1

i

OO

fC
VGC

|
edges1

i

//

=

V 2
GC

c2
i

OO

V 1
GC

c1
i |nodes1

i

OO

fC
VGC

|
nodes1

i

//

=

V 2
GC

c2
i

OO

{·} Â Ä id // V 2
Gi
∪ E2

Gi
∪ {·}

V 1
GC

c1
i |undef1

i

OO

fC
VGC

|
undef1

i

//

=

V 2
GC

c2
i

OO

Figure 12: Conditions for TriE-graph morphisms.

Remark: note that f1, f2 and fC are E-graph morphisms and thus put addi-
tional constraints (not explicitly shown in Figure 12) regarding the preservation
of the three E-graph structures making each TriE-graph.

TriE-graphs and TriE-graph morphisms form a category, where the former
are the objects and the latter the arrows. As before, it is indeed a category as
the identity arrow is the identity TriE-graph morphism, and the composition of
TriE-graph morphisms is associative.

Definition 13 (Category TriEGraph)
TriE-graphs together with TriE-graph morphisms form the category TriE-

Graph.
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Proof
Category TriEGraph is made of the class of all TriE-graphs together with

the class
⊎

(A,B)∈TriEGraph×TriEGraph[A,B]TriEGraph of all TriE-graph mor-
phisms, where [A, B]TriEGraph is the set of all TriE-graph morphisms from A to
B. In order to demonstrate that TriEGraph is a category, we have to check:
(i) that TriE-graph morphisms can be composed, (ii) that they are associative
and (iii) the existence of identity morphisms.

(i) Composition of TriEGraph morphisms. Given two TriE-graph mor-
phisms f : TriG1 → TriG2 and g : TriG2 → TriG3, the composition g ◦ f =
(g1 ◦ f1, g2 ◦ f2, gc ◦ f c) : TriG1 → TriG3 can be defined by composing the
three E-graph morphisms in f and g. As the following three formulae show, the
resulting morphism h fulfills the three conditions of definition 12:

• (gi
VGi

◦ f i
VGi

) ◦ (c1
i |nodes1

i
) = c3

i ◦ gC
VGC

|nodes2
i
◦ fC

VGC
|nodes1

i
= c3

i ◦ ((gC
VGC

◦
fC

VGC
)|nodes1

i
) for i = 1, 2. See figure 13. The commutativity of the outer

square follows from the commutativity of the two inner squares.

• (gi
EGi

◦ f i
EGi

) ◦ c1
i |edges1

i
= c3

i ◦ gC
VGC

|edges2
i
◦ fC

VGC
|edges1

i
= c3

i ◦ ((gC
VGC

◦
fC

VGC
)|edges1

i
) for i = 1, 2. See figure 14. The commutativity of the outer

square follows from the commutativity of the two inner squares.

• c1
i |undef1

i
= c3

i ◦ (gC
VGC

|undef2
i
◦ fC

VGC
|undef1

i
) = c3

i ◦ ((gC
VGC

◦ fC
VGC

)|undef1
i
)

for i = 1, 2. See figure 15. The commutativity of the outer square follows
from the commutativity of the two inner squares.

V 1
Gi

fi
VGi //

=

gi
VGi

◦fi
VGi

))
V 2

Gi
∪ E2

Gi
∪ {·} V 2

Gi

=

gi
VGi // V 3

Gi
∪ E3

Gi
∪ {·}

V 1
GC

c1
i |nodes1

i

OO

fC
VGC

|
nodes1

i //

gC
VGC

|
nodes2

i
◦fC

VGC
|
nodes1

i
=(gC

VGC
◦fC

VGC
)|

nodes1
i

66V 2
GC

c2
i

``BBBBBBBBBBBB
c2

i |nodes2
i

EE­­­­­­­­­­ gC
VGC

|
nodes2

i // V 3
GC

c3
i

OO

Figure 13: Composition of TriE-graph morphisms: (a) condition for correspon-
dence nodes mapped to nodes

(ii) Associativity of TriEGraph morphisms. Given three TriE-graph mor-
phisms f = (f1, f2, fC) : G1 → G2, g = (g1, g2, gC) : G2 → G3 and h =
(h1, h2, hC) : G3 → G4, we have to demonstrate that (h◦g)◦f = h◦(g◦f). This
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E1
Gi

fi
EGi //

=

gi
EGi

◦fi
EGi

))
V 2

Gi
∪ E2

Gi
∪ {·} E2

Gi

=

gi
EGi // V 3

Gi
∪ E3

Gi
∪ {·}

V 1
GC

c1
i |edges1

i

OO

fC
VGC

|
edges1

i //

gC
VGC

|
edges2

i
◦fC

VGC
|
edges1

i
=(gC

VGC
◦fC

VGC
)|

edges1
i

66V 2
GC

c2
i

``BBBBBBBBBBBB
c2

i |edges2
i

EE­­­­­­­­­­ gC
VGC

|
edges2

i // V 3
GC

c3
i

OO

Figure 14: Composition of TriE-graph morphisms: (b) condition for correspon-
dence nodes mapped to edges

easily follows from the associativity of the three E-graph morphisms that make
each TriE-graph morphism. Figure 16 shows the case for correspondence nodes
mapped to nodes. It can be seen how the associativity of the TriE-graph mor-
phisms reduces to the associativity of the f i and fC E-graph morphisms, which
are associative because E-graphs form a category. The case for correspondence
nodes mapped to edges and with undefined morphisms is similar to the one of
Figure 16. Formally we have that:

• ((hi
VGi

◦ gi
VGi

) ◦ f i
VGi

) ◦ c1
i |nodes1

i
= (hi

VGi
◦ (gi

VGi
◦ f i

VGi
)) ◦ c1

i |nodes1
i

=
c4
i ◦ ((hC

VGC
◦ (gC

VGC
◦ fC

VGC
))|nodes4

i
) = c4

i ◦ (((hC
VGC

◦ gC
VGC

) ◦ fC
VGC

)|nodes4
i
),

because each single morphism is an E-graph morphism and they are asso-
ciative.

• ((hi
EGi

◦ gi
EGi

) ◦ f i
EGi

) ◦ c1
i |edges1

i
= (hi

EGi
◦ (gi

EGi
◦ f i

EGi
)) ◦ c1

i |edges1
i

=
c4
i ◦ ((hC

VGC
◦ (gC

VGC
◦ fC

VGC
))|edges4

i
) = c4

i ◦ (((hC
VGC

◦ gC
VGC

) ◦ fC
VGC

)|edges4
i
),

because each single morphism is an E-graph morphism and they are asso-
ciative.

• c1
i |undef1

i
= c4

i ◦ (((hC
VGC

◦ gC
VGC

) ◦ fC
VGC

)|undef4
i
) = c4

i ◦ ((hC
VGC

◦ (gC
VGC

◦
fC

VGC
)|undef4

i
), because each single morphism is an E-graph morphism and

they are associative.

Therefore we have that (h ◦ g) ◦ f = h ◦ (g ◦ f).
(iii) Identities in TriEGraph. We have to show that for each TriE-graph G,

there exists the identity morphism idG : G → G, such that for all TriE-graphs
G1, G2 and morphisms f : G1 → G2, it holds that f ◦ idG1 = f and idG2 ◦f = f .

Given a TriE-graph G, the identity morphism idG = (id1
G, id2

G, idC
G) is built

by taking the identity morphisms between each graph making the triple graph.
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{·})
ª

id

((
Â Ä id // V 2

Gi
∪ E2

Gi
∪ {·} {·} Â Ä id // V 3

Gi
∪ E3

Gi
∪ {·}

= =

V 1
GC

c1
i |undef1

i

OO

fC
VGC

|
undef1

i //

gC
VGC

|
undef2

i
◦fC

VGC
|
undef1

i
=(gC

VGC
◦fC

VGC
)|

undef1
i

77V 2
GC

c2
i

__@@@@@@@@@@@@@
c2

i |undef2
i

FF̄
¯̄

¯̄
¯̄

¯̄
¯̄

gC
VGC

|
undef2

i // V 3
GC

c3
i

OO

Figure 15: Composition of TriE-graph morphisms. (iii) condition for correspon-
dence nodes with undefined mapping

Given an arbitrary TriE-graph morphism f = (f1, f2, fC) : G → H, we have
that:

• Using E-graph identities, we have that f i ◦ idi
G = f i, for i ∈ {1, 2, C}.

Therefore (f1, f2, fC) ◦ (id1
G, id2

G, idC
G) = (f1 ◦ id1

G, f2 ◦ id2
G, fC ◦ idC

G) =
(f1, f2, fC) and thus f ◦ idG = f .

• Using E-graph identities again, we have that idi
H◦f i = f i, for i ∈ {1, 2, C}.

Therefore (id1
H , id2

H , idC
H) ◦ (f1, f2, fC) = (id1

H ◦ f1, id2
H ◦ f2, idC

H ◦ fC) =
(f1, f2, fC) and thus idH ◦ f = f .

2

As in the case of E-graphs, we provide TriE-graphs with an algebra, in
order to structure the attribution set and to provide appropriate operations for
attribute computation. We assign one algebra for the whole TriE-graph, in such
a way that the attribute sets VDi contain the disjoint union of the algebra carrier
sets.

Definition 14 (Attributed Triple Graph)
Given a data signature DSIG = (SD, OPD) with attribute value sorts S′D ⊆

SD, an attributed triple graph TriAG = (TriG,D) consists of a TriE-graph
TriG = (G1, G2, GC , c1, c2) and one algebra D of the given DSIG signature
with

⊎
s∈S′D

Ds = VDi for i ∈ {1, 2, C}.

Note that VD1 = VD2 = VDC
and that AGi = (Gi, D) for i ∈ {1, 2, C}

are three attributed graphs. We could have used three different algebras for
each E-graphs in the TriE-graph, however, using a unique algebra simplifies the
theory.

Now, we define mappings between two attributed triple graphs. These are
made of a TriE-graph morphism and one algebra homomorphism.

UC3M-TR-CS-06-01 15



V 1
Gi fi

VGi

//

=

(hi
VGi

◦gi
VGi

)◦fi
VGi

=hi
VGi

◦(gi
VGi

◦fi
VGi

)

''
V 2

Gi
∪ E2

Gi
∪ {·} V 2

G

=

gi
VGi // V 3

Gi
∪ E3

Gi
∪ {·} V 3

G

hi
VGi// V 4

Gi
∪ E4

Gi
∪ {·}

V 1
GC

c1
i |nodes1

i

OO

fC
VGC

|
nodes1

i

//

hC
VGC

◦(gC
VGC

◦fC
VGC

)=(hC
VGC

◦gC
VGC

)◦fC
VGC

77V 2
GC

c2
i

ddIIIIIII c2
i |nodes2

i

EE­­­­­

gC
VGC

|
nodes2

i

// V 3
GC

c3
i

ddIIIIIII

hC
VGC

|
nodes1

i

//
c3

i |nodes3
i

EE­­­­­
V 4

GC

c4
i

OO

Figure 16: Associativity of TriE-graph morphisms: (a) condition for correspon-
dence nodes mapped to nodes

Definition 15 (Attributed Triple Graph Morphism)
Given two attributed triple graphs TriAGi = (TriGi, Di) with i = 1, 2, an

attributed triple graph morphism f : TriAG1 → TriAG2 (short ATT-morphism)
is a tuple f = (fTriG, fD) where fTriG : TriG1 → TriG2 is a TriE-graph mor-
phism and fD : D1 → D2 is an algebra-homomorphism such that the diagram in
Figure 17 commutes for all s ∈ S′D.

D1
s

fD,s //
Ä _

²²

D2
sÄ _

²²

=

V 1
Dj

fj
VDj // V 2

Dj

Figure 17: Condition for attributed triple graph morphisms.

Attributed triple graphs and attributed triple graph morphisms form a cat-
egory, where the former are the objects and the latter the arrows. As before, it
is indeed a category as the identity arrow is the identity attributed triple graph
morphism, and the composition of this kind of morphisms is associative.

Definition 16 (Category TriAGraph)
Attributed triple graphs together with attributed triple graph morphisms form

the category TriAGraph.

Proof
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Category TriAGraph is made of the class of all TriAGraphs together with
the class

⊎
(A,B)∈TriAGraph×TriAGraph[A, B]TriAGraph of all TriAGraph mor-

phisms, where [A, B]TriAGraph is the set of all ATT-morphisms from A to B. In
order to demonstrate that TriAGraph is a category, we have to check: (i) that
ATT-morphisms can be composed, (ii) that they are associative and (iii) the
existence of identity morphisms.

(i) Composition of TriAGraph morphisms. Given two ATT-morphisms
f : TriAG1 → TriAG2 and g : TriAG2 → TriAG3, the composition g ◦ f =
(gTriG◦fTriG = (g1◦f1, g2◦f2, gc◦f c), gD◦fD) : TriAG1 → TriAG3 can be de-
fined by composing the TriE-graph morphisms and the algebra homomorphisms
in f and g. That is, gTriG◦fTriG is a TriE-graph morphism, as this kind of mor-
phisms are closed under composition. On the other hand gD ◦ fD : D1 → D3

is again an algebra homomorphism, which fullfils the diagram shown in Fig-
ure 18, where the commutativity of both squares ensures the commutativity of
the outer square. Therefore g ◦ f is an ATT-morphism.

D1
s

fD,s //
Ä _

²²

gD,s◦fD,s

##
D2

s

gD,s //
Ä _

²²

D3
sÄ _

²²

= =

V 1
Dj

fj
VDj //

gj
VDj

◦fj
VDj

;;
V 2

Dj

gj
VDj // V 3

Dj

Figure 18: Composition of TriAGraph morphisms. Condition for the algebra
homomorphisms.

