Available online at www.sciencedirect.com

“ScienceDirect

Journal of
Visual Languages
& Computing

E?a

ELSEVIER Journal of Visual Languages and Computing § (15E) IEE-101

www.elsevier.com/locate/jvic

Visual specification of measurements and redesigns for domain
specific visual languages

Esther Guerra®*, Juan de Lara®, Paloma Diaz®

Computer Science Department, Universidad Carlos Il de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain
> Computer Science Department, Universidad Auténoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain

Received 18 May 2007; accepted 25 September 2007

Abstract

Ensuring model quality is a key success factor in many computer science areas, and becomes crucial in recent software
engineering paradigms like the one proposed by model-driven software development. Tool support for measurements and
redesigns becomes essential to help developers improve the quality of their models. However, developing such helper tools
for the wide variety of (frequently domain specific) visual notations used by software engineers is a hard and repetitive task
that does not take advantage from previous developments, thus being frequently forgotten.

In this paper we present our approach for the visual specification of measurements and redesigns for Domain Specific
Visual Languages (DSVLs). With this purpose, we introduce a novel DSVL called SLAMMER that contains
generalisations of some of the more used types of internal product measurements and redesigns. The goal is to facilitate the
task of defining measurements and redesigns for any DSVL, as well as the generation of tools from such specification
reducing or eliminating the necessity of coding. We rely on the use of visual patterns for the specification of the relevant
elements for each measurement and redesign type. In addition, SLAMMER allows the specification of redesigns either
procedurally or by means of graph transformation rules. These redesigns can be triggered when the measurements reach a
certain threshold.

These concepts have been implemented in the meta-modelling tool AToM?>. In this way, when a DSVL is designed, it is
possible to specify measurements and redesigns that will become available in the final modelling environment generated for
the language. As an example, we show a case study in the web modelling domain.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Domain specific visual language; Meta-modelling; Measurement; Redesign; Graph transformation; Graphical pattern

1. Introduction

Diagrammatic notations are pervasive in many
software development activities. They are used in
the planning, analysis and design phases as a means

*Corresponding author. Tel.: +34916249419.
E-mail addresses: eguerra@inf.uc3m.es (E. Guerra),
jdelara@uam.es (J. de Lara), pdp@inf.uc3m.es (P. Diaz).

to specify, understand and reason about the system
to be built. The used notations range from general-
purpose languages (such as UML for analysis and
design of object oriented systems) to Domain
Specific Visual Languages (DSVLs) oriented to a
particular application domain (such as [1-3]).
DSVLs provide high-level, powerful primitives,
having the potential to increase the user productiv-
ity for the specific modelling task and the quality of

1045-926X/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2007.09.002

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2007.09.002
mailto:eguerra@inf.uc3m.es
mailto:jdelara@uam.es
mailto:pdp@inf.uc3m.es
dx.doi.org/10.1016/j.jvlc.2007.09.002

2 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

the systems that make use of them. They are usually
less error-prone and easier to learn than general-
purpose languages because the semantic gap be-
tween the user’s mental model and the DSVL model
is smaller. Moreover, the use of DSVLs is central to
recent paradigms for software development such as
the Model-Driven Development (MDD) [4]. In this
paradigm, models (often expressed using a DSVL)
are the primary asset, from which code is auto-
matically generated. For this reason techniques for
ensuring model quality before code generation
become essential.

A usual method to quantify, control and assure
the quality of systems in many engineering dis-
ciplines is measurement [5]. The kind of entities that
can be measured in this area include processes,
resources, products [5] and projects [6]. In this paper
we concentrate on product measurements that
quantify features of system designs (e.g. size,
complexity, cohesion, coupling or maintainability).
One of the factors that may improve the use of
measurement in industrial practice is their support
by software tools, which is essential in automation-
based processes such as the one proposed by MDD.
Moreover, having a measurement tool in the early
phases of the development can help detecting
defects prior to implementation, saving time and
budget. However, there is a proliferation of nota-
tions that the software engineers use to model their
systems, and adapting and implementing specific
measurement tools for each one of them is a costly
and time-consuming activity. Our goal is to provide
a means to reduce such cost by increasing the level
of abstraction of measurements by making them
language independent and facilitating their custo-
misation for any DSVL (not only in the Software
Engineering domain). This objective has clearly an
impact in both the MDD and the Visual Languages
communities.

A different technique used not as much as to
quantify but to improve model quality is model
redesign, a process in which models are reworked in
order to improve their overall quality (e.g. perfor-
mance, reusability, genericity) or to include best
practices identified in the corresponding discipline
[7]. Model refactorings are a kind of model rede-
signs that in addition preserve the functionality.
Recent proposals try to relate design patterns [7]
and model refactorings by applying pattern-directed
refactorings [8]. Again, the proliferation of nota-
tions can hamper the application of redesigns. The
availability of high-level, abstract redesigns easily

customisable for particular DSVLs can alleviate
this problem.

In this paper, we propose a novel approach for
the specification of measurements and redesigns
oriented to DSVLs. The purpose is two-fold: on the
one hand, reducing the cost of defining domain
specific measurements and redesigns, and on the
other hand, being able to automatically generate
domain specific measurement and redesign tools for
any DSVL starting from these high-level specifica-
tions. Therefore, this work is targeted to the Visual
Language community as well as the Software
Engineering community, and in particular to the
MDD area. The proposal is based on the use of a
novel DSVL called SLAMMER (Specification
LAnguage for Modelling MEasurements and
Redesigns) that allows the customisation of generic
measurements and redesigns for a given DSVL. It
has been defined through a meta-model that
contains generalisations of some of the main types
of measurements. These include measurements for
global model properties (such as number of cycles
and size), single element features (e.g. methods of a
class in object oriented languages), features of
groups of elements (e.g. their similarity or coupling)
and paths (e.g. hierarchies in object oriented
languages, navigation paths in web design lan-
guages). SLAMMER allows customising these
generic measurements by using visual patterns,
creating new ones (procedurally), and composing
them in order to build more complex measurements.
In addition, it is possible to specify threshold values
for the measurements that may have an associated
action described either procedurally, by customising
a generic action template or by using a graph
transformation system [9]. This is useful if the action
performs a redesign that improves the quality
of the model or modifies it towards known design
patterns.

These ideas have been implemented in the meta-
modelling tool AToM?®. In this way, the DSVL
designer can enrich the DSVL specification with a
SLAMMER model specifying a number of mea-
surements and redesigns for it. Starting from this
definition, a modelling environment is generated for
the language that integrates the measurements and
actions previously defined.

The paper is organised as follows. Section 2 gives
an overview of the main concepts of measurements
and redesigns. Next, Section 3 presents SLAM-
MER, while its use is demonstrated in Section 4 by
defining a set of measurements and actions for

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 3

Labyrinth [10], a DSVL used for web design. Section
5 explains how we have implemented the framework
in the meta-modelling tool AToM?, so that starting
from a SLAMMER model it is possible to auto-
matically generate support tools to measure and
redesign models. The section includes an example
where a visual editor with an integrated measure-
ment and redesign tool is generated for Labyrinth
and its use is illustrated. Section 6 compares with
related work and, finally, Section 7 ends with the
conclusions and proposes lines for future work.

2. Measurements and redesigns for DSVLs
2.1. Software measurement

According to [6,11], engineering disciplines re-
quire measurement mechanisms in order to provide
feedback and assist in evaluation, thus creating a
corporate memory and helping in the answering of
questions about the object being measured. In
software engineering, the measurable objects can
be processes, resources, products [5] and projects [6].
In this work we focus on products and, more
specifically, in models.

Software measurements' are enablers for obtain-
ing quality products. They are used, for example:

e In forward engineering, in order to pinpoint
anomalies and estimate the cost and effort of
building software products. In particular, in
MDD, models are active entities from which
code is generated; therefore, quality should be
assured at the model level. Our work is oriented
towards quantifying model quality.

e In software reengineering, in order to acquire a
basic understanding of the software, providing
higher-level views, and finding violations of good
design practices.

e In software evolution, in order to identify stable
and unstable parts of the software, locating
where refactorings and redesigns should be
applied or have been applied, and identifying
variations in the software quality.

Products (and in general measurable objects) con-
tain internal and external attributes. The former can

'Although the term “software metric” is widely used in the
software engineering community, we prefer the term “‘software
measure’ as, according to [12] and formally speaking, a metric is
a function that measures the distance between two entities.

be measured in terms of the product itself. For
example, if we are measuring code, its size is an
internal attribute. External attributes can only be
measured with respect to how the product relates to
its environment [6]. In the case of code, the cognitive
complexity, maintainability and usability are ex-
ternal attributes. They are obtained by testing,
operating and observing the executable software.
Our framework is directed to internal attribute
measurement, as we want to quantify the quality
of the system models from which the system itself
is built.

Measurements can be direct or indirect. In the
first case, the value is derived from an attribute that
does not depend upon any other measure (some-
times they are also called base measures [12]).
Indirect (or derived) measures are obtained by
combining several direct or indirect measures. The
term indicator is sometimes used to refer to indirect
measures which have an associated analysis model
made of a calculation procedure plus some decision
criteria. The criteria can be thresholds, targets or
patterns used to determine the need for action or
further investigation [12]. As we will show in next
section, our approach supports direct and indirect
measures, as well as indicators with thresholds that
indicate anomalies in the measurement values and
may trigger redesigns for improving the quality of
the model.

Further classifications of measurement methods
include the objectivity, that is, whether they involve
the human (subjective) judgment, or they are
quantifications based on numerical (objective) rules.
Finally, regarding the automation degree, measure-
ment methods can be automatic, semi-automatic
our manual. Our approach is aimed at the automa-
tion of the measurement process, and for this reason
we only consider objective measurements (as sub-
jective measures cannot be made fully automatic).

2.2. Redesigns

Redesigns are changes in a design model in order
to improve some quality attribute, such as its
understandability, performance, cohesion or cou-
pling. When the redesign preserves the intended
meaning of the model, it is called a model
refactoring [13]. Refactorings [14] were originally
defined as changes made to the software code in
order to make it easier to understand and maintain
without changing its observable behaviour. Model
refactoring shifts refactoring techniques from code

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

4 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

to models, which are higher-level representations of
the system. In model-driven approaches this is the
right abstraction level, as developers usually work
with models (often specified using DSVLs) and code
is automatically generated from them. Thus, model
refactoring is just a kind of model redesign that
preserves behaviour.

The need for performing refactorings and rede-
signs is frequently detected through so-called “Bad
smells” [14]. They informally describe some design
or code problem, and propose a number of
refactorings to help in its solution. Some efforts
have been recently oriented towards formally
defining such smells through the use of metrics
[15]. In our proposal we follow a similar approach
by associating thresholds to measurements in order
to detect extreme values that can fire redesigns.

3. SLAMMER: Specification LAnguage for
Modelling MEasurements and Redesigns

This section presents SLAMMER, a DSVL
oriented to the specification of measurements and
redesigns to be applied on models conforming to a
meta-model. In Section 3.1 we describe the part
dealing with measurements, while in Section 3.2 we
introduce the part describing actions and redesigns.

