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ABSTRACT

Chatbots have become a popular way to access all sorts of services
via natural language. Many platforms and tools have been proposed
for their construction, like Google’s Dialogflow, Amazon’s Lex or
Rasa. However, most of them still miss integrated quality assurance
methods like metrics. Moreover, there is currently a lack of mech-
anisms to compare and classify chatbots possibly developed with
heterogeneous technologies.

To tackle these issues, we present Asymob, a web platform that
enables the measurement of chatbots using a suite of 20 metrics.
The tool features a repository supporting chatbots built with differ-
ent technologies, like Dialogflow and Rasa. Asymob’s metrics help
in detecting quality issues and serve to compare chatbots across
and within technologies. The tool also helps in classifying chat-
bots along conversation topics or design features by means of two
clustering methods: based on the chatbot metrics or on the phrases
expected and produced by the chatbot. A video showcasing the tool
is available at https://www.youtube.com/watch?v=8lpETkILpv8.

CCS CONCEPTS

• Human-centered computing → Natural language inter-

faces; • General and reference → Metrics; • Social and pro-

fessional topics→ Quality assurance;
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1 INTRODUCTION

Chatbots are increasingly used to access all sorts of services, includ-
ing leisure (e.g., shopping, booking flights or hotels), customer ser-
vices, professional support (e.g., banking) and information services
(e.g., weather) [19]. Their success is due to their natural language
conversational interface, which can be used through many channels
such as social networks, web apps, or intelligent speakers.

The popularity of chatbots has triggered the emergence of a
plethora of platforms, libraries and tools for their construction [14].
Some prominent examples are Google’s Dialogflow1, Amazon’s
Lex2, IBM’s Watson3, Rasa4 or Pandorabots5, to name a few.

The quality of chatbots is critical for their success. In this respect,
some researchers have proposed techniques for testing chatbots [3,
5] and guidelines for their design [11]. However, most tools lack
static quality assurance mechanisms that can be used at design
time to assess desired chatbot properties. Likewise, there is a lack
of tools to compare, cluster and classify chatbots along design
features or conversation topics. Such tools would enable a better
understanding of the current chatbot landscape, the comparison
of chatbots across implementation technologies (e.g., Dialogflow,
Rasa) and provenance (e.g., open source repositories, proprietary
platforms), and the extraction of valuable data for chatbot analysis.

In order to address these challenges, we present the web platform
Asymob for chatbot measurement and clustering. The tool features
a repository where chatbots developed using different technologies
(currently Dialogflow and Rasa) can be uploaded. It offers a suite
of 20 metrics that measure aspects of design size, complexity, and
user experience. It also enables the clustering and comparison of
chatbots based on these metrics; as well as on conversation topics
extracted from the bot expected and issued phrases. The envisioned
users of our tool are chatbot designers and developers.

In the rest of the paper, Section 2 introduces the basic notions of
chatbots, Section 3 presents the Asymob platform and reports on a
preliminary evaluation, Section 4 compares with related work, and
Section 5 concludes with a summary and open research lines.

2 AN OVERVIEW OF CHATBOTS

Chatbots offer a conversational interface via natural language to
software services. They are typically powered by natural language
1https://dialogflow.com/
2https://aws.amazon.com/en/lex/
3https://www.ibm.com/cloud/watson-assistant/
4https://rasa.com/
5https://home.pandorabots.com/
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processing (NLP) technologies that provide good understanding
capabilities on sets of predefined topics, called intents. Intents are
expected conversation topics, which reflect the functionality of the
chatbot. Frequently, intents are defined via training phrases that
illustrate the different ways a user may approach the chatbot. For
example, a chatbot for a pizzeria may have two main intents, one
for ordering (expecting phrases like “A small margherita, please”)
and another for obtaining information about the available pizza
types (expecting utterances like “What pizzas are available?”).