(ii) Associativity of TriAGraph morphisms. Given ATT-morphisms f =
(fTriG = (f1, f2, fC), fD) : G1 → G2, g = (gTriG = (g1, g2, gC), gD) : G2 → G3

and h = (hTriG = (h1, h2, hC), hD) : G3 → G4, we have to demonstrate that
(h ◦ g) ◦ f = h ◦ (g ◦ f). This easily follows from the associativity of the TriE-
graph morphisms and the algebra homomorphisms that make each TriAGraph
morphism. Formally we have that:
(h ◦ g) ◦ f = ((hTriG, hD) ◦ (gTriG, gD)) ◦ (fTriG, fD) =
(hTriG ◦ gTriG, hD ◦ gD) ◦ (fTriG, fD) =
(hTriG ◦ gTriG ◦ fTriG, hD ◦ gD ◦ fD) =
(hTriG ◦ (gTriG ◦ fTriG), hD ◦ (gD ◦ fD)) =
(hTriG, hD) ◦ (gTriG ◦ fTriG, gD ◦ fD) =
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(hTriG, hD) ◦ ((gTriG, gD) ◦ (fTriG, fD)) =
h ◦ (g ◦ f).

Therefore we have that (h ◦ g) ◦ f = h ◦ (g ◦ f).
(iii) Identities in TriAGraph morphisms. We have to show that for each

TriAGraph G, there exists the identity morphism idG : G → G, such that for
all TriAGraphs G1, G2 and morphisms f : G1 → G2, it holds that f ◦ idG1 = f
and idG2 ◦ f = f .

Given a TriAGraph G, the identity morphism idG = (idTriG
G = (id1

G, id2
G, idC

G), idD)
is built by taking the TriE-graph identity morphism and the algebra iden-
tity homomorphism. Given an arbitrary TriAGraph morphism f = (fTriG =
(f1, f2, f3), fD) : G → H, we have that:

• idG ◦ f = (idTriG
G , idD) ◦ (fTriG, fD) = (idTriG

G ◦ fTriG, idD ◦ fD) =
(fTriG, fD) = f .

• f ◦ idH = (fTriG, fD) ◦ (idTriG
H , idH) = (fTriG ◦ idTriG

H , fD ◦ idH) =
(fTriG, fD) = f .

2

Now, we provide attributed triple graphs a typing. This is modelled by a
distinguished attributed triple graph called attributed type triple graph. This
graph is attributed on the final algebra of the signature.

Definition 17 (Attributed Type Triple Graph)
An attributed type triple graph is an attributed triple graph TriATG =

(TriTG,Z), where Z is the final algebra of the DSIG signature with carrier
sets Zs = {s} ∀s ∈ SD.

Figure 19 shows an attributed type triple graph TriATG = (TriTG, Z) for
the definition of both abstract and concrete syntax of UML sequence diagrams.
The data signature is DSIG = Char + String + MessageType (see exam-
ple corresponding to Figure 7 for a detailed description of the data signature
MessageType). The target graph in the upper part of the triple graph corre-
sponds to the abstract syntax. The source graph in the lower part corresponds
to the concrete syntax, while the correspondence graph in the middle relates
concepts of both sides.

Now, we define the relationship between attributed triple graphs and at-
tributed type triple graphs. This is done in a similar way as in the previous
section. That is, we consider tuples where the first element is the attributed
triple graph, while the second contains the typing morphism from the attributed
triple graph to the attributed type triple graph. Again, it can be formalized as
a slice category.

Definition 18 (Attributed Typed Triple Graph)
An attributed typed triple graph (short ATT-graph) over TriATG is an ob-

ject TriTAG = (TriAG, t) in the slice category TriAGraph/TriATG, where
TriAG = (TriG, D) is an attributed triple graph and t : TriAG → TriATG is
an attributed triple graph morphism called the typing of TriAG.
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String

ActivationBoxStartPoint Object

MessageType

name message

startMessage createMessage

objectLifeLine

typemname

lifeLine

class

oname

Corr_StartMessage Corr_Message Corr_CreateMessage Corr_Object

String

Message

SynchronousInvocationAction

AsynchronousInvocationAction

CreateObjectAction

DestroyObjectAction

Stimulus Object Class

oname cnameconformingStimulus

mname

activator

successor

action_del

action_crea

action_async

action_sync

sender

receiver

classifier

Types for
Graph Nodes (V     )G i

Data Nodes (V     )D i

Graph Edges (E      )G i

Node Attribution

NAEdges (E       )i

Edge Attribution

EA Edges (E       )i

Correspondence
Functions (c1, c2)

i = {1, 2, C}

Figure 19: Attributed type triple graph for the concrete and abstract syntax of
Sequence Diagrams.

Mappings between attributed typed triple graphs are like mappings between
attributed triple graphs, but in addition, the typing has to be preserved.

Definition 19 (Attributed Typed Triple Graph morphism)
Given two ATT-graphs TriTAGi = (TriAGi, ti) over an attributed type

triple graph TriATG, an attributed typed triple graph morphism (short ATT-
morphism) f : (TriAG1, t1) → (TriAG2, t2) is an attributed triple graph mor-
phism f : TriAG1 → TriAG2 such that t2 ◦ f = t1, as Figure 20 shows.

Figure 21 shows an ATT-graph over the attributed type graph in Figure 19.
Nodes and edges are labelled with its type (in the usual UML notation for
instances).

ATT-graphs and ATT-morphisms form a category, where the former are
the objects and the latter the arrows. As before, it is indeed a category as
the identity arrow is the identity attributed typed triple morphism, and the
composition of this kind of morphisms is associative.

Definition 20 (Category TriAGraphTriATG)
Attributed typed triple graphs over an attributed type triple graph TriATG,

together with attributed typed triple graph morphisms, form the category TriAGraphTriATG.
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TriAG1

t1

&&MMMMMMMMMM

f

²²

TriATG

TriAG2

t2

88qqqqqqqqqq

Figure 20: Condition for attributed typed triple graph morphisms.

: Corr_StartMessage : Corr_Message : Corr_Object: Corr_Object

: SynchronousInvocationAction

: Message

: Stimulus

"msg0":String "msg1":String

: SynchronousInvocationAction

: Stimulus

: Message : Class

"class2":String

: Object

"object2":String"object1":String

: Object

: Class

"class1":String

: receiver : sender : receiver

: action

: conformingStimulus

: mname

: conformingStimulus

: action

: mname

: cname

: classifier

: oname

: cname

: oname

: classifier

: StartPoint

"msg0":String

: name

synchronous:MessageType"msg1":String

: type

: message

: mname

: ActivationBox

"object1":String "class1":String

: Object

: ActivationBox

"class2":String"object2":String

: Object

: startMessage

: objectLifeLine

: oname : class : class: oname

: objectLifeLine

Figure 21: Attributed typed triple graph, with respect to the attributed type
triple graph in Figure 19.

Proof
Follows from the fact that TriAGraphTriATG is a slice category.

2

4 Pushouts and Pullbacks for Attributed Typed
Triple Graphs

In this section, we show how pushouts and pullbacks in category TriAGraphTriATG

are constructed (we closely follow [Ehrig et al., 2006]). Pushouts model the glu-
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ing of two objects through some common elements, and are needed for the
construction of typed attributed graph transformations. In fact, we only need
pushouts along a special class M of monomorphisms, which are injective in the
graph part and isomorphisms in the data part. The reason for this, is that
pushouts are constructed for modelling a rule application, and rules are repre-
sented in the DPO approach as: p = (L l←− K

r−→ R), with l and r injective
(that is, belonging to class M of monomorphisms). Therefore, we only need
pushouts along M morphisms. Of course, the match m : L → G can be non-
injective. Note how, as TriE-graphs are indeed made of several sets, pushouts
can be constructed componentwise by building the pushout of each set.

Pullbacks are the dual construction of pushouts and model the intersection
of two objects (triple graphs in our case) in a larger context. Pullbacks in
TriAGraphTriATG are needed in the next section in order to show that this is
an adhesive HLR category. In a similar way as pushouts, pullbacks can also be
constructed componentwise.

We first start defining the class M of special morphisms (indeed monomor-
phisms) in categories TriAGraph and TriAGraphTriATG.

Definition 21 (Class M of monomorphisms in TriAGraph)
A attributed triple morphism f : TriAG1 → TriAG2 with f = (fTriG =

(f1, f2, fC), fD) belongs to class M if fTriG is an injective TriE-graph mor-
phism (that is, injective in each component for each of the three graphs), and
fD is a DSIG−algebra isomorphism. This implies that f i

VD
is also bijective.

Definition 22 (Class M of monomorphisms in TriAGraphTriATG)
An ATT-morphism f : (TriAG1, t1) → (TriAG2, t2) belongs to class M if

f : TriAG1 → TriAG2 belongs to M.

Classes M of monomorphisms in TriAGraph and TriAGraphTriATG are
closed under composition. Next, we show how to build pushouts in which one
of the morphisms belongs to M. This is basically done by building pushouts in
category Set (see for example [Ehrig et al., 2006]).

Figure 22 shows an example of pushout in category Set. Sets A = {a1, a2, a3},
B = {b1, b2} and C = {c1, c2, c3, c4} with morphisms f : A → B and g : A → C
are given. The pushout PO is constructed as the quotient B∪̇C|≡, where ≡ is
the smallest equivalence relation with (f(a), g(a)) ∈≡ for all a ∈ A.

Fact 23 (Pushouts along M-morphisms in TriAGraph)
Given the attributed triple morphisms f : TriAG0 → TriAG1 ∈ M and

g : TriAG0 → TriAG2, a pushout (TriAG3, f ′, g′) in TriAGraph, with TriAGk =
(TriGk, Dk), TriGk = (Gk

1 , Gk
2 , Gk

C , ck
1 , ck

2), and Gk
i = (V k

Gi
, V k

Di
, Ek

Gi
, Ek

NAi
, Ek

EAi
,

(sourcek
ji

, targetkji
)j∈{G,NA,EA}) for k ∈ {0, 1, 2, 3}, i ∈ {1, 2, C} can be con-

structed as follows (see Figure 23), where f ′ ∈M and any other pushout TriAG′

is isomorphic to TriAG3:

1. (V 3
Gi

, f ′i
V 3

Gi

, g′i
V 3

Gi

) is pushout of (V 0
Gi

, f i
V 0

Gi

, gi
V 0

Gi

) in Sets for i ∈ {1, 2, C}.
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{b2, c1, c2}

{b1, c3}

{c4}

PO

B

b1

b2

f

C
c1

c2

c4

c3

A

a3

a2

a1

g

Figure 22: Example of pushout in category Set.

TriAG0 = (TriG0, D0)
f=((f1,f2,fC),fD)∈M //

g=((g1,g2,gC),gD)

²²

TriAG1 = (TriG1, D1)

g′=((g′1,g′2,g′C),g′D)

²²

=

TriAG2 = (TriG2, D2)
f ′=((f ′1,f ′2,f ′C),f ′D)∈M // TriAG3 = (TriG3, D3)

Figure 23: Construction of pushouts in TriAGraph.

2. (E3
Gi

, f ′i
E3

Gi

, g′i
E3

Gi

) is pushout of (E0
Gi

, f i
E0

Gi

, gi
E0

Gi

) in Sets for i ∈ {1, 2, C}.

3. (E3
NAi

, f ′i
E3

NAi

, g′i
E3

NAi

) is pushout of (E0
NAi

, f i
E0

NAi

, gi
E0

NAi

) in Sets for i ∈
{1, 2, C}.

4. (E3
EAi

, f ′i
E3

EAi

, g′i
E3

EAi

) is pushout of (E0
EAi

, f i
E0

EAi

, gi
E0

EAi

) in Sets for i ∈
{1, 2, C}.

5. (V 3
Di

, f ′i
V 3

Di

, g′i
V 3

Di

) = (V 2
Di

, id, g′i
V 2

Di

) with g′i
V 2

Di

= gi
V 2

Di

◦ f−1,i
V 0

Di

: V 1
Di

→ V 3
Di

for i ∈ {1, 2, C}.
6. (D3, f ′D, g′D) = (D2, id, g′D) with g′D = gD ◦ f−1

D : D1 → D3.

7. The source3
ji

and target3ji
operations (for j ∈ {G, NA,EA}, i ∈ {1, 2, C})

are uniquely determined by the pushouts in (1)-(5).

8. The c3
1 and c3

2 functions are also uniquely determined by the pushouts in
(1)-(4).
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Proof
The componentwise construction leads to a well-defined attributed triple

graph TriAG3 and attributed triple morphisms f ′ and g′ with f ′ ∈ M. The
universal pushout property follows from the universal property of pushouts in
Sets. Note also that (V 3

Di
, f ′i

V 3
Di

, g′i
V 3

Di

) and (D3, f ′D, g′D) are pushouts in Sets

resp. DSIG−Alg.
2

Figure 24 shows a simple example of a pushout in category TriAGraph.
The example contains only nodes in VG and EG for simplicity. Note how g /∈M
as both nodes 5 and 6 are mapped to node 9, and therefore nodes 11 and 12 are
mapped into node 15. Consequently, function g′ does not belong to M.

c

1

5 6

2

7 8

3

f   ={(5, 7), (6, 8)}
C
V

G

f   ={(11, 13), (12, 14)}
2
V

G

g   ={(1, 4)}
1
V

G

g   ={(5, 9), (6, 9)}
C
V

G

g   ={(2, 17), (3, 18)}
’1
V

G

g   ={(7, 19), (8, 19)}
’C
V

G

g   ={(13, 21), (14, 21)}
’2
V

G

f   ={(1, 2)}
1
V

G

4

9

17 18

21 22

19 20

f   ={(4, 17)}
’1
V

G

f   ={(9, 19), (10, 20)}
’C
V

G

f   ={(15, 21), (16, 22)}
’2
V

G

f   ={(a, c)}
2
E

G

f   ={(c, d)}
2
E

G

f   ={(b, d)}
2
E

G

f   ={(a, b)}
2
E

G

11 12 13 14

g   ={(11, 15), (12, 15)}
2
V

G

15 16

10

a

b d

Figure 24: Example of pushout in category TriAGraph.

Fact 24 (Pushouts along M-morphisms in TriAGraphTriATG)
Given ATT-morphisms f : (TriAG0, t0) → (TriAG1, t1) ∈M and g : (TriAG0, t0) →

(TriAG2, t2), the pushout ((TriAG3, t3), f ′, g′) in TriAGraphTriATG can be
constructed as the pushout (TriAG3, f ′, g′) of f : TriAG0 → TriAG1 ∈ M
and g : TriAG0 → TriAG2 in TriAGraph, where t3 : TriAG3 → TriATG is
uniquely determined by the pushout properties of (TriAG3, f ′, g′) in TriAGraph.

Proof
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Follows from the construction of pushouts in slice categories.
2

Next, we consider the construction of pullbacks in which one of the mor-
phisms belongs to M.

