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Abstract. Several styles of model transformations are well-known and
widely used, such as batch, live, incremental and lazy transformations.
While they permit tackling advanced scenarios, some applications deal
with models that are only available as a possibly infinite stream of ele-
ments. Hence, in streaming transformations, source model elements are
continuously produced by some process, or very large models are frag-
mented and fed into the transformation engine. This poses a series of
issues that cannot be tackled using current transformation engines. In
this paper we motivate the applicability of this kind of transformations,
explore the elements involved, and review several strategies to deal with
them. We also propose a concrete approach, built on top of the Eclectic
transformation tool.
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1 Introduction

Model-Driven Engineering (MDE) is increasingly being used to tackle problems
of raising complexity, in scenarios for which current model transformation tech-
nology was not originally conceived [6, 27]. One such scenario is transforming
models that are only available as a stream of model elements. While data stream
processing has been investigated in the databases [1, 20] and XML [15] technical
spaces, its application to MDE has been little investigated so far [10].

A streaming model transformation is special kind of transformation in which
the whole input model is not completely available at the beginning of the trans-
formation, but it is continously generated. Hence, it must be processed incremen-
tally, as elements arrive to the transformation process. For instance, if we aim at
processing tweets from Twitter, we can see tweets, users, hashtags, etc, as model
elements that are processed as they are generated by the Twitter users. This
model is indeed potentially infinite, and cannot be queried, matched or trans-
formed at once. Nevertheless, a streaming transformation is not only useful for
those cases in which the input model is inherently streamed and infinite, but it is
also a way to deal with large models by feeding a transformation process incre-
mentally, for instance to distribute a transformation, pipeline a transformation
chain, or to avoid overflowing the memory of a machine.
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In this paper we report our findings on the elements and challenges involved
in streaming model transformations. We have looked into which features make
streaming transformations different from other types of transformations, and we
have identifed several challenges that must be tackled. Then we have explored
several strategies that can be used to deal with such challenges, and we have
implemented a concrete proposal into the Eclectic transformation tool [12]. The
paper is motivated and illustrated by means of a selected example that showcases
most of the elements of streaming transformations.

Organization. In Section 2, we analyse applicability scenarios for streaming
transformations. Section 3 introduces a running example, identifying challenges
to be tackled by streaming transformation engines. Section 4 deals with model
element streams, Section 5 with transformation scheduling, and Section 6 with
arbitrarily large models and collections. Section 7 evaluates the proposal. Sec-
tion 8 reviews related research and Section 9 concludes.

2 Motivating scenarios

The problems involved in data stream processing have been investigated in the
context of databases [1, 20], XML [15] and the semantic web [2, 24], where the
main applications are directed to querying, filtering and aggregating streamed
(sometimes unstructured) data. In contrast, model transformation techniques
unfold their potential when applied to scenarios in which there is a transfor-
mation problem involved, either to convert already structured data or to give a
model structure to unstructured data.

This difference in the applicability field implies that there is currently a lack
of concrete examples and usage scenarios for streaming model transformation,
which are needed to assess the potential of this new technique. For this reason
we begin by introducing some possible scenarios and concrete examples.

Processing natural streams. Some systems naturally generate data continously,
which might need to be transformed, e.g., for analysis or visualization. We dis-
tinguish two kinds of systems: (1) those which natively generate stream models
(data conforming to a meta-model) and (2) when the data does not conform to
a meta-model, but must be first converted to a model-based representation.

An example of (1) is the monitoring of a running system by generating model-
based traces of its execution. This will be used as our running example.

An example of (2) is applying streaming transformations to semantic sensor
web technologies [26]. This may include transforming native sensor data (e.g.,
temperature, precipitation) to the RDF format relating elements by Linked Data
URIs, then further manipulating it, for instance to add information coming from
other sources (e.g., amount of cars in a road segment) and to transform it to
some other formalism to perform predictions (e.g., traffic jams depending on the
weather conditions for certain road segments). As suggested in [25], data from
physical sensors can be enriched with data from social sensors, like tweets, taking
advantage of their attached spatial and temporal information and some defined
microsyntax (like #hashtags, @usernames, subtags, or relations from predefined
vocabularies, like e.g., for weather or emergency conditions).
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The usefulness of model transformations in this scenario is to facilitate the
implementation of stream-based applications in which there are an explicit or
implicit transformation task involved. The next scenarios apply the notion of
streaming data to solve problems in the model transformation domain.

