
Creating and Migrating Chatbots with CONGA

Sara Pérez-Soler
Universidad Autónoma de Madrid

Madrid, Spain
sara.perezs@uam.es

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain
esther.guerra@uam.es

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
juan.delara@uam.es

Abstract—Chatbots are agents that enable the interaction of
users and software by means of written or spoken natural
language conversation. Their use is growing, and many companies
are starting to offer their services via chatbots, e.g., for booking,
shopping or customer support. For this reason, many chatbot
development tools have emerged, which makes choosing the most
appropriate tool difficult. Moreover, there is hardly any support
for migrating chatbots between tools.

To alleviate these issues, we propose a model-driven engi-
neering solution that includes: (i) a domain-specific language
to model chatbots independently of the development tool; (ii)
a recommender that suggests the most suitable development
tool for the given chatbot requirements and model; (iii) code
generators that synthesize the chatbot code for the selected tool;
and (iv) parsers to extract chatbot models out of existing chatbot
implementations. Our solution is supported by a web IDE called
CONGA that can be used for both chatbot creation and migration.
A demo video is available at https://youtu.be/3sw1FDdZ7XY.

Index Terms—Chatbots, Model-Driven Engineering, Domain-
Specific Languages, Migration.

I. INTRODUCTION

Chatbots are conversational agents that support interaction
via natural language (NL) [1]. The improvements in NL
processing have triggered their proliferation to access all kind
of services, like flight booking, food delivery or customer
support. By 2022, Gartner predicts that 70% of all customer
interactions will involve machine learning, chatbots and mo-
bile messaging1. Many companies are offering their services
via chatbots to make them more accessible and user-friendlier,
since chatbots are used via NL and can be deployed in social
networks (called channels) like Telegram or Slack with no
need to install dedicated apps [2].

Many chatbot development tools have emerged in recent
years. Prominent software companies like Google, IBM, Mi-
crosoft or Amazon have launched products for chatbot devel-
opment (Dialogflow2, Watson3, Microsoft Bot Framework4,
Amazon Lex5), but a plethora of other options exist, like
Rasa6, Xenioo7 or Landbot.io8, to name a few. This variety
of tools poses several challenges to chatbot developers:
• Challenge 1: How to identify the most appropriate devel-

opment tool based on the chatbot requirements? [3]. For
example, only some tools offer off-the-shelf speech recog-
nition, and tools wildly vary on the supported deployment

1 https://www.gartner.com/smarterwithgartner/top-cx-trends-for-cios-to-watch/
2 https://dialogflow.com/ 3 https://www.ibm.com/cloud/watson-assistant/
4 https://dev.botframework.com/ 5 https://aws.amazon.com/en/lex/
6 https://rasa.com/ 7 https://www.xenioo.com/en/ 8 https://landbot.io/

channels. Choosing an inadequate tool may lead to increased
effort [4], lower chatbot quality or project failure.

• Challenge 2: How to design chatbots independently of the
particular tool to enable early reasoning and analysis, prior
to the implementation? Chatbot development tools are very
diverse, ranging from low-level programming frameworks
(like Rasa) to lowcode development platforms based on
forms (like Dialogflow). Grasping the design behind a chat-
bot implementation may be challenging due to accidental,
technical details of the tools themselves.

• Challenge 3: How to keep up with the rapidly evolving
ecosystem of chatbot tools? With a few exceptions [5],
most chatbot tools are closed, proprietary software with no
support for migration between tools, e.g., to benefit from the
pricing plans of a competitor. This leads to vendor lock-in.
To address these challenges, we propose a web IDE called

CONGA that offers a neutral domain-specific language (DSL)
for chatbot modelling [6]. Chatbot models can be statically
analysed to detect errors and quality issues, and be compiled
into tools such as Rasa or Dialogflow. CONGA includes a
recommender of suitable development tools for a given chatbot
design. The recommender relies on the criteria identified in [3],
and takes into account the chatbot model and the answers to
a questionnaire of chatbot technical aspects (e.g., is hosted
deployment required?) and managerial requirements (e.g.,
pricing model). Chatbot migration is facilitated by parsers
from development tools into CONGA models, which in turn
can be compiled into other platforms. The envisioned users of
CONGA are developers and designers with conceptual knowl-
edge on chatbots but not necessarily on their technologies.