Fact 25 (Pullbacks along M-morphisms in TriAGraph)
Given the attributed triple morphisms f ′ : TriAG2 → TriAG3 ∈ M and

g′ : TriAG1 → TriAG3, a pullback (TriAG0, f, g) in TriAGraph, with TriAGk =
(TriGk, Dk), TriGk = (Gk

1 , Gk
2 , Gk

C , ck
1 , ck

2), and Gk
i = (V k

Gi
, V k

Di
, Ek

Gi
, Ek

NAi
, Ek

EAi
,

(sourcek
ji

, targetkji
)j∈{G,NA,EA}) for k ∈ {0, 1, 2, 3}, i ∈ {1, 2, C} can be con-

structed as follows (see Figure 23), where f ′ ∈ M and any other pullback
TriAG′ is isomorphic to TriAG0:

1. (V 0
Gi

, f i
V 0

Gi

, gi
V 0

Gi

) is pullback of (V 3
Gi

, f ′i
V 3

Gi

, g′i
V 3

Gi

) in Sets for i ∈ {1, 2, C}.

2. (E0
Gi

, f i
E0

Gi

, gi
E0

Gi

) is pullback of (E3
Gi

, f ′i
E3

Gi

, g′i
E3

Gi

) in Sets for i ∈ {1, 2, C}.

3. (E0
NAi

, f i
E0

NAi

, gi
E0

NAi

) is pullback of (E3
NAi

, f ′i
E3

NAi

, g′i
E3

NAi

) in Sets for i ∈
{1, 2, C}.

4. (E0
EAi

, f i
E0

EAi

, gi
E0

EAi

) is pullback of (E3
EAi

, f ′i
E3

EAi

, g′i
E3

EAi

) in Sets for i ∈
{1, 2, C}.

5. (V 0
Di

, f i
V 0

Di

, gi
V 0

Di

) = (V 1
Di

, id, gi
V 0

Di

) with gi
V 0

Di

= f ′−1,i
V 2

Di

◦ g′i
V 1

Di

: V 0
Di

→ V 2
Di

for i ∈ {1, 2, C}.
6. (D0, fD, gD) = (D1, id, gD) with gD = g′D ◦ f

′−1
D : D0 → D2.

7. The source0
ji

and target0ji
operations (for j ∈ {G, NA,EA}, i ∈ {1, 2, C})

are uniquely determined by the pullbacks in (1)-(4).

8. The c0
1 and c0

2 functions are also uniquely determined by the pullbacks in
(1)-(4).

Proof
The componentwise construction leads to a well-defined attributed triple

graph TriAG0 and attributed triple morphisms f and g with f ∈ M. The
universal pullback property follows from the universal property of pullbacks in
Sets. Note also that (V 0

Di
, f i

V 0
Di

, gi
V 0

Di

) and (D0
i , fD, gD) are pullbacks in Sets

resp. DSIG−Alg.
2

Fact 26 (Pullbacks along M-morphisms in TriAGraphTriATG)
Given the ATT-morphisms f ′ : (TriAG2, t2) → (TriAG3, t3) ∈ M and

g′ : (TriAG1, t1) → (TriAG3, t3), the pullback ((TriAG0, t0), f, g) in TriAGraphTriATG

can be constructed as the pullback (TriAG0, f, g) of f ′ : TriAG2 → TriAG3 ∈
M and g′ : TriAG1 → TriAG3 in TriAGraph, where t0 : TriAG0 → TriATG
is uniquely determined by t0 = t1 ◦ f = t2 ◦ g
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Proof
Follows from the construction of pullbacks in slice categories.

2

Fact 27 (Pushouts along M-morphisms are pullbacks)
Pushouts along M-morphisms in TriAGraph and TriAGraphTriATG are

pullbacks.

Proof
Due to the fact that pushouts along injective functions in Sets are also

pullbacks.
2

5 Attributed Typed Triple Graphs as Adhesive
HLR Category

In this section, we give an alternative formalization of attributed triple graphs
in terms of a comma category construction. This will facilitate proving that
both TriAGraph and TriAGraphTriATG are adhesive HLR categories. This
means that we can use the main results of graph transformation theory, as these
results have been lifted from graphs to adhesive HLR categories [Ehrig et al.,
2006].

Category TriAGraph is isomorphic to a comma category ComCat(V1,V2; Id),
where V1 and V2 are forgetful functors. The first one goes from category
TriEGraph to category Set and “forgets” the triple graph structure, taking the
set of data values of one of the graphs (as all the VDi sets are equal). The second
functor V2 goes from category DSIG−Alg to Set, placing together in a set the
elements of the carrier sets for attribution (disjointly). The resulting comma cat-
egory has objects (TG,D, op : V1(TG) → V2(D)) which satisfy V1(TG) = V2(D)
and op = id. This category, and therefore TriAGraphTriATG, can be proved
to be an adhesive HLR category. This is formalized in the following facts, which
are adapted from [Ehrig et al., 2006].

Fact 28 (Comma Category Construction for TriAGraph)
Category TriAGraph is isomorphic to a subcategory ComCat(V1,V2; Id)

of the comma category ComCat(V1,V2; I) with I = {1}.

Construction:
Let V1 and V2 be the forgetful functors:

• V1 : TriEGraph → Set, with V1(TG) = VD1 , and V1(f = (f1, f2, fC)) =
f1

VD1
. Note that, the choice of VD1 instead of VD2 or VDC

is irrelevant, as
by construction, VD1 = VD2 = VDC

.

• V2 : DSIG−Alg → Set, with V2(D) = ]s∈S′DDs and V2(fD) = ]s∈S′DfDs .
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ComCat(V1,V2; Id) is the subcategory of ComCat(V1,V2; I) with I =
{1} where the objects (TG, D, op : V1(TG) → V2(D)) satisfy V1(TG) = V2(D)
and op = id.

Proof:
For an attributed triple graph TriAG = (TriG = (G1, G2, GC , c1, c2), D)

with
Gi = (VGi

, VDi
, EGi

, ENAi
, EEAi

, (sourceji
, targetji

)j∈{G,NA,EA})), we have by
Definition 14 that ]s∈S′DDs = VDi , for i ∈ {1, 2, C}. For morphisms f : TriAG1 →
TriAG2 with f = ((f1, f2, fC), fD), we have the commutativity of (1), (2) and
(3) in Figure 25. Taking each sort in each signature and the data part of G1,
the commutativity of (3) in Figure 26 follows.

D1
s

fD,s //
Ä _

²²

D2
sÄ _

²²

D1
s

fD,s //
Ä _

²²

D2
sÄ _

²²

D1
s

fD,s //
Ä _

²²

D2
sÄ _

²²

(1) (2) (3)

V 1
D1

f1
VD1 // V 2

D1
V 1

D2

f2
VD2 // V 2

D2
V 1

DC

fC
VDC // V 2

DC

Figure 25: Condition for attributed triple graph morphisms.

]s∈S′DD1
s

]s∈S′
D

fD,s

//

id

²²

]s∈S′DD2
s

id

²²

(4)

V 1
D1

f1
VD1 // V 2

D1

Figure 26: Condition for attributed triple graph morphisms, source graph G1.
This is the compatibility condition of f and fD in the comma category con-
struction.

Using the condition V1(TG) = V2(D) of the comma category construc-
tion, and the definition of functors V1 and V2, we have that V 1

D1
= ]s∈S′DDs,

which is exactly the condition for an attributed triple graphs (an object in
category TriAGraph see Definition 14). Moreover, taking the definition of
the arrows in the comma category, we have that f1

VD1
= ]s∈S′DfDs . This is

the condition for attributed triple graph morphisms shown in Figure 26, be-
cause V1(f = (f1, f2, fC)) = f1

VD
and V2(fD) = ]s∈S′DfDs . This implies that

ComCat(V1,V2; Id) ∼= TriAGraph.
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2

For the following fact, we use two results from [Ehrig et al., 2006] (Theo-
rems 4.13.3 and 4.13.4). The first one states that if (C,M) is a (weak) ad-
hesive HLR category, then for each category X the functor category ([X,C],
M-functor transformation) is a (weak) adhesive HLR category. An M-functor
transformation is a natural transformation t : F → G where all morphisms
tX : F (X) → G(X) are in M.

The second theorem states that the comma category (ComCat(F,G; I),M)
with M = (M1 ×M2) ∩MorComCat(V1,V2;I) is an adhesive HLR category if F
preserves pushouts along M1-morphisms and G preserves general pullbacks. In
case of weak adhesive HLR categories, it is enough that F preserves pushouts
along M1 −morphisms and G preserves pullbacks along M2-morphisms.

Fact 29 (TriAGraph is an Adhesive HLR category)
Let M1 be the class of injective TriE-graph morphisms and M2 the class

of DSIG−isomorphisms. Then (TriEGraph,M1) is a functor category over
(Set,M1) and hence adhesive HLR category. In a similar way, (DSIG−Alg,M2)
is also an adhesive HLR category. This implies that ComCat(V1,V2; I) with
I = 1 and M = (M1 ×M2) ∩ MorComCat(V1,V2;I) is an adhesive HLR cate-
gory, provided that V1 preserves pushouts along M1 morphisms and V2 preserves
pullbacks. Pushouts in category TriEGraph are constructed componentwise
in Set; therefore, V1 preserves pushouts. As shown in [Ehrig et al., 2006],
functor F : DSIG−Alg → Set preserves pullbacks; therefore, V2 preserves
pullbacks. Finally, it can also be shown that a special choice of pushouts and
pullbacks in TriEGraph and DSIG-Alg leads also to pushouts and pullbacks
in the subcategory ComCat(V1,V2; Id), therefore (ComCat(V1,V2; Id),M)
and (TriAGraph,M) are adhesive HLR categories.

For the following fact, we use the result of Theorem 4.13.2 in [Ehrig et al.,
2006], which states that the slice category (C/X,M∩C/X) is an adhesive HLR
category, where M∩ C/X are monomorphisms in C/X (monomorphisms in C
are also monomorphisms in C/X but the converse is not necessarily true).

Fact 30 (TriAGraphTriATG is an Adhesive HLR category)
(TriAGraphTriATG,M) is a slice category of (TriAGraph,M), (with M

the class of morphisms f = ((f1, f2, fC), fD) in which f i are injective and fD

is a DSIG−Algebra homomorphism), and therefore an adhesive HLR category.

6 Attributed Typed Triple Graph Transforma-
tion

Once proved that (TriAGraphTriATG,M) is an adhesive HLR category, we can
instantiate the general graph transformation theory for HLR systems [Ehrig
et al., 2006]. For illustrative purpose, we present only the basic concepts of
graph transformation: production, derivation and grammar. Later, we extend
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productions with application conditions. Further results for HLR systems can
be found in [Ehrig et al., 2006].

The main idea in the DPO approach is that rules are modelled using three
components: L, K and R. The L component (the rule’s left hand side, LHS)
represents the necessary elements to be found in the structure where the rule is
applied (a graph, a triple graph, a Petri net, etc.). The kernel K contains the
elements that are preserved by the rule application. Finally, R (the rule’s right
hand side, RHS) contains the elements that should replace the identified part
in the structure that is being rewritten. Note that L−K are the elements that
should be deleted by the rule application, while R − K are the elements that
should be added. In our case, L, K and R are ATT-graphs.

Definition 31 (Triple Rule)
Given an attributed type triple graph TriATG with data signature DSIG an

attributed typed triple graph rule (short triple rule) p = (L l← K
r→ R) consists of

ATT-graphs L, K and R with common DSIG-algebra TDSIG(X) (the DSIG-
termalgebra with variables X) and injective ATT-morphisms l : K → L, and
r : K → R.

Remark: as l and r are injective ATT-morphisms, the DSIG-part of l and
r is the identity on TDSIG(X).

In order to apply a triple rule p to an ATT-graph G (called host ATT-
graph), an occurrence of the LHS should be found in the graph. That is, an
ATT-morphism m : L → G needs to be found. Once the morphism is found,
the rule is applied in two steps. In the first one, the elements in m(L − l(K))
are deleted from G, yielding graph D. In the second step, the elements from
R− r(K) are added to D, resulting in graph H. Notice that these two steps are
modelled by two pushouts. As shown in the previous section, in TriAGraph
and TriAGraphTriATG pushouts are built componentwise, by calculating the
pushout of each set in each one of the three E-graphs.

Definition 32 (Direct Triple Graph Derivation)
Given a triple rule p = (L l← K

r→ R), an ATT-graph G and an ATT-
morphism m : L → G (called match), a direct triple graph derivation (short
direct derivation) G

p,m
=⇒ H from G is given by the double pushout (DPO)

diagram in category TriAGraphTriATG shown in Figure 27, where (1) and (2)
are pushouts.

L

m

²²
(1)

K
loo r //

d

²²
(2)

R

m∗

²²
G D

l∗oo r∗ // H

Figure 27: Direct derivation as DPO construction.
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Figure 28 shows an example of direct derivation. The rule simply connects an
object with its corresponding class, creating an edge (labelled ”7” in R and H).
Triple morphisms l, r, m, d, m∗, l∗ and r∗ have been depicted with numbers.

=

1

2

5 3

46

L

name = className

: Class

name = objectName

: Object

class  = className

name = objectName

: CorrespondenceObject

: Object

1

2

5 3

46

K

name = className

: Class

name = objectName

: Object

class  = className

name = objectName

: CorrespondenceObject

: Object

1

2

5 3

46

R

name = className

: Class

name = objectName

: Object

class  = className

name = objectName

: CorrespondenceObject

: Object

7

name = "object_1"

: Object

1

name = "class_1"

: Class

class  = "class_1"

name = "object_1"

: Object

: Correspondence
Object

name = "object_2"

: Object

: Correspondence
Object

class  = "class_1"

name = "object_2"

: Object

l
5

6 4

3

2

G

name = "object_1"

: Object

1

name = "class_1"

: Class

class  = "class_1"

name = "object_1"

: Object

: Correspondence
Object

name = "object_2"

: Object

: Correspondence
Object

class  = "class_1"

name = "object_2"

: Object

5

6 4

3

2

D

name = "object_1"

: Object

1

name = "class_1"

: Class

class  = "class_1"

name = "object_1"

: Object

: Correspondence
Object

name = "object_2"

: Object

: Correspondence
Object

class  = "class_1"

name = "object_2"

: Object

5

6 4

3

2

H

7

l

* r*

r

m d m*

=

Figure 28: A direct derivation example.