Dealing with large models. An scalable solution to transform large models, is
to incrementally feed the transformation process with model fragments. As sug-
gested by [19], instead of loading a large model in memory and then transform
it all at once, the model is first split into meaningful parts, which are sent to
a stream. The transformation process deals with the elements of the stream in-
crementally, releasing resources as parts of the source model are transformed. In
some way, this imitates lazy transformations [27], but using a push approach.

As a concrete example, let us assume we are reverse engineering a Java model
into a KDM model [22]. The Java model would be available in some model
repository, and the abstract syntax model of each Java class could be streamed
separately (using lazy loading techniques [14]) to the transformation engine. The
engine would transform each class individually, discarding all source elements
and trace links no longer needed for transforming other classes (e.g., once a Java
expression has been transformed to KDM it can be discarded).

Distributed transformations. The idea of streaming transformation can be used
as a foundation to build distributed transformations. This is especially important
to integrate MDE services in the Cloud [6, 7] since a large transformation could
use different physical resources depending on their availability. The underlying
idea is to replicate the same transformation in several execution nodes. Load
balancing techniques would then be used to stream disjoint parts of the input
model to such nodes. A shared repository could be used to store trace links and
the output models, although other advanced techniques of distributed systems
needs to be studied to improve scalability. Although this scenario is not addressed
in this paper, we believe that the techniques explained here are complementary
for developing distributed model transformations in practice.

Pipelining transformations. This scenario exploits the possibility of starting a
transformation (within a transformation chain) as soon as target elements are
generated by the previous transformation, in a similar way as Unix pipes. This
permits taking advantage of multi-core architectures, by scheduling the first
transformation in one core, and the subsequent transformations in different cores.

As an example, consider a parser that generates a concrete syntax model of
a Java system (i.e., a low-level Java model), which is then transformed into an
abstract syntax model (e.g., references between type definitions and type uses
are resolved), and then into KDM. Using streams, each transformation can begin
as soon as the previous one has finished processing a single Java class.

3 Running example and challenges

Assume we are interested in the reverse engineering of sequence diagrams from
the execution traces of a running object-oriented program. The example is an
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adaptation of the one in [5], in which the actual transformation used to process
the execution traces and create the sequence diagrams is done off-line, after
having generated all the traces in a text file. In our case, the transformation
is on-line, that is, the sequence diagram is built as the execution traces are
generated, by means of a streaming transformation. This enables the run-time
monitoring of the system, and dealing with non-terminating systems.

MethodExecution
name : String
nodeId : Int
t imestamp : Int Instance

objectId : Integer
nodeId : Integer

receptor 1

Message

Instance

    1     1

   *  

Operation
name : String

(b)(a)

caller 0..1

callee *        

Local
Execution

Class
name : String
             class

Remote
Call

RemoteMethod
Execution

clientNodeId : Int
clientTimestamp : Int

Class
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1

followingMessages
             {ordered}
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target

1
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Fig. 1. (a) Trace meta-model (b) Sequence diagram meta-model (simplified)

The meta-models involved in the example are shown in Fig. 1. The trace
meta-model represents the execution of methods (MethodExecution), including
the information of which method performed the invocation, and the sequence of
future method executions performed by itself (caller and callee references). Also,
a method execution has a reference to the receptor instance. The meta-model is
directed to distributed applications (e.g., Java RMI applications), hence there
are three kinds of method executions: LocalExecution, normal method executions;
RemoteCall, for invocations in the client side (e.g., over a proxy obtained using
RMI); and RemoteExecution for the remote executions. Executions are identifed by
the nodeId and timestamp attributes. A remote execution records the clientNodeId

and clientTimestamp in order to identify the caller.
The sequence diagram meta-model represents messages from a source instance

to a target instance (note that the source and target are explicitly represented by
references, instead of by ids), and the sequence of messages that follows each
Message (reference followingMsgs).