Intents may define parameters, whose value is extracted from the
user utterances. For example, when ordering a pizza, the user should
specify the type of pizza (e.g., hawaiian) and the size (e.g., medium),
via phrases like “I’d like a medium hawaiian pizza”. Parameters may
be tagged as mandatory, in which case, the chatbot will request
their value if absent from the user phrase. Parameters are typed by
entities, which can be either user-defined (e.g., for pizza types) or
pre-defined (e.g., for numbers or dates).

Conversations are defined by means of flows of expected intents
and resulting bot actions. The latter normally involve an output
phrase (which may also include parameters), but may also include
other elements like images or widgets specific to the deployment
channel (e.g., buttons in the Telegram social network). In addition,
the chatbot may need to access an external service to manage the
intent. For example, in the pizzeria, the chatbot needs to access an
information system to store the order.

3 THE ASYMOB PLATFORM

Asymob is aweb platform providing static chatbot quality assurance.
Next, Section 3.1 describes its architecture, Sections 3.2–3.4 detail its
functionality, and Section 3.5 reports on a preliminary evaluation.

3.1 Overview and architecture

Asymob6 permits uploading chatbots of heterogeneous technolo-
gies, which then are measured using a suite of 20 metrics. Asymob
provides statistics of the metrics across all chatbots in the repository.
In addition, users can query the repository to search for chatbots
within certain metric bounds and compare them against each other
according to their metric values. The platform also allows clustering
chatbots by metric values, or by the conversation topics as given
by the words used in training phrases, bot responses and entities.

Fig. 1 shows the architecture of Asymob. Its functionality is
offered via a web interface, which interacts with a service layer via
a REST API. The presentation layer is implemented in HTML and
JavaScript, and supports the interactive presentation of metrics and
clusters using the libraries Plotly7 and Cytoscape8.

The service layer (the Asymob core) implements the function-
ality related to measuring and clustering chatbots. This core has
an extensible design, which makes it easy to add new types of
metrics, clustering criteria and chatbot technologies. To support
the uniform handling of chatbots from heterogeneous technolo-
gies, the core relies on a neutral chatbot design notation called
Conga [12]. This way, our platform enables the contribution of
importers from specific chatbot implementation platforms into

6http://miso.ii.uam.es/asymobService
7https://plotly.com/
8https://cytoscape.org/
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Figure 1: Architecture of Asymob.

Conga, and the measurement and clustering are applied to Conga
models. Section 3.2 will provide more details about Conga and the
available importers. Then, Section 3.3 will present the current list
of supported metrics, built upon established technologies such as
TensorFlow9, CoreNLP10 and the Deep Java Library (DJL)11. Next,
Section 3.4 will focus on the chatbot clustering functionality, devel-
oped using Python libraries like NLTK12, SKLearn13 and SciPy14.

An additional backend layer provides persistence. This stores
the uploaded chatbots in the filesystem of the machine where the
Asymob core is deployed, and uses mongoDB15 for storing the
data produced in the service layer (i.e., the metric values and the
information required for conducting clustering).

3.2 Handling heterogeneous chatbots

Asymob provides static mechanisms to assess chatbot quality. Since
there are many chatbot development tools, Asymob implements
those mechanisms over a neutral, technology-agnostic chatbot de-
sign notation called Conga, and provides importers from different
technologies into Conga. This permits reusing the functionality of
Asymob with chatbots of heterogeneous technologies.

Conga [12] is designed based on an analysis of 15 popular chat-
bot tools, so its primitives can bemapped from/to all of them. Conga
supports the concepts explained in Section 2 (intents, parameters,
entities, conversation flows, bot actions). Intents can be defined via
training phrases. User-defined entities can be described as a list of
words with synonyms, via a regular expression, or providing a set
of strings and other entities. Possible chatbot actions include send-
ing text, images, HTTP requests to external services, or presenting
widgets like buttons.

Currently, there are importers from Rasa and Dialogflow chat-
bots into Conga. Rasa is a framework to develop chatbots using

9https://www.tensorflow.org/
10https://stanfordnlp.github.io/CoreNLP/
11https://djl.ai/
12https://www.nltk.org/
13https://scikit-learn.org/
14https://scipy.org/
15https://www.mongodb.com/
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Table 1: Metrics for chatbot designs.