3.1. Measurements

A measurement for a certain set of entities is
defined as a measurement method and a scale [16].
Thus, for the definition of a measurement, we need
to specify the entities that are going to be
characterised (the domain), the relevant attributes
for the measurement method, the measurement
method itself (which in the case of indirect
measurements is a function that uses values
calculated by other measurements), and the scale
(the range of values it can take). The scale can be of
type nominal, ordinal, absolute, interval or ratio [6].
For the last two types of scale, a measurement unit
may also be specified (e.g. number of classes, lines of
code). In addition, measurements may include
information about normal or unusual values that
point to threshold values in the measurement scale.

For example, the distance based-similarity matrix
measurement [17] calculates how similar two entities
are by studying the set of attributes they share. Let x
and y be the entities to compare, and assume that
function b(-) returns the set of attributes of an
entity. Then, the formula: dist(x,y) =1— |b(x)N

b()|/1b(x) U b(y)| gives the distance between the
two entities in the scale [0, 1]. The lower the value,
the more similar the entities are. Suppose we have a
DSVL that allows specifying user roles and grant
permissions to these roles. We can use this measure
to analyse how similar each two roles are and thus
detect redundancies. In order to adapt this measure-
ment for this particular DSVL, we should give the
measurement domain (each two roles in the system),
the set of attributes that make two roles similar (the
permissions a role holds), the measurement method
(formula dist(x,y)) and the scale (real numbers in
the interval [0, 1]). In addition we may define as
threshold all values lower than, say 0.1, in order to
indicate that the measured roles are too similar and
can be joined. Specifying the unit would not be
necessary in this case.

Note how the measurement function and scale are
language independent and do not change when the
measurement is used in different DSVLs. On the
contrary, the domain, the entity attributes, the units
and the threshold values are language dependent
and have to be specified for each particular DSVL.
SLAMMER is based on this fact to define a set of
predefined generic measurements that hide the
measurement function and that can be customised
by providing only the domain specific information.
The measurement domain is specified as a list of
types and built as each possible combination of the
instances of the types; the attributes to be mea-
sured are given by a set of patterns; the units
are given textually; and the thresholds are specified
as boolean conditions evaluated on the measure-
ment value.

These concepts have been included in the
SLAMMER language. Part of its meta-model (the
package concerning measurements) is shown in
Fig. 1. In order to define this language, we have
taken into account related works on the definition
of ontologies concerning software measurement
[12,18], as well as on the international standard
for software quality ISO 15939 [16]. Concepts that
do not have an operational meaning (e.g. informa-
tion need and quality model in [12]) have not
been included in our language, as all elements in
SLAMMER have a functional, operational use.
Remember that the goal of SLAMMER is, on the
one hand, to provide a visual notation to facilitate
the definition of measurements and redesigns for a
given DSVL and, on the other hand, being able to
automatically generate tools from such specifica-
tions that allow applying the defined measurements

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

‘(e8eyoed sjuowaInseow) [Ppow-elowW YFININV'IS UL 1 S1q

E. Guerra et al. | Journal of Visual Languages and Computing 1 (111) 11111

(weped woyy)
uisped
Juswisje
‘ adA] uo suedwo) :uosuedwod +
N0l = Buls :e|eos + N0l = Bung :eleos + U1 :odAy 1opIo +
- Juawa|3 pajelal JUETITETE] ajoho
suojoauuo0) joai1g sjuawa|z pajlIayu| fyadoud
.00, = Bulns :8|eds + WIN‘0l, = Buing :ojeos + JIN‘0l.=Buins:eleos + W10l = Buins :jeos + WIN‘OL. = Buls :ojeas + | | L[N‘0l.= Buis :jeds + | | .IN‘0l. = Bulns :ajeds +
sjulod Hejs uUied J0 wideg Xujel aduejsiq xuje Ajejwig paseg aouessiq 3 13 paje|ay i 13 4O JaquinN JaquinN dewoPAY
Buyg :adAy + Bulys :uonenoles + Buing :urewop + TINN :urewop +
deys pajuaLIO Yjed pauyaq Jasn pajusLiQ dnoio pajusLIQ Juswalg pajuaLIQ [aPO
uolouUN 4 Juswainseaw urewop
\V4 \V4
Buis pun +
Buig :aleos +
uesjoog :Buiyojey adAy gns +
| enjen + Buig :uonipuod + [16us :urewop +
0 :90uaIael + mc_:wm“:o_a._bmwu + " mmc_zw. ‘|eob + fouspuadep
adA) uosuedwo) UL)S JBWeu + {plomAay} Bulyg :oweu +
<<winug>> ploysaiyyl " <l Juswainseayy N

Sjuswainses|\

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,

Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

6 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

and redesigns on the DSVL models for which they
were defined.

The SLAMMER meta-model contains an ab-
stract class Measurement which is the base class for
all kinds of measures. It contains a unique name
that identifies the measurement, as well as a goal.
Attribute domain is used to specify the measurement
domain as a list of types. In the previous example,
the domain consisted on every possible combination
of two roles, thus, this attribute should contain type
role twice. Attribute subtypeMatching specifies if
objects in the domain must have exactly the type
specified in attribute domain, or if also any of its
subtypes is allowed. This makes measurements more
reusable, being defined once for a type, and used for
all its subtypes. Attributes scale and unit are used to
specify the range of values the measurement can
take and its magnitude, respectively. In addition,
relation dependency allows defining indirect mea-
surements that use results calculated by other (direct
or indirect) measurements. In this way, measure-
ments can be reused and composed in order to build
more complex ones. We have included a meta-
model constraint that forbids cycles of recursive
dependencies. Finally, a measurement can define
any number of threshold values, which are extreme
values for it. A threshold has a name, a description
and a condition. The latter is a logical expression
over values of the measure.

In the meta-model, measurements are subclassi-
fied depending either on the domain dimension (left
branch in the measurement hierarchy with discri-
minator domain) or on the measurement mechanism
used in order to calculate it (right branch with
discriminator measurementFunction). In the former
case, measurements can be model-oriented if the
measure is taken on the whole model; element-
oriented if they measure properties of an individual
element; and group-oriented if they apply on groups
of elements. For the second generalisation set (with
discriminator measurementFunction), measurements
can be path-oriented if they use a measurement
function that traverses paths between elements of
the same type (or any of their subtypes), which is
specified by attribute fype; and user-defined if the
measurement designer is the one who provides the
specific measurement function (attribute calcula-
tion). Concrete measurements in the meta-model
can be classified from both points of view. See
for example measurements InheritedElements and
DepthOfPath, which are both element- and path-
oriented.

Model-oriented measurements have the model as
domain, and thus, attribute domain is set to NULL.
SLAMMER defines two generic measurements of
this kind: CyclomaticNumber and NumberOfEle-
ments. The first one calculates the number of cycles
in a model, and thus it must be customised the basic
step in the cycle by means of a pattern (which
is a graph plus application conditions, see
Section 3.1.1). Measurement NumberOfElements
counts the number of elements that fulfill certain
conditions in a model. The elements to count are
given as a pattern, which allows constraining them
(e.g. elements of some type that are not related to
elements of some other type) and measure complex
structures.

There are five element-oriented measurements,
four of them being path-oriented as well. As they
refer to properties of single model elements,
attribute domain contains a single type. RelatedEle-
ments measures the number of elements of certain
kind related to a given one. The way in which both
elements are related is given as a pattern. The other
four measurements will be explained below, to-
gether with the path-oriented ones.

The group-oriented measurement called Distan-
ceBased-Similarity Matrix uses the formula for
distance presented in [17] (and shown at the
beginning of this section), but generalised to an
arbitrary number of elements of different or the
same type, which are specified in attribute domain.
Its scale is the interval [0, 1]. The higher the value,
the less similar the compared elements are. For each
type, the set of properties to be measured has to be
specified. This is done with a pattern for each
property, and modelled in the SLAMMER meta-
model as a qualified relation property between the
subclass and the pattern. Attribute orderType in the
relation specifies the type of the list domain for
which the pattern is given. In addition, the
comparison can be made by reference (i.e. two
objects are equal if they are the same) or by value
(i.e. two objects are equal if all their fields have the
same value).

Depending on the measurement function, mea-
surements are classified as path-oriented or user-
defined. For the first kind, SLAMMER allows
customising the type of ‘“node” in the path
(attribute type), as well as the fundamental step
(by means of a pattern). This can be a “‘composite”
relation made of several nodes and edges. Attribute
domain of each concrete path-oriented measurement
is built by using the attribute zype: if the measure is

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11ll) 111111 7

element-oriented (e.g. DirectConnections), domain is
equal to the type; if it is group-oriented (e.g.
DistanceMatrix), the type is inserted into array
domain as many times as necessary in order to
obtain the correct domain dimension (e.g. twice for
DistanceMatrix). The meta-model contains five
path-oriented measures. Measurement Distance Ma-
trix returns a matrix where each position (7,))
denotes the distance between elements i and j (i.e.
the number of steps to reach j starting from i).
Measurement StartPoints informs about the ele-
ments in which a path begins (e.g. the base classes
for the case of inheritance in object-oriented
systems). This measurement is element-oriented as
for each element it says whether it is a start point or
not. Measurement DirectConnections calculates the
number of elements than can be directly reached in
one step (e.g. the number of direct children for the
case of inheritance). DepthOfPath obtains the
minimum number of steps that are necessary to
reach an element starting from a start point (e.g. for
inheritance this is the depth of inheritance tree).
Finally, measurement InheritedElements is mainly
applicable to inheritance hierarchies. It measures
the number of elements of certain type that are
inherited through an inheritance hierarchy (e.g. the
number of methods that a class inherits from its
ancestors). In this case, together with the path node
type and fundamental step, the relation between the
path node (e.g. class) and the element that is
propagated (e.g. method) has to be given as a
pattern.

Finally, class UserDefined allows specifying mea-
surements that define additional domain specific
measurement methods. The class has a field named
calculation to include the procedural specification
that calculates the measurement result for a value in
the domain. This code is encapsulated in a method
that receives as parameters an instance of each of

®

Pattern Pattern Instantiation

the types defined in the inherited field domain, and
returns a value as the result of the calculation.

The fact of having such measurement categorisa-
tion explicitly in a meta-model makes the approach
easily extendible. This is of high practical relevance,
as the real implementation of the language (see
Section 5) is based on this explicit meta-model and
on a meta-modelling tool, allowing an easy main-
tenance of the set of measurements.

3.1.1. Graph patterns

As explained in previous subsection, patterns in
SLAMMER are used in order to specify the model
properties to be measured. The simplest form of
pattern is made of a single positive graph, and its
application to a model gives as result all occurrences
of the positive graph in the model. The pattern can
be initialised with a partial match, which is given as
argument of the pattern, and the output can be
filtered in order to return a subgraph of each
positive graph occurrence. Left part of Fig. 2 shows
an example pattern. The positive graph is made of
objects Role and Node related through a relation-
ship PA. To the right, the pattern is instantiated in
graph G. In step (i) the match is initialised with role
r1, which is received as a parameter. In step (ii), the
match is extended to the complete positive graph.
Two occurrences are found in G: one relates role r1
to node nl, and another one relates it with node n2.
In step (iii) the occurrences are filtered so that only
the elements specified as output in the pattern are
obtained as result. Thus, as the pattern specified
element labelled ““3” as the output, only nodes nl
and n2 in the matchings are given as result.