Our aim is to specify streaming transformations using regular constructs of
rule-based model transformation languages. To illustrate the paper we have used
the Eclectic transformation tool [12]. In particular, we use the mapping language
which also allows attaching methods to metaclasses (helpers). The language can
be seen as a simplified version of ATL [17]. Fig. 2 shows the corresponding
transformation. Each LocalExecution is mapped to an Operation (lines 4-10). The
source and target instances of the message are obtained from the local context of
the call (i.e., the object in which the call is performed, a helper in lines 29–31)
and the receptor object. These bindings require rules that resolve the source in-
stance to target instances, which is done in lines 20-22. Classes are also mapped
(lines 24-26). Finally, the followingMsgs reference is filled by resolving those mes-
sages that correspond to the method executions calculated by the next executions

helper (lines 39–44), which basically retrieves all executions performed as part
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1 mapping trace2seqdiagram(trc) −> (seq)
2 trc : ’platform:/resource/example/trc.stream’
3

4 from exec : trc!LocalExecution
5 to msg : seq!Operation
6

7 msg.source <− exec.local context
8 msg.target <− exec.receptor
9 msg.followingMsgs <− exec.next executions

10 end
11

12 from exec : trc!RemoteMethodExecution
13 to msg : seq!Operation
14

15 msg.source <− exec.remote context
16 msg.target <− exec.receptor
17 msg.followingMsgs <− exec.next executions
18 end
19

20 from src : trc!Instance to tgt : seq!Instance
21 tgt.class <− src.class
22 end

23

24 from src : trc!Class to seq!Class
25 tgt.class <− src.class
26 end
27

28 // Start of helper methods
29 def trc!MethodExecution.local context
30 self.caller.receptor
31 end
32

33 def trc!MethodExecution.remote context
34 self.caller.caller.receptor
35 end
36

37 // Find those executions that happen in the context
38 // of the current execution, but not before (excerpt)
39 def trc!MethodExecution.next executions
40 trc!LocalExecution.allInstances.select { |me|
41 me.caller == self &&
42 me.timestamp > self.timestamp
43 }.union(...)
44 end

Fig. 2. Transforming traces to simplified sequence diagrams

of the execution of the current method (for simplicity only local executions are
considered here). A RemoteMethodExecution is mapped similarly (lines 12–18),
except that the source is obtained from remote context which access the actual
receptor object in the server side, and thus the client stub, which corresponds
to the first caller, must be skipped.

3.1 Challenges

From the transformation engine point of view, this is a simple transformation,
when applied in batch mode. However, it poses several challenges when the
source model is processed in streaming. We next review these challenges, using
the execution example shown in Fig. 3. The events are numbered in the order in
which they are received by the streaming transformation.

class Company {
  @Remote
  PersistenceCtx ctx;
 
  void hire(Employee e) {
    e.setSalary(1000);    
    ctx.save(e);
  }
}
 
class Employee {
  void setSalary(double i);
  void setCompany(Company c);
}

event  #1 :MethodExec
name="hi re"

:Instance
objectId=1receptor

caller
:MethodExec

name="setSalary"
:Instance

objectId=2receptor

:RemoteCall
name="save"
nodeId=1
t imestamp=3

:Instance
objectId=1

                 caller

event  #4

:Class
name="Company"class

class
:Class

name="Employee"

class
:Class

name="Persist..."

:RemoteMethodExec
name="save
nodeId=2
clientNodeId=1
clientTimestamp=3

receptor

event  #3

event  #2

caller

Fig. 3. Execution example.
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– Infinite model. The input model is potentially infinite, as a program may
be in execution indefinitely. The notion of infinite model has been studied
in [10]. Similarly, the trace model that keeps the correspondences between
source and target elements could also be infinite.
In the example, each time a method is invoked over a local instance, Meth-

odExecution, Instance and Class elements are created. They need to be trans-
formed as they arrive from the stream, generating the corresponding trace
links to allow bindings to be resolved (e.g., msg.target ← exec.receptor). As
the program generating the execution traces may be in execution for a long
time, strategies to reduce the amount of model elements and trace links kept
are needed to avoid overflowing the memory of the machine.

