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Abstract. Graph transformation (GT) is being increasingly used in
Model Driven Engineering (MDE) to describe in-place transformations
like animations and refactorings. For its practical use, rules are often
complemented with OCL application conditions. The advancement of
rule post-conditions into pre-conditions is a well-known problem in GT,
but current techniques do not consider OCL. In this paper we provide
an approach to advance post-conditions with arbitrary OCL expressions
into pre-conditions. This presents benefits for the practical use of GT in
MDE, as it allows: (i) to automatically derive pre-conditions from the
meta-model integrity constraints, ensuring rule correctness, (ii) to derive
pre-conditions from graph constraints with OCL expressions and (iii) to
check applicability of rule sequences with OCL conditions.

1 Introduction

The advent of Model Driven Engineering (MDE) has made evident the need for
techniques to manipulate models. Common model manipulations include model-
to-model transformations, as well as in-place transformations like refactorings,
animations and optimisations. Many transformation languages and approaches
have been proposed for in-place transformations, but much research is directed
towards usable languages (e.g. able to take advantage of the concrete syntax
of the language) providing good integration with MDE standards (e.g. UML,
MOF, OCL) and that support some kind of analysis.

Graph transformation (GT) [7] is a graphical and declarative way to express
graph manipulations with a rich body of theoretical results developed over the
last decades. Its graphical nature has made it a common choice to define in-
place manipulations for Domain Specific Visual Languages (DSVLs), taking the
advantage that one can use the concrete syntax of the DSVL, making rules
intuitive. However, further integration with technologies like OCL is still needed
for its practical use in MDE. In this paper, we aim to advance in this direction.

In particular, a recurring problem is the interaction of the applicability con-
ditions of GT rules with the OCL invariants defined in the meta-models. In this
way, one may consider that rules should be restricted enough in their applicabil-
ity conditions to ensure that their application does not violate any meta-model



constraint. If this is not the case, the system would fall in an inconsistent state
and hence lead to an incorrect simulation or refactoring. However, it is tedious
and error prone for the grammar designer to derive by hand from the meta-
model invariants all application conditions required for each rule. Our goal is
to automate such task. Hence, given an invariant I that a model M must sat-
isfy after the application of a rule r, we generate the weakest invariant I’ s.t. if
the model satisfies it before applying r, then the resulting model will satisfy I.
This core technique has many applications, like deriving rule pre-conditions from
meta-model constraints and from graph constraints [7] equipped with OCL, as
well as to test the applicability of rule sequences with arbitrary OCL conditions.
Paper organization. Section 2 presents motivating examples that benefit from
our techniques. Section 3 introduces our techniques to advance OCL invariants to
rule pre-conditions. Section 4 goes back to the examples, illustrating the advance-
ment of OCL invariants for them. Section 5 comments possible optimisations for
the method. Section 6 discusses related research and Section 7 concludes.

2 Motivating Examples

First we consider a DSVL for defining production systems. Its meta-model is
shown to the left of Fig. 1. The meta-model defines machines with input and
output conveyors, which may contain two different kinds of pieces. An OCL
constraint ensures that conveyors do not hold more pieces than their capacity.
The center of the same figure shows a model in abstract and concrete syntax.
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Fig. 1. Meta-model (left). Models in abstract/concrete syntax (center). A rule (right).

Once we have defined the DSVL syntax, we can use GT rules to define
its semantics. The rule to the right of Fig. 1 describes how machines behave,
consuming and producing pieces. GT rules [7] are made of two graphs, the left
and the right hand sides (LHS/RHS), which encode the pre- and post-conditions
for rule application. Intuitively, a rule can be applied to a model whenever an
occurrence of the LHS pattern is found in it. Roughly, the application of a
rule consists in deleting the elements of LHS — RHS, and creating those of
RHS — LHS. In our case, the rule application deletes the Raw piece and creates
a Processed one in the output conveyor.



Considered in isolation, the rule could create a piece in a full output con-
veyor, violating the OCL integrity constraint of the meta-model. Hence, most
approaches and tools require the inclusion of an application condition in the
rule’s LHS constraining the application of the rule to the case when the output
conveyor has enough capacity (so that the resulting model is consistent with the
meta-model). This is what we have done in the figure. However, this is a redun-
dant work, as we are specifying a constraint for the same purpose twice: once
in the meta-model and another time in the rule. Even worse, the designer has
the burden of calculating an application condition that, given the rule’s actions,
forbids applying the rule if the execution breaks any meta-model constraint.