Metric Description Type

Global metrics

INT # intents design size
ENT # user-defined entities vocabulary size
FLOW # conversation entry points conversation diversity
PATH # different conversation flow paths conversation complexity
CNF # confusing phrases bot understanding
SNT # positive, neutral, negative output phrases user experience

Intent metrics

TPI # training phrases per intent topic complexity
WPTP # words per training phrase topic complexity
VPTP # verbs per training phrase topic complexity
PPTP # parameters per training phrase topic complexity
WPOP # words per output phrase readability
VPOP # verbs per output phrase readability
CPOP # characters per output phrase readability
READ reading time of the output phrases readability

Entity metrics

LPE # literals per entity vocabulary complexity
SPL # synonyms per literal vocabulary complexity
WL word length readability

Flow metrics

FACT # actions per flow bot response complexity
FPATH # conversation flow paths conversation complexity
CL conversation length conversation complexity

Python, markdown and YAML. Dialogflow is a lowcode develop-
ment platform to create chatbots using a graphical web interface,
and the chatbots can be exported as JSON files.

Overall, users of Asymob can register on the platform or use a
generic user. When uploading a chatbot to the platform, the user
must specify the chatbot implementation technology (Dialogflow,
Rasa or Conga), its visibility (private, so that only the owner can see
the chatbot, or public, to allow other users see it), and its version (to
enable version control for the chatbot). Then, the proper importer is
automatically applied to the chatbot, and both the original chatbot
and the resulting Conga model are stored.

3.3 Measuring chatbots

Asymob includes a metrics engine to analyse static characteristics
related to the correct design of chatbots. This provides a suite of 20
metrics, which we proposed in [6], covering both global design as-
pects and specific features concerning the design of intents, entities
and conversation flows. The metrics are summarized in Table 1 and
we explain them next.

Global metrics capture global properties of the chatbot. Specifi-
cally, Asymob measures the number of intents (INT), user-defined
entities (ENT), conversation entry points (FLOW), conversation
flow paths (PATH), confusing phrases (CNF), and output phrases
with positive, neutral or negative sentiment (SNT). Confusing
phrases refer to similar training phrases (i.e., with small semantic
distance) defined by different intents. They are problematic, since
a chatbot may confuse them and end up identifying a wrong
intent. Additionally, a chatbot that mostly outputs phrases with
negative sentiment may impact negatively the user experience.
Overall, global metrics are useful to assess the chatbot design size

(INT), the chatbot vocabulary size (ENT), the conversation diver-
sity and complexity (FLOW and PATH), and to report potential
problems in bot understanding (CNF) and user experience (SNT).

Intent metrics measure quality and complexity aspects of intents,
namely, the number of training phrases per intent (TPI), word-
s/verbs/parameters per training phrase (WPTP/VPTP/PPTP), word-
s/verbs/characters per output phrase (WPOP/VPOP/CPOP) and
average reading time of the output phrases (READ). Overall, these
metrics quantify the complexity and readability of phrases. Large
phrases are difficult to understand, are problematic in social net-
works with constrained message length (like Twitter), and may
require scrolling in mobile devices with small screens. For exam-
ple, high CPOP and READ values entail long reading times, which
may make users not to read fully the bot answers. This is even
more problematic for voice-based chatbots, since speaking takes
longer than reading [11].

Entity metrics analyse the user-defined entities, which represent
domain concepts. They are useful to obtain ameasurement of their
complexity and readability. Entity metrics include the number of
literals per entity (LPE), the synonyms per literal (SPL) and the
length of words (WL). These are indicators of the complexity of
the concepts and the width of the vocabulary of the chatbot.