– Model element identity. Transformation engines rely on the object iden-
tities, e.g. to compare two objects for equality. In our case, fragments of
models can be streamed, and two or more fragments may contain the same
element, but with different in-memory object identity.
In the example, the processes generating the stream may create different Class
elements to represent the same class in the program being analysed (i.e., in
a distributed enviroment the same code is running in different machines).
This implies that object identity may be lost. Additionally, in a distributed
setting, a mechanism to serialize and deserialize fragments is needed.

– Dealing with references. A model fragment that is streamed may refer to
other fragments that have already been streamed or that may be streamed in
the future. Both cases are shown in the figure by the dashed arrows. Fragment
event #2 refers to fragment event #1 through the caller reference (same for
events #3 and #4). However, we do not want to emit all the elements of the
referenced fragment again, but just to refer to a particular element. Hence,
a mechanism to refer to elements in other fragments is needed.

– Transformation scheduling. In the example, obtaining the remote con-
text (through expression self.caller.caller.receptor, line 34), may be a blocking
operation since the caller may not be available when the rule is being pro-
cessed (see reference from event #3 to #4). Some mechanism is needed to
avoid stopping the execution of the whole transformation, and to resume the
rule execution when the expected element arrives.
In addition, rules must be executed as elements arrive, but the order is
unknown. Thus, a flexible rule scheduling mechanism is needed.

– Features with different semantics. Some features normally available in
model transformation languages are no longer adequate or their semantics
has to be changed. An example is “all instances of”, whose usual semantics
is not valid in this context. This is so as all objects of a certain class cannot
be generally available at a certain moment, either because they still need to
arrive, or perhaps they have been discarded. Other features such as iterators
on collections like select also need to be adapted, as proposed in [10].
In the example, to obtain the executions that follows the current one (lines
40–43), the allInstances construct must be used. In both cases, a mechanism to
process the elements as they appear are needed. In the case of allInstances an
strategy to avoid dealing with a possibly infinite collection is also necessary.
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As can be observed, streaming model transformations are an essentially dif-
ferent problem from other scenarios, such as live/change-driven [4] and incre-
mental transformations [18, 16], in which the aim is to change the model (source
model for in-place transformations, or target model for model-to-model trans-
formations) as a response to changes in the source model. In our case the only
change is the generation of new elements, but the source model can be infinite.

4 Specifiying model streams

A streaming transformation deals with model fragments that are continously
made available. Hence, it is necessary to describe their characteristics so that
the transformation engine can deal with them transparently.

In our approach, the streaming unit is the model fragment, made of one or
more model elements which may have intra-fragment references (both contain-
ment and non-containment) and inter-fragment references (only non-containment,
because the ultimate goal of them is to refer to an element not defined in this
fragment).

Model fragments may need to be serialized if they are to be sent to the
machine where the transformation is being executed. Thus, when creating and
receiving a fragment, there are two main elements to take into account: model
element identity and references. We have defined a small DSL to specify these
features, among others. The stream description for the running example is shown
in the following listing.

1 stream ”dynamic trace.ecore”
2 // Defining keys: simple, multiple, custom
3 key(Class) = name
4 key(Instance) = objectId, nodeId
5 key(MethodExecution) = { self.name + ” ” +
6 self.nodeId + ” ” + self.timestamp }

7 // inter−references
8 ref(MethodExecution.caller)
9 // Sliding windows

10 sliding for MethodExecution = 200 secs
11 sliding for Instance = 1000 elements

Model element identity. In the general case we cannot rely on plain object iden-
tity to compare model elements, as the elements of the stream may have been
generated by a machine different from where the transformation is executed, as
it is the case of the running example. This requires using the properties of the
model elements to identify the objects (i.e., rely on value identity), similar to
keys in the case of QVT-Relations [23]

Hence, we allow the key of an element to be specified in the stream descrip-
tion. Keys can be either simple, or composed of several attributes, or generated
by an expression (lines 4, 5 and 6-7 respectively). Each time two elements of the
same type are compared, the key value is used if a key has been specified. If
the whole stream is generated in a single machine, the object identifier in this
machine can be attached to each object prior to serialization.