Hence, one important improvement in current practice is a mechanism to au-
tomatically derive OCL application conditions from the meta-model, in such a
way that any possible rule application cannot break the meta-model constraints.
This presents several advantages: (i) it notably reduces the work of the designer,
(ii) it facilitates grammar and meta-model evolution, as a change in the con-
straints of the latter has less impact on the rules, as many application conditions
are automatically derived (iii) it eliminates the risk of not adding appropriate
conditions that would cause rule applications to violate the meta-model con-
straints, and (iv) it eliminates the risk of adding a too restrictive condition that
would forbid applying the rule, even when its application would not break any
constraint (i.e. a condition that is not the weakest). In fact, the OCL condition
added to the rule in Fig. 1 is not the weakest. We solve this issue in Section 4.

The second motivating scenario is a refactoring of class diagrams. We assume
the simple meta-model in Fig. 2, where classes contain properties, each of a given
data type. For the sake of illustration, an invariant forbids attribute overriding,
by disallowing classes to have properties with same name as properties in direct
children (note that a real scenario would check this on indirect children too).

NamedElement conltfext Cla?s "“’f: All rule extract superclass
selt.properties->forAll(p T lhst RHS:

~ not self.children->exists(c|
c.properties->exists(cp|

children| * cp.name=p.name
. properties Property | | DataType P P )
0..1[parent * 1[type

Fig. 2. Simple meta-model for class diagrams (left). Refactoring rule (right).
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Fig. 2 (right) depicts rule extract superclass that, given two classes, creates a
common superclass. As in the previous scenario, we would not like to calculate by
hand the extra conditions needed for this rule to be applicable. In this case, the
problematic situation is with the “0..1” cardinality constraint in the meta-model
that forbids a class to have several parents. The following sections will show that
our method treats such cardinality constraints uniformly as OCL constraints [9)].

Fig. 3 shows another refactoring rule, pull-up property, which given two sister
classes having a property with same name and type, pulls up such property to a
common parent class. Again, the problem is to calculate the needed applicability



conditions, where the problematic part is the meta-model invariant, as the parent
class may have other children containing a property with same name. Finally, it
is common to apply two or more refactorings in sequence, e.g. we may only want
to extract a common superclass if we can then apply the pull-up property refac-
toring. Hence, we need to calculate the applicability conditions of a sequence of
rules. Neglecting OCL conditions, this can be done by calculating the concurrent
rule [7], which includes the pre-conditions and effects of both rules, and is built
by gluing the initial rules through common elements. In our case, the glueing is
done through elements c1, c2 and c, and the resulting rule is shown to the right
of Fig. 3. In this scenario we need our method to calculate the OCL application
conditions of the concurrent rule. First, the application conditions of the sec-
ond rule should be advanced to the first, and additional pre-conditions for the
resulting rule should be derived from the meta-model constraints.

rule pull-up property _ Concurrent rule extract superclass + pull-up property
{ LHS:}{ RHS:| [/ LHS:}/

‘c1 :Class‘ ‘c2:CIass|

‘CQ:ClaSS‘ cl:Class c2:Class

{parent s aremRHS:i
[e1:Class] |

[ ot:Property | [ p2:Property | p2:Property ||| | [ p1:Property | [ p2:Property |i [ p2:Property
‘ d:DataType d:DataType i d:DataType d:DataType
Application condition: p1.name=p2.name Application condition: ;?

Fig. 3. Refactoring rule (left). Concurrent rule for both refactorings (right).

Altogether, we have seen that the use of GT rules in MDE necessitates tech-
niques to manipulate OCL conditions. The next section presents our method
to advance OCL conditions, and then Section 4 will look back again at these
examples to explain how our method solves the problems we have pointed out.

3 Translating OCL Post-conditions into Pre-conditions

This section describes how to advance constraints from the RHS of a rule into the
LHS. The input of the procedure is a GT rule and an OCL constraint restricting
the graph after applying the rule. This constraint can either be (1) an OCL
invariant or (2) an arbitrary OCL boolean expression with explicit references to
the objects of the RHS using their identifier. We will refer to this expression as
the post-condition, even though it may not attempt to describe the effects of rule
application (e.g. it could be an integrity constraint that should be preserved).
The output is an OCL boolean expression which constrains the graph before
applying the rule. We refer to this new expression as the pre-condition, and we
compute it performing several replacements on the OCL constraint being ad-
vanced, which depend on the actions performed by the rule. This computation
should ensure that in any match where the rule is applicable, the pre-condition
is satisfied before applying the rule iff the post-condition is satisfied after ap-
plying the rule. Formally, in any application G =, G’ of the rule r on a graph
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G producing a graph G’, Pre(G) <> Post(G") should hold. This is similar to
Dijkstra’s notion of weakest pre-condition|5].