Flow metrics are concerned with the complexity of the conver-
sation flows and the sophistication of the bot responses. They
comprise the number of actions per flow (FACT), the number of
conversation paths (FPATH) and the conversation length (CL).
When a chatbot is uploaded, Asymob computes its metrics and

displays their value in a table and also in interactive graphs that
compare these values with statistics of the chatbots in the repository.
Fig. 2 shows the graph for metric INT. The left bar displays statistics
of the chatbot repository, and the bar to the right displays the metric
value for the uploaded chatbot. We observe that the new chatbot
can be considered large, since it has 25 intents, while the average
number of intents of the chatbots is around 10 (with a median of
6). The computed metrics are persisted to speed up the generation
of statistics when new chatbots are uploaded, and to facilitate the
functionalities we explain next.

Figure 2: Displaying the value of metric INT.

First, Asymob offers statistics of the metrics of all chatbots in the
repository (average, minimum, maximum, median and 1st and 3rd
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quartiles). They are displayed as a table, as a graph, and side-by-side
with the metric values of a specific chatbot, as Fig. 2 shows.

Additionally, Asymob permits comparing a collection of chatbots
based on a set of metrics selected by the user. Fig. 3 illustrates this
functionality. The x-axis displays the selected metrics (ENT, INT

and FLOW in the figure), and the y-axis shows their value for the
selected chatbots from the repository (4 bots in this case). We can
see that mysteryAnimal stands out in the three metrics, meaning that
it has more vocabulary (entities), conversation alternatives (intents)
and conversation flows. This comparison can also be performed
for several versions of the same chatbot (if different versions were
uploaded into the repository) to reason about the evolution between
chatbot versions in terms of metrics.

Figure 3: Metric-based comparison of chatbots.

The platform also includes a metric-based chatbot search facility.
This permits users to specify the lower and upper limits for the
value of some metrics of interest, and Asymob displays the chatbots
in the repository with metric values within these boundaries. This
is useful to obtain sets of chatbots with certain characteristics. For
example, we might be interested in simple chatbots with few intents
and no defined entities, or complex chatbots with many intents and
complex conversation flows.

3.4 Clustering chatbots

Asymob supports the automated classification of chatbots based on
two disjoint criteria: metric values, or the chatbot vocabulary.
Metrics-based clustering is useful to identify groups of chatbots
with (dis)similar design features. For this purpose, the user can
select one or more metrics, and the chatbots become classified
based on the metric(s) values. For example, clustering by metric
INT (i.e., number of intents) would create groups of chatbots
with similar size complexity, whereas if the user performs the
clustering using metrics FLOW and PATH, then the chatbots would
be grouped according to the complexity of their conversations.
Technically, the platform implements the K-means algorithm for
clustering the chatbots based on the value of the selected metrics.
The user can also select the number of clusters to create (i.e., the
k-value), or otherwise, it is automatically computed using the
silhouette coefficient [16], as supported by SKLearn.
Asymob visualizes the resulting clusters in a table and graphically,
as Fig. 4 shows. The graph can display two or three dimensions,
so if the user selects more than three metrics, then the platform
reduces the number of dimensions using the principal component

analysis (PCA). The graphic represents each chatbot as a dot, and
uses a different colour for each cluster of chatbots. In Fig. 4, there
are two clusters of 3 and 26 chatbots.

Figure 4: Metrics-based clustering.

Vocabulary-based clustering classifies chatbots by their vocab-
ulary, which is useful to identify chatbots targeting analogous
topics. For example, chatbots for booking flights are likely to be
in the same cluster, since their vocabulary tends to be similar. We
foresee this clustering to be useful as a way to search for chatbots
by similarity to a given one, or by existing topics (represented
by clusters). We also envision using this clustering method as
a way to present and organize a large set of chatbots within a
repository.
For this kind of clustering, Asymob stores all the relevant words
that appear in the training phrases, chatbot responses and user-
defined entities of each chatbot, along with their frequency of
occurrence. Stop words such as prepositions, articles and conjunc-
tions are discarded. Then, the similarity of two bots is given by
the cosine-similarity of their bag-of-words vectors [10]. Note that
each chatbot has to be compared with all the other ones, which
becomes time-expensive as the repository grows. To reduce this
time, Asymob calculates this similarity as a backend process when
a chatbot is uploaded, and caches the result in a database.
In the front-end, users can select a set of chatbots and a similarity
threshold for the agglomerative clustering algorithm. The results
are shown in a table and an interactive hierarchical graph. The
first graph layer has a node per cluster, and clicking on a node
shows the chatbots it contains. Fig. 5 shows the chatbots within
a cluster. The width of the edges conveys the similarity of two
chatbots. Clicking on a chatbot displays its metrics on the right.