In SLAMMER we use patterns in order to
customise measurements by specifying how relevant
model attributes are expressed in a certain DSVL.
The arguments of the pattern correspond to a value
in the measurement domain, and the output are the

(ii) (iii)

arguments: [1]

:PA
© ml——In_l 1Noad] || (mI
| |n1:Node|

output: [3]

initial match

m2 rl:Role n2 Node
eneral ation:g erallzatlon m2
r2: Role r3 Role
match extension filter

Fig. 2. Example of graph pattern and instantiation.

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

8 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

Pattern

Pattern 0

positive Graph

Pattern Graph

+ arguments: int [] g
+ output: int []

application Conditions

+ name: String {keyword}
+ graph: Model
+ attribute Condition: String

0.1 *
premise consequences
0.1 0.1

Application Condition

Fig. 3. The SLAMMER meta-model (pattern package).

model attributes we want to obtain. For example,
the pattern in Fig. 2 can be used to customise
measurement RelatedElements for a DSVL that
defines nodes, roles and permission assignments.
Such customisation counts the number of nodes
that each role is allowed to access. The pattern is
instantiated for each role in the model and, in each
case, the measurement value is calculated as the
number of times the pattern gets instantiated (two
for role r1).

The structure of class Pattern is shown in Fig. 3.
A pattern is made of a positive graph and has
attributes arguments and output. A PatternGraph is
made of a graph and an attribute condition that is
expressed in some procedural language. In addition,
we consider a more complex form of patterns than
the one in the previous example, by considering
application conditions that restrict the number of
valid occurrences in the pattern instantiation
process. An application condition is made of a
premise graph and a set of consequence graphs. In
this case, in order to instantiate the pattern, first all
occurrences of the positive graph are found in the
model; next, for each application condition, if the
premise is found then some of the consequence
graphs have also to be found for the occurrence
to be valid. There are two special application
conditions. If only a premise is specified and no
consequence, then it is called a Negative Applica-
tion Condition (NAC), and finding the premise in
the model makes invalid the positive graph occur-
rence. On the other hand, if the premise is
isomorphic to the positive graph and some con-

a b
[pout 5y p t X %Yij

| |
Z?%KG i G qij

Fig. 4. Formalisation of pattern instantiation: (a) simple pattern
instantiation and (b) application conditions.

sequence is specified, it is called a Positive Applica-
tion Condition (PAC). In this case, some of the
consequences have to be found in the model for the
positive graph occurrence to be valid.

Formally, a pattern is defined as p=
out

(P, I ¢ P,0 < P, \ie/(xi = Vs, X)), where P is
the positive graph, I is the subgraph containing the
input arguments, O is the subgraph containing
the output, and x; : P — X; and x;; : X; — Y;; are
injective morphisms (X; is the premise and Y;; are
the consequences in the meta-model).

Fig. 4 shows two diagrams explaining the pattern
instantiation process. Fig. 4(a) depicts a simple
pattern P with input I and output O. Both / and O
are subgraphs of P. A match m;: P — G is valid if it
commutes with the initial match init: I — G. More-
over, the result of the pattern instantiation can be
given as the matches 0;: O — G such that the right
triangle commutes with the corresponding m;.
Fig. 4(b) shows the instantiation of a pattern with
application conditions (output and arguments
are omitted). Given a match m for P, if a mor-
phism p;: X; — G is found, then some morphism

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 9

q;; Yij — G must also be found, such that both
triangles in the figure commute. Technically,
morphisms m, p; and g;; are clan-morphisms [9],
as instances of abstract classes may appear in P, X;
and Y,; that can be mapped to instances of some
class in their inheritance clan (i.e. the same class or
any subclass). We also require the typing of Y;; be
more concrete (or equal) than the type of X;, and
this one more concrete (or equal) than the type of P.
Except for the notion of match initialisation and
outputs, our patterns are similar to the notion of
graph constraint found in the graph transformation
literature [9].

3.2. Actions and redesigns

Next, we present the part of the SLAMMER
meta-model for the specification of actions, which is
shown in Fig. 5. In SLAMMER, Actions can be
redesigns to be executed on the models, as well as
any specific task such as generating a report or
printing a model. They are composed of an ordered
sequence of Tasks, which in their turn can be
described by means of procedural code (class
TaskText), using a graph transformation system
[9,13] (class TaskGG), or by customising one of the
generic model manipulation templates proposed by
SLAMMER (concrete classes that inherit from class
TaskTemplate). The same task can belong to dif-
ferent actions, thus favouring reusability and main-
tainability. Actions can be defined to be applied
either when measurements reach a certain threshold
value (relation fires) or independently from mea-
surement values. In the first case, the action is
executed for each value in the domain for which the
measurement makes the threshold condition true.
However, as problems derived from automatic
redesigns are well-known [19], we provide actions
with attribute execution that selects whether this is
automatically executed or it needs human super-
vision (i.e. a confirmation is required before
executing the action for each domain value that
make the threshold condition true).

Graph grammar tasks allow specifying model
redesigns by means of graph transformation, which
is a visual, declarative means to specify model
manipulations [9,13]. A graph grammar is made of
rules with a left- and a right-hand side (LHS and
RHYS) that contain graphs. In order to apply a rule
to a graph, an occurrence (a matching morphism)
must be found between the LHS and the graph.
Then, the identified occurrence is substituted by the

RHS. Rules may have application conditions that
are similar to the concept of graph constraint
explained in previous subsection. A graph grammar
is made of a set of rules and an initial graph.
Applying the grammar means executing its rules
until none of them is applicable. Examples of graph
transformation for the definition of redesigns will be
shown in Section 4.2.3.

SLAMMER provides four generic model manip-
ulation tasks. Note that making actions general
enough for being applicable to any kind of visual
language is an intricate problem, as usually actions
are close to the domain of application. However,
when working with visual languages, many actions
can be decomposed in some of the following basic
tasks: merging two elements in a single one,
breaking an element in two different ones, or
moving relations from one element to another,
where in addition the elements can be connected.
These basic tasks are illustrated in Fig. 6, which
correspond to the predefined SLAMMER tasks
Merge, Split, Move and Pull. These four classes
inherit from abstract class TaskTemplate, which
defines the type to which the task applies, a boolean
attribute subtypeMatching to allow applying the
task to the subtypes of the type, and finally the
action, which in fact is specified in each concrete
subclass. These basic model manipulations can be
customised for a DSVL by providing the domain
specific information and extra task execution para-
meters depending on the task.

Task Merge merges two entities (of the type
specified in the inherited attribute fype) in a single
one that brings together all the relationships of the
original entities (see Fig. 6). If originally both
entities defined the same relationship, the merged
entity contains it twice. Attribute rel duplication
allows selecting whether this is allowed or if
duplicated relationships are deleted after the mer-
ging. Attribute att_merging specifies the attribute
merging mechanism, either as the concatenation of
the original values or just by taking one of them. We
are aware of the fact that with the current definition
it is not possible to specify different merging policies
depending on the specific entity, relation type or
attribute. This could be done by specifying attri-
butes rel _duplication and att merging for each
relation type and attribute of the entity, respec-
tively. However, this would be quite tedious for the
designer. As we want to make the customisation
process easy, we adopt the solution of specifying
just a general merging policy. Note that an action is

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

-
S—
-
>
=
g
g
5
S
]
=
N
3
)
N
N
>
=
N
~
=
]
=S
R
N
kS
N
IS
=
~
3
J
~
~
N
N
)
IS
~
=
S
3
g

10

‘(eSeyoed suornoe) [opow-elow YFWIAVIS UL 'S S

(uisped wouy)
uiaped

170

uonejas |nd

lind

Aaljod BunumianQ: Buumiano |al +

Buiiys :uonejas +

adA | uonnguisiq: uonngUIsIp” |8l +

uesjoog :buibiow e +
ueajoog :uoneoldnp”|as +

JUIE]SU0D Ao nds abisy
\V4
ueajoog :BuiyoyeyadAigns +
Bug :adAy +
JX8] :Uofoe + Jewwelnydels) :uopoe + oje|dwa] :uonoe +
Z :oeo|dnp +
IXa] ysel 99 ysel ajeidway ysel
adA 1 uonnquisia _
Z:ouou+ V odA | uonnoex3g :uonnoaxe +
|:papinB+ | :O)LIMIBAO+ {piomAay} Buis sweu + | .| P {piomAay} Bug :sweu +
! ! N
0:01eWoNe + 0:e1e01dnp+ ysel {paiopio} uonoy 10 sany UL
adAjuonnoaxgy Kotjod Bunumiano

(sjuswainsesyy wouy)
ploysaiyl

suonoy

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,

Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 11

Merge : Split

Move . Pull

Before

[|

2

4

I 3§

After D"Q@

O~
G

(§m _ E

o

Fig. 6. Basic model manipulations for visual languages.

Related Elements

[iaan]

Inherited Elements

mission Inh Factor

Subject Permissions [~ -
= Ll EI User Defined
Per
L~

Subject Inh Perms

EI Depth of Path
Depth_of_Node

@ — Task GG
! \{ Create path
threshold ~ Create padh from root

Fig. 7. SLAMMER model example.

made of a sequence of tasks, and thus, it is possible
to define exceptions to the policy by means of
additional tasks to be executed before or after the
merging.

Task Split divides in two an entity of the specified
type. The relations of the original entity are
duplicated, or distributed between the new ones
either randomly in equal parts or guided by the user
selection. This option is chosen assigning values
duplicate, automatic or guided to attribute rel_dis-
tribution, respectively. Attribute values are copied to
the new entities. In case of keywords, an incre-
mental sequential number is concatenated to their
value in order to avoid keyword duplication.

Task Move moves relationships between entities
of the same type (see Fig. 6). In addition to the
entity type, it is necessary to specify the relation type
to be moved (attribute relation), and the overwriting
policy in case the relation already exists in the target
entity (attribute rel_overwriting). Possible values for
the overwriting policy are duplicate if we want to
move the relation maintaining the existing one in
the target, so that the target entity finally has the
relation twice; overwrite if the relationship is moved
and overwrites the one in the target; and none if the
relation is not moved. By default all relations of
the specified type are moved. However, it is also
possible to restrict the number of relations to move
by means of a pattern that receives as arguments the
elements that take part in the activity (i.e. the

relation to move and the source and target
elements). In this case the task is applied for those
relations that satisfy the pattern.

Finally, Pull specialises task Move to those cases
where the task is performed only if the involved
entities are related. The relation is specified as a
pattern with the entities as arguments and no
output.

3.3. Concrete syntax for SLAMMER

SLAMMER is a DSVL. Therefore, we provide a
visual representation to its meta-model elements.
Measurements are visualised as white rectangles
with the metric type and name inside. Dependencies
between measurements are represented as arrows,
where the arrowhead indicates the data flow
direction. Thresholds are drawn as a yellow triangle
with an exclamation mark inside and the threshold
name below. Actions are represented as green circles
with a black arrow inside and the action name
below. If its execution mode is automatic, a second
circle surrounds the figure. Tasks are ellipses with
the task type and name inside. Finally, relationships
between entities are represented with lines.