This paper showcases the CONGA web IDE, which com-
prises a textual editor for chatbot modelling, graphical views
of the designed conversation flow, a chatbot tool recommender,
and generators/parsers to/from some prominent chatbot tools.

II. APPROACH

Next, we overview our approach (Section II-A) and describe
its two main components: the DSL for chatbot modelling
(Section II-B) and the recommender system (Section II-C).

A. Overview of the usage methodology of CONGA

We address the 3 challenges identified in the introduction
by means of an automated process supporting both forward
(i.e., creating new chatbots) and backward engineering (i.e.,
migrating existing chatbots). Fig. 1 depicts this process.

create
chatbot
model

answer
questionnaire

select
tool

deploy
chatbot

CONGA
WEB
IDE DSL

chatbot
developer

DEV TOOL
RECOMMENDER

CODE
GENERATOR

CHATBOT
CHANNELS

CHATBOT DEV TOOLS

forward engineering

import
implementation

DEV TOOL
PARSER

chatbot
model

backward engineering

ranked
tool list

chatbot users

chatbot
code

1 2 3 4

5

...

...

STATIC
ANALYSER

chatbot
code

Fig. 1: Forward/backward chatbot engineering with CONGA.

Forward engineering. First, the developer describes the chat-
bot with a dedicated DSL (label 1 in the figure), explained in
Section II-B. The result is a chatbot model that is independent
of any development tool and can be statically analysed to
detect flaws. Next, to get recommendations on suitable chatbot
development tools, the developer answers a questionnaire on
additional bot requirements beyond its functional behaviour
(label 2). The recommender – detailed in Section II-C – analy-
ses the developer’s answers and the chatbot model to elaborate
a ranked list of tools. This recommendation step is optional.
Then, the developer selects a particular tool (label 3), and the
system generates a fully functional chatbot implementation for
it. Finally, the developer can deploy the chatbot on a channel
(e.g., Telegram) using the selected tool (label 4).

Backward engineering. To support migration, the developer
can import an existing chatbot implemented in a specific
development tool, and CONGA parses the code to produce
the corresponding chatbot model (label 5). The developer can
then use this model for forward engineering.

B. The neutral DSL for chatbot modelling

CONGA provides a textual DSL for chatbot modelling,
designed based on an analysis of 15 prominent chatbot de-
velopment tools [6]. Listing 1 illustrates its usage to model
a chatbot to help booking flights. First, line 1 declares the
languages the chatbot should converse in, in this case just
English (en), but multi-language chatbots are also possible.

Chatbots are designed around intents. These are the actions
that users can perform with the bot, like booking or changing
a flight. In CONGA, intents can be defined either by regular
expressions, or by a set of training phrases showcasing typical
ways in which users may express the intention (lines 5–10 in
Listing 1). Training phrases may contain parameters, which
are relevant data that the chatbot needs, such as the source,
destination and date of a flight (“from”, “to” and “when” in
lines 6–7). Each parameter is formally declared by providing
its type, whether it is optional or required, and in the latter
case, a phrase that the chatbot should ask to the user to request
a value for the parameter if it is missing (lines 11–14).

Parameters are typed by entities (lines 16–21), which can be
pre-defined (like “date”) or user-defined (like “City”). User-
defined entities specify a set of entries and their synonyms.