Inter-fragment references. Our approach for inter-fragment references is based
on creating a proxy per each referenced element. We do not rely on any particular
technology, but we just create a new element (the proxy), of the same type as
the referenced element, setting its key attributes (or attaching a “MemoryId”
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annotation). The advantage is that, from the serialization point of view, inter-
fragment references are not cross-references but just an annotation indicating
that an element is a proxy, making it straightforward to implement and meta-
modeling framework agnostic.

Upon arrival, our transformation engine replaces the proxy with the actual
element if it was streamed before. To this end, the engine internally uses an
associative table to keep the relationship between keys and actual elements. The
case in which the actual element arrives after a proxy needs a special treatment,
as discussed in Section 5.3.

In the DSL we allow specifying which references may hold a proxy (line 8).
While this is not compulsory, we use this information to optimize the lookup
and the replacement of proxies for the actual elements.

5 Transformation scheduling

Our approach to schedule streaming transformations builds on our previous work
using continuations to schedule batch model transformations [11, 12], extended to
consider the streaming setting, that is, rules fed incrementally by stream events
and partial execution of navigation expressions. Our Eclectic transformation tool
relies on an intermediate language, called IDC (Intermediate Dependency Code),
to which high-level languages are compiled to.

IDC is a simple, low-level language composed of a few instructions, some of
them specialized for model manipulation and transformation scheduling. IDC is
compiled to the Java Virtual Machine (JVM). Fig. 4(a) shows an excerpt of its
meta-model. Every instruction inherits from the Instruction abstract metaclass.
Since most instructions produce a result, they also inherit from Variable (via
InstructionWithResult) so that the produced result can be referenced as a variable.

The IDC language provides instructions to create closures, invoke methods,
create model elements and set and get properties (Set and Get in Figure 4),
among others. In IDC, there is no notion of rule, but the language provides a
more general mechanism based on queues. Compilers for high-level languages
are in charge of mapping actual rules to queues. A Queue holds objects of some
type, typically source model elements and trace links. The ForAllIterator receives
notifications of new elements in a queue, and executes the corresponding instruc-
tions. There are two special instructions to deal with queues: Emit puts a new
object into a queue, while Match retrieves an element of a queue that satisfies
a given predicate. If such an element is not readily available, the execution of
this piece of code is suspended into a continuation [9] until another part of the
transformation provides the required value via an Emit.

In the following we discuss, in the context of IDC, the elements involved to
schedule a streaming model transformation.

5.1 Feeding transformation rules

Each time a new model fragment arrives, the source pattern of the transforma-
tion rules must be evaluated to trigger a rule if there is a match. Figure 4(b.1)
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Set
property : String
receptor: Variable
value : Variable

Instruction
Variable

name : String

Get
property : String
receptor: Variable

TypeQueue

   1

Instruction
WithResultEmit

value : Variable

ForAll
Iterator *

Match
pred : Predicate

0..1 type

1    1    

1. Queue q1 : trc!RemoteMethodExec 
2. ForAll exec in q1
    2.1 create msg : seq!Message
    2.2 create lnk : Link(src=exec, tgt=msg)
    2.3 emit lnk to TraceQueue

from trc!RemoteMethodExecution
    to seq!Message

1
type

b) Compilation examplea) IDC meta-model

ModelQueue Suspended
proxies

1. o = get exec, "receptor"
2. match TraceQueue  
    exists lnk / lnk.src = o
3. set tgt, "class", lnk.tgt

self.caller.caller.receptor

1. tmp1 = get self, "caller"
2. tmp2 = get tmp1, "caller"
3. get tmp2, "receptor"

1 )

2 )

3 )

msg.target <-exec.receptor

Fig. 4. (a) Excerpt of the IDC meta-model, (b) Compilation example between the
Eclectic mapping language and IDC

shows how the rule to transform RemoteMethodExecutions is compiled to IDC.
We create one queue per each type in the source pattern, and a ForAllIterator

instruction which acts as a closure that is invoked each time a new element in
the queue appears. In the example, a new Message element is created, as well as
the corresponding trace link which is sent (via the emit instruction) to a default
queue which is in charge of processing trace links (TraceQueue).