3.1 Overview

The computation of the weakest pre-condition proceeds in three steps: (1) static
analysis of the rule, (2) preprocessing of the post-condition and (3) the final
computation of the weakest pre-condition.

Static analysis of the rule: First we examine the rule to identify the list of
atomic graph updates that occur when the rule is applied. This step is indepen-
dent on the OCL post-condition being advanced, as we only need to compare the
LHS and the RHS. Then, the following atomic graph operations can be identi-
fied: (1) deletion/creation of a link between two existing objects; (2) deletion of
an object (and all its adjacent links); (3) update of an attribute value; and (4)
creation of a new object (plus its adjacent links and attribute initialization).

As an example, the rule of Fig. 1 performs two atomic graph updates: deletion
of object r and its link col-r; and creation of object p and its link co2-p.

Preprocessing the OCL post-condition: This step simplifies the OCL post-
condition before converting it into a pre-condition. First, if the post-condition is
an OCL invariant defined in a context type 7', it is implicitly universally quanti-
fied over all objects of type T'. In order to advance this constraint, it is necessary
to make the quantification explicit by performing the following replacement:

context T inv: exp =  T:alllnstances()—>forAll(v | exp’)

where exp’ is computed by replacing all references to the keyword self in exp
with the variable v. After this expansion of invariants, we apply several trans-
formations that simplify the constraint. For example, if-then-else expressions
nested into other OCL constructs can be expanded as:

’ (if A then B else C endif) op D = if A then (B op D) else (C op D) endif‘

This latter step is also performed whenever a replacement takes place.

Computing the weakest pre-condition: Finally, we transform the post-
condition into a pre-condition, by applying a set of textual replacement patterns
on the OCL post-condition. We have defined a collection of replacement patterns
for each atomic graph update. These patterns capture the effect of an atomic
graph update and modify the constraint accordingly, synthesizing the equivalent
constraint before applying that update. Applying the replacement patterns for
all the graph updates the rule performs yields the corresponding pre-condition.
There are two necessary requirements for the replacement we have defined:

— The replacement patterns for each atomic graph update should capture all
OCL subexpressions which are relevant to that update. For example, if the
update is the deletion of a link, we should consider all OCL navigation
expressions that may potentially traverse this link.



— If an OCL constraint is well-formed before applying a replacement pattern,
then the result of applying the replacement pattern should also be well-
formed. By “well-formed”, we refer to syntactical and semantical correctness
according to the OCL specification, e.g. correct types for each subexpression.

3.2 Basic replacement patterns

In this section, we focus on the replacement patterns for all atomic graph updates
except the creation of new nodes (discussed in Subsection 3.3). The application of
these replacement patterns works on the abstract syntaz tree (AST) of the OCL
post-condition. The leaves of this tree are constants (e.g. 1, 2, “hello”), variable
names or type names. Each internal node is an operator (logic, arithmetic or
relational) or an OCL construct (quantifier, operation call, etc).

In order to transform the post-condition for a single atomic update, we per-
form a bottom-up traversal of the AST: starting from the leaves and looking for
matches of the replacement patterns defined for that update. Whenever a match
is located in the AST, it is replaced according to the pattern and the traversal
continues upwards, until the root of the AST is reached.

In order to identify the OCL subexpressions which are relevant to an atomic
graph update, two items are considered: (1) the operator involved in the OCL
expression and (2) the type of its operands. For example, updates dealing with
the assignment of a new value to an attribute will affect expressions where the
value of this attribute is being accessed. Regarding types, we will use the follow-
ing notation: T' = T" if type T is equal to 7', T = T’ if T is a subtype of T”,
and T C T" if T is a subtype or is equal to T".

Object deletion. Let us consider the deletion of an object = of type T'. In order
to advance the post-condition, the constraint should be modified to ensure that
its evaluation does not take z into account, i.e., it is as if z did not exist.