Upon recognizing an intent, the chatbot can perform differ-
ent actions such as replying to the user or accessing an external
database. This is configured in an “actions” section (lines
23–35). The listing declares a text response (lines 24–27),
an image response (lines 28–29) and a POST HTTP request

1 chatbot FlightBooking language: en
2
3 intents:
4 Book_flight:
5 inputs {
6 "I need to fly from" ("Madrid")[from] "to" ("Paris")[to]
7 "on" ("Monday at 9 AM")[when],
8 "I want to book a flight",
9 "I need a flight to" ("Rome")[to]

10 }
11 parameters:
12 from: entity City, required, prompts ["What’s the flight origin?"];
13 to: entity City, required, prompts ["What is the destination?"];
14 when: entity date, required, prompts ["When do you want to fly?"];
15
16 entities:
17 Simple entity "City":
18 inputs in en {
19 Madrid synonyms MAD, madrid
20 Rome synonyms ROM
21 }
22
23 actions:
24 text response fly_response:
25 inputs in en {
26 "Your flight from" [Book_flight.from] "to" [Book_flight.to] "is booked"
27 }
28 image response send_image:
29 URL: "https://image.shutterstock.com/image−vector.jpg"
30 Request post airline_service:
31 URL: "myURL.com";
32 basicAuth: "user":"pass";
33 headers: "header1":"value1";
34 data: "from": [Book_flight.from], "to": [Book_flight.to];
35 dataType: JSON;
36
37 flows:
38 − user Book_flight => chatbot airline_service, fly_response;

Listing 1: A chatbot for booking flights with CONGA (excerpt).

(lines 30–35). The text and the HTTP request use parameters
gathered in the intent (Book_flight.from and Book_flight.to).

A last “flows” section permits defining conversation flows
(lines 37–38). These are sequences of user intents (Book_flight)
followed by chatbot actions (airline_service and fly_response).
Flows can have any length, and there may be several possible
user continuations after a chatbot action.

C. The recommender of chatbot development tools

CONGA models are not executable, but they can be com-
piled into code for a particular development tool. In previous
work [3], we identified technical and managerial requirements
influencing the tool selection process. To help in selecting an
appropriate tool, CONGA integrates a recommender.

The recommender infers some tool requirements from the
chatbot model, like the need to support multiple languages,
user-defined entities or phrase parameters, among others. Ad-
ditionally, the developer is presented a questionnaire concern-
ing other non-functional requirements that may influence the
tool selection but cannot be derived from the chatbot model.
Some examples include the channels where the chatbot is
to be deployed, support for chatbot analytics, speech recog-
nition, or being open-source. Overall, the questionnaire has
10 questions [6], each with a customizable relevance that
reflects its importance on the recommendation. This way,
developers can specify that the answer to a given question
is irrelevant (disregarded in the recommendation but stored
for documentation), relevant, double relevant or critical (tools
that do not fulfil the requirement will not be recommended).

The recommender uses the chatbot model and the answers to
the questionnaire to assign a score to each development tool,
where higher scores indicate wider requirements coverage.

III. TOOL SUPPORT

This section describes the architecture (Section III-A) and
front-end (Section III-B) of CONGA. The tool is open source,
and is available at https://saraperezsoler.github.io/CONGA/.

A. Architecture

CONGA is available to chatbot developers as a web appli-
cation. Fig. 2 shows its architecture. The front-end includes
user and project managers, a DSL editor, a graphical renderer
of conversation flow models, importers/exporters for some
chatbot tools, a questionnaire for the tool recommender, and a
visualizer of tool recommendations. The back-end handles the
requests of the front-end concerning chatbot model validation,
code generation, parsing, and recommendation computation.

…

Web browser FRONT-END BACK-END

CONGA
models

storage
model

chatbot
developer

recommender

chatbot modeller

recommender interface

questionnaire reports

importer importer importer exporter

DSL editor
graphical
renderer

DSL services

generator

DSL validator

code generator

parser parser

project/user manager

Fig. 2: CONGA’s architecture.

The storage model of CONGA conforms to the meta-model
of Fig. 3. It includes a Recommender class that defines the list
of Tools that may be recommended (e.g., Dialogflow, Lex), and
the Requirements considered to calculate the recommendation.
There are two types of requirements: Question, which corre-
sponds to a query in the recommender questionnaire (e.g., the
deployment channels), and Analysis, which refers to technical
requirements extracted from the chatbot model (e.g., the bot
spoken languages). Both requirement types have a name, a text
question, a closed list of response options, and can optionally
be multi-option. Each tool considered for recommendation
must define which of the specified requirements options are
available, unavailable, unknown or might be possible in the
tool. Currently, our recommender considers 10 questions, 7
model analyses, and 14 up-to-date target implementation tools;
however, our model-based design makes the recommender
fully extensible with new questions, analyses and tools.