As an example, Fig. 7 shows a SLAMMER
model using its concrete syntax representation. The
model contains the definition of four measurements.
One of them (Permission Inh Factor) uses
the results of other two measurements. Metric

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

12 E. Guerra et al. | Journal of Visual Languages and Computing 1 (1ill) 111111

SemanticObject

+identifier:String {keyword}

aggregation

*

Team
| Subject |<]_

abstraction

+type:RelationType

{>| DynamicObject |
/\

Role I
* * . PP
PA " N +identifier:String {keyword}

HMObject
/\

assumes User

* [

generalization

NodeComponent |

ContentComponent

*

X >
+isHome:Boolean 1

abstraction

+type:RelationType

—~

location
+position:String
+time:String
CompositeNode Node |
refersToN * * refersToC
Link * source * Anchor
+direction:Boolean | gy target *| +position:int

| Content | CompositeContent

<< Enum >>
RelationType

+aggregation:0
+generalization:1

Fig. 8. Labyrinth meta-model.

Team
User

Team Team
Student Professor

Team
IRO.Staff

Role
Wisiting. Prof

Role

Rectorate

Role Role
UnVicedeah| Faculty
o

Role Role Roale
LocalStu || Visiting Stu || Local Prof
Role

IR.Commites. Member
Zs

Re.Director

Role
Fa Personnel

Role
FaDirector

Role
Re.Personngl

Role
Coordinator

Fig. 9. IRO users diagram.

Depth_of Node has an associated threshold that
automatically triggers a task. The latter is called
Create Path and is specified through a graph
grammar.

4. Example

This section illustrates the use of SLAMMER by
defining a set of measurements and actions
for Labyrinth [10], a DSVL used to design web
applications.

4.1. Labyrinth, a DSVL for web design

Fig. 8 shows an excerpt of the Labyrinth meta-
model. Roughly, in Labyrinth web applications are

modelled as a set of nodes where contents are
located. Navigation features are expressed through
anchors and links. Besides, users can assume roles
and belong to different teams from which they
receive a set of permissions concerning the nodes
and contents they are allowed to visit. In addition,
roles and teams can be nested in hierarchical
structures where permissions assigned to more
general roles are inherited by more specific roles,
and permissions assigned to teams are propagated
to their components.

The Ariadne Development Method (ADM) [1] is
based on Labyrinth to define a set of diagram types
that capture the different aspects of web applica-
tions. Next we show some ADM example diagrams
that belong to the design of a system for the

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11ll) 111111 13

management of the International Relations Office
(IRO) of a university. Fig. 9 shows the Users
diagram, which contains the hierarchy of system
roles and teams. The defined roles can belong to one
of the three following teams: Student, Profes-
sor or IRO.Staff. Students and professors can
be local or visiting. In addition, local professors can
belong to the international relations committee as
coordinators. One of the local professors is the
department vice-dean for international relations.
With respect to the IRO staff, there are three roles
defined: Rectorate, Faculty and Un. Vice-
dean. The first two are specialised in order to
differentiate between the director and the regular
personnel.

Fig. 10 shows an excerpt of the Navigational
diagram that includes the navigational map for role
Local.Prof. Each navigation step between two

2salf

2wt

2info Node
Information
Node 2fundings Node
Home NT Travel Fundings
f
2lomms Node
Forms

2etf

nodes is made of two objects of class Anchor (drawn
as a small anchor), one object of class Link (a black
square), and the appropriate associations between
them. In the diagram, the arrowheads indicate the
direction of the navigation.
The Access table in Fig. 11 shows (part of) the
permission assignment to IRO roles and teams,
which are allowed to access only those nodes and
contents to which they are related. For example,
the IRO staff can access nodes Information,
Travel Fundings and Forms but not to
nodes Assign Erasmus, Modify Erasmus and
List sch. holders. On the contrary, role
Coordinator can access to all of them. Recall
that permissions are inherited through the role and
team hierarchy, and thus descendents of the subjects
in the access table inherit the permissions defined by
their ancestors.

2satfl Node
SATF Text
| Node
SATF Annex

2salf2

2salf3 Node ‘
Node SATF Resolution|

S. American TF 2etfl [Node
ETF Text

Node 2eli2
| Node
Erasmus TF ETF Annex

Node 2etf3 [Node

Rest of the World TF ETF Resolution

2wilfl [Node
WTF Text

Node
WTF Resolution

2wtf2

2vltf3

Fig. 10. IRO navigational diagram (partially shown).

Team
IRO.Staff

| Node
WTF Annex

Node
Information

Team
Professor

Travel Fundings

Role

Coordinator

Node

Forms

Team
Student

Node
Assign Erasmus

Node
Modify Erasmus

Node
List sch. holders

Fig. 11. IRO access table (partially shown).

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

14

Table 1

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

Specification of navigational measurements for Labyrinth, by using SLAMMER

Name Goal SLAMMER type Pattern Dependencies
NNC Size NumberOfElements Fig. 12(a) -
NNL Size NumberOfElements Fig. 12(b): args =[], out = [2] -
DeNM Size UserDefined - NNC, NNL
BNM Usability NumberOfElements Fig. 12(b): args =[], out = [3] -
MPBNC Usability DistanceMatrix Fig. 12(b): args = [1], out = [3] -
ROC Usability UserDefined - MPBNC
RIC Usability UserDefined - MPBNC
D Usability DepthOfPath Fig. 12(b): args = [1], out = [3] -
FONC Maintainability DirectConnections Fig. 12(b): args = [1], out = [3] -
FINC Maintainability DirectConnections Fig. 12(b): args = [3], out = [1] -
C, Connectivity UserDefined - NNC, MPBNC
S Linearity UserDefined - NNC, MPBNC
a
(rAppIication Condition: 5
X 1
Node Component]
<ANY>
] b
Node Component{ | | [¥, 1
<ANY> ' |Node Component| _<ANY> 1 2 3
<ANY> Node Component| o “28Y> INode Component
“;“““‘1 “““““““““ <ANY> <ANY >
arguments: [] <ANY> arguments. << see Table 1 >>
 output; [1] /) output: << see Table 1 ==

Fig. 12. Graphical patterns used by Labyrinth’s navigational measurements.

4.2. Using SLAMMER to define measurements and
actions for Labyrinth

4.2.1. Navigational measurements

In this subsection we use SLAMMER in order
to customise for Labyrinth a well-known set
of navigational measurements. The considered
measurements are summarised in Table 1 and
explained next. For each one of them, the table
shows its name (the abbreviation), its goal, the
SLAMMER measurement used to define it, the
corresponding customisation graphical pattern, and
its dependencies with other measurements. In the
table, element-oriented measurements have as do-
main the type “NodeComponent”, while group-
oriented ones have as domain the tuple [“Node-
Component”, “NodeComponent”]. In all cases
attribute subtype Matching is set to true as we want
to take measures from both composite and single
nodes, which are subclasses of class Node Component
(see Labyrinth meta-model in Fig. 8).

The number of navigational contexts (NNCs) [20]
is an indicator of the navigational model size. It can
be used to detect navigational trees poorly struc-
tured likely due to the identification of user
requirements with navigational targets. In Labyr-
inth, a navigational context is a node component
that participates in a navigational link. Thus, we
define NNC as a measurement of type Number-
OfElements where the element to count is specified
with the pattern shown in Fig. 12(a). In this way, the
measurement counts node components (simple and
composite) that are source (consequence graph Y)
or target (consequence graph Y,) of a navigational
link. The output of the pattern is the element to be
counted, that is, the node component.

The number of navigational links (NNLs) [20] is
another indicator of the navigational model size
that counts the NNLs, as in certain web notations
not all links have a navigational purpose. We define
it for Labyrinth as a measurement of type Number-
OfElements, where the elements to count (i.e. links

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 15

between two node components) are specified by
using the pattern shown in Fig. 12(b) with element
labelled “2” as output.

A third indicator of the navigational model
size is the density of the navigational map (DeNM)
[20], with formula NNC/NNL. Thus, we define
a UserDefined measurement with incoming
dependencies from the previously defined NNC
and NNL. Its calculation method performs the
quotient.

The breadth of the navigational map (BNM) [20] is
a measure of the navigational model usability at the
first level. It counts the NNCs that are directly
reachable from the initial context. The larger the
number, the harder to use the system, since many
navigational possibilities are presented at once. We
can define this measurement as a customisation of
NumberOfElements, where the pattern specifying
the element is shown in Fig. 12(b). In this case the
attribute isHome of the node component labelled
“1” must be true as the measurement takes into
account just the initial context, and the output is
element labelled “3” as we want to obtain the node
components that are reachable from the initial one.

The minimum path between navigational contexts
(MPBNCs) [20] is also an indicator of the naviga-
tional model usability, which gives the number of
links that have to be navigated from each navi-
gational context to the rest. We define it as a
DistanceMatrix measurement where the naviga-
tional step for Labyrinth is customised by pattern
in Fig. 12(b) with argument “1” and output “3”.
That is, the target node component of a navigation
step (output) will be the source of the following step
(argument).

The relative out and in centrality (ROC/RIC) [21]
measure how easily a context can access or be
accessed from other contexts, respectively, and can
be used to identify root nodes in tree structured web
systems. They are calculated as the normalised sums
of the distances to/from any other context. Thus, we
define them as UserDefined measurements that
depend on measurement MPBNC, as this latter
produces the distance matrix necessary for the
calculation.

The depth of a node (D) [21] is the distance from
the initial navigational context to the given node. It
indicates the ease with which a node is reached and,
in this way, the importance for the user. The bigger
the distance, the harder becomes reaching it. This
can be intentional when nodes contain low rele-
vance information, but sometimes it can identify

missing links or nodes with difficult access. This
measurement is customised from DepthOfPath,
where the navigation step is given by the pattern
in Fig. 12(b) with element “1” as argument and
element ““3” as output.

The same pattern is used to customise the fan-in
and fan-out of a navigational context (FINC/FONC)
[20], but as measurements of type DirectConnec-
tions. They count the NNL that call a navigational
context or that are called by it, respectively. Thus,
given a node component, we are interested in
knowing how many others are directly connected
through a navigational step to it. Note that FINC
has interchanged the elements that belong to the
input and to the output of the pattern. These
measurements are indicators of the navigational
map maintainability: the larger they are, the greater
the interdependency and the lower the reusability.

Compactness (C,) [21] measures the degree of
connectivity of a navigational model. It takes values
from 0 to 1. The higher the value, the easier is to
reach any node in the map, perhaps leading to
disorientation. A low value can indicate an insuffi-
cient number of links. Compactness is calculated by
the formula C, = (Max —}_>".D;;)/Max — Min,
with Max = #? —n)xk; Min= > —n); n=
NNGCs; D;; = distance between contexts i and j.
Note that n is equal to the NNC, and that the
distances in the formula are the ones calculated by
the MPBNC. Thus, we define compactness as a
UserDefined measurement with dependencies NNC
and MPBNC.

