
Pattern-Based Model-to-Model Transformation:
Handling Attribute Conditions

Esther Guerra1, Juan de Lara2, and Fernando Orejas3

1 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es
2 Universidad Autónoma de Madrid (Spain), jdelara@uam.es

3 Universitat Politècnica de Catalunya (Spain), orejas@lsi.upc.edu

Abstract. Pattern-based model-to-model transformation is a new ap-
proach for specifying transformations in a declarative, relational and for-
mal style. The language relies on patterns describing allowed or forbid-
den relations between two models, which are compiled into operational
mechanisms to perform forward and backward transformations.
In this paper, we extend the approach for handling attribute conditions
expressed in some suitable logic, adapt the operational mechanisms based
on graph transformation to relax attribute handling by constraint solv-
ing, and discuss heuristics for the compilation of patterns into rules.

1 Introduction

Model-to-Model (M2M) transformations are widely used in Model-Driven En-
gineering, e.g. to migrate between language versions, to transform into a vari-
fication domain, or to refine a model. There are two main approaches to M2M
transformation: operational and declarative. The former is based on operations
that explicitly state how and when creating target elements from source ones.
Instead, declarative approaches describe mappings between source and target
models in a direction-neutral way. Then, operational mechanisms are generated
for different scenarios, e.g. to transform a source model into a target one or vice
versa (forward and backward transformations), to synchronize two models, or to
signal inconsistencies between them [8].

In previous work [3] we proposed a declarative, relational and formal ap-
proach to M2M transformation based on triple patterns to express the relations
between two models. Our patterns are similar to graph constraints [6] but for
triple graphs made of two graphs plus their traceability relations. Patterns can
specify positive information (the relation they declare must hold) or negative
one (the relation must not hold). A pattern specification is compiled into oper-
ational mechanisms, implemented with Triple Graph Grammar (TGG) opera-
tional rules [5, 8, 14], to perform forward and backward transformations.

In this paper we extend our framework with attributes. Traditionally, at-
tribute handling has been one of the main difficulties of declarative bidirectional
languages. For example, attribute computations must be specified in a non-causal
way, and therefore generating operational mechanisms involves their algebraic

manipulation for the synthesis of attribute pre-conditions and computations,
which may be difficult to automate. We tackle these issues by the uniform inte-
gration of attribute computations and conditions in patterns, and by considering
the manipulated models also as constraints, hence avoiding algebraic manipu-
lation. Thus, during the transformation, attributes in models are specified by
variables and formulae constraining them. When the transformation finishes,
one can resort to an equation solver to obtain concrete attribute values.

The advantages of our proposal are the following. First, its relational style
contrasts with declarative approaches such as TGGs, where a causality between
the existing elements in the models and the ones to be created has to be given.
Second, the order of pattern enforcement is deduced, contrary to approaches
such as QVT, where it must be explicitly specified. Third, its formal foundation
allows studying the specification in both declarative (patterns) and operational
(derived rules) formats. Fourth, our patterns have a compositional style, i.e. a
triple graph satisfies two patterns in conjunction if it satisfies the two patterns
separately. This makes pattern-based specifications extensible. Finally, the sep-
aration of the operational mechanism from the declarative specification allows
generating operational mechanisms for different purposes, as well as using dif-
ferent operational languages (e.g. graph grammar rules, a constraint solver, or
QVT core [13]).
Paper Organization. Section 2 introduces triple graphs, our new concept of
constraints, and the algebraic approach to M2M transformation. Sections 3 and 4
present our pattern-based notation and the generation of operational TGG rules,
sketching some heuristics to improve their efficacy. Section 5 presents a case
study. Section 6 compares with related work, and Section 7 ends with the con-
clusions.

2 Algebraic Approach to Model-to-Model Transformation

This section introduces triple graphs, constraint triple graphs, and triple graph
transformation. Triple graphs are based on labelled graphs (called E-graphs
in [6]), which are graphs allowing data in nodes and edges. Formally, an E-
graph G is defined as a special kind of graph that includes an additional set of
nodes DG with the values stored in the graph, and two additional kinds of edges
that are used for attribution of nodes and edges. Mappings between E-graphs
(morphisms) are tuples of set morphisms – one for each set in the E-graph –
such that the structure of the E-graph is preserved (for details see [6]). For the
typing we use a type graph [6], similar to a meta-model, but for simplicity we
omit further discussion on types.

Triple graphs are made of three graphs: source (S), target (T) and corre-
spondence (C). Nodes in the correspondence graph relate nodes in the source
and target graphs by means of two graph morphisms [5], and for technical rea-
sons we restrict them to be unattributed (i.e. DC = ∅). We use triple graphs
to store the source and target models of a M2M transformation, as well as the
transformation traces.

2

Definition 1 (Triple Graph and Morphism) A triple graph TrG = (S cS←
C

cT→ T) is made of three E-graphs S, C and T s.t. DC = ∅, and two graph
morphisms cS and cT (the source and target correspondence functions).

A triple morphism m = (mS ,mC ,mT) : TrG1 → TrG2 is made of three E-
morphisms mX for X = {S,C, T}, s.t. mS ◦c1

S = c2
S ◦mC and mT ◦c1

T = c2
T ◦mC ,

where cx
S and cx

T are the correspondence functions of TrGx (for x={1, 2}).
We use the notation 〈S, C, T 〉 for a triple graph made of graphs S, C and T .

Given TrG = 〈S,C, T 〉, we write TrG|X for X ∈ {S,C, T} to refer to a triple
graph where only the X graph is present, e.g. TrG|S = 〈S, ∅, ∅〉. Triple graphs
and morphisms form the category TrG.