In OCL, an object & can only be accessed from a collection of objects of
its type T, its subtypes or supertypes. This access may use a quantifier (forAll,
exists, ...) or an operation on collections (first, size, ... ). This collection can be
computed either from a “Type::alllnstances()” expression or from a navigation
expression. Therefore, we simulate the deletion by appending “excluding(z)” to
any “alllnstances()” expression or navigation expression of an appropriate type.
Table 1 depicts the complete set of replacement patterns.

Notice that, due to how navigation expressions are being modified, these
replacement patterns are implicitly encoding the deletion of all edges where x
may participate. Therefore, replacement patterns for link deletion only need to
be applied if both objects are preserved in the RHS.

Ezample 1. In a rule deleting an object x of type T, the post-condition:
’ T::alllnstances() —>exists(t | t.isGreen) ‘

is advanced to a pre-condition demanding some object other than x to be green
thus ensuring that the rule is only applied when x is not the only green object:

’ T::alllnstances() —>excluding(x) —>exists(t | t.isGreen) ‘




:‘L'|_'I'S‘: Ref Pattern Conditions Replacement

i 21 | OD1 | A:allinstances() [ T C A or A C T | A:alllnstances() —>excluding(x)
HoxeT | “role” is an

S ; association end .

i RHS: | OD2 exp.role of type A, with exp.role—>excluding(x)

. TCAorACT

Table 1. Replacement patterns for object deletion.

Attribute updates. Let us consider the update of attribute attr of an object x
of type T, such that the new value is given by an OCL expression new_val_exp.
In OCL, the value of an attribute can only be accessed through an expression of
type AttributeCallExp, e.g. “object.attribute”. Intuitively, to advance any post-
condition, it is necessary that every time we refer to the attribute attr of an
object of type T', we use new_val_exp instead, but only if we are referring to x.
In Table 2, we present the replacement patterns that implement this concept.

[]
; if exp = x then new_val_exp
Attribute computation: | At2 | expattr | Type(exp) ET | exp.attr endif

x.attr’ = new_value_exp

Ref | Pattern Conditions Replacement
Atl x.attr None new_val_exp

Table 2. Replacement patterns for an update of an attribute.

Link deletion. Let us consider the deletion of a link of association As between
objects a (of type T4) and b (of type Ts). We only consider scenarios where
neither a nor b are deleted by this rule, because if any of them is deleted, the
situation is already captured by the replacement patterns for object deletion.
Hence, we only need to modify navigation expressions traversing association
As, so that they do not take the link a — b into account. This can be imple-
mented by appending “excluding(a)” to navigations going from T to T4 and
“excluding(b)” to navigations going from T4 to Tz, as described in Table 3.

FEzample 2. In a rule deleting a link a-b, the post-condition:

Ta::alllnstances() —>exists(x | x.rb—>notEmpty())

states that at least one Tp object is connected to a Tg object. Advancing the
invariant considers a a special case, as it may be connected to b in the LHS:

Ta::alllnstances() —>exists(x |
(if x = a then x.rb—>excluding(b) else x.rb endif)—>notEmpty())

Link creation. Finally, we consider the creation of a link of an association As
between objects a (of type T4) and b (of type T'5). We assume that both a and
b exist in the LHS, as the creation of objects is discussed in Section 3.3. We have
to simulate the existence of an edge a — b in navigation expressions that traverse
association As. This is done by appending “including(b)” to navigations going
from T4 to T, or “including(a)” to expressions going from T to T4.



Ref | Pat. Conditions Replacement
if exp = a then
LDla | exp.rb Type(exp) E Ta exp.rb—>excluding(b)

else exp.rb endif
Type(exp) = Set(T’) | (exp—>excluding(a).rb)—>
with T/ C Tp union(a.rb—>excluding(b))

LD2a | exp.rb

Table 3. Replacement patterns for link deletion, for navigations Ta — Tg (the sym-

metric patterns LD1b and LD2b for navigations Tg — Ta are omitted for brevity).