This mechanism permits the execution of rules on demand, as queues are
filled. ForAllIterator instructions can be nested allowing complex patterns to be
detected, and, as we will see in Section 6.1, our queues have “memory” (they
have a sliding window), which is needed to allow the nesting of iterators.

In contrast to batch transformations, we needed to check that the rule has not
been applied before for the current element, since an element with the same key
may have arrived before. To this end we have an index with the received model
elements, which is checked before feeding a queue. As explained in Section 3.1
this is the case with Class elements.

5.2 Resolving source-target relationships

A common operation in model-to-model transformations is to retrieve a target
element from a source one already transformed by some rule. In the example
this is achieved using a binding construct, such as msg.target ← exec.receptor.

We compile a binding as shown in Figure 4(b.2). (1) The expression to the
right is compiled using regular model manipulation instructions, a Get in this
case. Then, (2) the source element resulting from evaluating the expression, o,
is used to match a trace link in the TraceQueue whose source is precisely o. If
such trace already exists (i.e., it has been previously added with an Emit, as in
Figure 4(b.1)), it is immediately retrieved. If not, the execution of the rule is
stopped, and a request is placed in the queue so that the rule is resumed when
some Emit instruction generates the trace link satisfying the request.

This approach has the advantage of its flexibility, since rules can be matched
and applied in any order. In a streaming setting, rules can be matched and
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executed as elements arrive: if a binding needs a source element that has not
been processed yet, the rule will wait, letting other rules start their execution.

5.3 Evaluating expressions

When evaluating a navigation expression over a streamed model it may happen
that part of the navigation path is not available yet. In our approach this can
be detected because the result of getting a property is a proxy object. Thus, the
evaluation of the expression must be suspended until the real object arrives. This
may in turn suspend the rule that depends on the evaluation of the expression.

We use a similar approach as for resolving trace links, applied to change the
semantics of the Get instruction to deal with incomplete models. It is worth not-
ing that this design is transparent to the high-level language, which see property
access as a regular Get, as illustrated in the compilation example of Figure 4(b.3).

The process is as follows. Given an instruction such as get self, “caller” we
check whether the receptor object or the result of the instruction is a proxy, and
we try to resolve the proxy with one of the already streamed elements. If not, the
evaluation of the expression is suspended into a continuation, placing a request
in a queue (Suspended proxies). Later, as new objects arrive they are passed
to this queue, to check if some of them satisfies one or more of the enqueued
requests, in order to resume the suspended Get instruction.

6 Infinite models

Streaming model transformations deal with possibly very large models, whose
size is unknown. This requires strategies to reduce the memory footprint of the
transformation process. Besides, the fact that the whole model is unknown from
the beginning implies that some collection operations must be adapted to the
new setting. In this section we present our approach to both issues.

6.1 Reducing memory footprint

Model transformation engines typically keep the source model, the target model
and the traceability links in main memory. In many practical scenarios this is
the best alternative, but when the source model is expected to be very large,
alternative strategies to reduce the memory footprint are needed. So far, we have
considered two approaches: sliding windows and using secondary storage.

Sliding windows. A direct mechanism to deal with an infinite data stream is
to use a sliding window. In our setting, both source elements and trace links
outside the window will be discarded. As noted in [1], this is an approximation
mechanism that may produce an incomplete target model, although in some
scenarios it is acceptable to assume this limitation.

In our approach sliding windows are specified with the DSL (see lines 10–11
in the example). There are two types: windows based on time (e.g., 200 seconds)
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and on a number of elements of a given type (e.g., 1000 elements). A sliding
window works in a “first-in, first-out fashion”, so that the first element that
arrived is the first element to be discarded when the window must be “moved”.
When a source element is discarded, any other data structure that refers to it
must be discarded as well. In our case, they are the trace links, the continuations
created with a Match that expects a trace link with such source element, and the
index keeping the already streamed objects by key.

Please note that, when defining the windows, it is important to consider the
expected amount of data for each type. In the example we decided never discard
Class objects, as the number of classes in a system is limited.