T

S cT
Class1

Class2

Attr1

’c2’

’c1’

’__att’

’persi
stent’

’c1’

Table1

false

parent
kind
kind

C2T2

C2T1
name

name

name

public

name

S C

c

Fig. 1. Triple graph example.

Example. Fig. 1 shows a triple graph re-
lating a class diagram and a relational
schema. The graph nodes are depicted as
rectangles, and the data nodes in DS and
DT as circles. We only draw the used data
nodes, as they may be infinite. Graph G in
Fig. 5 shows the same triple graph using
the UML notation, as well as types.

In order to describe the manipulation
of triple graphs by means of graph trans-
formation rules, these rules may need to include graphs storing variables that
will typically be instantiated when applying the rule. Moreover, we may need to
express some properties about these variables. We have formalized this kind of
graph using the new notion of constraint triple graphs. These are triple graphs
attributed over a finite set of variables, and equipped with a formula on this set
to constrain the possible attribute values of source and target elements.

Definition 2 (Constraint Triple Graph) Given an algebra A over signature
Σ = (S,OP), a constraint triple graph CTrGA = (TrG, ν, α) consists of a triple
graph TrG = 〈S,C, T 〉, a finite set of S-sorted variables ν = DS]DT (with]
denoting disjoint union) and a Σ(ν)−formula α in conjunctive or clausal form.

y = x * 2 z = 3

a = x

T1: A

b = y
c = z

T2: BT: C

y > 0

Fig. 2. Constraint.

Example. Fig. 2 shows a constraint triple graph. We
take the convention of placing in the left compartment
the terms of the formula concerning only source graph
attributes; in the right compartment the terms con-
straining only attributes in the target; and the terms
constraining both in the middle. In all cases we omit
the conjunctions. Note that “=” denotes equality, not
assignment. Hence, in our approach there is no attribute computation, but only
attribute conditions. Finally, unused attributes are omitted in the figures, and
the formula of the empty constraint is equal to true.

Notice that constraint triple graphs do not store data explicitly in the graphs:
the data nodes DS and DT are variables. Thus, if for instance we would like to
store a value V on an attribute node, it is enough to label that node with some
fresh variable X and include the equality X = V in the associated formula.

3

Before defining morphisms between constraints, we need an auxiliary opera-
tion for restricting Σ(ν)−formulae to a smaller set of variables ν′ ⊆ ν. This will
be useful for example when restricting a constraint triple graph to the source
or target graph only. Thus, given a Σ(ν)-formula α, its restriction to ν′ ⊆ ν is
given by α|ν′ = α′, where α′ is like α, but with all clauses with variables in ν−ν′

replaced by true. Thus, for example (x = 3) ∧ (y = 7)|{x} = (x = 3).
Given a constraint CTrGA = (TrG, ν, α), we write αS for the restriction

to the source variables α|DS , and αT for the restriction to the target variables
α|DT . Given a variable assignment f : ν → A, we write A |=f α to denote that
the algebra A satisfies the formula α with the value assignment induced by f.

Next, we define morphisms between constraint triple graphs. These are made
of a triple graph morphism and a mapping of variables (i.e. a set morphism).
In addition we require an implication from the formula of the constraint in
the codomain to the one in the domain, and also implications from the source
and target restrictions of the formula in the codomain to the restrictions of the
formula in the domain. This means that the formula in the domain constraint
should be weaker or equivalent to the target (intuitively, the codomain should
contain “more information”).

Definition 3 (Constraint Triple Graph Morphism) A constraint triple graph
morphism m = (mTrG,mν) : CTrGA1 → CTrGA2 is made of a triple morphism
mTrG : TrG1 → TrG2 and a mapping mν : ν1 → ν2 s.t. the diagram to the
left of Fig. 3 commutes, and ∀f : ν2 → A s.t. A |=f α2, then A |=f (αS

2 ⇒
mν(αS

1))∧ (αT
2 ⇒ mν(αT

1))∧ (α2 ⇒ mν(α1)), where mν(α) denotes the formula
obtained by replacing every variable X in α by the variable mν(X).

DTrG1
S _Ä

²²

mT rG
D,S

//
=

DTrG2
S _Ä

²²
ν1 mν //

=

ν2

DTrG2
T

Â ?

OO

mT rG
D,T

// DTrG2
T

Â ?

OO : D
: F

: E

e = w

: A

a = x0
: C

: B

b = y0

d = z

x0 = 4
z > x0

x0 > y0
w > x0 y0 >= 1

B

: C
: A

a = x

: B

b = y

y <> xx > 0 y > 0

A

Fig. 3. Condition for CTrG-morphisms (left). Example (right).

Remark. Note that α2 ⇒ mν(α1) does not imply αS
2 ⇒ mν(αS

1) or αT
2 ⇒

mν(αT
1). For technical reasons we require (αS

2 ⇒ mν(αS
1)) ∧ (αT

2 ⇒ mν(αT
1)) as

will be evident in Definition 4 and its associated remark.
Example. The right of Fig. 3 shows a constraint triple graph morphism. Con-
cerning the formula, assume some variable assignment f : νB → A satisfying αB

(i.e., s.t. A |=f αB), then such f makes A |=f [(x0 = 4 ∧ z > x0) ⇒ (x0 >
0)]∧ [(y0 >= 1) ⇒ (y0 > 0)]∧ [(x0 = 4∧z > x0∧x0 > y0∧w > x0∧y0 >= 1) ⇒
(x0 > 0 ∧ y0 <> x0 ∧ y0 > 0)]. That is, the formula in the morphism domain
should be weaker or equivalent to the formula in its codomain.