Chatbot definitions are stored in Projects. Each project
stores the developer’s Answers to the Questions in the rec-
ommender Questionnaire. The answers comprise both the se-
lected options and the relevance level assigned to the question.

B. Front-end

Fig. 4 shows the main interface of CONGA. The header
(label 1) includes the logged user name, and a sign out button.
The toolbar (label 2) contains buttons to save the file with
the chatbot model, create a new project, format the displayed

User

nick: String
password: String

CONGA

Project

name: String
creation: Date
modification: Date
model: File

users

*

projects *

projects
* owner

Recommender

Requirement

name: String
text: String
multi: boolean Question

Analysis

evaluator: JavaClass

Option

name: String

Tool

name: String

available

unavailable

unknown

possible

*

*

*

*

*

*
requirements

tools

recommender

Questionnaire

date: Date

Answer

relevance: Level

questionnaire

0..1

* answers

question

*

selected

options * <<Enum>>

Level
Relevant
Irrelevant
Double relevant
Critical

Fig. 3: CONGA storage meta-model.

file, select a development tool to generate code for (currently
Dialogflow or Rasa), fill in the recommender questionnaire,
and display the recommendation results. New projects can be
created empty, or be populated with a model parsed from an
existing chatbot implementation (currently from Dialogflow).

1

2

3 4

Fig. 4: CONGA’s main interface.

The DSL editor (label 3) features syntax highlighting, con-
tent assistance and error reporting. In addition to syntax errors,
a validator checks problems like intents with overlapping
training phrases, similar conversation flows, or flows where
an action uses parameters that no previous intent in the flow
defines. In the figure, the editor reports some warnings; the first
one warns that the chatbot is multi-language (English, Spanish)
but the training phrases only consider one language (English).
Technically, the editor is implemented in Xtext, using its web
deployment options for the codemirror JavaScript library.

The flow diagram to the right (label 4) depicts graphically
the conversation flow defined by the chatbot model. The
diagram represents the user interactions as transitions, and
the chatbot interactions as states with the actions that the
chatbot performs inside. This view is built using PlantUML,
and becomes updated whenever the chatbot file is saved.

Fig. 5a shows an excerpt of the questionnaire that developers
can answer to obtain tool recommendations. The questionnaire
is created on-the-fly according to the modelled requirements
(cf. Fig. 3), which allows updating easily the requirements.

(a) Requirements questionnaire. (b) Resulting tool ranking.

Fig. 5: CONGA recommender support.

TABLE I: Assessment metrics.
Dialogflow CONGA Rasa

Back-end #Files LOC Python LOC Markd. LOC YAML LOC
Bike Shopa yes 13 80 185 61 187
Mystery Animalb yes 199 7042 9494 13722 879
Smalltalkc no 58 1515 284 1421 281
IoT: Turn lightsd yes 6 53 125 23 168
a https://bit.ly/38THi8h b https://bit.ly/2IQZ8yf c https://bit.ly/36KMKrq d https://bit.ly/3lEchc2

Each question has a list of options and a selector of relevance.
Fig. 5b displays the ranking of tools ordered by decreasing

score. By clicking on the button to the right of a tool, the
corresponding code generator is invoked and the developer
can download the resulting artefacts.

IV. EVALUATION

We have evaluated the migration capabilities of CONGA
by importing four third-party, non-trivial Dialogflow agents
from GitHub into CONGA, and then generating corresponding
chatbot implementations for the Rasa development framework.
This evaluation extends the one presented in [6] by considering
more challenging bots with back-ends or complex logic,
leading to models with thousands LOC in CONGA.

Table I shows size metrics of the chatbots in Dialogflow,
CONGA and Rasa. Bike Shop schedules appointments for a
shop; Mystery Animal is a guessing game via Q&A; Smalltalk
is a chitchatting agent; and IoT turns the lights on/off via NL.