Using secondary storage. If we want to guarantee that all bindings and proxies
are resolved (provided the corresponding elements are eventually streamed), a
solution would be to resort on a model repository, such as Morsa [14], to store all
or part of them. The main problem is that accessing the repository may slowdown
the transformation execution. Hence, this strategy may be practical depending
on the pace of stream, and therefore it will be best suited for a distributed
scenario in which load balancing is possible (see Section 2).

As an optimization we would like to use asynchronous I/O for accessing sec-
ondary storage. This approach fits naturally in our continuation-based schedul-
ing algorithm, since the access to the repository can be scheduled in a different
thread, storing the rule execution into a continuation, and so other elements in
the stream can be processed. When the repository provides the result, the rule
is seamlessly resumed.

6.2 Collection operations

The implementation of collection operations such as select, collect, or allInstances

need to be adapted to take into account that the source model is not completely
available from the beginning. In our setting, this problem can be seen as a
simplification of the incremental evaluation of OCL expressions, in which there
are only addition events (elements are not deleted).

There are several approaches proposed in the literature [18, 16, 4], but we
have adapted and implemented the active collection operations proposed in [3]
into our transformation engine. For space reasons we just outline some of its
elements. Fig. 5 shows the API of our implementation.

We have added two extensions to the original ImmutableList type of IDC:
ActiveGenerator and ActiveOperation. The former is a collection in which elements
are initially injected from the stream. The ActiveAllInstances is connected to a
model queue that provides elements of the corresponding types as they arrive
(e.g., MethodExecution.allInstances), whereas ActiveGet is used to retrieve elements
from a multiple-valued feature (e.g., self.callee).

The second extension reifies collection operations as classes (ActiveOperation

and operation subclasses such as ActiveSelect and ActiveCollect), so that an oper-
ation is kept active as an object that receives events through a source. A source
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ActiveOperation
next(Object o)

Active
AllInstances

ModelQueue

Active
Select

ImmutableList
add(Object o) : ImmutableList
select(Closure cond) : ImmutableList
union(ImmutableList) : ImmutableList

ActiveGet
receptor : Object
feature : String

ActiveGenerator

ActiveSource

register(ActiveOperation op)
unregister(ActiveOperation op)

Active
Union

ActiveSet
receptor : Object
feature : String

src 1    

        1  queue

Fig. 5. Excerpt of the API of our active collection operations implementation.

is represented by the ActiveSource interface, which permits registering and dereg-
istering an ActiveOperation. Given an expression such as the one in lines 39–44 in
Fig. 2, a tree of active operations is constructed. When an element arrives, it is
propagated from an active generator to the root.

Currently, we do not permit operations such as size or indexOf, as their seman-
tics cannot be naturally aligned to a streaming setting. Finding out an aprop-
priate semantics for these operations is left for future work.

7 First results and evaluation

We have implemented a proof of concept streaming model transformation engine
on top of the Eclectic transformation tool1 [12], using the techniques presented
in the previous sections. To evaluate our approach we carried out three initial
experiments 2, which stress different elements of our approach (corresponding to
three scenarios explained in Section 2).

Natural streaming. We used the running example to test the first versions of
our implementation. Then, we built a simulator to generate execution traces
indefinitely, to feed the transformation. The mechanisms proposed in the paper
allowed us to keep the simulator running for some time, using different sizes
of sliding windows and available memory (from 24 MB to 256 GB, generating
between 10.000 and 100.000 execution traces).

Dealing with large models. We injected into the Morsa repository [14] the models
provided in the Grabats 2009 contest 3. They represent Java projects (conforming
to the Eclipse JDT meta-model) ranging from 70,000 to 500,000 elements (only
injecting the largest model requires a setting with 3 GB RAM). To test the
possibility of dealing with such large models, we implemented a transformation
from JDT models to KDM. It transforms classes, methods, fields and resolve
types, and therefore only parts of the source model needs to be in memory at

1 Source code and examples are at http://sanchezcuadrado.es/projects/eclectic
2 We have run the tests in an Intel i7 Quad Core, with 8 GB RAM, configuring the

JVM with different heap sizes (up to 2GB).
3 http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs\_2009\_Case\_Study
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a given time. We used the load-on-demand facility of Morsa to incrementally
feed the transformation, which allowed us to transform even the largest model
(requiring 2 GB RAM, taking 16 minutes).