From now on, we restrict to injective morphisms (for simplicity, and because
or patterns are made of injective morphisms). Given Σ and A, constraint triple

4

graphs and morphisms form the category CTrGA. As we will show later, we
need to manipulate objects in this category through pushouts and restrictions.
A pushout is the result from gluing two objects B and C along a common
subobject A, written B +A C. Pushouts in CTrGA are built by making the
pushout of the triple graphs, and taking the conjunction of their formulae.

Proposition 1 (Pushout in CTrGA) Given the span of CTrGA-morphisms
BA b←− AA c−→ CA, its pushout is given by DA = (B +A C, νB +νA

νC , c′(αB)∧
b′(αC)), and morphisms c′ : BA → DA and b′ : CA → DA induced by the
pushouts in triple graphs (B +A C) and sets (νB +νA

νC).

Example. Fig. 4 shows a pushout, where αD ⇒ c′(b(αA)) ≡ b′(c(αA)).

c’

: D : A

zd > xd
xd = 4

xd >= 0 wd > xd
xd > yd

: C
: B : E

yd >= 1
yd = 3

D

d = zd a = xd b = yd e = wd

: A

a = x1
: C

y1 = 3

: B : E

C

w > x1x1 >= 0

b = y1 e = w

: D : A
: C

: B

b = y0

x0 = 4
z > x0

B

d = z a = x0

x0 > y0 y0 >= 1: B

b = y
: C

: A

a = x

y > 0y <> xx > 0

A b

c

P.O.

b’

Fig. 4. Pushout example.

The source restriction of a constraint triple graph is made of the source graph
and the source formula, and similarly for target. This will be used later to keep
the source or target models in a constraint, when such constraint is evaluated
source-to-target or target-to-source.

Definition 4 (Constraint Restriction) Given CTrGA = (TrG, ν, α), its source
restriction is given by CTrGA|S = (TrG|S = 〈S, ∅, ∅〉, DS , α|DS = αS). The tar-
get restriction CTrGA|T is calculated in an analogous way.

Remark. The source restriction CTrGA|S of a constraint induces a morphism
CTrGA|S ↪→ CTrGA. Also, given a morphism q : CA → QA, we can construct
morphisms qS : CA|S → QA|S and qT : CA|T → QA|T .

An attributed triple graph can be seen as a constraint triple graph whose for-
mula is satisfied by a unique variable assignment, i.e. ∃1f : ν → A with A |=f α.
We call such constraints ground, and they form the GroundCTrGA full sub-
category of CTrGA. We usually depict ground constraints with the attribute
values induced by the formula in the attribute compartments and omit the for-
mula (e.g. see constraint CTrG to the right of Fig. 7). The equivalence between
ground constraints and triple graphs is useful as, from now on, we just need to
work with constraint triple graphs. In particular, triple graphs are manipulated
with TGG operational rules, but seeing them as ground constraint graphs, which

5

offers several benefits, as we will see. The rules that we consider in this paper
are non-deleting and consist of left and right hand sides (LHS and RHS) made
of a constraint triple graph each, plus sets of negative pre- and post-conditions.
A rule can be applied to a host triple graph if a constraint morphism exists from
the LHS to the graph and no negative pre-condition (also called NAC) is found.
Then, the rule is applied by making a pushout of the RHS and the host graph
through their intersection LHS, which adds the elements created by the rule to
the host graph. This step is called direct derivation. Negative post-conditions are
checked after rule application, and such application is undone if they are found.

The most usual way [6, 14] of dealing explicitly with triple graphs instead
of with ground constraint graphs poses some difficulties, most notably concern-
ing attribute handling. For instance, Fig. 5 shows an example where a TGG
operational rule is applied to a triple graph G. The rule creates a column for
each private attribute starting by ‘ ’. Function LTRIM(p1,p2) returns p2 after
removing p1 from its beginning.

c: Class

name = x
public = false

a: Attribute

t: Table

C2T1

: C2T

C2T2

: C2T

name = ’c1’
kind = ’persistent’

Class1: Class

name = ’c2’
kind = ’persistent’

Class2: Class

Attr1: Attribute

name = ’__att’
public = false

name = ’c1’

Table1: Table

name = ’c2’
kind = ’persistent’

Class2: Class

Attr1: Attribute

name = ’__att’
public = false

ac: A2C

C2T1

: C2T

C2T2

: C2T

name = ’att’

co: Column

name = ’c1’

Table1: Table

ct:C2Tc: Class

name = x
public = false

a: Attribute

t: Table

LHS

x[0:2] = ’__’
ATTRIBUTE CONDITION

RHS = NAC

name =
LTRIM(’__’,x)

co: Column
compile

TGG operational rule:

{new}

x = ’__’+y

{new}
{new}

co: Column
{new}

name = y

{new}

TGG declarative rule:

P.O.

parent

G

parent

H

name = ’c1’
kind = ’persistent’

Class1: Class

c: Class

name = x
public = false

a: Attribute

ct:C2T

ac:A2C

t: Table
ct:C2T

ac:A2C

Fig. 5. Direct derivation by a non-deleting TGG operational rule.

In practice, the TGG operational rules are not specified by hand, but derived
from declarative rules modelling the synchronized evolution of two models [14],
as depicted in the upper part of Fig. 5. The declarative rule is shown with its LHS
and RHS together, and new tags indicating the synchronously created elements.
Of course, in declarative rules, attribute computations must be expressed in a
declarative style. However, their compilation into operational rules has to assign
a causality to attribute computations, which involves algebraic manipulation of
formulae. Moreover, appropriate attribute conditions must be synthesized too. In
the example, the condition x=‘ ’+y has to be transformed into a computation
LTRIM(‘ ’,x) for the created column name, and into the condition x[0:2]=‘ ’
as the attribute name should start by ‘ ’. Please note that this kind of manip-

6

ulation is difficult to automate, since it involves the synthesis of operations and
conditions. Our approach proposes a more straightforward solution. Fig. 8 shows
the same example when dealing with triple graphs as ground constraints, where
there is no need to synthesize attribute computations. The result of a transfor-
mation is a pair of models where their attributes are variables with values given
by formulae. If needed, a constraint solver can compute concrete values.