CONGA was able to automatically migrate all chatbot logic
from Dialogflow to Rasa, obtaining functional bots. The largest
bot parsed into >7000 CONGA LOC, and produced a Rasa
implementation with >9000 Python LOC and >14000 LOC
in configuration files. This proves the usefulness of our tool.

However, two aspects required manual intervention. First,
Smalltalk uses emojis, currently not supported by CONGA.
Second, three Dialogflow agents had back-ends developed
using Google libraries tightly integrated with Dialogflow.
Those cases required configuring the Google services manu-
ally and, in one case, implementing a middleware. Generally,
the chatbot/back-end connection cannot be migrated fully
automatically since it may rely on native technologies of the
chatbot platform (e.g., Google’s cloud, AWS services).

V. RELATED WORK

The raising popularity of chatbots has led to new tools for
their construction (see [3] for a survey). Most are frameworks

or platforms, and only a few provide DSLs. The closest work
to ours is the model-based solution Xatkit [5]. This provides a
textual DSL for chatbot development, but contrary to CONGA,
the defined chatbots are executable by providing an execution
engine. Moreover, even though Xatkit can help addressing
challenge 2 in the introduction (chatbot design), it neither
provides a neutral language nor supports tool recommendation
or migration (challenges 1 and 3).

Baudart et al. [7] propose an embedded DSL to define
Watson chatbots based on an OCaml library, and orchestrate
the dialog using ReactiveML. However, an embedded DSL
makes the chatbot design less explicit, and while the approach
is generative, it is limited to Watson and does not support
migration. Protochat [8] provides a graphical DSL for conver-
sation design, and supports a crowd-testing approach whereby
crowd workers can provide feedback on the conversation.
Finally, some approaches automate chatbot construction from
existing artefacts, such as web sites [9].

Overall, there are previous proposals of DSLs for chatbot
design, but CONGA is unique for being designed from an
analysis of 15 chatbot development tools, and because it
addresses tool migration and recommendation.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented CONGA, a model-driven solution
for forward and backward chatbot engineering, featuring a
recommender system that assists in selecting the most suitable
chatbot development tools. Our approach is extensible by
implementing interfaces to create new code generators and
parsers, but we are currently working in extension points to
facilitate this extensibility. Finally, we plan to conduct a user
study to assess the usability of CONGA.

ACKNOWLEDGMENT

Work funded by the Spanish Ministry of Science
(RTI2018-095255-B-I00) and the R&D programme of Madrid
(P2018/TCS-4314).

REFERENCES

[1] A. Shevat, Designing bots: Creating conversational experiences.
O’Reilly, 2017.

[2] P. B. Brandtzæg and A. Følstad, “Why people use chatbots,” in INSCI,
ser. LNCS, vol. 10673. Springer, 2017, pp. 377–392.

[3] S. Pérez-Soler, S. Juárez-Puerta, E. Guerra, and J. de Lara, “Choosing a
chatbot development tool,” IEEE Software, vol. in press, 2020.

[4] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab,
“Challenges in chatbot development: A study of stack overflow posts,”
in MSR. ACM, 2020, pp. 174–185.

[5] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: A multimodal
low-code chatbot development framework,” IEEE Access, vol. 8, pp.
15 332–15 346, 2020.

[6] S. Pérez-Soler, E. Guerra, and J. de Lara, “Model-driven chatbot devel-
opment,” in ER, ser. LNCS, vol. 12400. Springer, 2020, pp. 207–222.

[7] G. Baudart, M. Hirzel, L. Mandel, A. Shinnar, and J. Siméon, “Reactive
chatbot programming,” in REBLS@SPLASH. ACM, 2018, pp. 21–30.

[8] Y. Choi, T. K. Monserrat, J. Park, H. Shin, N. Lee, and J. Kim, “Protochat:
Supporting the conversation design process with crowd feedback,” in
CSCW. ACM, 2020, pp. 19–23.

[9] P. Chittò, M. Báez, F. Daniel, and B. Benatallah, “Automatic generation
of chatbots for conversational web browsing,” in ER, ser. LNCS, vol.
12400. Springer, 2020, pp. 239–249.