Ezxample 3. In a rule adding a link a-b, the following post-condition:
Ta::alllnstances() —>forAll(x | x.rb—>size() # 5)

states that no object of type Ta can be connected to exactly 5 T objects. It

would be advanced as follows, by treating object a in a distinct way:

Ta::alllnstances() —>forAll(x |
(if x = a then x.rb—>including(b) else x.rb endif)—>size() # 5)

Ref | Pattern Conditions Replacement
if exp = a then
LCla | exp.rb Type(exp) C Ta exp.rb—>including(b)

else exp.rb endif

if exp—>includes(a) then
exp.rb—>including(b)

else exp.rb endif

Type(exp) = Set(T’)

LC2a | exp.rb with T/ T Ta

Table 4. Replacement patterns for link creation, for navigations Ta — Tg (the sym-
metric patterns LC1b and LC2b for navigations Tg — Ta are omitted for brevity).

3.3 Replacement patterns for creating objects

New objects create a challenge, because there is no placeholder to designate
them in the LHS. For example, a constraint like the following:

Conveyor::alllnstances()—>forAll( x | x.capacity > 0 )

restricts all objects of type Conveyor. If a new Conveyor c is created by the rule,
it should also satisfy this constraint. However, as new objects do not exist in the
LHS, we cannot refer to them using an identifier. Thus, the expression:

’ Conveyor::alllnstances()—>including(c) —>forAll( x | x.capacity > 0 ) ‘

is an invalid pre-condition, as identifier ¢ is meaningless before rule application.
As a result, the transformation for advancing post-conditions becomes more
complex in rules that create objects. Hence, we have to split it in two steps:

”

— In the first step, described in Table 5, we modify “alllnstances()” and navi-
gation expressions to take into account the newly created object. This trans-
formation introduces references to the identifier of the new object that need
to be removed in the next step. These direct references (and also those ap-
pearing previously in the post-condition) may be located in two types of
expressions: collections including the new object and object expressions.



Ref Pattern Conditions Replacement
OC1 | T::alllnstances() TgC T T::alllnstances() —>including(b)

if exp = a then
0C2 exp.rb Type(exp) C Ta exp.rb —>including(b)

else exp.rb endif

Type(exp) = if exp—>includes( a ) then
0C3 exp.rb Set(T’), with exp.rb —>including(b)
T CTa else exp.rb endif

ocC4 b See Tables 6 and 7.

Table 5. Replacement patterns for object creation.

— The second step removes direct references to the new object by a set of re-
placements that either (i) move the reference upwards in the AST of the OCL
expression, (ii) particularize OCL quantifiers that affect the new object, or
(iii) rewrite the expression to avoid the reference. The iterative application of
those replacements yields an equivalent expression without direct references.

The remainder of this section focuses on the second step. Tables 6 and 7
describe the replacements for collection expressions and object expressions, re-
spectively. Due to space constraints, the collection of patterns is incomplete.

Collection expressions can be classified into three categories: simple queries
(C1-3), iterators (C4-10) and operations involving objects or other collections
(C11-19). For example, C2 indicates that the query “isEmpty()” can be replaced
by “false” when it is applied to a collection containing the new object.

The transformation of iterators combines the evaluation of the expression on
the new object and on the remaining elements of the collection. We denote by
Instlvar, exp] the replacement of all references to variable var with the identifier
of the new object in the RHS. Then, a pattern like C4 for the existential quantifier
establishes that either the old elements of the collection or the new object satisfy
the condition. Applying Inst introduces references to the new object, which are,
again, further simplified using the patterns from Tables 6 and 7.

Finally, collection expressions with subexpressions of type object or collection
are synchronisation points: the replacement to be applied depends on whether
the other subexpression also contains the new object. For example, if the object
b is created, an expression like “b = b” is replaced by “true”. However, we need
to process both branches of the equality before reaching this conclusion. Hence,
replacements should be applied bottom-up in the AST, stopping at synchroni-
sation points until all sibling subexpressions in the AST have been processed.

Object expressions, described in Table 7, are defined similarly. For example,
pattern O1 describes an attribute access, simply replaced by the attribute com-
putation expression in the RHS. Again, object expressions which operate with
other objects or collections are synchronisation points.