The Stratum (S) [21] measures the degree of
linearity of a navigational map, and takes values
between 0 and 1. High values indicate linear web
sites that, although easily navigable, are often
tedious to browse. As before, the stratum formula
can be calculated by using the NNC and MPBNC.

The set of presented navigational measurements
have been defined in a generic way irrespective of
the kind of user, but in some cases the availability of
a link (and thus the availability of the target node)
depends on the roles of the user navigating the
system. For the sake of simplicity we have not
shown this possibility, although it could be done by
first obtaining a derived view [22] containing just the
navigational diagram for the particular user, and
then measuring this diagram.

In any case, note how the patterns used to
customise the majority of the navigational measure-
ments are the same, just changing the elements that
belong to the arguments or to the output. Indeed,

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

16 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

Table 2

Specification of security measurements for Labyrinth, by using SLAMMER

Name Goal SLAMMER type Pattern Depen.
Subject permissions (SP) Auxiliary Related Elements Fig. 13(a) -
Subject inherited permissions (SIP) Reusability InheritedElements Fig. 13(a,b) -
Permission inheritance factor (PIF) Reusability UserDefined - SP, SIP
Subject similarity (SS) Cohesion DistanceBasedSimilarityMatrix Fig. 13(a) -
b
Application Condition:
_ X Y, Y,
Subject } 1 } 1
<ANY> I I
a Subject || | Role |1 | Team
] > 2 <ANY> } <ANY> } <ANY>
; ; Subject I Zﬁ I
HM
Subject Object <ANY> } 5 } P
<ANY> . I I i
Subject || | Role || | Subject
arguments: [1] arguments: [1] <ANY> || | <ANY> || | <ANY>
output: [2] output: [2] ~ ‘ : /

Fig. 13. Graphical patterns used by Labyrinth’s security measurements.

some measurement definitions (such as MPBNC,
FONC and D) use the same customisation patterns,
although their goal and internal method calculation
greatly differ. This is because in all of them it must
be specified what a navigation step is. Thus, the
definition of new navigational measurements for
Labyrinth by using SLAMMER turns out to be an
easy task, as we can reuse the pattern.

4.2.2. Security policy measurements

Table 2 summarises a second set of SLAMMER-
based measurements, this time oriented towards
measuring properties of the role-based access
control used by Labyrinth. As Labyrinth supports
the concept of inheritance (of permissions) in its role
hierarchy, we can take advantage of some known
measurements in the object-oriented domain and
adapt them to the Labyrinth concepts. The domain
of the element-oriented measurements in the table is
made of all objects of class Subject, and the one for
group-oriented ones is a tuple made of two Subjects.
Subtype matching is selected in order to consider
objects of both classes Team and Role.

The auxiliary measurement subject permissions
(SPs) counts the number of hypermedia objects
(i.e. nodes and contents) to which a subject has
direct permission to access (i.e. a relation PA exists
between both). We do not use this measurement as
an indicator of any system property, but it will

be used by a subsequent measurement. We have
defined it as a RelatedElements measurement
customised with the pattern shown in Fig. 13(a),
where the argument is the subject for which the
measure is taken, and the output is the hypermedia
object to count.

The subject inherited permissions (SIPs) is a
customisation of the path-oriented measure Inher-
itedElements, and calculates the number of permis-
sions a subject inherits. It must be customised by a
pattern with the structure of a step in the hierarchy
(see Fig. 13(b)) and another one specifying the
inherited element (see Fig. 13(a)). Note that a single
pattern can express several valid steps in the
subject’s hierarchy, which are the generalisation in
the case of roles (Y1) and the aggregation in the case
of teams (Y>).

Measurement permission inheritance factor (PIF)
calculates the inherited permission ratio, and it
is an indicator of the reuse. It is a particulari-
sation of measurements method and attribute
inheritance factor (MIF and AIF, respectively)
in the object-oriented domain [6]. PIF is the
sum of all permissions inherited by some sub-
ject in the system divided by the sum of all
permissions defined (local and inherited) by sub-
jects. Thus, we define a UserDefined measure-
ment with dependencies from the two previous
measurements.

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11ll) 111111 17

Finally, the subject similarity (SS) [17] measure-
ment is an indicator of the cohesion and can help
detecting redundancies in the security policy. It
calculates how similar two subjects are by studying
their assigned permissions. The measurement takes
values in the interval [0, 1]. The lower the value, the
more similar the subjects are. We define this
measurement as a DistanceBasedSimilarity Matrix
customised with two properties, each one of
them specifying how the permission assignment is
expressed in Labyrinth, and thus, using the graphi-
cal pattern shown in Fig. 13(a). Each property
is associated to one of the subjects to compare
(i.e. attribute order_type for the first property is “1”
as it refers to the first subject, and it takes value “2”
for the second property).

4.2.3. Actions

Next, we exemplify the definition of actions in
SLAMMER by defining a small set of illustrative
redesigns for Labyrinth, which are summarised in
Table 3. We also discuss how some of these actions
could be guided by threshold values of some of the
previous measurements.

Action Collapse subjects merges two roles or
teams into a single one, which brings together all
permissions defined by the formers. The action can

Table 3
Specification of actions for Labyrinth, by using SLAMMER

Guided
by...

Name Made of tasks...

Collapse subjects (1) Merge: “Merge subjects™ SS, PIF
Collapse nodes (1) Merge: “Merge nodes”
Create path from root (1) TaskGG: “Create path” D
Eliminate redundant (1) Pull up: “Pull up
permissions permissions”’
(2) TaskGG: “Flatenning”
(3) TaskGG: “Eliminate -
redundancy”

be used in order to compact two subjects that are
quite similar because they define the same permis-
sions, or because although defining different per-
missions, they are assigned to the same users.
Sometimes this is due to a bad security policy
design. In the first case the action could be guided
by a combination of threshold values obtained from
measurements SS and PIF: the first one detects
when two subjects are similar but it does not take
into account inheritance information, and the
second one calculates the inherited permission ratio.
If both values are close to 0, the subjects are good
candidates for the action. This action is made of a
single task of type Merge that applies to roles and
teams, therefore attribute fype contains “Subject”
and subtypeMatching is true. In addition, attribute
rel_duplication is false in order to avoid redundant
permissions to the same objects, while attribute
att_merging is set to true.

Similarly, action Collapse nodes merges two node
components. It can be applied when the two nodes
are similar, so as to make more maintainable the
navigational model by minimising its size. Node
couplings could be detected by customising a
DistanceBasedSimilarity Matrix in order to compare
pairs of nodes. The action could also be used to
compact consecutive nodes with little information
and make the navigation lighter for the user by
minimising the number of navigational steps. In this
case the user should provide the nodes to collapse.
As before, the action is a customisation of task
Merge with the same attribute values but to be
applied on type NodeComponent.

The remaining actions show examples of the use
of graph transformation rules to express redesigns
[13]. For example, action Create path from root is
made of a TaskGG called “Create path” that creates
a navigational path from the root node to a given
node. The graph grammar is made of just a rule
which is shown in Fig. 14. The elements to be added
by the rule application are shown in a coloured

| Rule: Create path |

TaskGG: Create path

Node Component a
isHome = true 4

= 2 » Node Component
{new, nac}

isHome = false

vy

Fig. 14. Graph grammar task for action “create path from root”.

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

18 E. Guerra et al. | Journal of Visual Languages and Computing 1 (1ill) 111111

b
(. . g
Application Condition 1:
/X1 i Y, A
1 } 1
Role } Role
<ANY>|| |<ANY>
|
|
a LIy 5 % 5 % 3
Subject
7 N — N Zakes Role || | Role | |HMObject
1 Application Condition: <ANY>|| |<ANY>
3 T T ™ N ~/
subject 11| (X 1Y, Y, - ‘
: : Subject | || Application Condition 2:
1 1 11 <ANY> 11 (X, Y,
2 Subject : Role : Team 5 4] 1 B
Subject <ANY> : <ANY> : <ANY> HMObject Team } Team
<ANY> | O <ANY>[| |<ANY>
[| I ‘
\ J | 12 |
: I ’ Role l Subject ° 15 3
Subject | | ubj . . -
arguments: <ANY> |! | <ANY> [I | <ANY> arguments: SUbJeCt} SLA?\JSCt—HMObJeCt
[1,2] ! ' [1,2,4] <ANY>]; [<ANY>
el L& I 1 A % N | =~
,\output. [] \. ./ \output: []

Fig. 15. Graphical patterns for the customisation of task “pull up permissions”.

polygon and labelled as “new”. The rule is not
applied if such path already exists, which is
expressed by the NAC. The action is useful if we
want to create a direct link from the application
home page to some navigational node, perhaps
because the node is not reachable or because a high
number of navigational steps are required in order
to access it. Measurement Depth of a Node can be
used to detect nodes with difficult access. If we
associate an appropriate threshold value to the
measurement (e.g. 0, which means that it is not
possible to reach the node), we can use it to detect
the candidate nodes, and thus automatically fire the
action on them. In this way the newly created path
solves the problem and facilitates the navigation.
The last action example (Eliminate redundant
permissions) illustrates the composition of tasks to
perform a single action. The purpose of this action
is to eliminate redundancies from the subjects’
hierarchy by taking advantage of the inheritance
of permissions that Labyrinth defines. With this
purpose, the action first pulls up permissions to a
parent subject if all its children define the permis-
sion, and then removes permissions assigned to a
subject if some subject’s ancestor already defines
them. The action is made of the three tasks that are
shown in Figs. 15 and 16. The first task pulls up the
permissions by means of a customisation of the Pull

template. This is defined for type Subject (with
subtype matching) and relation PA (the one used
for permission assignment, see Labyrinth meta-
model in Fig. 8). In order to pull up a permission, an
inheritance relation of generalisation or aggregation
must exist between the source and target subjects.
This is specified by pattern in Fig. 15(a). In
addition, as we only want to pull up those
permissions defined by all children of a subject, we
constrain its applicability by means of the pattern
shown in Fig. 15(b). The pattern receives as input
the relation to move and the source and target
subjects. The application conditions check the
existence of the permission to be moved in every
target subject’s child, being the parent either a role
(application condition X1 — Y1) or a team (appli-
cation condition X2 — Y2). Note the expressive
power of patterns in order to specify complex
structures and conditions.