3 Pattern-Based Model-to-Model Transformation

Triple Patterns are similar to graph constraints [6], but made of constraint triple
graphs instead of graphs. We use them to describe the allowed and forbidden
relations between source and target models in a M2M transformation.

Definition 5 (Triple Pattern) Given the injective CTrGA-morphism C
q→

Q and the sets of injective CTrGA-morphisms NPre = {Q ci→ Ci}i∈Pre, NPost =
{Q cj→ Cj}j∈Post of negative pre- and post-conditions:

–
∧

i∈Pre

←−
N (Ci)∧←−P (C) ⇒ P (Q)∧ ∧

j∈Post

−→
N (Cj) is a positive pattern (P-pattern).

–
−→
N (Cj) is a negative pattern (N-pattern).

Remark. The notation
←−
P (·), ←−N (·), −→N (·) and P (·) is just syntactic sugar to indi-

cate a positive pre-condition (that we call parameter), a negative pre-condition,
a negative post-condition and the main constraint respectively.

The simplest P-pattern is made of a main constraint Q restricted by negative
pre- and post-conditions (Pre and Post sets). In this case, Q has to be present
in a triple graph (i.e. in a ground constraint) whenever no negative pre-condition
Ci is found; and if Q is present, no negative post-condition Cj can be found.
While pre-conditions express restrictions for the constraint Q to occur, post-
conditions describe forbidden graphs. If a negative pre-condition is found, it is
not mandatory to find Q, but still possible. P-patterns can also have parameters,
specified with a non-empty C. In such case, Q has to be found only if C is also
found. Finally, an N-pattern is made of one negative post-condition, forbidden
to occur (and hence C and Q are empty).
Example. The left of Fig. 6 shows a P-pattern, taken from the class to relational
transformation [13]. It is made of a main constraint C-T with a negative pre-
condition Parent. It maps persistent classes without parents to tables with the
same name. The negative pre-condition shows only the elements that do not
belong to the main constraint, and those connected to them.

The right of Fig. 6 shows a P-pattern with its parameters indicated with
〈〈param〉〉. We present C and Q together, as usually the formula in C is the same
as the one in Q. The pattern maps the attributes of a class with the columns of
the table related to the class. As Section 4.1 will show, it is not even necessary
to specify the parameters, as our heuristics are able to suggest them. In fact, a
M2M specification is usually made of N- and P-patterns without parameters. For
technical reasons, we assume that no P-pattern has negative post-conditions.

7

ct:C2T

name = nc
kind = k

c: Class

name = nc
kind = k

c: Class

parent

nc = nt

P(C−T)

k = ’persistent’ k = ’persistent’

N(Parent)

name = nt

t: Table ac:A2C

name = x
public = p

a: Attribute

t: Tablec: Classc1: Class

co: Column

name = y

ct:C2T

p = false

P(Attribute−Column)

x = ’__’+y

<<param>> <<param>><<param>>

Fig. 6. P-pattern examples.

Definition 6 (M2M Specification) A M2M specification SP =
∧

i∈I Pi is a
conjunction of patterns, where each Pi can be positive or negative.

Next we define pattern satisfaction. A unique definition is enough as N-
patterns are a special case of P-patterns. We check satisfiability of patterns on
constraint triple graphs, not necessarily ground. This is so because, during a
transformation, the source and target models do not need to be ground. When
the transformation finishes we can use a solver in order to find an attribute
assignment satisfying the formulae.

We define forward and backward satisfaction. In the former we check that
the main constraint of the pattern is found in all places where the pattern is
source-enabled (roughly, in all places where the pre-conditions for enforcing the
pattern in a forward transformation hold). The separation between forward and
backward satisfaction is useful because, e.g. if we transform forwards (assuming
an initial empty target) we just need to check forward satisfaction. Full satis-
faction implies both forward and backward satisfaction and is useful to check if
two graphs are actually synchronized.

Definition 7 (Satisfaction) A constraint triple graph CTrG satisfies CP =
[

∧
i∈Pre

←−
N (Ci) ∧←−P (C) ⇒ P (Q) ∧ ∧

j∈Post

−→
N (Cj)], written CTrG |= CP , iff:

– CP is forward satisfiable, CTrG |=F CP : [∀mS : PS → CTrG s.t. (∀i ∈ Pre
s.t. NS

i � PS , @nS
i : NS

i → CTrG with mS = nS
i ◦ aS

i), ∃m : Q → CTrG
with m ◦ qS = mS, s.t. ∀j ∈ Post @nj : Cj → CTrG with m = nj ◦ cj], and

– CP is backward satisfiable, CTrG |=B CP : [∀mT : PT → CTrG s.t. (∀i ∈
Pre s.t. NT

i � PT , @nT
i : NT

i → CTrG with mT = nT
i ◦aT

i), ∃m : Q → CTrG
with m ◦ qT = mT , s.t. ∀j ∈ Post @nj : Cj → CTrG with m = nj ◦ cj],

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {S, T}),
see left of Fig. 7. C +C|x Q|x is the pushout object of C and Q|x through C|x.