Note however, that in the first pushout (1), what we are really calculating
is graph D, that is, a pushout complement. In order for the pushout comple-
ment to exist, besides the well-known dangling edge and identification condi-
tions [Ehrig et al., 1999] (also known as gluing condition [Ehrig et al., 2006])
for each E-graph in the triple graph, an additional condition is needed con-
cerning the correspondence functions. We first present the gluing condition
for AGraph and AGraphATG, and next the condition for TriAGraph and
TriAGraphATG.

Definition 33 (Gluing Condition for AGraph and AGraphATG, taken from
[Ehrig et al., 2006])

1. Given an attributed graph production p = (L l← K
r→ R), an attributed

graph G and a match m : L → G in AGraph with X = (V X
G , V X

D , EX
G , EX

NA,
EX

EA, (sourceX
j , targetXj )j∈{G,NA,EA}, DX) for all X ∈ {L,K, R, G}.

• The gluing points GP are those graph items in L that are not deleted
by p, i.e. GP = lVG(V K

G ) ∪ lEG(EK
G ) ∪ lENA(EK

NA) ∪ lEEA(EK
EA).
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• The identification points IP are those graph items in L that are iden-
tified by m, i.e. IP = IPVG

∪ IPEG
∪ IPENA

∪ IPEEA
with:

IPVG
= {a ∈ V L

G |∃a′ ∈ V L
G , a 6= a′,mVG

(a) = mVG
(a′)}

IPEj = {a ∈ EL
j |∃a′ ∈ EL

j , a 6= a′,mEj (a) = mEj (a
′)}, for all

j ∈ {G,NA, EA}
• The dangling points DP are those graph items in L, whose images

are the source or target of an item that does not belong to m(L), i.e.
DP = DPVG

∪DPEG

DPVG
= {a ∈ V L

G |(∃a′ ∈ EG
NA−mENA

(EL
NA), mENA

(a) = sourceG
NA(a′))∨

(∃a′ ∈ EG
G−mEG(EL

G), mEG(a) = sourceG
G(a′) or mEG(a) = targetGG(a′))}

DPEG
= {a ∈ EL

G|(∃a′ ∈ EG
EA−mEEA

(EL
EA), mEEA

(a) = sourceG
EA(a′)}

p and m satisfy the gluing condition in AGraph if all identification
and all dangling points are also gluing points, i.e. IP ∪DP ⊆ GP

2. Given p and m in AGraphATG, they satisfy the gluing condition in
AGraphATG if p and m considered in AGraph satisfy the gluing condi-
tion in AGraph.

Definition 34 (Gluing Condition in TriAGraph and TriAGraphATG)

1. Given a triple rule p = (L l← K
r→ R), an attributed triple graph TriAG =

(TriG = (G1, G2, GC , cG
1 , cG

2 ), D) and a match m = (mTriG = (m1,m2,mC),
mD) : L → G in TriAGraph with X = (V X

G , V X
D , EX

G , EX
NA, EX

EA, (sourceX
j ,

targetXj )j∈{G,NA,EA}) for all X ∈ {Li,Ki, Ri, Gi}, for i ∈ {1, 2, C}.

• The correspondence gluing points CGP are the graph nodes and edges
in source or target graphs of L, that are not deleted by p, i.e. CGP =
l1VG

(V K1

G ) ∪ l1EG
(EK1

G ) ∪ l2VG
(V K2

G ) ∪ l2EG
(EK2

G ).

• The correspondence dangling points CDP are those graph nodes or
edges in the source or target graphs of L, whose images are the target
of a correspondence function ci from an element which does not belong
to mC

VG
(LC

VG
), i.e. CDP = CDP1

⋃
CDP2, with:

CDPi = {a ∈ Li
VG

∪ Li
EG
|∃x ∈ GC

VG
− mC

VG
(LC

VG
) with cG

i (x) =
(mi

VG
]mi

EG
)(a)}, for i ∈ {1, 2}

p and m satisfy the gluing condition in TriAGraph, if :

• Matches m′
i = (mi,mD) : (Li, D) → (Gi, D) (for i ∈ {1, 2, C}) in

AGraph satisfy the gluing condition for AGraph.

• All correspondence dangling points are also correspondence gluing
points, i.e. CDP ⊆ CGP

2. Given p and m in AGraphATG, they satisfy the gluing condition in
AGraphATG if p and m considered in AGraph satisfy the gluing condi-
tion in AGraph.
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The correspondence gluing condition states that an element in the source or
target graph cannot be deleted, if it is the target of a correspondence function
from an element in the correspondence graph that is not deleted.

Note that, in the second item of Definition 34.1, there is no need to con-
sider the nodes in the correspondence graph that are source of a correspondence
function. This is because if such a node is erased, the definition of the corre-
spondence function for that node is also erased. The situation is quite similar to
when an edge is deleted in a regular graph, then the definition for the source and
target functions are deleted for that edge. However, care should be taken when
deleting the target of source or target functions (targets of c1 and c2 functions),
as the functions would not be well defined.

Note also that there is no need for an “identification condition” for the
correspondence function. If two nodes in the correspondence graph of L are
identified into a single node of G, and one is deleted and the other not, then the
rule cannot be applied, due to the identification condition in the correspondence
graph. An example of this is shown in Figure 29, where nodes B and C are
identified into node BC in the correspondence graph of triple graph G. The
rule cannot be applied, as one is deleted and the other one is preserved.

2

B

C

A D

L L L
1 C 2

C

A D

C

A D

R R R
1 C 2

A DBC

K K K
1 C 2

l r

m

G G G
1 C

Figure 29: Forbidden rule application due to identification condition in the
correspondence graph.

Fact 35 (Existence and Uniqueness of Attributed (Typed) Triple Context Graphs)
For an attributed (typed) graph triple rule p, an attributed (typed) graph G

and a match m : L → G, the attributed (typed) triple context graph D with
PO(1) exists in TriAGraph (TriAGraphATG), iff the gluing condition is
satisfied in TriAGraph (TriAGraphATG). If D exists, it is unique up to
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isomorphism

L

m

²²
(1)
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Proof:
‘⇒’ Given the PO(1) then the properties of the gluing condition follow from

the properties of pushouts alongM-morphism in TriAGraph and TriAGraphATG:

• As pushouts are built componentwise in TriAGraph (TriAGraphATG),
then the gluing condition is satisfied separately for each graph in the triple
graph (see [Ehrig et al., 2006]).

• Consider v ∈ CDP and assume v ∈ Li
VG

(that is, v is a node), with x ∈
GC

VG
−mC

VG
(LC

VG
) and cG

i (x) = mi
VG

(v) = b. As G is pushout, then f ∈M
and m are jointly surjective. Therefore, both b and x have preimages in
D. Be v′ ∈ Di

VG
and x′ ∈ DC

VG
with f i

VG
(v′) = b and fC

VG
(x′) = x. As

G is a pushout and l is injective (l ∈ M), then ∃1v
′′ ∈ Ki

VG
, such that

liVG
(v′′) = v and ki

VG
(v′′) = v′. Thus, v is not deleted. A similar reasoning

holds for the case of v being an edge. Therefore CDP ⊆ CGP and all
correspondence dangling points are also correspondence gluing points.

‘⇐’ If the gluing condition is satisfied we can construct D = (TriGD =
(GD

1 , GD
2 , GD

C , cD
1 , cD

2 ), DD), with GD
i = (V D

Gi
, V D

Di
, ED

Gi
, ED

NAi
, ED

EAi
, (sourceD

j,i,

targetDj,i)j∈{G,NA,EA}) (i = {1, 2, C}), with k, f , and typeD : D → TriATG as
follows:

• V D
Gi

= (V D
Gi
−mi

VG
(Li

VG
)) ∪mi

VG
◦ liVG

(Ki
VG

).

• V D
Di

= V G
Di

.

• Di
Ej

= (GEj −mi
Ej

(LEj )) ∪m ◦ l(Ki
Ej

), for j ∈ {G, NA,EA}.

• sourceD
G,i = sourceG

G,i|V D
Gi

, targetDG,i = targetGG,i|V D
Gi

.

• sourceD
j,i = sourceG

j,i|ED
ji

, targetDj,i = targetGj,i|ED
ji

for j ∈ {NA, EA}.

• DD = DG

• cD
i (x) = cG

i (x), ∀x ∈ DC
VG

, for i = {1, 2}.
• k(x) = m(l(x)) for all items x in K

• f inclusion

• typeD = typeG|D
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2

A triple derivation is a sequence of zero or more direct triple derivations and
is depicted as G0 ⇒∗ Gn. A triple graph grammar is made of a set of triple
rules and an initial ATT-graph, together with the data signature and the type
graph. The language of the triple grammar consists of all the ATT-graphs that
can be obtained by means of derivations, starting from the initial ATT-graph.

Definition 36 (Triple Graph Grammar and Language)
A triple graph grammar TGG = (DSIG, TriATG, P, TriAS) is made of a

data signature DSIG, an attributed type triple graph TriATG, a set P of triple
rules, and an initial ATT-graph TriAS typed over TriATG. The language
generated by TGG is given by L(TGG) = {TriAG|TriAS ⇒∗ TriAG}.

In addition, we provide triple rules with application conditions, in the style
of [Heckel and Wagner, 1995]. We first define conditional constraints on ATT-
graphs. An application condition is then a conditional constraint on the L
component of the triple rule.

Definition 37 (Triple Conditional Constraint)
A triple conditional constraint cc = (x : L → X,A) over an ATT-graph

L consists of an ATT-morphism x and a set A = {yj : X → Yj} of ATT-
morphisms. An ATT-morphism m : L → G satisfies a constraint cc over L,
written m |=L cc, iff ∀n : X → G with n ◦ x = m ∃o : Yj → G (where yj : X →
Yj ∈ A) such that o ◦ yj = n (see Figure 30).

Yj

o
ÃÃ@

@@
@@

@@
X

n

²²

yjoo L
xoo

m
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

G

Figure 30: A triple conditional constraint satisfied by m.

Roughly, the constraint is satisfied by the morphism m if no occurrence of
X is found in G, but if some is found, then an occurrence of some Yj should also
be found. If the set A is empty, then we have a negative application condition
(NAC), where the existence of an ATT-morphism n implies m 2L cc. Morphisms
x and yj are total, but we use a shortcut notation. In this way, the subgraph of
L (resp. X) that do not have an image in X (resp. Yj) is isomorphically copied
into X (resp. Yj) and appropriately linked with their elements.

We assign triple rules a set AC of triple conditional constraints (called ap-
plication condition). For a rule to be applicable at a match m, it must satisfy all
the application conditions in the set. Figure 31 shows an example of two triple
rules with NACs (the set A in the application condition is empty). Following the
mentioned shortcut notation, in the NAC only the additional elements to LHS
and their context have been depicted. The kernel triple graph K of both rules
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Object Creation (post−rule)

:Class

name = className

:Object

name = objectName

:CorrespondenceObject

:Object

name = objectName

class  = className

1

2

LHS:

4

5

6

3

:Class

name = className

:Object

name = objectName

NAC:

28

1

:Class

name = className

:Object

name = objectName

:CorrespondenceObject

:Object

name = objectName

class  = className

1

2

RHS:

4

5

6

3

7

Assign Classifier to Object 
(post−rule)

:Object

name = objectName

:CorrespondenceObject

:Object

name = objectName

class  = className

NAC: 10

1112

13
1

:Object

name = objectName

class  = className

:Graph_Object

:CreateEvent

y = yp

x = xp

type = ’Object’

LHS:

1

2

4
5

3

:Object

name = objectName

:CorrespondenceObject

:Object

name = objectName

class  = className

:Graph_Object

:CreateEvent

y = yp

x = xp

type = ’Object’

RHS: 6

78

9
1

4

2

5

3

Figure 31: An example with two triple rules.

is not explicitly shown. Their elements are those having the same numbers in L
and R (which are labelled LHS and RHS). We use this notation throughout
the paper. The first rule creates an object in the target graph (in the upper
side part of the rule), if an object has been created in the source graph. The
second rule connects an object with its classifier in the target graph.

7 Attributed Typed Triple Graph Transforma-
tion with Inheritance

In this section, we present an inheritance concept, similar to the one presented
in [Bardohl et al., 2004] and [Ehrig et al., 2005a], but adapted to ATT-graphs.
In addition, we consider edge inheritance and rules have more complex applica-
tion conditions (not only NACs). Node inheritance is an extension mechanism
because it allows children nodes to inherit edges and attributes of parent nodes.
Edge inheritance is also an extension mechanism, by allowing children edges to
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inherit attributes of parent edges, but it is also used as a restriction technique
in node inheritance hierarchies to forbid certain connections between children
nodes.

The main idea is to add the concept of inheritance to the type triple graph, in
a similar way as in UML class diagrams. Then, we can put elements in the LHS
of rules whose (node or edge) type has a number of (node or edge) subtypes. In
this way, any node having the exact type or any of its subtypes can match that
element. That is, these inheritance-extended rules are equivalent to a number
of rules with concrete typing (called concrete rules), resulting from the valid
substitutions of each graph node or edge by elements of their subtypes. In this
way, rules become more compact.

Therefore, the typing of triple graphs by triple type graphs has to be ex-
tended. This is shown in subsection 7.1. In this section, we also show how to
“flatten” such type triple graphs with inheritance to obtain a regular type triple
graph. In 7.2, we extend triple rules with the inheritance concept and obtain
Inheritance-Extended Triple Rules. If one of such rules is equivalent to more
than one concrete rule, then the former rule is called meta-rule. Finally, in sec-
tion 7.3, we show that a derivation made of meta-rule applications is equivalent
to a derivation of concrete rules, and the other way around.