In the same action, the elimination of redundant
permissions is performed by the two graph grammar
tasks shown in Fig. 16, which are executed after-
wards. Recall that executing a grammar means
(non-deterministically) applying its rules as long as
possible. Task “Flattening” performs the flattening
of the hierarchy by copying permissions from each
parent to its descendants. Two different rules
consider the flattening of permissions assigned to

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 19

(TaskGG: FIattening\

Role
Rule: Team Flattening <ANY> |{del}

Team

Role -
<ANY> [{new, nac} Lll >HMOb]ect

<ANY> 7RZOE<|—
HMObject <ANY> [{nac}

| Rule: Role Flattening | (TaskGG: Eliminate redundancy)
<§(,)\II$> |Rule: Redundancy1| |Rule: Redundancy2| |Rule: Redundancy3|
ZF HMObject Role Team Team
<ANY>

<ANY> <ANY>
(¢} HMODbject > HMObject
Role Team
<ANY> [{del} <ANY> ({del}

Role Subject
<ANY> [{nac} <ANY> [{nac}

Subject N
<ANY> | {new, nac}

. /

Fig. 16. Graph grammar tasks for action “eliminate redundant permissions”.

teams and to roles, respectively. Task ‘“Eliminate
redundancy” goes up the hierarchy removing
redundant permissions. It is made of three rules
that consider the three possible hierarchical combi-
nations: a role with a child role, a team with a child
role, and a team with a child team.? The NACs in
the rules forbid removing a permission if some
direct children defines it. In this way the deletion
starts from the deeper roles in the hierarchy to the
higher ones. By performing an initial task that
flattens the hierarchy we are able to eliminate
redundancies produced not only when a children
and its parent define the same permission, but also
when an arbitrary number of ancestors exist in
between. This action cannot be guided by measure-
ment values, but it is performed in the whole
subjects hierarchy. However, the modelling of roles
and teams usually does not involve a big set of
entities, and therefore this is not a real problem.

5. Tool support

One of the goals of the present work is to provide
visual editor developers with a tool that facilitates
the task of integrating mechanisms to measure and
improve the quality of the models in the developed
editors. In previous sections we showed how the use
of SLAMMER could facilitate the specification of
measurements and actions for DSVLs. In this
section we show the tool that we have created to
support SLAMMER and how it is used.

2A team cannot generalise a role.

5.1. Framework implementation

The new tool has been built by using AToM? [23],
an environment that allows the description of
DSVLs by means of meta-modelling and its
manipulation by means of graph transformation.
In AToM?, the abstract syntax of a DSVL is
specified with a meta-model (either a class or an
entity relationship diagram), while its concrete
syntax is defined by simply providing icons for each
class and arrows for each association of the meta-
model. Starting from this definition, a visual editor
is generated that allows the creation of models
conforming to the given meta-model.

In the case of SLAMMER, its abstract syntax
meta-model is made of the sum of the meta-models
shown in Figs. 1, 3 and 5. As we wanted to
automatically generate measurement and redesign
tools from SLAMMER models, we enriched its
meta-model with attributes oriented to customise
the environment to be generated. In particular, we
added an abstract class UlButton as the parent of
classes Measurement, Action and Task. This class
has a single boolean attribute button that, if set to
true, generates a button to execute the measure-
ment, action or task. This allows, for example, not
to generate buttons for auxiliary measurements. In
addition, class Measurement was provided with two
additional attributes. The first one (genReport) has
boolean type and is selected in order to obtain a
report in PDF format with the measurement result.
The second one (report) is an enumerate type to
select whether the report should show all the
obtained values, or only the ones making some

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

20 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

DSVL Environment Definition

Desigh DSVL DSVL
viewpoints

DSVL meta-model '

Meta-model
and viewpoints

FA S,
DSVL designer

domain
(patterns)

Design
measuraments|

—
p==PDesign actions

mat
ratian

DSVL Environment

Fig. 17. Definition of DSVL environment.

threshold condition true. Starting from the enriched
SLAMMER meta-model, we used the code genera-
tion capabilities provided by AToM? in order to
generate a visual editor for it. The resulting tool,
which was integrated in AToM?, allows building
SLAMMER models and this way customising
measurements and actions for a given DSVL. In
addition, we had to manually add a code generator
to the SLAMMER tool, able to synthesise a
measurements and redesigns tool from the SLAM-
MER models.

The process of defining a DSVL environment by
using AToM? is shown in Fig. 17. First, the meta-
model of the language is specified. In the case of
multi-view DSVLs (i.e. families of DSVLs or
diagram types where ecach notation captures a
perspective of the system, e.g. Labyrinth), first the
whole language meta-model is specified, and then the
different diagram types are given as subsets or
projections of it (see [24] for a detailed explanation).
Note that overlapping is allowed thereby inter-
dependencies can arise. Then, the new SLAMMER
tool is used in order to define measurements, thresh-
olds and actions for the particular DSVL. The
measurements can be defined as customisations of
the suite offered by SLAMMER, therefore only the
domain (elements of the DSVL) and the specific
attributes to measure (specified as patterns) have to
be given. Actions are made of tasks that can be
specified either procedurally (by using Python), by
means of graph grammars, or by customising task
templates by means of patterns. The definition of the
DSVL and of the measurements and actions is

performed by experts in the respective areas (prob-
ably two different people). By following a model-
driven approach, a visual editor for the DSVL is
automatically generated that allows specifying models
conforming to the DSVL meta-model(s), measuring
the models, and performing the predefined redesigns
(likely guided by threshold values of measurements)
in order to improve the design quality.

The working scheme of the generated environ-
ment is summarised in Fig. 18. The end-user who
uses the language can specify diagrams or system
views conforming to the DSVL meta-model, or
conforming to some diagram type meta-model in
the case of multi-view DSVLs. Syntactic and static
semantics consistency between diagrams is achieved
by means of triple graph transformation systems
[22] that internally build a repository by merging the
different system diagrams through their common
elements. The transformation systems create map-
pings between the repository elements and the
corresponding elements in the diagrams so that
changes in one system diagram or in the repository
are propagated to the other diagrams if necessary.
These consistency mechanisms are provided by the
environment and hidden to the user. In addition, the
user can take measures in the repository model by
using the user interface that is automatically
generated from the SLAMMER model that was
specified during the DSVL definition. Note that the
SLAMMER measurements and actions are defined
on the language generated by the whole DSVL
meta-model, instead of associating them to specific
diagram types. The reason is that measurements and

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

21

DSVL Environment Use

DSVL Modelling Environment GUI

Take measurements,
perform redesigns

2,
& g % Reports
) B ¥
¢ B %
S 2 g
)| [ehi
View, |7°| View;, |''7| View,

Fig. 18. Using the generated DSVL environment.

redesigns are usually performed on the whole
system, and not in isolated views, as they may need
information from different diagrams. Measurement
results are shown to the user in the form of reports.
The user interface also allows performing the
actions that were specified in the same SLAMMER
model. If the execution of an action produces a
modification of the repository, then the changes are
propagated to the system views by using the same
mechanisms that provide system consistency after a
diagram change. Note that model consistency is a
crucial aspect of model redesign and that, if a
system diagram changes, the changes should be
propagated to the other ones in order to maintain
the system consistent.

Next section illustrates the previous concepts by
showing the visual editor we have built for
Labyrinth by using the support tool.

5.2. Defining an environment for Labyrinth

ADM [1] is based on the Labyrinth meta-model
in order to define a family of diagram types where
each one of them captures a different aspect of a
web application (e.g. navigation, security, etc.). In
order to define a visual editor for it, we defined the
Labyrinth meta-model and six of its diagram types
in AToM®. Then, we used the new tool generated
for SLAMMER, which is integrated in AToM?, in
order to define the set of measurements, thresholds

and actions presented in Section 4. Fig. 19 shows a
screenshot in the measurement and redesign editing
process for Labyrinth. Window 1 in the background
is the new tool that we have implemented and
contains the SLAMMER model specified for
Labyrinth. In particular, the figure shows the
editing of measurement Depth_of_ Node, which
is the upper one to the left in window 1. The
measurement counts the number of necessary steps
to reach a node starting from the root node. The
editing of its attributes is shown in dialog box 2. By
clicking on button “step’ a new window is opened
where the user customises the basic step for
the measurement, which is given as a pattern. In
the figure, window 3 contains the definition of the
positive graph of such pattern, which in this case is
made of two nodes joined by a link and two
anchors. In the SLAMMER model, measurement
Depth_of Node defines a threshold value equal to
0 that automatically triggers action Create path
from root for those nodes that have depth 0 and
are not root. The action is made of a single task (the
one that was shown in Fig. 14) that creates a direct
link from the web root node to a given node. In this
way, if some node is not reachable from the root
(i.e. it has a depth equals to 0), a direct link is
created from the root to the node.

The background window in Fig. 20 corresponds
to the environment generated from the previous
definition of Labyrinth. The six first buttons in the

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

22

AToM3 v0.2.2berliner using: Metrics
File Model Graphics Layout

Metrics

Modelops | Editentity| Connect| Delete| Inseit model| Expand model

Visualops | Smaoth| Insertpoit | Delete poirt| Change connectar

@

El Depth of Path

.CE Depth_of_Node
emeris | _atts

Free Num. of Elements
| e E NNG

Dlitarte | start ponts

<t |oea...
Cyclomealic| Mumber of
Number Elements
Similarity

NS/
threshold Create palfi from roat

Collapse nodes

User Defined
Compactness

My ety

User Defined

Stratum

[

Ser
D

Task GG
Create path
Merge
Merge nodes

AToM3 v0.2. 2berliner

File Model Graphics Layout

repository_Labyrinth VM| Modelops | Edkentity| Connect| Delete | Insert model| Expand model

2

pository_Labyrinth_VMM

E. Guerra et al. | Journal of Visual Languages and Computing 1 (1ill) 111111

Elﬁu;npom Visuslops | Smooth| Insertpoint| Delete point| Change connector|
jode

ENode
:E Composite
! Content

I;l Content

EEli.imk

Al @ o
Threshold| _Action name Depth_of_Node
~
Tﬁ;m‘ rﬁ:éc. El Num ngEI\emanTS genFeport v @
o & complele
Gy |« Eanrecl Connections EI L thieshold
Mewge | St FONC
goal Depth of a Node [dsta
o‘!..j 811 scale 10, N]
Move Pa_)4 | it Steps
button i
oK Cancel

&lmmor
' Tearn

o ANY> 4,
< —§—

Node
<ANY>
®

'lﬂnla |1j |

Fig. 19. SLAMMER model definition for Labyrinth.

File Model Transformation Graphics Layout

view_environment| | Modelops Edit entty | Cornect| Do
%Ngwaalwun Visualops | Smooth| Insert point E
== Diagram

AToM3 v0.2. 2berliner using: view_environment

AToM3 v0.2. 2berliner using: repository_Labyrinth_VMM

Fle Model Graphics Layout

repositary_Labyrinth_VMM ct
Users Diagram Inte) mooth i i
Bf;ﬂ,sam | Role Hierarchy ‘ Fomn Composite Cum osile ks J Insert point | Delete point | inge conns
Node Node J Content Content
Access MNavigational Diagram Inte s
&] 1RO Web Indon LEI—%]LW | "X Anchor | . | & koo |
% Structural
Calculate Calculate Calculate
S Oizgram Access Table e) yoer | NACOntexts | KiNliinks | ens | o w g
Ny Pemissions T
E] Intemal Calculate Calculate Calculate Calculate
Structurel Diagram I:.mE BreadthNM | MPBNC Relative-OutC| Felative-in C
Content
@ ntemal Hode Haswcly Hord Calculate Calculate Calculate Calculate
Depth Node | Fan-Out NC | Fan-In NC Compactness
*.’ Calculate Calculate Calculate PIF | Calculate
repository 1 Stratum Subject Inh P.| | SubiectSimilal
Collapse | Collapse | Create Path | Eliminate
Subiects Nodes from Root Redundant Pe| | i

Fig. 20. Generated environment for Labyrinth.

user interface allow creating instances of the
different diagram types. The canvas contains several
instance diagrams that belong to the modelling of
the TRO application introduced in Section 4. The
last button in the user interface allows opening a
window with the repository, which is partially
shown to the right of the same figure. A set of
buttons is present in the repository user interface
that allows taking measurements and performing
actions. These buttons were automatically gener-
ated from the information stored in the SLAM-
MER model provided during the definition of the
environment. Calculating a measurement or per-

forming an action just implies clicking on the
corresponding button.