Ezxample 4. Continuing with the previous example, the expression with refer-
ences to “including(c)” can be transformed into the following (pattern C5, forAll):

Conveyor::alllnstances()—>forAll( x | x.capacity > 0 ) and (c.capacity > 0) ‘

This pattern has particularised the quantifier “forAll” for object c. Now pat-
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tern O1 replaces “c.capacity” by the value given to this attribute in the RHS,
removing the last reference to the object. For example, if the RHS includes an
attribute computation like: ¢.x’ = 10, the final pre-condition would be:

’ Conveyor::alllnstances() —>forAll( x | x.capacity > 0 ) and (10 > 0) ‘

| Ref [ Pattern [ Replacement
Cl | coLg—>size() col—>size() + 1
C2 | coLg—>isEmpty() false
C3 | coLg—>notEmpty() true
C4 | coLg—>exists(x | exp) col—>exists(x | exp) or Inst[z, exp]
C5 | coLg—>forAll(x | exp) col—>forAll(x | exp) and Inst(z, exp]
C6 | coLg—>collect(x | exp) col—>collect(x | exp)—>including( Inst|z, exp| )

(col—>one(x | exp) and not Inst[z,exp|) or
(not col—>exists(x | exp) and Inst{z, exp])
col—>isUnique(x | exp) and

col—>select(x | exp = Inst[z, exp])—>isEmpty()
if col—>exists(x | exp) then col—>any(x | exp)

C7 | coLg—>one(x | exp)

C8 | coLg—>isUnique(x | exp)

COLg—>any(x | exp)

C9 else b endif
if Instz, exp| then

C10 | coLg—>select(x | exp) col—>select(x | exp) —>including(b)
else col—>select(x | exp) endif
1 (if exp = b)

CIL | coLy—>count( exp ) col—>count( exp ) (otherwise)

true (if exp = b)

col —>includes( exp ) (otherwise)

false (if exp = b)

col—>excludes( exp ) (otherwise)

col —>including( b ) (if exp = b)
col—>including( exp )—>including(b) (otherwise)
col (if exp = b)

col—>excluding(exp) —>including(b) (otherwise)
col—>includesAll( col’ ) (if exp = col’—>including(b))
col—>includesAll( exp ) (otherwise)

false (if exp # col’—>including(b))
col’—>includesAll( col ) (otherwise)

C12 | coLg—>includes( exp )

C13 | coLgp—>excludes( exp )

C14 | coLg—>including( exp )

C15 | coLg—>excluding( exp )

C16 | coLp—>includesAll( exp )

C17 | exp—>includesAll( coLg)

COLp= exp or col = col’ (if exp = col’—>including(b))
C18 .

exp = COLp false (otherwise)

COLp# exp or col # col’(if exp = col’—>including(b))
C19 .

exp # COLp true (otherwise)

Table 6. Replacement patterns for collection expressions, where b is the identifier of
the new object, col and col’ are collection expressions, erp is an arbitrary expression,
and COL; is a shorthand for col—> including(b).

3.4 Putting everything together

Given a list of atomic graph updates corresponding to a rule, advancing a post-
condition consists on applying the replacement patterns for each update in se-
quence. The order of application of the replacements is irrelevant for two reasons.
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Ref | Pattern Replacement
O1 | b.attrib attribute_condition( attrib )
Set{ai,...an}, where a1, ...ay are the identifiers of

02 | brole the objects linked to x through “role” in the RHS
03 | b.ocllsTypeOf(A) true if T = A; false otherwise

04 | b.oclIsKindOf(A) true if T C A; false otherwise

O5 | b.alllnstances() T::alllnstances()—>including(b)

1 (if exp = col—>including(b))

0 (otherwise)

true (if exp = col—>including(b))
false (otherwise)

false (if exp = col—>including(b))
true (otherwise)

col (if exp = col—>including(b))
exp (otherwise)

06 | exp—>count( b))

O7 | exp—>includes( b )

08 | exp—>excludes( b))

09 | exp—>excluding( b )

O10 | b=exp or exp=D>b true if b = exp; false otherwise
Oll | b#exp or exp#b false if b = exp; true otherwise
012 | Set{ expl, ..., b, ..., exp2} | Set{ expl, ..., exp2}—>including(b)

Table 7. Replacement patterns for object expressions, where b is the identifier of the
new object and ezp, expl and exp2 are arbitrary expressions.

First, each intermediate replacement produces a valid OCL expression. Second
and most important, there is no overlap between updates: link creation/deletion
updates are applied only when no object is being created /deleted, otherwise we
use the object creation/deletion patterns.

Finally, we provide some remarks on the correctness and completeness of
the method. Our method ensures that the resulting expression is well-formed,
because each pattern ensures type consistency by replacing each matching ex-
pression with another one of a compatible type. Regarding the equivalence of
pre- and post-conditions, a complete proof is out of the scope of this paper.