7.1 Attributed Type Triple Graphs with Inheritance

We first start defining an attributed type triple graph with inheritance (or meta-
model triple, short MMT) in a similar way as in [Ehrig et al., 2005a], but, in
addition to the inheritance of nodes, we also allow inheritance of edges. The
extended type graph with inheritance is defined like a normal type triple graph,
plus two additional graphs for the node and edge inheritance hierarchies, and
two sets of abstract nodes and edges. Moreover, for technical reasons concerning
the correspondence functions, multiple inheritance for nodes is forbidden in the
correspondence graph. As in [Taentzer and Rensink, 2005], we only allow an
edge to inherit from another one, if the source and target nodes of the child edge
belong to the children nodes of the source and target nodes of parent edge. For
this purpose, we use the notion of clan (see definition 39), which is a function
that applied to a node or edge returns the set of all its children nodes or edges,
including itself.

Definition 38 (Attributed Type Triple Graph with Inheritance)
An attributed type triple graph with inheritance (short meta-model triple,

MMT) TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C}), consists of:

• An attributed type triple graph TriATG = (TriTG, Z), where TriTG =
(TG1, TG2, TGC , tc1, tc2) is a TriE-graph.

• Three node inheritance graphs V Ii = (V Ii
V , V Ii

E , vsi : V Ii
E → V Ii

V ,
vti : V Ii

E → V Ii
V ) (for i = {1, 2, C}) with V Ii

V = TGi
VG

. V Ii
V is the

set of nodes, and V Ii
E is the set of edges, and vs and vt are the source
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and target functions for the edges. Multiple inheritance is forbidden in the
correspondence graph. That is, ∀n ∈ V IC

V , |{e ∈ V IC
E |vsC(e) = n}| ≤ 1.

• Three edge inheritance graphs EIi = (EIi
V , EIi

E , esi : EIi
E → EIi

V ,
eti : EIi

E → EIi
V ) (for i = {1, 2, C}) with EIi

V = TGi
EG

. Moreover
∀e, e′ ∈ EIi

V , x ∈ EIi
E such that esi(x) = e′ and eti(x) = e (i.e. e′

inherits from e), we have that sourceGi
(e′) ∈ clanV Ii(sourceGi

(e)) and
targetGi(e

′) ∈ clanV Ii(targetGi(e)).

• Three sets AVi ⊆ V Ii
V , for i = {1, 2, C}, called abstract nodes.

• Three sets AEi ⊆ EIi
V , for i = {1, 2, C}, called abstract edges.

Figure 32 shows an example meta-model triple, which is an extension of the
attributed type triple graph in Figure 19. We have collapsed each graph TGi,
node inheritance graph V Ii and edge inheritance graph EIi in a unique graph.
The edges of the inheritance graphs are shown with hollow edges (following the
usual UML notation) and the elements in AV i and AEi are shown in italics.
We treat “composition” edges (the ones with a black diamond) as any other
edge in Ei

G.
The upper part of the meta-model triple depicts a slight variation of the

UML 1.5 standard meta-model proposed by OMG (see [UML]) for sequence
diagrams (abstract syntax). The lowest meta-model in the figure declares the
concrete appearance concepts and their relations. The elements in this meta-
model are in direct relationship with the graphical forms that will be used for
graphical representation, which is quite different from the abstract syntax repre-
sentation. Abstract class ConcreteElement has two abstract edges AbsMessage
and AbsLifeLine. ConcreteElement has three concrete children: StartPoint,
ActivationBox and Object. Abstract edge AbsMessage is refined by Message,
StartMessage and createMessage. They restrict the kind of ConcreteElement
types that can be connected through a message: StartPoint and ActivationBox,
ActivationBox with itself and ActivationBox and Object. A similar situation
happens for AbsLifeLine.

The correspondence meta-model specifies which elements in the concrete and
abstract meta-models can be related by means of two nodes of types Correspon-
denceMessage and CorrespondenceObject. The correspondence functions for the
former node go to Stimulus and AbsMessage. The latter is an abstract edge,
which means that nodes with type CorrespondenceMessage can have corre-
spondence functions to each one of the AbsMessage’s concrete children edges
(that is, StartMessage, Message and createMessage). Note how, including
the AbsMessage edge reduces the number of nodes in the correspondence graph
with respect to the type graph in Figure 19.

Now we formalize the sets of children nodes and edges for a given one, which
we call (node and edge) inheritance clans.

Definition 39 (Node and Edge Inheritance clan)
Given a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C}),

the node inheritance clan for each node n ∈ V Ii
V , is defined as clanV Ii(n) =
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CorrespondenceObjectCorrespondenceMessage
Correspondence Meta−Model

StartPoint

name : string

Message

type : enum =

{ synchronous,

asynchronous,

destroy }

name : string

StartMessage

ActivationBox

class : string

name : string

Object

ConcreteElement

Concrete Syntax Meta−Model

*
*

AbsMessage

0..1

 0..1  0..1

 0..1

lifeLine

0..1
1

0..1

objectLifeLine

createMessage

0..1

0..1

 *
 * AbsLifeLine

Abstract Syntax Meta−Model

name : string

Message

SynchronousInvocationAction AsynchronousInvocationAction CreateObjectAction DestroyObjectAction

Action

Stimulus

Classifier

*

Instance

name : string

Class

name : string

Object

BehaviouralFeature

Operation

Feature

name : string

visibility: enum = {private,

activator

* 0..1

**

successor

              public,protected}

*

*
1

*
*

*

1..*

classifier

receiver

1

1

action

conforming
Stimulus sender

*

0..1

feature

Figure 32: Meta-model triple example.

{n′ ∈ V Ii
V | ∃ path n′ ∗→ n in V Ii} ⊆ V Ii

V with n ∈ clanV Ii(n). In a
similar way, for each edge e ∈ EIi

V , the edge inheritance clan is defined as
clanEIi(e) = {e′ ∈ EIi

V | ∃ path e′ ∗→ e in EIi} ⊆ EIi
V with e ∈ clanEIi(e)

For example, in Figure 32, the node inheritance clan of node Action in the ab-
stract graph is the set clanV I2(Action) = {Action, SynchronousInvocationAction,
AsynchronousInvocationAction,CreateObjectAction,DestroyObjectAction}.
The edge inheritance clan of edge AbsMessage in the concrete graph is the set
clanEI1(AbsMessage) = {AbsMessage,Message, StartMessage, createMessage}.
Finally, the node inheritance clan of Object in the concrete graph is the set
clanV I1(Object) = {Object}. That is, the node (resp. edge) inheritance clan
of a node (rep. edge) without children nodes (resp. edge) contains just one
element which is the node (resp. edge) itself.

In order to benefit from the theory of graph transformation, we flatten meta-
model triples to ordinary type triple graphs. The flattening makes explicit
the inherited attributes and edges, and allows defining instances of attributed
type graphs with inheritance. Moreover, in the correspondence graph, we allow
overriding of the tc1 and tc2 functions.
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Figure 33 shows an example meta-model triple in the upper part and its
closure below. Both source and target graphs are flattened using the same
procedure, while the flattening of the correspondence graph is different. For the
source and target graphs, we explicitly copy edges and attributes to all nodes in
the inheritance graph of a given one. In this way, for example, attribute at1 is
copied from node E to F and H. In a similar way, relation rel is added between
all the combinations of nodes in the inheritance clan of E and G. However, it
is not copied between nodes F and J and between H and I, because they have
two relations (relFJ and relHI) that refine relation rel through an inheritance
relation. Also, attribute at2 from abstract edge rel is copied to relations relFJ
and relHI, and the two additional relations created between nodes H and J
and F and I.

Flattening the correspondence graph is similar; however, in addition, we have
to take care of the correspondence functions. First, children nodes can override
the function. In this way, if a node has a correspondence function undefined,
it takes its value from the nearest ancestor in the node inheritance path for
which the function is defined. In the example, node B takes the definition of
tc1 from its parent A. Moreover, the target of a correspondence function may
be a node or an edge which has a number of subnodes or subedges. In this
case, the flattening should reflect the fact that the correspondence function can
lead to any of the subtypes. This is done by creating additional nodes in the
correspondence graph with all the combinations of elements in the inheritance
clans of source and target graphs. In the example, the target correspondence
function of node B leads to node E, which has subnodes F and G. Therefore, we
have created three nodes in the correspondence graph, for each combination of
source (only C is possible) and target (E, F and H) are possible correspondence
functions. The newly created nodes receive the edges and attributes of the
original node (B in the example). Again, we have represented sets VDi in each
one of the three E-graphs. Therefore, nodes Int in VDC and in VD2 are the
same.

Definition 40 (Closure (Flattening) of Meta-Model Triple)
Given a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C})

with TriATG = (TriTG,Z), TriTG = (TG1, TG2, TGC , tc1, tc2) and TGi =
(V i

G, V i
D, Ei

G, Ei
NA, Ei

EA, (sourcei
j , targetij)j∈{G,NA,EA}) for i ∈ {1, 2, C}, the

abstract closure of TriATGI is the attributed type triple graph TriATG =
(TriTG,Z) with TriTG = (TG1, TG2, TGC , tc1, tc2) and TGi = (V i

G, V i
D, Ei

G,

Ei
NA, Ei

EA, (sourcei
j , targetij)j∈{G,NA,EA}) for i ∈ {1, 2, C}. First, the closure

of TGi for i = {1, 2} is calculated as follows:

• V i
G = V i

G.

• Ei
G = {(n1, e, n2) | e ∈ Ei

G ∧ n1 ∈ clanV Ii(sourcei
G(e)) ∧

n2 ∈ clanV Ii(targetiG(e)) ∧
@e′ ∈ clanEIi(e)− {e} with n1 ∈ clanV Ii(sourcei

G(e′)) ∧
n2 ∈ clanV Ii(targetiG(e′))}.
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Figure 33: Abstract closure example.

• sourcei
G((n1, e, n2)) = n1 ∈ V i

G.

• targetiG((n1, e, n2)) = n2 ∈ V i
G.

• Ei
NA = {(n1, e, n2) | e ∈ Ei

NA ∧ n1 ∈ clanV Ii(sourcei
NA(e)) ∧

n2 = targetiNA(e)}.
• sourcei

NA((n1, e, n2)) = n1 ∈ V i
G.

• targetiNA((n1, e, n2)) = n2 ∈ V i
D.

• Ei
EA = {((n11, e1, n12), e, n2) | e ∈ Ei

EA ∧
e1 ∈ clanEIi(sourcei

EA(e)) ∧
((n11, e1, n12), e, n2) ∈ Ei

G ∧
[@e′ ∈ clanEIi(sourcei

EA(e))− {sourcei
EA(e)}

with n11 ∈ clanV Ii(sourcei
G(e′)) ∧ n12 ∈ clanV Ii(targetiG(e′))] ∧

n2 = targetiEA(e) ∈ V i
D}.

• sourceEA((n11, e1, n12), e, n2) = (n11, e1, n12) ∈ Ei
G.
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• targetEA((n11, e1, n12), e, n2) = n2 ∈ V i
D.

Then, the correspondence graph is flattened as follows:

• We first define two auxiliary functions tc[
i : V C

G → V i
G ∪ Ei

G ∪ {·} for
i = {1, 2} that will be used in order to define how the overriding of the
correspondence function is done. For this, we define define functions
nearest anci : V C

G → 2V C
G as follows1:

nearest anci(x) = {y ∈ V C
G − {x}|x ∈ clanV IC (y) ∧ tci(y) 6= · ∧

@y1 ∈ clanV IC (y)− {y}|x ∈ clanV IC (y1) ∧ tci(y1) 6= ·} (for i = 1, 2).

Then, we can define functions tc[
i (for i = 1, 2) as follows:

tc[
i(x) =

{
tci(x) if tci(x) 6= · ∨ nearest anci(x) = {}
tci(y) if tci(x) = · ∧ y ∈ nearest anci(x)

• V C
G = {(n1, n, n2)|n ∈ V C

G ∧ tc[
i(n) ∈ V i

G ∧ ni ∈ clanV Ii(tc[
i(n))

(for i = {1, 2})}⋃

{((source1
G(e1), e1, target1G(e1)), n, n3)|n ∈ V C

G ∧ tc[
1(n) ∈ E1

G ∧
tc[

2(n) ∈ V 2
G ∧ n3 ∈ clanV I2(tc[

2(n)) ∧ e1 ∈ clanEI1(tc[
1(n))}⋃

{(n3, n, (source2
G(e1), e1, target2G(e1)))|n ∈ V C

G ∧ tc[
1(n) ∈ V 1

G ∧
tc[

2(n) ∈ E2
G ∧ n3 ∈ clanV I1(tc[

1(n)) ∧ e1 ∈ clanEI2(tc[
2(n))}⋃

{(source1
G(e1), e1, target1G(e1)), n, (source2

G(e2), e2, target2G(e2)))|
n ∈ V C

G ∧ tc[
i(n) ∈ Ei

G ∧ ei ∈ clanEIi(tc[
i(n))(for i = {1, 2})}⋃

{(n1, n, ·)|n ∈ V C
G ∧ n1 ∈ clanV I1(tc[

1(n)) ∧ tc[
2(n) = ·}⋃

{(·, n, n1)|n ∈ V C
G ∧ n1 ∈ clanV I2(tc[

2(n)) ∧ tc[
1(n) = ·}⋃

{(·, n, ·)|n ∈ V C
G ∧ tc[

i(n) = · (for i = {1, 2})}⋃

{((source1
G(e1), e1, target1G(e1)), n, ·)|n ∈ V C

G ∧ tc[
1(n) ∈ E1

G ∧
tc[

2(n) = · ∧ e1 ∈ clanEI1(tc[
1(n))}⋃

{(·, n, (source2
G(e1), e1, target2G(e1)))|n ∈ V C

G ∧ tc[
2(n) ∈ E2

G ∧
tc[

1(n) = · ∧ e1 ∈ clanEI2(tc[
2(n))}.

• EC
G = {((x, n1, y), e, (x′, n2, y

′))|e ∈ EC
G ∧

n1 ∈ clanV IC (sourceC
G(e)) ∧

n2 ∈ clanV IC (targetCG(e)) ∧
(x, n1, y) ∈ V C

G ∧
(x′, n2, y

′) ∈ V C
G ∧

[@e′ ∈ clanEIC (e)− {e} with n1 ∈ clanV IC (sourceC
G(e′)) ∧

n2 ∈ clanV IC (targetiG(e′))]}.

• sourceC
G((x, e, y)) = x ∈ V C

G .

1with 2X being the powerset of X. However, note that as we do not have multiple inheri-
tance in the correspondence graph, the result of nearest anc is a set of at most one element.
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• targetCG((x, e, y)) = y ∈ V C
G .