In forward satisfaction, for each occurrence of PS = C +C|S Q|S satisfy-
ing the negative pre-conditions, an occurrence of Q must be found satisfying the
negative post-conditions. A pattern is satisfied either because no mS exists (triv-
ial satisfaction), because mS exists and some negative pre-conditions are found
(vacuous satisfaction), or because mS and m exist and the negative pre- and

8

P.O.

C S

Q S

c: Class

name = nc
kind = k

k="persistent"

P
S

c: Class

name = nc
kind = k

k="persistent"

c: Class

name = nc
kind = k

t: Table

name = nt
ct: C2T

Q

k="persistent" nc=nt
c: Class

c1: Class

name = nc
kind = k

parent

c: Class

c1: Class

name = nc
kind = k

parent

Ni
s

SCi

c: Class

name = "Person"
kind="persistent"

c2: Class

C

ct1: C2T

ct: C2T
t: Table

name = "Person"

P.O.

CTrG

name = "Employee"
kind="persistent"

parent

Ci|S

dS
i

²²

P.O.

C|S
lL

zzttt
tt qS

%%LLL
LL

bi
Soo

C
=

eS
i

{{ww
ww cS

$$IIIII P.O. Q|S
pS

yyrrrrr

NS
i

/
nS

i

00

PS

=

aS
i

oo

mS ²²

qS

// Q
= =

cj //

mxxqqq
qqq

Cj

/
nj

nnCTrG

Fig. 7. Forward satisfaction (left). Example (right).

post-conditions are not found (positive satisfaction). Note that if the resulting
negative pre-condition Nx

i is isomorphic to Px, it is not taken into account. This
is needed as many pre-conditions express a restriction in either source or target
but not on both. Similar conditions are demanded for backward satisfiability.
Example. The right of Fig. 7 depicts the satisfaction of pattern C-T shown in
Fig. 6 by the ground constraint CTrG. We have CTrG |=F C − T as there
are two occurrences of PS , and the first one (shown by equality of identifiers)
is positively satisfied, while the second (node c2) is vacuously satisfied. We also
have CTrG |=B C − T , as there is just one mT , positively satisfied. Hence
CTrG |= C − T .

Given a specification SP =
∧

i∈I Pi and a constraint CTrG, we write CTrG |=
SP to denote that CTrG satisfies all patterns in SP . The semantics of a speci-
fication is the language of all constraint triple graphs that satisfy it.

Definition 8 (Specification Semantics) Given a specification SP , its seman-
tics is given by SEM(SP) = {CTrG ∈ Obj(CTrGA)|CTrG |= SP}, where
Obj(CTrGA) are all objects in the category CTrGA.

The semantics is defined as a set of constraint triple graphs, not necessarily
ground. Given a non-ground constraint, a solver can obtain a ground constraint
satisfying it, if it exists. Moreover, the specification semantics is compositional, as
adding new patterns to a specification amounts to intersecting the languages of
both. This fact is useful when extending or reusing pattern-based specifications.

Proposition 2 (Composition of Specifications) Given specifications SP1 and
SP2, SEM(SP1 ∧ SP2) = SEM(SP1) ∩ SEM(SP2).

4 Generation of Operational Mechanisms

This section describes the synthesis of TGG operational rules implementing for-
ward and backward transformations from pattern-based specifications. In for-
ward transformation, we start with a constraint triple graph with correspondence
and target empty, and the other way round for backward transformation.

9

The synthesis process creates one rule that contains triple constraints in its
LHS and RHS from each P-pattern. In particular, PS = C +C|S Q|S is taken
as the LHS for the forward rule and Q as the RHS. The negative pre- and
post-conditions of the P-pattern are used as negative pre- and post-conditions
of the rule. All N-patterns are converted into negative post-conditions of the
rule, using the well-known procedure to convert graph constraints into rule’s
post-conditions [6]. Finally, additional NACs are added to ensure termination.

Definition 9 (Derived Operational Rules) Given specification SP and P =
[
∧

i∈Pre

←−
N (Ci) ∧ ←−P (C) ⇒ P (Q)

∧
j∈Post

−→
N (Cj)] ∈ SP , the following rules are

derived:

– Forward. −→rP : ((L = C +C|S Q|S → R = Q), preS(P), post(P)),
– Backward. ←−rP : ((L = C +C|T Q|T → R = Q), preT (P), post(P)),

where the sets prex(P) (for x = {S, T}) of NACs are defined as the union of the
following two sets:

– NACx(P) = {L ax
i→ Nx

i |L � Nx
i }i∈Pre is the set of NACs derived from P ’s

negative pre-conditions, with Nx
i
∼= Ci|x +C|x C.

– TNACx(P) = {L nj→ Tj} is the set of NACs ensuring termination, where Tj

is built by making nj injective and jointly surjective with Q
f→ Tj, s.t. the

diagram to the bottom-left of Fig. 8 commutes.

and the set post(P) is defined as the union of the following two sets of negative
post-conditions:

– POST (P) = {nj : R → Cj}j∈Post is the set of rule’s negative post-conditions,
derived from the set of P ’s post-conditions.

– NPAT (P) = {R → D|[−→N (Ck)] ∈ SP , R → D ← Ck is jointly surjective,
and (R\L)∩Ck 6= ∅} is the set of negative post-conditions derived from each
N-pattern

−→
N (Ck) ∈ SP .