The method supports most of the OCL but the following features from the
OCL 2.0 specification are unsupported:

— Calls to recursive query operations.

— OCL collections other than Set (i.e. Bag, Sequence, OrderedSet) and their
operations (i.e. first, last, append, prepend, insertAt, sortedBy, at, indexOf,
subSequence, subOrderedSet, asBag/Sequence/OrderedSet)

— The type Tuple and operations involving tuples, e.g. the cartesian product.

4 Back to the Examples

This section illustrates the transformation method using the examples we pre-
sented in Section 2. Firstly, we consider rule process in Fig. 1.

1. First we pre-process the OCL invariants, rewriting them to a global scope:
Conveyor::alllnstances() —>forAll(v | v.piece—>size() < v.capacity) and
Piece::alllnstances() —>forAll(z | z.conveyor—>size() = 1)

where the second clause, constraining pieces, is derived from the cardinality

constraints on the association between conveyors and pieces.
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Now we extract the atomic actions the rule performs. In our case, it deletes
object r (together with link col-r) and it creates object p (with link co2-p).
Next, we apply the replacement patterns. We start by the replacements due
to object deletion, which in addition incorporate the deletion of all adjacent
edges (hence deletion of both r and col-r). The resulting expression is:

Conveyor::alllnstances() —>forAll(v |
v.piece—>excluding(r)—>size() < v.capacity) and
Piece::alllnstances() —>excluding(r)—>forAll(z | z.conveyor—>size() = 1)

where we have applied patterns OD2 and OD1.

In order to apply the patterns for the creation of object p and its adjacent
link co2-p, we will consider both conditions in the conjunction separately.
In the first condition, the expression v.piece matches the pattern OC2:

Conveyor::alllnstances() —>forAll(v |
(if v.piece = co2 then v.piece —>including(p)
else v.piece endif)—>excluding(r)—>size() < v.capacity)

Before continuing, we can expand the conditional expression:

Conveyor::alllnstances() —>forAll(v |
if v = co2 then v.piece—>including(p)—>excluding(r)—>size() < v.capacity
else v.piece—>excluding(r)—>size() < v.capacity endif)

Now we can apply pattern C15 (excluding), and then pattern C1 (size):

Conveyor::alllnstances()—>forAll(v |
if v = co2 then v.piece—>excluding(r)—>size() + 1 < v.capacity
else v.piece—>excluding(r) —>size() < v.capacity endif)

Notice that this result is more complex than the condition stated in Fig. 1
(right), because it considers the possibility of a non-injective matching, i.e.
col = co2. In this case, there is no size problem as the rule creates and
deletes the piece on the same conveyor. This is achieved implicitly by the
conditional and the call to “excluding(r)”: if col = co2, then “v.piece” con-
tains piece r and it is removed by the call “excluding(r)”; otherwise, “v.piece”
remains unaltered. This case was not considered by the designer of the rule
in Fig. 1 as it is not obvious from the invariant and the LHS. As a result,
condition in Fig. 1 was too restrictive and forbade the execution of the rule
in a correct scenario. This example illustrates the benefits of automating the
approach.

Finally, we apply the replacements for the second part of the post-condition:

Piece::alllnstances() —>excluding(r) —>forAll(z | z.conveyor—>size() = 1) ‘

J Pattern OC1 (alllnstances)

Piece::alllnstances() —>including(p) —>excluding(r)
—>forAll(z | z.conveyor—>size() = 1)

1 Pattern C15 (excluding)

Piece::alllnstances() —>excluding(r) —>including(p)
—>forAll(z | z.conveyor—>size() = 1)

1 Pattern C5 (forAll)

Piece::alllnstances() —>excluding(r) —>forAll(z | z.conveyor—>size() =1)
and (p.conveyor—>size() = 1)
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1 Pattern O2 (navigation)

Piece::alllnstances() —>excluding(r) —>forAll(z | z.conveyor—>size() = 1)
and (Set{col}—>size() = 1)
1 Set{col}—>size() = 1 : the second condition in the and is true

’ Piece::alllnstances()—>excluding(r) —>forAll(z | z.conveyor—>size() = 1) ‘

The complete pre-condition generated from our post-condition is therefore:

Conveyor::alllnstances() —>forAll(v |
if v = co2 then v.piece —>excluding(r)—>size() + 1 < v.capacity
else v.piece —>excluding(r)—>size() < v.capacity endif) and
Piece::alllnstances() —>excluding(r) —>forAll(z | z.conveyor—>size() = 1)