• EC
NA = {((x, n1, y), e, n2)|e ∈ EC

NA ∧ n1 ∈ clanV IC (sourceC
NA(e)) ∧

(x, n1, y) ∈ V C
G ∧ n2 = targetCNA(e))}.

• sourceC
NA((n1, e, n2)) = n1 ∈ V C

G .

• targetCNA((n1, e, n2)) = n2 ∈ V C
D .

• EC
EA = {((n1, e1, n2), e, n3)|e ∈ EC

EA ∧
e1 ∈ clanEIC (sourceC

EA(e)) ∧
((n1, e1, n2), e, n3) ∈ EC

G ∧
[@e′ ∈ clanEIC (sourceC

EA(e))− {sourceC
EA(e)}

with n1 ∈ clanV IC (sourceC
G(e′)) ∧ n2 ∈ clanV IC (targetCG(e′))] ∧

n3 = targetCEA(e) ∈ V C
D }.

• sourceC
EA((x, e, y)) = x ∈ EC

G .

• targetCEA((x, e, y)) = y ∈ V C
D .

• tc1((x, n, y)) = x, with (x, n, y) ∈ V C
G .

• tc2((x, n, y)) = y, with (x, n, y) ∈ V C
G .

The meta-model triple ̂TriATG = (T̂ riTG,Z) with T̂ riTG = (T̂G1, T̂G2,

T̂GC , t̂c1, t̂c2), where T̂Gi = TGi|V i
G−AVi,Ei

G−{(x,e,y)|e∈AEi} ⊆ TGi (i=1,2) and

T̂GC = TGC |V C
G −{(x1,n,x2)|n∈AVC∨xj∈(AVj∪AEj)j=1,2},EC

G−{(x,e,y)|e∈AEC} ⊆ TGC ,
is called the concrete closure of TriATGI because all abstract nodes and edges
are removed: T̂G = TGi|A,B is the restriction of triple graph TGi to sets A and
B for graph nodes and edges.

Figure 34 shows another example of the closure of the source graph of a
meta-model triple, which illustrates how the edges are explicitly copied. In
the example, edge rel is not copied between nodes A and C because there is
another edge (rel′) between these nodes, which refines rel through an inheritance
relation. Moreover, edge rel is not copied between nodes A and D, because
relation rel′ is inherited first.

Figure 35 shows the concrete closure of the meta-model triple depicted in
the upper part of Figure 33. In the source and target graphs we have eliminated
the abstract nodes and edges. In the correspondence graph we have eliminated
the abstract nodes and edges, as well as nodes having a correspondence function
leading to an abstract node or edge.

Note that we have TriTG ⊆ TriTG with TGi
Vj
⊆ TGi

Vj
for j ∈ {G, D} and

TGi
Ej
⊆ TGi

Ej
if we identify e ∈ TGi

Ej
with (sourcei

j(e), e, targetij(e)) ∈ TGi
Ej
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Figure 34: Closure example.
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Figure 35: Concrete closure example.

for j ∈ {G,NA, EA} and n ∈ TGC
VG

with (tc[
1(n), n, tc[

2(n))2. In Figure 33,
in the correspondence graph, we identify node B in the original meta-model
triple with node (C, B, E) in the flattened meta-model triple, as tc[

1(B) = C
and tc[

2(B) = E.
Next, we show that all graphs typed over TriATG are also typed over

TriATG. This can be easily done for the source and target graphs, due the
canonical inclusion TGi ⊆ TGi for i = {1, 2}. For the correspondence graphs,

2more precisely, we identify n with (tc[
1(n), n, tc[

2(n)) in case of tc[
i(n) ∈

TCi
VG

∪ {·}; otherwise, with (tc[
1(n), n, (source2

G(tc[
2(n)), tc[

2(n), target2G(tc[
2(n)))) or

((source1
G(tc[

1(n)), tc[
1(n), target1G(tc[

1(n))), n, tc[
2(n)) or ((source1

G(tc[
1(n)), tc[

1(n), target1G(tc[
1(n))),

n, (source2
G(tc[

2(n)), tc[
2(n), target2G(tc[

2(n)))) in case of tc[
2(n) ∈ TG2

EG
; tc[

1(n) ∈ TG1
EG

or

tc[
1(n) ∈ TG1

EG
and tc[

2(n) ∈ TG2
EG

respectively.
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the appropriate node type should be selected taking into account source and
target correspondence functions.

Fact 41 (Typing with Respect to the Closure of Meta-Model Triple)
Given a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C})

with TriATG = (TriTG,Z) and TriTG = (TG1, TG2, TGC , tc1, tc2) as before;
and the abstract closure of TriATGI, TriATG = (TriTG,Z) with TriTG =
(TG1, TG2, TGC , tc1, tc2) with TGi = (V TG,i

G , V TG,i
D , ETG,i

G , ETG,i
NA , ETG,i

EA ,

(sourceTG,i
j , targetTG,i

j )j∈{G,NA,EA}) for i ∈ {1, 2, C}, built as shown before;
and given a triple graph G = ((G1, G2, GC , c1, c2), D) with Gi = (V G,i

G , V G,i
D , EG,i

G ,

EG,i
NA, EG,i

EA, sourceG,i
j , targetG,i

j )j∈{G,NA,EA}) for i ∈ {1, 2, C}, and a typing
typeG : G → TriTG, it is possible to build a typing type : G → TriATG to
the closure TriATG of the meta-model triple as follows:

• typeV G,i
D

= typeV G,i
D

, for i = {1, 2, C}.

• typeV G,i
G

= typeV G,i
G

, for i = {1, 2}.

• typeEG,i
j

(e) = (sourceTG,i
j (typeG,i

EG,i
j

(e)), typeEG,i
j

(e), targetTG,i
j (typeEG,i

j
(e))),

for i = {1, 2, C}, j = {G,NA, EA}.
• The typing of the nodes in the correspondence graph is defined as follows:

typeV G,C
G

(n) =





(typeXG,1(c1(n)), typeV G,C
G

(n), typeXG,2(c2(n)))
if ci(n) ∈ XG,iforX ∈ {VG, EG}, i ∈ {1, 2}

(·, typeV G,C
G

(n), typeXG,2(c2(n)))
if c1(n) = · ∧ c2(n) ∈ XG,2 forX ∈ {VG, EG}

(typeXG,1(c1(n)), typeV G,C
G

(n), ·)
if c2(n) = · ∧ c1(n) ∈ XG,1 forX ∈ {VG, EG}

(·, typeV G,C
G

(n), ·) if ci(n) = · for i = {1, 2}

Figure 36 shows an example of typing of a triple graph by the concrete closure
of the meta-model triple shown in Figure 35. Nodes are labelled with their type,
except the ones of the correspondence graph. The upper one has type (C,B, H)
and the lower one has type (C, B, F ). Thus, in a first step we define instances
of meta-model triples as triple graphs typed by its concrete closure. Therefore,
the triple graph in Figure 36 is an instance of the meta-model triple shown in
the upper part of Figure 33. We also say that a triple graph is conformant
to a meta-model triple. We distinguish abstract and concrete instances of a
meta-model triple; the latter cannot have nodes or edges abstractly typed.

Definition 42 (Instance of Meta-Model Triple)
An abstract instance TriTAGA of TriATGI is an attributed typed triple

graph over TriATG, i.e. TriTAGA = (TriAG, type : TriAG → TriATG).
Similarly, a concrete instance TriTAGC of TriATGI is an attributed typed
triple graph over ̂TriATG, i.e. TriTAGC = (TriAG, type : TriAG → ̂TriATG).
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Figure 36: Example of typing.

Note that the previous typing relations were defined between triple graphs
and flattened triple type graphs. As we want to avoid explicitly flattening the
meta-model triple, our objective is to give the typing directly to the type graph
with inheritance. This is interesting also for the implementation, as flattening
a meta-model triple is undesirable for efficiency reasons. In order to define the
typing directly from a triple graph to its meta-model triple, we introduce triple
clan morphisms.

Definition 43 (Triple Clan Morphism)
Given a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C})

where TriATG = (TriTG,Z) with TriTG = (TG1, TG2, TGC , tc1, tc2) and
TGi = (V TG,i

G , V TG,i
D , ETG,i

G , ETG,i
NA , ETG,i

EA , (sourceTG,i
j , targetTG,i

j )j∈{G,NA,EA})
for i ∈ {1, 2, C}, and given an attributed triple graph TriAG = (TriG, D) with
TriG = (G1, G2, GC , c1, c2) and Gi = (V G,i

G , V G,i
D , EG,i

G , EG,i
NA, EG,i

EA, (sourceG,i
j ,

targetG,i
j )j∈{G,NA,EA}) for i ∈ {1, 2, C}, the family of functions typej : TriAG →

TriATGI (for j = {1, 2, C}) with typej = (typej
i , typeD)i∈{VG,VD,EG,ENA,EEA}

and

• typej
Vi

: V G,j
i → V TG,j

i (for i ∈ {G, D}, j ∈ {1, 2, C}).

• typej
Ei

: EG,j
i → ETG,j

i (for i ∈ {G, NA,EA}, j ∈ {1, 2, C}).
• typeD : D → Z unique final DSIG-homomorphism.

is called a triple clan morphism, if:

1. ∀s ∈ S
′
D the following diagram commutes,

Dj,s

typej
Ds //

=

²²

Zj,s = {s}

²²
V G,j

D typej
VD

// V TG,j
D = S

′
D

i.e. typej
VD

(d) = s for d ∈ Ds and s ∈ S
′
D and j ∈ {1, 2, C}.
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2. typej
VG
◦ sourceG,j

G (e1) ∈ clanV Ij (sourceTG,j
G ◦ typej

EG
(e1)) ∀e1 ∈ V G,j

EG
.

3. typej
VG
◦ targetG,j

G (e1) ∈ clanV Ij (targetTG,j
G ◦ typej

EG
(e1)) ∀e1 ∈ V G,j

EG
.

4. typej
VG
◦ sourceG,j

NA(e2) ∈ clanV Ij (sourceTG,j
NA ◦ typej

ENA
(e2)) ∀e2 ∈ EG,j

NA.

5. typej
VD
◦ targetG,j

NA(e2) = targetTG,j
NA ◦ typej

ENA
(e2) ∀e2 ∈ EG,j

NA.

6. typej
EG

◦ sourceG,j
EA(e3) ∈ clanEIj (sourceTG,j

EA ◦ typej
EEA

(e3)) ∀e3 ∈ EG,j
EA .

7. typej
VD
◦ targetG,j

EA(e3) = targetTG,j
EA ◦ typej

EEA
(e3) ∀e3 ∈ EG,j

EA .

8. typei
VG
◦ ci(x) ∈ clanV Ii(tc[

i ◦ typeC
VG

(x)), ∀x ∈ nodesi for i = 1, 2.

9. typei
EG

◦ ci(x) ∈ clanEIi(tc[
i ◦ typeC

VG
(x)), ∀x ∈ edgesi for i = 1, 2.

10. ci(x) = · = tc[
i ◦ typeC

VG
(x), ∀x ∈ undefi for i = 1, 2.

Where tc[
i is defined as in definition 40:

tc[
i(x) =

{
tci(x) if tci(x) 6= · ∨ nearest anci(x) = {}
tci(y) if tci(x) = · ∧ y ∈ nearest anci(x)

A triple clan morphism type : TriAG → TriATG is called concrete triple
clan morphism if typej

VG
(n) /∈ AVj for all n ∈ V G,j

G and typej
EG

(e) /∈ AEj for
all e ∈ EG,j

G .

Conditions 2 and 3 in the previous definition mean that edges are inherited
from a node to its node inheritance clan. Conditions 4 and 5 model the fact
that attributes are also inherited from a node to its node inheritance clan.
With conditions 6 and 7 we make attributes to be inherited from an edge to
its edge inheritance clan. Conditions 8 and 9 establish that the target of a
correspondence function can lead to any subtype (node or edge) of the target
element in the type graph. In addition, these conditions take into account that
the correspondence function can be “inherited” through the node inheritance
clan in the correspondence graph. Finally, condition 10 specifies the fact that if
a correspondence function is undefined, it should also be undefined in the type
graph.

Figure 37 shows a simple example of triple clan morphism. It illustrates
how the correspondence functions are inherited. In the meta-model triple in
the upper side, node B, defines tc2 leaving tc1 undefined. That means that
tc1 will be inherited from A, and this is modelled by tc[

1. Moreover, as nodes
F and H in the target graph of the meta-model triple inherit from node E,
then nodes of type B can be connected to nodes of types E, F or H, and this
is modelled by using the clanV Ii function in condition 8. A similar situation
occurs if the target of a correspondence function is an edge. This is shown in
the example with the instance of node A, whose tc2 function is connected to
a relFJ association, which is a subtype of rel. Note how the example triple
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Figure 37: An example of triple clan morphism.

graph has an abstract typing, because there is an abstract edge with type rel
between the instances of H and J .

The following technical properties of triple clan morphisms are needed to
show the results in next subsection based on Double Pushout Transformation
in the category TriAGraph. In order to show the bijective correspondence be-
tween triple clan morphisms and normal typing triple morphisms type : TriAG →
TriATG we first define a universal triple clan morphism, which uniquely maps
the flattened type graph and the meta-model triple.

Definition 44 (Universal Triple Clan Morphism)
Given a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C}),

the universal triple clan morphism uTriATG : TriATG → TriATGI with TriATG =
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(TriTG,Z) with TriTG = (TG1, TG2, TGC , tc1, tc2) and TGi = (V TG,i
G , V TG,i

D =

V TG,i
D , ETG,i

G , ETG,i
NA , ETG,i

EA , (sourceTG,i
j , targetTG,i

j )j∈{G,NA,EA}) for i ∈ {1, 2, C}
is defined by:

• ui
TriATG,VG

= idi
VG

: V TG,i
G → V TG,i

G , for i ∈ {1, 2}.

• uC
TriATG,VG

: V TG,C
G → V TG,C

G , uC
TriATG,VG

((x, n, y)) = n ∈ V TG,C
G .

• ui
TriATG,VD

= idi
VD

: V TG,i
D → V TG,i

D , for i ∈ {1, 2, C}.