Fig. 21 shows some reports generated as PDF
documents by the execution of the defined measure-
ments on the example IRO models. The measure-
ment results are shown as a table where each record
corresponds to a value in the measurement domain.
The first report corresponds to the execution of
measurement NNC, which gives 16 as result (our
system defines 16 nodes that take part in the
navigational map). As this is a model-oriented
metric, the obtained value gives a measure of the
model and thus the resulting table contains just a

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 23

b

Metric: MPBNC

(complete report)

Identifier : Home
Type : lb_Node_repository Labyrinth

Identifier : Erasmus TF
Type : 1b_Node_repository_ Labyrinth

Identifier : Home
Type : lb_Node_repository_ Labyrinth

Identifier : Information
Type : lb_Node_repository Labyrinth

Identifier : Home
a Type : lb Node_repository_Labyrinth

Identifier : List sch. holders
Type : 1lb_Node_repository_Labyrinth

Metric: NNC Identifier : Home
(complete report) Type : lb_Node_repository_Labyrinth

Identifier : ETF Annex
Type : lb_Node_repository_ Labyrinth

Identifier : SATF Annex
Type : lb_Node_repository Labyrinth

Identifier : Home
ﬁ Type : lb_Node_repository_ Labyrinth
16 Identifier : Home

Identifier : WTF Annex

Fig. 21. Some reports generated by the execution of measurements: (a) NNC and (b) MPBNC.

a
Metric: D
(complete report)

Identifier : Home
Type : lb_Node_repository Labyrinth

Identifier : Information o
Type : lb_Node_repository Labyrinth
Identifier : Travel Fundings

Type : lb Node_repository Labyrinth

Role Fole |
FaVicedean| | Coordinator

Home2information
9 o

Identifier : Forms
Type : lb_Node_repository_Labyrinth

MNode
Information

Identifier : S. American TF 2
Type : lb_Node_repository Labyrinth
Identifier : Erasmus TF

Type : lb_Node_repository Labyrinth

2foms
& 0

TAAnt ifiar . Dact Af tha WAr1A TO

Fig. 22. Example of action execution guided by

record. The second report is partially shown and
contains the group-oriented measurement MPBNC.
Each record in the table contains the minimum path
length to reach the node in the second column from
the node in the first column. A value equals to —1
implies that the node in the second column is not
reachable from the one in the first column.

Fig. 22(a) shows another report generated as
result of the execution of measurement “depth of
node”. In the report we can see, for example, that
nodes Travel Fundings and Forms have a depth
equal to 1 because a link has to be traversed to reach
them from the root node Home, and that node
Information is not reachable from the root node
because it has a depth 0. This latter case identifies a
design error as all nodes should be reachable
from the root. Thus, if we look at the repository
in Fig. 20, we can see that a link exists from
node Information to the root, but not the other

measurement threshold: (a) report and (b) repository.

way round (i.e. the link direction is wrong).
As explained before, this measurement was de-
fined with an associated action that is automati-
cally triggered for those nodes for which the
measurement is equal to the threshold value 0.
The action creates a direct link from the root to the
node that makes the threshold condition true, which
in this case is node Information. An excerpt of
the repository model after the action execution
is shown in the Fig. 22(b), where a link has
been created from the root node Home to node
Information.

As example of action not guided by measurement
values, Fig. 23 shows to the left the access table of
our system example, and to the right the access table
after applying action ‘“Remove redundant permis-
sions” by clicking on the last button generated on
the repository user interface. The action first pulls
up to parent subjects those permissions specified by

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

24 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

Team

IRD.Staff
Rale

Coordinator f§

=

Information 4

el
Travel Fundings

Foims

Naode
Assign Erasmus

MNode
Modify Erasmus
Node
List sch. holders

Team
Professor
N "
(L

Node

Information

Node
Travel Fundings

Node
Assign Erasmus

Node
Modify Erasmus

Node
List sch. holders

Role
Coordinator

Fig. 23. Access table after applying action “‘remove redundant permissions”.

all their children. For this reason permissions to
nodes Information, Travel Fundings and
Forms are moved from Student, Professor
and IRO. Staff to the common parent team User
(see users diagram in Fig. 9). Then, the action
eliminates redundancies in the permission assign-
ments, and thus permissions from role Co-
ordinator to nodes Information, Travel
Fundings and Forms are removed because Co-
ordinator inherits them from team User. The
execution of this action takes into account informa-
tion from different types of diagrams (i.e. from the
users diagrams and the access table). The reposi-
tory, which is the model where the action takes
place, gathers all this information.

After applying an action, the user can either
confirm the changes so that they are propagated to
the rest of the system diagrams by means of the
consistency mechanisms integrated in the tool, or
discard them and restore the system to the state
before the action execution.

6. Related work

The necessity of new tools for modernisation and
software evolution has been recently recognised by
the OMG. Currently, its Architecture-Driven Mod-
ernisation (ADM) Task Force [25] is working on the
development of standards for meta-data based
modernisation tools. Its main goal is to facilitate
the analysis, visualisation, refactoring and transfor-
mation of existing software systems. With this
purpose it has published a Request for Proposal
(RFP) for a Metrics Package [26] that aims at the
definition of a meta-model enabling the interchange
of quantifiable measurements, as well as its categor-
isation. The metrics package should be flexible
enough to adopt any new kind of metric. Similarly,
another RFP is expected for the definition of a

Refactoring Package concerning the definition of
meta-model based refactorings. The present paper
contains ideas oriented towards this direction.

The usefulness of generic measurements and
redesigns following the approach “define once, reuse
everywhere” used in this work is reflected in the
number of proposals that can be found in the
literature. However, they are usually oriented to a
specific domain and focused more on the imple-
mentation than on the design phase. For example,
the Goal Question Metrics approach (GQM) [27] is
oriented to the discovery of reusable measurement
patterns. Software project goals are identified and
refined to lower level characterisation goals, from
which the measurement patterns are derived. None-
theless, the approach does not provide how these
patterns can be afterwards categorised and reused in
different problems or domains. Closer to our work,
[28,29] present meta-model based approaches in
order to specify generic metrics for object-oriented
systems. They define meta-models that include
domain abstract concepts, such as class or attribute.
A generic metric is defined by using the meta-model
concepts, and customised for a specific language by
mapping the language concepts and the meta-model
ones. On the contrary, our framework decouples the
metrics meta-model and the language concepts,
making the metrics totally independent of the
domain and facilitating their integration with any
DSVL. Our use of patterns allows a higher level of
abstraction and reusability. In addition, our meta-
model includes entities modelling actions and its
relation to metrics, making it more complete for
software remodelling. In [28], Mens presents an
interesting mechanism for metrics extension and
composition, which is similar to our concept of
dependency between metrics. Finally, it is also
worth mentioning the attempts to define ontologies
for software measurements [12,18]. Our work on the

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 25

definition of SLAMMER was inspired by some of
this related research.

With respect to generic refactoring, [30] presents
this concept together with an implementation based
on functional strategic programming in Haskell.
The framework consists of meta-programs that can
be instantiated for different programming languages
by means of parameter passing. As in our approach,
the generic refactorings can be applied to any kind
of language. However, the parameterisation part
seems rather complex and implies knowledge of
Haskell and the abstract syntax of the specific
language. Seeking candidate code to refactor is a
time-consuming task and is not guided by mechan-
isms helping in its location (thresholds in our
framework). Refactoring is never guided by the
user, thus making the introduction of inadverted
errors possible. Ref. [3] presents a DSVL for
domain model evolution. Domain models are
represented using a tree structure, and its evolution
is expressed as a rewriting operation that gives as a
result the tree conforming to the new evolved
language. Transformations are expressed as a
sequence of Transforms establishing a mapping
between the objects before and after the evolution.
Mappings are expressed as patterns of object
diagrams relating the classes in the initial and
evolved meta-models. Modifications can result in
changes to the semantics or the removal/replace-
ment of existing syntactical patterns.

Different techniques can be used in order to guide
the application of redesigns by detecting bad smells,
such as the study of invariants [31], logic meta-
programming [32] or measurements [17]. The last
approach is one followed in this paper. The use of
measurements seems to be a lighter technique that
allows narrowing the search for big systems and
smarter strategies for certain types of bad smells.

Regarding tools, the necessity of new modernisa-
tion interoperable tools has been recognised by the
OMG with a RFP [26] for metrics and refactoring
packages. Although there is a variety of modelling
tools that incorporate functionalities for obtaining
metrics [33-35], the set of metrics they provide is
usually hard-coded, oriented to a specific language,
and the possibilities of extension are very limited.
Some exceptions exist that cover some of the
mentioned limitations. For example, the SDMetrics
tool [34] allows the definition of metrics for UML
models using a relational-like language based on
XML. Another exception is the Moose Reengineer-
ing Environment [33], which implements an engine

for language-independent object-oriented software
metrics. It provides more than 30 predefined soft-
ware object-oriented metrics with no possibility of
extension, but customisable for any object-oriented
language by its mapping to the language indepen-
dent representation FAMIX. In both cases, our
approach is more general, as we are neither
restricted to UML nor object orientation, but we
can define metrics for any DSVL. In addition,
SLAMMER is visual, allowing the customisation of
metrics in a graphical, declarative and intuitive way.
Moreover, we can define actions (also visually) to be
executed when certain thresholds are reached, in
order to improve the metric value.

Similarly, there is an increasing set of tools
incorporating refactoring or redesign capabilities,
although again they are usually oriented to a specific
language, where the parts of the application that
should be refactored have to be detected by hand,
and with a set of predefined refactoring which is not
extensible by the user (e.g. the Refactoring Browser
[36] for Smalltalk code, Together [35] for Java code
and UML models). There are very few tools
allowing an automatic detection of refactoring
opportunities. One example is SOUL [32], a logic
meta-programming language built on the Visual-
Works Smalltalk environment that automatically
detects existing bad smells (by using logic meta-
programming) from which the set of appropriate
refactorings is proposed. Again, this tool is domain
specific and the set of bad smells that can be
detected, as well as the refactorings proposed, are
hard-coded and cannot be enhanced.

In the area of meta-CASE tools, our work is also
original. There is a plethora of this kind of tools
(such as GME [37] or MetaEdit+ [2]), but to our
knowledge none of them gives helpful support to the
definition of metrics. Although the Eclipse GMF
[38] provides a plug-in for specifying measurements
by using OCL, metrics have to be programmed from
scratch, making the process tedious, hard and time-
consuming. In addition, it does not support
advanced features such as report definition or
guided actions.