The set NPAT (P) is made of the negative post-conditions derived from the
set of N-patterns of the specification. This is done by relating each N-pattern
with the rule’s RHS in each possible way. Moreover, the requirement that (R \
L) ∩ Ck 6= ∅ reduces the size of NPAT (P), because we only need to consider
possible violations of the N-pattern due to created elements by the RHS, as we
start with an empty target model.
Example. The upper row of Fig. 8 shows the operational forward rule generated
from pattern Attribute-Column. The set NACS contains one constraint, equal
to R. There are two NACs for termination, TNAC2 and TNAC1, the latter equal
to R. As a difference from Fig. 5, we do not need to do algebraic manipulation
of formulae to generate the rule. The figure also shows a direct derivation where
both G and H are ground constraints. Note also that we do not check in L that x
starts with “ ”, but if it does not, we would obtain an unsatisfiable constraint.

10

Q|x //

²²
=

Q

f
²²

L // Tj

Class1: Class

parent

G

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false n1 = nt

c: Class t: Table

name = x
public = p

a: Attribute : A2C

name = y

: Column

R = NAC1 = TNAC1

ct:C2T

p = false x = ’__’+y

c: Class t: Tablect:C2T

: Table: C2T

name = x
public = p

a: Attribute : A2C

TNAC2

name = y

p = false x = ’__’+y

: Column

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

Attr1: Attribute

name = na
public = pa

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Class1: Class

name = y

: Column

c: Class t: Table

a: Attribute

public = p

L

ct:C2T

p = false

parent

H

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false

: A2C

na = ’__’+y
n1 = nt

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

Attr1: Attribute

name = na
public = pa

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Fig. 8. Condition for TNACx(P) (left). Example rule and derivation (right)

According to [12], the generated rules are terminating, and in absence of N-
patterns, correct: they produce only valid models of the specification. However,
the rules are not complete: not all models satisfying the specification can be
produced. Next subsection describes a method, called parameterization, that in
addition ensures completeness of the rules generated from a specification with-
out N-patterns. If a specification contains N-patterns, these are added as neg-
ative post-conditions for the rules, preventing the occurrence of N-patterns in
the model. However, they may forbid applying any rule before a valid model
is found, thus producing graphs that may not satisfy all P-patterns (because
the transformation stopped too soon). That is, in this situation the operational
mechanism would not be able to find a model, even if it exists. Next subsection
presents one heuristic that ensures finding models, and hence correctness, for
mechanisms derived from some specifications with certain classes of N-patterns.

4.1 Parameterization and Heuristics for Rule Derivation

Applying the parameterization operation to each P-pattern in the specification
ensures completeness of the operational mechanism: the rules are able to generate
all possible models of the specification [12]. The operation takes a P-pattern and
generates additional ones, with all possible positive pre-conditions “bigger” than
the original pre-condition, and “smaller” than the main constraint Q. This allows
the rules generated from the patterns to reuse already created elements.

Definition 10 (Parameterization) Given T =
∧

i∈Pre

←−
N (Ci)∧←−P (C) ⇒ P (Q)∧∧

j∈Post

−→
N (Cj), its parameterization is Par(T) = {∧i∈Pre

←−
N (Ci) ∧ ←−P (C ′) ⇒

P (Q)
∧

j∈Post

−→
N (Cj)|C i1

↪→ C ′
i2
↪→ Q,C � C ′, C ′ � Q}.

11

Remark. The formula αC′ can be taken as the conjunction of αC for the vari-
ables already present in νC , and αQ for the variables not in νC (i.e. in ν′C\i1(νC)).
Formally, αC′ = αC ∧ αQ|i2(νC′\i1(νC)) (assuming no renaming of variables).
Example. Fig. 9 shows an example, where some of the parameters generated
by parameterization are shown for a pattern like the one in Fig. 6 but without
parameters. Parameterization generates 45 patterns in total. The pattern with
parameter

−→
P (1) is enforced when the class is already mapped to a table, and

in forward transformation avoids generating a rule that creates a table with
arbitrary name. Parameter

−→
P (3) reuses a column with the same name as the

attribute (but starting by ‘ ’), possibly created by a parent class. However,
−→
P (2)

is harmful as it may lead to reusing a column connected to a different table, and
thus to an incorrect model.

ct:C2T

co: Column

t: Tablec: Class

P(2)

ct:C2T t: Tablec: Class

P(1)

name = x
public = p

a: Attribute

t: Tablec: Class ct:C2T

co: Column

name = y

p = false x = ’__’+y

P(3)

erization
paramet

ac:A2C

t: Table

name = x
public = p

a: Attribute

c: Class ct:C2T

co: Column

name = y

p = false x = ’__’+y

P(Attribute−Column.withoutParams)

Fig. 9. Parameterization example.

As the example shows, parameterization generates an exponential number
of patterns with increasingly bigger parameters, which may lead to operational
rules reusing too much information. Although this ensures completeness, we
hardly use it in practice, and we prefer using heuristics to control the level of
reuse. However, as previously stated, generating fewer patterns can make the
rules unable to find certain models of the specifications (those “too small”).

We propose two heuristics in this paper. The first one is used to derive only
those parameters that avoid creation of elements with unconstrained attribute
values. The objective is to avoid synthesizing rules creating elements whose at-
tributes can take several values.

Heuristic 1 Given a pattern P , replace it by a new pattern that has as parame-
ter all elements with attributes not constrained by any formula, and the mappings
between these elements.

Example. In Fig. 9, the heuristic generates just one pattern with parameter−→
P (1). Thus, the generated rules avoid creating a table with arbitrary name.

Next heuristic generates only those parameters that avoid duplicating a graph
S1, forbidden by some N-pattern of the form

−→
N (S1 +U S1), forbidding the du-

plication of a subgraph S1. This ensures the generation of rules producing valid
models for the class of specifications with N-patterns of this form (called FIP
in [3]).