• ui
TriATG,EG

: ETG,i
G → ETG,i

G , ui
TriATG,EG

((x, e, y)) = e ∈ ETG,i
G , for

i ∈ {1, 2, C}.

• ui
TriATG,ENA

: ETG,i
NA → ETG,i

NA , ui
TriATG,ENA

((x, e, y)) = e ∈ ETG,i
NA , for

i ∈ {1, 2, C}.

• ui
TriATG,EEA

: ETG,i
EA → ETG,i

EA , ui
TriATG,EEA

((x, e, y)) = e ∈ ETG,i
EA , for

i ∈ {1, 2, C}.
• uTriATG,D = idZ : Z → Z.

As an example of the universal triple clan morphism for Figure 33, we have
that uC

TriATG,VG
((C, B, E)) = B = uC

TriATG,VG
((C, B, F )) = uC

TriATG,VG
((C,B,H)),

and also that uC
TriATG,VG

((C,A, ·)) = A. For the graph nodes in TG1 and
TG2, the universal clan morphism is the identity. For the edges, the typing
is obtained from the second component of the label. In this way, for example,
uC

TriATG,ENA
((C,B,H), at3, Int)) = at3. This universal morphism is indeed a

clan morphism, as next lemma states.

Lemma 45 The universal triple clan morphism uTriATG : TriATG → TriATGI
is a triple clan morphism. Triple clan morphisms are closed under compo-
sition with attributed triple graph morphisms. This means that given an at-
tributed triple morphism f : TriAG′ → TriAG and a triple clan morphism
f ′ : TriAG → TriATGI then f ′ ◦ f : TriAG′ → TriATGI is a triple clan
morphism. If f ′ is concrete, so is f ′ ◦ f .

The following theorem relates triple clan morphisms and attributed triple
morphisms, and is essential to show the main results in the next subsection.

Theorem 46 (Universal Triple Clan Property)
For each triple clan morphism type : TriAG → TriATGI, there is a unique

attributed triple morphism type : TriAG → TriATG such that uTriATG ◦type =
type, as Figure 38 shows.

Construction.
Given the triple clan morphism type : TriAG → TriATGI with TriAG =

(TriG,D) and TriG = (G1, G2, GC , c1, c2), where Gi = (V G,i
G , V G,i

D , EG,i
G , EG,i

NA,
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Figure 38: Uniqueness of attributed triple morphism.

EG,i
EA, (sourceG,i

j , targetG,i
j )j∈{G,NA,EA}) for i ∈ {1, 2, C}, and TriATGI =

(TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C}) where TriATG = (TriTG, Z) with
TriTG = (TG1, TG2, TGC , tc1, tc2) and TGi = (V TG,i

G , V TG,i
D , ETG,i

G , ETG,i
NA ,

ETG,i
EA , (sourceTG,i

j , targetTG,i
j )j∈{G,NA,EA}) for i ∈ {1, 2, C}, the attributed

triple morphism type : TriAG → TriATG can be uniquely constructed as fol-
lows:

• typei
VG

= typei
VG

: V G,i
G → V TG,i

G = V TG,i
G , for i ∈ {1, 2}.

• typei
VD

= typei
VD

: V G,i
D → V TG,i

D = V TG,i
D , for i ∈ {1, 2, C}.

• typei
EG

: EG,i
G → ETG,i

G , typei
EG

(e1) = (n1, e
′
1, n2) with e′1 = typei

EG
(e1) ∈

ETG,i
G , n1 = typei

VG
(sourceG,i

G (e1)) ∈ V TG,i
G , n2 = typei

VG
(targetG,i

G (e1)) ∈
V TG,i

G , for i ∈ {1, 2, C}.

• typei
ENA

: EG,i
NA → ETG,i

NA , typei
ENA

(e2) = (n1, e
′
2, n2) with e′2 = typei

ENA
(e2)

∈ ETG,i
NA , n1 = typei

VG
(sourceG,i

NA(e2)) ∈ V TG,i
G , n2 = typei

VD
(targetG,i

NA(e2))
∈ V TG,i

D , for i ∈ {1, 2, C}.

• typei
EEA

: EG,i
EA → ETG,i

EA , typei
EEA

(e3) = ((n11, e
′′
3 , n12), e′3, n2) with e′3 =

typei
EEA

(e3) ∈ ETG,i
EA , (n11, e

′′
3 , n12) = typei

EG
(sourceG,i

EA(e3)) ∈ ETG,i
G ,

n2 = typei
VD

(targetG,i
EA(e3)) ∈ V TG,i

D , for i ∈ {1, 2, C}.
• typeD = typeD : D → Z.

• The typing of the nodes in the correspondence graph is defined as follows:

typeV G,C
G

(n) =





(typeXG,1(c1(n)), typeV G,C
G

(n), typeXG,2(c2(n)))
if ci(n) ∈ XG,iforX ∈ {VG, EG}, i ∈ {1, 2}

(·, typeV G,C
G

(n), typeXG,2(c2(n)))
if c1(n) = · ∧ c2(n) ∈ XG,2 forX ∈ {VG, EG}

(typeXG,1(c1(n)), typeV G,C
G

(n), ·)
if c2(n) = · ∧ c1(n) ∈ XG,1 forX ∈ {VG, EG}

(·, typeV G,C
G

(n), ·) if ci(n) = · for i = {1, 2}

By lemma 45, we have that the composition uTriATG ◦ type is a triple clan
morphism.
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Lemma 47 (Pushout Property of Triple Clan Morphisms)

1. A pushout in TriAGraph is also a pushout with respect to (concrete)
triple clan morphisms (see Figure 39).
Given a pushout PO in TriAGraph as shown in Figure 39 with attributed
triple morphisms g1, g2, g′1, g′2 and triple clan morphisms f1, f2 with
f1 ◦ g1 = f2 ◦ g2, then there is a unique triple clan morphism f : G3 →
TriATGI with f ◦ g′1 = f1 and f ◦ g′2 = f2.

G1

g′1 !!CC
CC

CC
CC

(1)

f1

%%
G0

g1

=={{{{{{{{

g2

!!CC
CC

CC
CC

PO G3
f // TriATGI

G2

g′2
=={{{{{{{{

(2)

f2

99

Figure 39: Pushout w.r.t. concrete triple clan morphisms.

2. Double pushouts in TriAGraph can be extended to double pushouts for
attributed triple graphs with typing by concrete triple clan morphisms with
respect to the match morphism and the triple rule (see Figure 40).
Given pushouts (1) and (2) in TriAGraph as shown in Figure 40 and
concrete triple clan morphisms typeL, typeK , typeR, and typeG for the
triple rule and the host triple graph G such that (3), (4) and (5) commute,
then there are also unique concrete triple clan morphisms typeD and typeH

such that (6) and (7) commute.

L

typeLvvmmmmmmmmmmmmmmm

m

²²
(1)

(3)

(5)

K

d

²²

loo r //

typeK

¤¤

(4)

R

m′

²²

typeR

¥¥
(2)

TriATGI G
typeG

oo

(6)

D
l′oo r′ //

typeD

ff
(7)

H

typeH

bb

Figure 40: Double pushout for attributed triple graphs with typing by concrete
triple clan morphism.
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7.2 Attributed Typed Triple Graph Transformation with
Inheritance

The goal of this subsection is to extend triple rules with the inheritance concept.
We call these rules inheritance-extended triple rules, or IE-triple rules. In this
way, nodes and edges in an IE-triple rule can be typed by node and edge types
(also called classes and associations) in the meta-model triple, which may be
refined by a number of sub-classes and sub-associations. An IE-triple rule typed
in that way is equivalent to a set of concrete IE-triple rules, resulting by the valid
substitutions of each node and edge in the IE-triple rule by all the concretely
typed nodes and edges in their inheritance clans. If the set of equivalent rules of
an IE-triple rule has a cardinality greater than one, the IE-triple rule is called
IE-triple meta-rule. As these rules are equivalent to more than one concrete
rule, they give as a result grammars that are more compact. Nodes and edges
abstractly typed are thus allowed to appear in the LHS of an IE-triple rule.
However, if an abstract node appears in the RHS, then it must also appear
in the LHS. That is, we do not allow triple rules to create elements with an
abstract typing. This could be done in principle, and then the meta-rule would
be equivalent to a number of concrete rules resulting from the valid substitutions
of the elements with an abstract type by elements with a concrete one. However,
this could result in non-determinism when applying the meta-rule, which we
want to avoid. We first define type refinement and then define IE-triple rules.

Definition 48 (Type Refinement)
Given an attributed triple graph TriAG = (TriG,D) with TriG = (G1, G2, GC ,

c1, c2) and Gi = (V G,i
G , V G,i

D , EG,i
G , EG,i

NA, EG,i
EA, (sourceG,i

j , targetG,i
j )j∈{G,NA,EA})

for i ∈ {1, 2, C}, and two clan morphisms type : TriAG → TriATGI and
type′ : TriAG → TriATGI, type′ is called a type refinement of type, written
type′ ≤ type3 if:

• type′iVG
(n) ∈ clanV Ii(typei

VG
(n)), ∀n ∈ V G,i

G , for i ∈ {1, 2, C}.

• type′iEG
(n) ∈ clanEIi(typei

EG
(n)), ∀n ∈ EG,i

G , for i ∈ {1, 2, C}.
• type′iX = typei

X , for X ∈ {VD, ENA, EEA}, i ∈ {1, 2, C}.
• type′D = typeD.

Given clan morphisms type, type′ : TriAG → TriATGI with type′ ≤ type
and an attributed triple morphism g : TriAG′ → TriAG, then also type′ ◦ g ≤
type ◦ g. Figure 41 shows an example of type refinement. Triple graph G′ has
a typing type′ that is finer than the typing type of G. The reason is that in the
source graph, type′1VG

(: K) = K ∈ clanV I1(type1
VG

(: C) = C). Besides, in the
target graph we have that type′2VG

(: F ) = F ∈ clanV I2(type2
VG

(: E) = E) and
that type′2EG

(: relFJ) = relFJ ∈ clanEI2(type2
EG

(: rel) = rel).

3we say that type′ is finer than type.
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:C :B
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Figure 41: Type refinement example.

Definition 49 (Meta- and Concrete IE-triple Rule)
An inheritance-extended triple rule (short IE-triple rule) is a triple rule typed

by a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C}),

and is given by p = (L l←− K
r−→ R, type, AC). The first element is an

attributed triple graph rule (l and r are attributed triple morphisms); type =
(typei : i → TriATGI)i∈{L,K,R} is a triple of typing triple clan morphisms,
one for each part of the triple rule; AC = {cci = (xi : L → Xi, typeXi , Ai =
{(yij : Xi → Yij , typeYij )})} is a set of application conditions where typeXi : Xi →
TriATGI and typeYij : Yij → TriATGI are triple clan morphisms, such that
the following conditions hold:

• typeL ◦ l = typeK = typeR ◦ r.

• typei
R,VG

(V ′R,i
G ) ∩ AVi = ∅, where V ′R,i

G := V R,i
G − ri

VG
(V K,i

G ), for i ∈
{1, 2, C}.

• typei
R,EG

(E′R,i
G ) ∩ AEi = ∅, where E′R,i

G := ER,i
G − ri

EG
(EK,i

G ), for i ∈
{1, 2, C}.

• typeYij ◦ yij ≤ typeXi and typeXi ◦ xi ≤ typeL for all cci ∈ AC.

• typei
L,VG

◦ cL
i ◦ lC

V C
G
|nodesK

i
= typei

K,VG
◦ cK

i |nodesK
i

= typei
R,VG

◦ cR
i ◦

rC
V C

G
|nodesK

i
for i = 1, 2 where cK

i , cL
i and cR

i are the correspondence func-
tions of K, L and R.
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• typei
L,EG

◦ cL
i ◦ lC

V C
G
|edgesK

i
= typei

K,EG
◦ cK

i |edgesK
i

= typei
R,EG

◦ cR
i ◦

rC
V C

G
|edgesK

i
for i = 1, 2.

• cL
i ◦ lC

V C
G
|undefK

i
= cK

i |undefK
i

= cR
i ◦ rC

V C
G
|undefK

i
= · for i = 1, 2.

• The datatype part of L, K, R, Xi and Yij is TDSIG(X), the term algebra
of DSIG with variables X, and l, r, xi and yij are data preserving, i.e.
lDi , rDi , xiD

, yijD
are identities

Yij

typeYij

,,

Xi

typeXi

**

yijoo L
xioo

typeL

""EE
EE

EE
EE

EE
EE

EE
EE

EE
E K

typeK

²²

loo r // R

typeR

||yy
yy

yy
yy

yy
yy

yy
yy

yy
y

TriATGI

A concrete IE-triple rule pt with respect to an IE-triple rule p is given by pt =
(L l←− K

r−→ R, t, AC), where t is a triple of concrete typing clan morphisms
t = (tL : L → TriATGI, tK : K → TriATGI, tR : R → TriATGI), such that:

• tL ◦ l = tK = tR ◦ r

• tL ≤ typeL, tK ≤ typeK , tR ≤ typeR

• tR,VG
(x) = typeR,VG

(x) ∀x ∈ V ′R,i
G , for i ∈ {1, 2, C}.

• tR,EG(e) = typeR,EG(e) ∀e ∈ E′R,i
G , for i ∈ {1, 2, C}.

• For each (xi : L → Xi, typeXi , Ai = {(yij : Xi → Yij , typeYij )}) ∈ AC,
we have all (xi : L → Xi, tXi , Ai = {(yij : Xi → Yij , tYij )}) ∈ AC with
concrete triple clan morphisms tXi and tYij satisfying tYij ◦ yij = tXi ,
tXi ◦ xi = tL, tYij ≤ typeYij and tXi ≤ typeXi .

Yij

tYij

,,

Xi

tXi

**

yijoo L
xioo

tL

""EE
EE

EE
EE

EE
EE

EE
EE

EE
E K

tK

²²

loo r // R
tR

||yy
yy

yy
yy

yy
yy

yy
yy

yy
y

TriATGI

The set of all concrete productions pt with respect to an IE-triple rule p is
denoted by p̂. p is called IE triple meta-rule if |p̂| > 1.
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The top row of Figure 42 shows a simple IE-triple meta-rule example. The
rule is typed with respect to the meta-model triple shown in Figure 32. The
rule identifies the activator of a message, creating an edge in the abstract graph
(the rule is simplified, we do not include application conditions for clarity).
Note how nodes 7, 8 and 9 and edges 10 and 11 of the concrete graph have an
abstract typing. The meta-rule is equivalent to four concrete rules. Node 7 can
take types StartPoint or ActivationBox in the concrete rule, node 8 has to be an
ActivationBox, and node 9 can be an Object or an ActivationBox. Thus, only
four combinations are possible. The choice of the node types determines the
edge types.