In the area of visual editors, the field is moving
towards an easy specification and generation of
richer modelling tools for DSVLs. There are many
approaches for the generation of tools, which are
merely visual editors. However, the MDD process
needs more functional tools, integrating for example
quality control aspects. Some tools (e.g. Open-
ArchitectureWare [4,39], which, however, does not

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

26 E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111

provide support for DSVLs) are moving towards
this direction by integrating a number of additional
tools helping in common MDD tasks, such as code
generation, model transformation and reporting.
The fact that some of these tools are integrated in
the Eclipse framework may make easier the inter-
operability with further tools. However, it is our
view that all these related tools have to be
customised (probably using the DSVL meta-model
as the core of the customisation) and tightly
integrated for the given domain.

Altogether our approach has the advantage of
being language independent, easily customisable for
arbitrary DSVLs. The customisation is done
visually and in addition, actions can be specified
using the declarative and visual approach of graph
transformation or by customising generic task
templates by graphical patterns. Concerning tool
support, we have integrated SLAMMER with the
meta-modelling tool AToM?>. This integration
allows the generation of richer modelling environ-
ments for (multi-view) DSVLs, which are provided
with tools for taking measurements and performing
redesigns.

7. Conclusions and future work

The contributions of this work are the following.
First, we have proposed a novel approach for the
specification of measurements oriented to DSVLs,
and based on graphical patterns. The approach
reduces the cost of defining domain specific measure-
ments, and allows generating domain specific mea-
surement tools starting from these high-level
specifications. Second, the concept of customisable,
high-level redesigns is also novel. Third, both
concepts have been formalised in the SLAMMER
DSVL. In this language, generic measurements are
customised for a given DSVL by means of visual
patterns, and actions are specified either by customis-
ing some predefined template, by graph transforma-
tion rules, or by procedural code. Actions can
implement model redesigns with or without user
intervention, and may be invoked either directly or as
result of some measurement threshold value. Fourth,
we have provided an implementation of these ideas in
the meta-modelling tool AToM?>. This allows the
automatic generation of richer modelling environ-
ments for DSVLs, which are now provided with tools
that measure and redesign models, where redesigns
can be guided by specific values obtained from
measurements. Moreover, we have shown the applic-

ability of the framework for multi-view DSVLs. In
this case, taking measurements and performing rede-
signs usually span several diagrams, therefore they
take place in the repository. To our knowledge, no
other meta-modelling tool offers these capabilities.

In the future, we intend to include new general
measurements and redesigns in the language. It can
also be interesting to study how to support other
kinds of measurements, for example subjective and
dynamic ones. The latter can be suitable in case of
having executable models, with a precise opera-
tional semantics. In addition, we are starting
the study of mechanisms for richer customisable
template tasks. Providing further analysis tools
(e.g. statistical) for studying the results, as well as
more powerful visualisation facilities for the results,
is also up to future work.

Acknowledgements

Work supported by projects MODUWEB
(TIN2006-09678) and MOSAIC (TIC2005-08225-
C07-06) of the Spanish Ministry of Science and
Education.

References

[1] P. Diaz, S. Montero, I. Aedo, Modeling hypermedia and
web applications: the Ariadne Development Method,
Information Systems 30 (8) (2005) 649-673.

[2] R. Pohjonen, J.-P. Tolvanen, Automated production of
family members: lessons learned, in: Proceedings of
PLEES’02, Seattle, USA, 2002, pp. 49-57.

[3] J. Sprinkle, G. Karsai, A domain-specific visual language for
domain model evolution, Journal of Visual Languages and
Computing 15 (3—4) (2004) 291-307.

[4] M. Volter, T. Stahl, Model-Driven Software Development,
Wiley, New York, 2006.

[5] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous
and Practical Approach, second ed., PWS, 1998.

[6] S.A. Whitmire, Object Oriented Design Measurement, Wiley
Computer Publishing, Wiley, New York, 1997.

[71 E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Software,
Professional Computing Series, Addison-Wesley, Reading,
MA, 1995.

[8] J. Kerievsky, Refactoring to Patterns, Addison-Wesley,
Reading, MA, 2004.

[9] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Funda-
mentals of Algebraic Graph Transformation, Mono-
graphs in Theoretical Computer Science, Springer, Berlin,
2006.

[10] P. Diaz, I. Aedo, F. Panetsos, Modeling the dynamic
behavior of hypermedia applications, IEEE Transactions on
Software Engineering 27 (6) (2001) 550-572.

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

dx.doi.org/10.1016/j.jvlc.2007.09.002

E. Guerra et al. | Journal of Visual Languages and Computing 1 (11l1) 111111 27

[11] V.R. Basili, G. Caldiera, H.D. Rombach, Goal Question
Metric Paradigm, Encyclopedia of Software Engineering,
Wiley, New York, 1994, pp. 528-532.

[12] F. Garcia, M.F. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M.
Piattini, M. Genero, Towards a consistent terminology for
software measurement, Information and Software Technol-
ogy 48 (2006) 631-644.

[13] T. Mens, On the Use of Graph Transformations for Model
Refactoring, Generative and Transformational Techniques
in Software Engineering, 2006, pp. 219-257

[14] M. Fowler, Refactoring: Improving the Design of Existing
Code, Addison-Wesley, Reading, MA, 1999 See also:
(www.refactoring.com).

[15] M.J. Munro, Product metrics for automatic identification of
bad smell design problems in Java source-code, in: Proceed-
ings of llth International Software Metrics Symposium
(METRICS 2005), IEEE Computer Society, Silver Spring,
MD, 2005.

[16] ISO/IEC 15939: 2002 Software Engineering—Software
Measurement Process.

[17] F. Simon, S. Loffler, C. Lewerentz, Distance based cohesion
measuring, in: Proceedings of the Second European Soft-
ware Measurement Conference, 1999, pp. 69-83.

[18] M.A. Martin, L. Olsina, Towards an ontology for software
metrics and indicators as the foundation for a cataloging
web system, in: Proceedings of LA-WEB, IEEE Computer
Society, Silver Spring, MD, 2003.

[19] F.W. Calliss, Problems with automatic restructurers, SIG-
PLAN Notices 23 (3) (1988) 13-21.

[20] S. Abrahao, N. Condori-Fernandez, L. Olsina, O. Pastor,
Defining and validating metrics for navigational models, in:
Proceedings of the Ninth International Software Metrics
Symposium, 2003, pp. 200-210.

[21] R.A. Botafogo, E. Rivlin, B. Shneiderman, Structural
analysis of hypertexts: identifying hierarchies and useful
metrics, ACM Transactions on Internation System 10 (2)
(1992) 142-180.

[22] E. Guerra, J. de Lara, Model view management with triple
graph transformation systems, in: Proceedings of the
ICGT 06, Lecture Notes in Computer Science, vol. 4178,
Springer, Berlin, 2006, pp. 351-366.

[23] J. de Lara, H. Vangheluwe, AToM> A Tool for Multi-
Formalism Modelling and Meta-Modelling, FASE’02,
Lecture Notes in Computer Science, vol. 2306, Springer,
Berlin, 2002, pp. 174-188, See also the AToM?® home page
at: (http://atom3.cs.mcgill.ca).

[24] E. Guerra, P. Diaz, J. de Lara, A formal approach
to the generation of visual language environments
supporting multiple views, in: Proceedings of the VL/
HCC05, IEEE Computer Society, Silver Spring, MD,
2005, pp. 284-286.

[25] Architecture-Driven Modernization, Home page: (http://
adm.omg.org).

[26] Request for Proposal of the ADM: Metrics Package (http://
www.omg.org/docs/admtf/06-09-01.pdf).

[27] M. Lindvall, P. Donzelli, S. Asgari, V. Basili, Towards
reusable measurement patterns, in: Proceedings of the
11th IEEE International Software Metrics Symposium
(METRICS’05), 2005, pp. 21-28.

[28] T. Mens, M. Lanza, A Graph-Based Metamodel for Object-
Oriented Software Metrics, Electronic Notes in Theoretical
Computer Science, vol. 72(2), 2002.

[29] V.B. Misi¢, S. Moser, From formal metamodels to metrics:
an object-oriented approach, in: Proceedings of TOOLS,
1997, pp. 330-339.

[30] R. Limmel, Towards generic refactoring, ACM SIGPLAN
Workshop on Rule-based Programming, ACM Press, New
York, 2002, pp. 15-28.

[31] Y. Kataoka, M.D. Ernst, W.G. Griswold, D. Norkin,
Automated support for program refactoring using invar-
iants, in: Proceedings of the International Conference on
Software Maintenance, 2001, pp. 736-743.

[32] T. Tourwe, T. Mens, Identifying refactoring opportunities
using logic meta programming, in: Proceedings of the
Seventh European Conference on Software Maintenance
and Reengineering, 2003, pp. 91-100.

[33] M. Lanza, S. Ducasse, Beyond language independent object-
oriented metrics: model independent metrics, in: Proceedings
of QAOOSE’02, pp. 77-84.

[34] SDMetrics, Home page: (http://www.sdmetrics.com).

[35] Together Technologies, Home page: (http://www.borland.
com/us/products/together).

[36] D. Roberts, J. Brant, R. Johnson, A refactoring tool for
smalltalk, Theory and Practice of Object Systems 3 (1997)
253-263.

[37] A. Lédczi, A. Bakay, M. Mardi, P. Vogyesi, G. Nordstrom,
J. Sprinkle, G. Karsai, Composing domain-specific design
environments, IEEE Computers (2001) 44-51.

[38] The Eclipse Graphical Modeling Framework, Home page:
(http://www.eclipse.org/gmf).

[39] OpenArchitectureWare, Home page at: (http://www.
openarchitectureware.org/).

Please cite this article as: E. Guerra, et al., Visual specification of measurements and redesigns for domain specific visual languages,
Journal of Visual Language and Computing (2007), doi:10.1016/j.jvlc.2007.09.002

http://www.refactoring.com
http://atom3.cs.mcgill.ca
http://adm.omg.org
http://adm.omg.org
http://www.omg.org/docs/admtf/06-09-01.pdf
http://www.omg.org/docs/admtf/06-09-01.pdf
http://www.sdmetrics.com
http://www.borland.com/us/products/together
http://www.borland.com/us/products/together
http://www.eclipse.org/gmf
http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
dx.doi.org/10.1016/j.jvlc.2007.09.002

	Visual specification of measurements and redesigns for domain specific visual languages
	Introduction
	Measurements and redesigns for DSVLs
	Software measurement
	Redesigns

	SLAMMER: Specification LAnguage for Modelling MEasurements and Redesigns
	Measurements
	Graph patterns

	Actions and redesigns
	Concrete syntax for SLAMMER

	Example
	Labyrinth, a DSVL for web design
	Using SLAMMER to define measurements and actions for Labyrinth
	Navigational measurements
	Security policy measurements
	Actions

	Tool support
	Framework implementation
	Defining an environment for Labyrinth

	Related work
	Conclusions and future work
	Acknowledgements
	References