12

Heuristic 2 Given [
←−
N (Ci)∧←−P (C) ⇒ P (Q)], if [

−→
N (S)] ∈ SP with S ∼= S1+US1,

and ∃s : S1 → Q and @s′ : S1 → C both injective s.t. q ◦ s′ = s, we generate
additional patterns with parameters all C ′j s.t. q1 and qs in C

q1→ C ′j
qs← S1 are

jointly surjective, and the induced C ′j → Q is injective.

The way to proceed is to apply heuristic 2 to each P- and N-pattern of the
form

−→
N (S1+U S1), and repeat the procedure with the resulting patterns until no

more different patterns are generated. Next section illustrates both heuristics.

5 Example

Next we illustrate our approach with a bidirectional transformation between
relational database schemas (RDBMS) and XML documents. Their meta-models
are shown to the left and right of the meta-model triple in Fig. 10. Schemas
contain books and subjects. A book has zero or more subjects, and those books
with the same subject description are related to the same object Subject. On
the contrary, the XML meta-model allows nested relationships, and even if two
books have the same subject description, they are assigned two different objects
Subject.

p1+’ ed.’ = p2

: B

ISBN = i2
title = t2

: Book

name = p2

: Publisher

P(Book)

name = p1

: Publisher

name = p2

: Publisher

N(NotDupXMLPublisher)

p1 = p2

desc = d2

: Subject

desc = d1

: Subject

N(NotDupRDBMSSubject)

d1 = d2

: S

desc = d1

: Subject

desc = d2

: Subject

: Book : B : Book

P(Subject)

d1 = d2

B

S

− ISBN: String
− title: String

Book

− desc: String

Subject

− desc: String

Subject

− name: String

Publisher

Meta−model triple:

RDBMS

subject

*

*

*

1
subject* 1 pub

− ISBN: String

− publisher: String
− title: String

Book

XML

desc = d1

: Subject : S

desc = d2

: Subject

: B: Book : Book

P(Subject.h1)

d1 = d2

by heuristic 2:

ISBN = i1

: Book

publisher = p1
title = t1 i1 = i2

t1 = t2

P(Book.h2)

p1+’ ed.’ = p2

i1 = i2
t1 = t2

Initial M2M specification:

New pattern generated
by heuristic 1:

New patterns generated

desc = d1

: Subject : S

desc = d2

: Subject

: B: Book : Book

P(Subject.h1.h2)

d1 = d2

ISBN = i1

: Book

publisher = p1
title = t1

ISBN = i2
title = t2

: Book: B

name = p2

: Publisher

<<param>><<param>>

<<param>>

<<param>><<param>> <<param>>

<<param>>

<<param>>

Fig. 10. Mapping relational database schemas and XML.

Fig. 10 shows the initial M2M specification, which is made of four patterns.
The P-pattern Book states how the books in both meta-models should relate,
and adds an “.ed” suffix to the publisher in the XML model. P-pattern Subject
maps subjects in both models. Note that we need these two patterns as it is
possible to have books with zero or more subjects. Should a book have exactly
one subject, then only one pattern would have been enough. In addition, as
the RDBMS format does not allow two subjects with the same description, we

13

forbid such situation by defining the N-pattern NotDupRDBMSSubject. Similarly,
N-pattern NotDupXMLPublisher forbids repeating publishers in XML.

: Book

name = p2

p: Publisher

name = p3

: Publisher

NPAT1 (post)

p1+’ ed.’ = p2
t1 = t2
i1 = i2

p2 = p3

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

p1+’ ed.’ = p2
t1 = t2
i1 = i2

name = p2

: Publisher

R = TNAC1
b: Book

L

Book

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

name = p2

p: Publisher

p1+’ ed.’ = p2
t1 = t2
i1 = i2

R = TNAC1

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

name = p2

p: Publisher

name = p3

: Publisher

TNAC2

p1+’ ed.’ = p2
p1+’ ed.’ = p3

t1 = t2
i1 = i2

publisher = p1

b: Book

name = p2

p: Publisher

L

p1+’ ed.’ = p2

Book.h2

desc = d1

s: Subject : S

: B

c: B b2: Book

d1 = d2
desc = d2

: Subject

b1: Book

TNAC2

: Book

c: B

desc = d1

s: Subject : S

R = TNAC1

d1 = d2
desc = d2

: Subject

b1: Book b2: Book

b1: Book

s: Subject

c: B b2: Book

L

Subject.h1 Subject.h1.h2

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

Fig. 11. Generated forward rules.

In this example we cannot use generic parameterization as it would generate
patterns with parameters reusing, e.g. the Subjects in the XML model. There-
fore we use the heuristics instead. The first one generates pattern Subject.h1
from pattern Subject by defining the elements with unconstrained attributes as
parameters. The new pattern replaces the old one and ensures that, when the
subject is translated, the book associated to it has been translated first. The
second heuristic is applied to patterns Subject.h1 and Book and produces two
new patterns, Subject.h1.h2 and Book.h2. The first one reuses RDBMS Sub-
jects so that they are not duplicated in backward transformations. The second
reuses one Publisher, avoiding its duplication in forward transformations.

As a last step, we use patterns Book, Subject.h1, Subject.h1.h2 and Book.h2
and the N-patterns to generate the operational rules. Fig. 11 shows the forward
ones. Rule Book contains a termination NAC (TNAC1) equal to its RHS and
a negative post-condition (generated from

−→
N (NotDupXMLPublisher)) avoiding

two publishers with same name. Patterns Subject.h1 and Subject.h1.h2 pro-
duce equivalent rules with two termination NACs. Finally, rule Book.h2 creates
books that reuse publishers once they have been created. Note again that we do
not need to perform algebraic manipulation of expressions for rule synthesis, as
the LHSs and RHSs contain constraint triple graphs (where note that attributes
not used in formulae are ommited, like in the LHS of rule Book).