Pipelining transformations. We implemented a simple pipeline with two pro-
cesses. The first process was in charge of parsing individual Java files into an
AST (using the JDK’s parser). The AST representing each class was then trans-
formed into the MoDisco Java meta-model. In this case we have considered
compilation units, classes and methods, and the inheritance reference between
classes. We compared the execution time of performing the transformation in
batch mode (parsing all models at once and then transforming) against schedul-
ing the transformation two threads: parsing and transforming. Our streaming
approach premits that, as soon as the parsing thread generates the AST of a
file, it is passed to the transformation thread. We have tested with projects be-
tween 2,000 and 15,000 Java files (roughly 30,000 and 300,000 objects), and our
results showed an speedup between 10% and 15% for the threaded approach.
Even more, if we manually release resources not needed for subsequent execu-
tions (compilation units and method declarations in this case), speedup increases
upto 10%, and memory footprint decreases 25%. As future work we aim at au-
tomatically identifying in which case resources can be safely released.

All in all, this initial evaluation shows the feasability of the approach, but
more work is still required. For instance, this experience taught us that we had
a few memory leaks which become very relevant in this setting, and that a
mechanism to discard parts of the target model or to incrementally store it in a
model repository is needed if the target model grows too large. Another future
line of work is to evaluate how Event Stream Processing engines, such as Esper4,
could be used as a backend for the transformation engine.

8 Related work

Data stream processing has been investigated in the database community, propos-
ing extensions for SQL and mechanisms for sliding windows, sampling and sum-
marization [1]. Adapting query language designs and sliding windows implemen-
tation techniques is particularly interesting for our case [20, 21].

Works dealing with the processing of XML are also focussed on providing
query facilities [15] or in the case of XLST, simple transformations (in-place
substitution). Notably, STX is a variant of XSLT intended for streaming trans-
formations of XML documents, based on SAX events instead of DOM [8]. These
approaches could be used to complement our work, in the pattern matching
phase, which we have currently implemented just by nesting forall iterators.

Proposals such as the semantic sensor web technologies [26] requires process-
ing streamed semantic data, typically in the form of RDF triples, which can be
queried with SPARQL extensions [13]. As noted in Section 2 our approach could
be applicable to this context to data format transformations and to integrate
data from heterogenous sources.

4 http://esper.codehaus.org/
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In [10] the authors provide a formal foundation for infinite models, as well as a
redefinition of some OCL operators to tackle infinite collections using coalgebra.
They identify transformations of such infinite models as a challenge. Lazy model
transformations [27] somehow deal with the converse scenario we tackle here:
on-demand generation of the target model. This scenario is useful if only some
part of the generated model is needed, which is produced on-demand. That
is, target elements are only produced when they are accessed. Change-driven
transformations [4], incorporate the notion of change (in the source model) as
a first-class concept in transformation languages. While this approach can be
used to implement, e.g., incremental transformations, our approach enables the
uniform specification of transformations, as if they were designed for a batch
scenario, but are applicable for streaming data.

Techniques for incremental transformations are closely related [16, 18], but
taking into account that in our case just additions need to be considered. Thus,
we have used continuations to schedule the transformation execution [11, 12] and
active collection operations [3] to implement infinite collections.

9 Conclusions and future work

In this paper we have presented our approach to streaming model transforma-
tions. We have motivated the problem by presenting four applicability scenarios,
and providing a complete example. From the example we have derived the set of
challenges that has driven our proposal, which includes mechanisms for specify-
ing model fragments, transformation scheduling and dealing with infinite mod-
els. Our first experiments show promising results, not only to deal with natural
streams, but also to deal with large models and to take advantage of multi-
core architectures. Additionally, we contribute a prototype implementation for
the Eclectic transformation tool. To the best of our knowledge, this is the first
model transformation engine with this capability.

As future work, we plan to perform further experiments, and to improve our
implementation, for instance to allow the incremental store of the target model in
a model repository and to take advantage of asynchronous I/O. Finally, we aim
at using streaming transformations to implement distributed transformations.
Acknowledgements. This work was funded by the Spanish Ministry of Econ-
omy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D pro-
gramme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).
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