5 Optimizations

When the post-condition Post being advanced is an integrity constraint, the
problem becomes different to that of computing the weakest pre-condition: as
Post is an invariant, it also holds before applying the rule. This can simplify the
pre-condition being advanced, as it only needs to check the property incremen-
tally, i.e. on the subgraph being modified by the rule. For instance, the conveyor
capacity constraint could be reduced to:

co2.piece—>excluding(r)—>size() +1 < co2.capacity ‘

since adding a piece to a conveyor (in this case co2) can only violate the
invariant on that conveyor. Therefore, it is useless to iterate through all existing
conveyors when checking rule applicability. As before, the excluding(r) operation
is added to handle the special case in which col and co2 are matched to the same
object in the host graph.

Extending our approach with the synthesis of incremental constraints would
follow the general algorithms for deriving incremental constraints for UML/OCL
models presented in [3], which we do not show for space constraints.

6 Related Work

There are previous works on moving constraints from the RHS to the LHS of GT
rules. The idea was first proposed in [12], where post-conditions for rules where
derived from global invariants of the form VP3Q, where P and @ are graphs. The
approach generated a set of post-conditions for each rule from such invariants,
and then applied the rule “backwards” to obtain the desired set of pre-conditions.
In [6] the approach was generalized to adhesive high-level replacement systems.
Again, constraints are graphical graph patterns which can be universally or
existentially quantified, or combined using boolean operators. These works were
extended in [10] to deal with nested conditions of arbitrary depth. This family
of conditions has the same expressive power as first-order graph formulas [11].
These approaches have two main limitations w.r.t. our new technique: (1)
lack of expressivity in the post-condition expressions (e.g. OCL expressions such
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as numerical constraints on attributes or cardinalities of collections are not sup-
ported) and (2) complexity of the advancement procedure (the procedure is
described by categorical operations and needs an additional method to simplify
redundant graph patterns as otherwise the graph constraints may become too
large) that makes difficult their application in practice. In contrast, our technique
is especially tailored to consider OCL expressions, and hence is very appropri-
ate for its use in meta-modelling environments. Furthermore, the use of OCL
allows the application of tools for the simulation, analysis and verification on
UML/OCL models [1,2,8,15]. Regarding the drawbacks of our proposal, it is
not complete (some OCL constraints have no translation for rules that create
objects) and we do not have a formal proof of its correctness yet.

The work of [16] translates a subset of OCL to graph constraints, which can
be used to synthesize local pre-conditions for rules. However, the covered OCL
subset is limited, and their techniques suffer the drawbacks of [6,11,12].

For transformations not defined as GT, the computation of the weakest pre-
condition has also been studied, e.g. to analyse the composition of refactorings
[13]. The notion of “backward descriptions” defined in [13] captures our replace-
ment patterns of OCL expressions.

Regarding information systems, in [4] the authors study the generation of
weakest pre-conditions for basic operations that perform a single change on the
system state, e.g. instance creation or attribute update. Rather than studying
the generation of weakest pre-conditions for arbitrary operations and constraints
(as it is done in this paper), a fixed catalog of typical integrity constraints as
well as patterns for determining the weakest pre-condition with respect to each
kind of basic operation are defined. The same problem, advancing integrity con-
straints as pre-conditions, is studied in [14] for set-based invariants described in
B. This family of constraints (constraints involving intersections, unions, differ-
ences and tests for membership) is a subset of those considered in this paper,
e.g. cardinalities of sets are not supported.

7 Conclusions and Future Work

We have presented a technique to automatically synthesize application con-
ditions for GT rules. Application conditions are derived from the rule post-
conditions such that host graphs satisfying the applicability conditions will surely
be consistent with all post-conditions at the end of any possible rule execution.
Rule post-conditions may come from the rule itself or, for instance, from the
well-formedness constraints defined in the meta-model. As a salient feature of
our approach, post-conditions may include arbitrary OCL expressions and hence
is a step towards the integration of GT and MDE.

As further work we would like to adapt this technique to other transforma-
tion languages (e.g. QVT and ATL), to combine it with techniques to advance
graphical post-conditions and to reuse it as part of more complex scenarios like
the automatic generation of concurrent rules. We also plan to study in more
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detail the possible optimizations commented above to simplify and improve the
efficiency of the generated conditions and to provide tool support.
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