Altogether, the operational mechanisms generated for this example are ter-
minating, confluent, correct and complete even using heuristics. However, our
mechanisms cannot guarantee confluence in general if we do not have a means
to prefer one resulting model or another.

14

6 Related Work

Some declarative approaches to M2M transformation use a textual syntax, e.g.
PMT [15], Tefkat [9]. All of them are uni-directional, whereas our patterns are
bidirectional. There are also bidirectional textual languages, like MTF [10].

Among the visual declarative approaches, a prominent example is QVT-
relational [13]. Relations in QVT may include when and where clauses that iden-
tify pre- and post-conditions and can refer to other relations. From this specifica-
tion, executable QVT-core is generated. This approach is similar to ours, but we
compile patterns to TGG rules, allowing its analysis [6]. Besides, we can analyse
the patterns themselves. In the QVT-relations language, there is no equivalent to
our N-patterns. Notice however, that our N-patterns can be used to model keys
in QVT (e.g. elements that should have a unique identifier) as we showed in the
example of the previous section with N-patterns

−→
N (NotDupXMLPublisher) and−→

N (NotDupRDBMSSubject). An attempt to formalize QVT-core is found in [7].
In [1], transformations are expressed through positive declarative relations,

heavily relying on OCL constraints, but no operational mechanism is given to
enforce such relations. In BOTL [2], the mapping rules use a UML-based notation
that allows reasoning about applicability or meta-model conformance.

Declarative TGGs [14] formalize the synchronized evolution of two graphs
through declarative rules from which TGG operational rules are derived. We also
generate TGG operational rules, but whereas declarative TGG rules must say
which elements should exist and which ones are created, our heuristics infer such
information. Moreover, TGGs need a control mechanism to guide the execution
of the operational rules, such as priorities [8] or their coupling to editing rules [5],
while our patterns do not need it. As in QVT, there is no equivalent to our
N-patterns, however TGGs can be seen as a subset of our approach, where a
declarative TGG rule is a pattern of the form

←−
P (L) ⇒ P (R).

In [11] the authors start from a forward transformation and the corresponding
backward transformation is derived. Their transformations only contain injective
functions to ensure bidirectionality, and if an attribute can take several values
one of them is chosen randomly. Finally, in [4] attribute grammars are used as
transformation language, where the order of execution of rules is automatically
calculated according to the dependencies between attributes.

7 Conclusions and Future Work

In this paper we have extended pattern-based transformation with attributes.
The resulting language allows expressing relations between models in a declara-
tive way, leaving open the kind of logic used for attribute conditions. Typically,
it can be first order predicate logic, e.g. with OCL syntax. The advantage of our
approach is that it provides a formal, high-level language to express bidirectional
transformations. Our language is concise, as its heuristics allow omitting the pa-
rameters in the relations. Moreover, at the operational level, we have proposed
a new way of triple graph rewriting based on constraints. This idea, which can

15

be used in other transformation approaches, avoids manipulation of attribute
conditions, one of the main difficulties of relational approaches.

We are currently working towards using this approach to formalize QVT re-
lations. Also, we are considering other operational languages, further heuristics,
devising analysis methods, and implementing a prototype tool.

Acknowledgments. Work supported by the Spanish Ministry of Science
and Innovation, projects METEORIC (TIN2008-02081) and MODUWEB (TIN2006-
09678). We thank the referees for their useful comments.

References

1. D. H. Akehurst and S. Kent. A relational approach to defining transformations in
a metamodel. In UML’02, volume 2460 of LNCS, pages 243–258. Springer, 2002.

2. P. Braun and F. Marschall. Transforming object oriented models with BOTL.
ENTCS, 72(3), 2003.

3. J. de Lara and E. Guerra. Pattern-based model-to-model transformation. In
ICGT’08, volume 5214 of LNCS, pages 426–441. Springer, 2008.

4. M. Dehayni and L. Féraud. An approach of model transformation based on at-
tribute grammars. In OOIS, volume 2817 of LNCS, pages 412–424. Springer, 2003.

5. H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserving
bidirectional model transformations. In FASE’07, volume 4422 of LNCS, pages 72–
86. Springer, 2007.

6. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. Springer-Verlag, 2006.

7. J. Greenyer. A study of model transformation technologies: Reconciling TGGs
with QVT. Master’s thesis, University of Paderborn, 2006.

8. A. Königs and A. Schürr. Tool integration with triple graph grammars - a survey.
ENTCS, 148(1):113–150, 2006.

9. M. Lawley and J. Steel. Practical declarative model transformation with Tefkat. In
MoDELS Satellite Events, volume 3844 of LNCS, pages 139–150. Springer, 2005.

10. MTF. Model Transformation Framework. http://www.alphaworks.ibm.com/tech/mtf.
11. S.-C. Mu, Z. Hu, and M. Takeichi. Bidirectionalizing tree transformation languages:

A case study. JSSST Computer Software, 23(2):129–141, 2006.
12. F. Orejas, E. Guerra, J. de Lara, and H. Ehrig. Correctness, completeness and

termination of pattern-based model-to-model transformation. Submitted, available
at http://astreo.ii.uam.es/∼jlara/papers/compPBT.pdf, 2009.

13. QVT. http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.
14. A. Schürr. Specification of graph translators with triple graph grammars. In

WG’94, volume 903 of LNCS, pages 151–163. Springer, 1994.
15. L. Tratt. A change propagating model transformation language. JOT, 7(3):107–

126, 2008.

16