Figure 5: Vocabulary-based clustering.
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3.5 Preliminary evaluation

We have evaluated the cost of uploading a chatbot, which implies
its measurement and extracting its bag-of-words for clustering. The
latter requires updating a global vocabulary index when the chatbot
introduces new words. We found this to require constant time, in
the order of 100ms. At this point, a backend process compares and
caches the cosine similarity between the bag-of-words vector of
the uploaded chatbot and all the rest, which we found to grow
linear with the number of chatbots (around 99ms per bot). Being
a backend process, it does not affect responsiveness, but we are
currently working on its parallelization. In the future, we plan to
perform more detailed scalability experiments to detect possible
bottlenecks in our architecture and optimize where needed.

4 RELATEDWORK

Most approaches to assess chatbot quality rely on testing. Some
development platforms (e.g., Dialogflow, Lex, Watson) integrate a
web chat console to test chatbots manually. There are also dedicated
testing tools like Botium [3] and OggyBug [7] which automate the
testing of chatbots built with different technologies. Still, developers
need to define concrete test conversation cases. To alleviate this bur-
den, Bottester [20] simulates the user interactions, and other works
generate challenging test user utterances automatically [4, 5, 17].
Compared to these works, Asymob provides complementary assess-
ment mechanisms to testing in the form of metrics that are collected
statically (i.e., without deploying the chatbot), with reduced effort
compared to testing, and which can reveal defects on several quality
aspects of the chatbot design.

Additionally, some development platforms (e.g., Dialogflow, Wat-
son, Bot Framework) provide chatbot analytics. This information
is collected dynamically when the chatbot is in production, while
Asymob targets the design time.

Another popular way to evaluate chatbots is by means of user
studies [9, 18]. These typically evaluate user satisfaction and chat-
bot performance, and require the recruitment and participation
of users [15]. Asymob complements these studies with chatbot
information that can be gathered automatically and inexpensively.

The support of static means for quality assessment – like those
in Asymob – is less frequent. Next, we discuss some exceptions. Di-
alogflow performs some chatbot validations (e.g., detecting intents
with similar training phrases) categorized by severity. Almansor
and Hussain [1] use fuzzy logic to detect inappropriate responses
based on the sentiment and length of utterances, and Gao et al. [8]
use machine learning to predict the popularity of chatbots based
on static metrics (e.g., number of intents, conversation flow length).
These two works use metrics supported by Asymob, showing that
our tool could enable the use of artificial intelligence for prediction.

Finally, our tool takes inspiration from services available in repos-
itories of other artefacts, like meta-models (e.g., MDEForge [2]).
However, to the best of our knowledge, Asymob is the first proposal
of a chatbot repository featuring metrics and clustering.

5 CONCLUSIONS AND FUTUREWORK

This paper has presented Asymob, the first platform enabling mea-
suring and clustering chatbots. The tool fills a gap on current prac-
tice, which is providing automatic means for assessing the quality

of chatbots prior to their deployment and dynamic testing. The tool
comprises a repository of chatbots, static metrics that can be homo-
geneously evaluated on heterogeneous technologies, and chatbot
clustering facilities based on chatbot metrics and vocabulary.

We are currently building converters from other technologies
(e.g., Pandorabots, Lex) into Conga. We are also improving the tool
with visualization mechanisms able to capture a large amount of
informations, e.g., heatmaps and dendograms for clusters. In the
future, we plan to use Asymob to evaluate open source chatbots
to get a panorama of their features and derive metric thresholds.
We also plan to exploit our clustering techniques to provide search
facilities over chatbot repositories. Finally, we would also like to
integrate Asymob’s services within chatbot development tools like
the Conga web IDE [13].
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