=

l

AbsMessage AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

L 1

46

16

35

14 12 13

7 8 915 17

2

10 11
AbsMessage AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

K 1

46

16

35

14 12 13

7 8 915 17

2

10 11

r

m d

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

G

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

D

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

l * : Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

H

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

activator

18

AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

AbsMessage

: Concrete
Element

: Concrete
Element

: Concrete
Element

R 1

46

16

35

14 12 13

7 8 915 17

2

10 11

18

activator

m*

r*

=

Figure 42: An example of IE-triple meta-rule and direct derivation.

In order to apply an IE-triple meta-rule to an ATT-graph, a structural match
with respect to the untyped rule has to be found. The typing of the match should
be concrete and finer than the type of the rule’s LHS. Therefore, the typing of
the target of the correspondence functions in the host graph should also be
finer than in the rule’s LHS. Finally, the match should satisfy the application
conditions. The direct derivation can be built by first constructing the double
pushout in TriAGraph, yielding the attributed triple graph H. Then, the
typing is added. The preserved elements by the rule do not change their type.
The new elements take their type from R, as the elements added by the rule
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should have a concrete typing. Figure 42 shows a direct derivation example,
where abstract elements 7, 8, 9, 10 and 11 in the rule take concrete types
StartPoint, ActivationBox, ActivationBox, StartMessage and Message. Next,
we first define how to apply concrete IE-triple rules to a triple graph and then
show how to apply IE-triple meta-rules.

Definition 50 (Direct Derivation by Concrete IE-Triple Rule)
Let pt = (L l←− K

r−→ R, t, AC) be a concrete IE-triple rule, (G, typeG) an
attributed typed triple graph with a concrete triple clan morphism typeG : G →
TriATGI and m : L → G an attributed triple morphism. Morphism m is a
consistent match with respect to pt and (G, typeG), if

• m satisfies the gluing condition (see definition 34) with respect to the un-
typed production L

l←− K
r−→ R and the attributed triple graph G,

• typeG ◦m = tL, and

• m satisfies the application conditions AC, i.e. for each (xi : L → Xi, tXi
,

Ai = {(yij : Xi → Yij , tYij )}) ∈ AC it holds, that :

– @o : Xi → G in M such that o ◦ xi = m and typeG ◦ o = tXi or

– ∀o : Xi → G in M such that o ◦ xi = m and typeG ◦ o = tXi ;
∃q : Yij → G in M such that q ◦ yij = o and typeG ◦ q = tYij .

Given a consistent match m, the concrete production can be applied to the
typed attributed triple graph (G, typeG), yielding a typed attributed triple graph
(H, typeH) by constructing the DPO of l, r and m and applying Lemma 47.2.
We write (G, typeG)

pt,m=⇒ (H, typeH) for such a direct derivation.

TriATGI

Yij

tYij

::tttttttttt

q
$$JJJJJJJJJJ Xi

yijoo

tXi

OO

o

²²

L
xioo

m
zzuuuuuuuuuuu

tL

ddIIIIIIIIII

G

typeG

22

In order to apply a meta-rule, one could calculate the set of equivalent
concrete rules and then apply one of them. However, it is more efficient to
define how to apply meta-rules directly. This is done in the following definition.

Definition 51 (Direct Derivation by IE-Triple Meta-Rule)
Let p = (L l←− K

r−→ R, type, AC) be a IE-triple meta-rule typed over an
attributed type triple graph with inheritance TriATGI, (G, typeG) an attributed
typed triple graph with a concrete triple clan triple morphism typeG : G →
TriATGI, and m : L → G an attributed triple morphism. Morphism m is
called consistent match with respect to p and (G, typeG), if:

UC3M-TR-CS-06-01 54



• m satisfies the gluing condition (see definition 34) with respect to the un-
typed production L

l←− K
r−→ R and the attributed triple graph G, i.e.

pushout (1) in Figure 43 exists,

• typeG ◦m ≤ typeL.

• typei
G,VG

◦ cG
i ◦mC |nodesL

i
≤ typei

L,VG
◦ cL

i |nodesL
i
, for i = 1, 2.

• typei
G,EG

◦ cG
i ◦mC |edgesL

i
≤ typei

L,EG
◦ cL

i |edgesL
i
, for i = 1, 2.

• cG
i ◦mC |undefL

i
= cL

i |undefL
i
, for i = 1, 2.

• m satisfies the application conditions AC, i.e. for each (xi : L → Xi, tXi
,

Ai = {(yij : Xi → Yij , tYij )}) ∈ AC it holds, that :

– @o : Xi → G in M such that o ◦ xi = m and typeG ◦ o = tXi or

– ∀o : Xi → G in M such that o ◦ xi = m and typeG ◦ o = tXi , and
∃q : Yij → G in M such that q ◦ yij = o and typeG ◦ q = tYij .

Given a consistent match m, the IE-triple meta-rule can be applied to (G, typeG)
yielding a direct meta-derivation (G, typeG)

p,m
=⇒ (H, typeH) with the concrete

clan triple morphism typeH as follows:

1. Construct the (untyped) DPO of l, r and m in TriAGraph given by
pushouts (1) and (2) in Figure 43.
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typeYij
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¨̈
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¨̈
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¨̈
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²²
(1)

xioo K
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(2)
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zztttttttttt D
l′oo r′ //

typeDvv

H

typeH
ooTriATGI

Figure 43: Direct derivation by IE-triple meta-rule.

2. Construct typeD and typeH as follows

• typeD = typeG ◦ l′

• typei
H,X(x) = if ∃x′ ∈ XD,i | x = r′iX(x′) then typei

D,X(x′) else
typei

R,X(x′′), where x′′ ∈ XR,i and m′i(x′′) = x and X ∈ {VG, VD, EG,
ENA, EEA}, i ∈ {1, 2, C}.

• typei
H,D(x) = if ∃x′ ∈ DD | x = r′D(x′) then typeD,D(x′) else

typeR,D(x′′), where x′′ ∈ DR and m′(x′′) = x.
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Next lemma states the relations between meta-derivations and concrete deriva-
tions. The idea is that for each application of a meta-rule, there is a unique
concrete rule (in its equivalent set) that yields the same result. Moreover, start-
ing from that concrete rule, one can reconstruct the typing of the meta-rule.

Lemma 52 (Construction of Concrete and Meta-Derivations)
Given an IE-triple meta-rule p = (L l←− K

r−→ R, type, AC) with AC =
{cci = (xi : L → Xi, typeXi

, Ai = {(yij : Xi → Yij , typeYij
)j∈J})i∈I} , a con-

crete attributed typed triple graph (G, typeG : G → TriATGI) and a consistent
match morphism m : L → G with respect to p and (G, typeG), we have:

1. There is a unique concrete IE-triple rule pt ∈ p̂ with pt = (L l←− K
r−→

R, t, AC) and tL = typeG ◦m. In this case, tK , tR and AC are defined by:

• tK = tL ◦ l

• tiR,VG
(x) = if ∃x′ ∈ V K

G x = ri
VG

(x′) then tiK,VG
(x′) else typei

R,VG
(x)

for x ∈ V R
G , i = {1, 2, C}.

• tiR,EG
(e) = if ∃e′ ∈ EK

G e = ri
EG

(e′) then tiK,EG
(e′) else typei

R,VG
(e)

for e ∈ ER
G, i = {1, 2, C}.

• tiR,X = typei
R,X for X ∈ {VD, ENA, EEA, D}, i = {1, 2, C}.

• AC =
⋃

i∈I{(xi : L → Xi, tXi ,
⋃

j∈J{(yij : Xi → Yij , tYij )|tYij is a
concrete triple clan morphism with tYij ≤ typeYij and tYij ◦ yij =
tXi})|tXi is a concrete triple clan morphism with tXi ≤ typeXi and
tXi ◦ xi = tL}.

2. There is a concrete direct derivation (G, typeG)
pt,m=⇒ (H, typeH) with con-

sistent match m w.r.t. pt, and typeD = typeG ◦ l′ and typeH uniquely
defined by typeD, tR and pushout properties of (2) (see Lemma 47), where
typeH : H → TriATGI is a concrete triple clan morphism given by:

• typei
H,X(x) = if ∃x′ ∈ XD,i with x = r′iX(x′) then typei

D,X(x′) else
tiR,X(x′′), where x′′ ∈ XR,i and m′i(x′′) = x and X ∈ {VG, VD, EG,
ENA, EEA}, i ∈ {1, 2, C}.

• typei
H,D(x) = if ∃x′ ∈ DD with x = r′D(x′) then typeD,D(x′) else

tR,D(x′′), where x′′ ∈ DR and m′i(x′′) = x.

3. The concrete direct derivation becomes a direct meta-derivation (see Def-
inition 51):
(G, typeG)

p,m
=⇒ (H, typeH) with typeD = typeH ◦ r′, typeG ◦m ≤ typeL,

typeD◦d ≤ typeK and typeH◦m′ ≤ typeR, where the typing t = (tL, tK , tR)
of the concrete rule pt is replaced by type = (typeL, typeK , typeR) of the
IE-triple meta-rule p.
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7.3 Equivalence of Concrete and Abstract Transforma-
tions

In this section we show that the transformations (a sequence of zero or more
direct derivations) using meta-rules and the transformations using concrete rules
are equivalent. This is stated in the following theorem. As the proofs of these
theorems are similar to the ones presented in [de Lara et al., 2005], we omit the
proofs.

Theorem 53 (Equivalence of Transformations)
Given an abstract IE-triple rule p = (L l←− K

r−→ R, type, AC) over an at-
tributed type triple graph with inheritance TriATGI, a concrete typed attributed
triple graph (G, typeG) and a match morphism m : L → G (which satisfies the
gluing condition with respect to the untyped triple rule (L ←− K −→ R). Then
the following statements are equivalent, where (H, typeH) is the same concrete
typed graph in both cases:

1. m : L → G is a consistent match with respect to the abstract IE-triple rule
p yielding an abstract direct derivation (G, typeG)

p,m
=⇒ (H, typeH).

2. m : L → G is a consistent match with respect to the concrete IE-triple
rule pt = (L ← K → R, t, AC) with pt ∈ p̂ and tL = typeG ◦ m (where
tK , tR and AC are uniquely defined by Lemma 52.1) yielding a concrete
direct derivation (G, typeG)

pt,m=⇒ (H, typeH).

In a similar way as for regular graphs, we give a definition of graph grammar
and language for IE-triple meta-rules.

Definition 54 (Graph Grammar and Language for IE-Triple Meta-Rules)
Given an attributed type triple graph with inheritance TriATGI and an at-

tributed triple graph G typed over TriATGI with a concrete triple clan morphism
typeG, an ATTGI grammar is denoted by GG = (TriATGI, (G, typeG : G →
TriATGI), P ), where P is a set of IE-triple rules that are typed over TriATGI.

The corresponding graph language is defined by the set of all the concretely
typed triple graphs that are generated by a meta-transformation (cf. defini-
tions 50 and 51): L(GG) = {(H, typeH : H → TriATGI) | ∃ meta −
transformation (G, typeG) ∗⇒ (H, typeH)}.

Finally, the following theorem states that for each ATTGI grammar, there is
an equivalent graph grammar without inheritance. Moreover, it is also possible
to find an equivalent graph grammar, where all the rules are concrete.

Theorem 55 (Equivalence of Attributed Triple Graph Grammars)
For each ATTGI grammar GG = (TriATGI, (G, typeG), P ) with IE-triple

rules P there are:

1. An equivalent ATTGI grammar ĜG = (TriATGI, (G, typeG), P̂ ) with
concrete IE-triple rules P̂ , i.e. L(GG) = L(ĜG).
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2. An equivalent attributed typed triple graph grammar without inheritance
GG = (TriATG, (G, typeG), P ) typed over TriATG where TriATG is the
closure of TriATGI, and with productions P , i.e. L(GG) ∼= L(GG), that
means: (G, typeG) ∈ L(GG) ⇔ (G, typeG) ∈ L(GG).

Construction.

1. The set P̂ is defined by P̂ = ∪p∈P p̂ with p̂ the set of all concrete IE-rules
with respect to p.

2. typeG : G → TriATG is the triple graph morphism corresponding to
the triple clan morphism typeG (see Theorem 46). P is defined by P =
∪p∈P {pt | pt ∈ p̂}, where for pt ∈ p̂ with pt = (p, t, AC) we define
pt = (p, t, AC ′) with utriATG ◦ tX = tX for X ∈ {L,K, R} and AC ′ is
defined by AC as follows:

For each (xi : L → Xi, tXi
, {(yij : Xi → Yij , tYij

)}), we have all (xi : L →
Xi, tXi

, {(yij : Xi → Yij , tYij
)}) with tXi

= uTriATG ◦ tXi
and tYij

=
uTriATG ◦ tYij .

8 Conclusions

In this report, we have presented a formalization of triple graph grammars
based on the double pushout approach. We have extended the notion of triple
graphs by allowing attributes in nodes and edges, typing to a triple type graph,
and allowing the target of the correspondence functions to be a node, an edge,
or a special element meaning that the function is undefined. Moreover, we
have equipped the type graph with node and edge inheritance. Thus, rules may
contain nodes and edges whose types in the type graph are refined by other ones.
In this way, these elements can be matched with any instance of their subtypes.
This technique makes the transformation rules much more compact and allows
the integration of graph transformation and meta-modelling techniques.

The developed theory is highly relevant as triple graph grammars are in-
creasingly used for model transformation [Taentzer et al., 2005], to maintain
relations between two models (for example, when relating abstract and concrete
syntax in visual languages [Guerra and de Lara, 2004], or when relating different
views of a system [Guerra et al., 2005]) and for incremental transformations. We
believe the theory can also be useful in order to formally express the semantics
of transformation languages such as the QVT (Query/Views/Transformation)
proposed by the OMG [QVT].
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