Twiagle: a Tool for engineering applications
based on instant messaging over Twitter

Angel Mora Segura, Juan de Lara, and Jests Sanchez Cuadrado

Universidad Auténoma de Madrid (Spain)
{Angel .MoraS, Juan.delara, Jesus.Sanchez.Cuadrado}@uam.es

Abstract. Microblogging services, like Twitter, are widely used for all
kind of purposes, like organizing meetings, gathering preferences among
friends, or contact community managers of companies or services.

With suitable automation, tweets can be used as a dialogue mechanism
between users and computer applications, and we have built a tool,
named Twiagle, to construct tweet-based applications. Twiagle includes
a pattern-matching language to express the interesting parts to be de-
tected and selected from tweets, and an action language to query matched
tweets, aggregate information from them or synthesize messages.

1 Introduction

Microblogging and instant messaging systems are booming nowadays, thanks
in part to the proliferation of smartphones and mobile devices. Services like
Twitter! or WhatsApp? are extremely used nowadays to connect with friends,
or to organize social activities. These services are not only used for leisure, but
most companies and brands use these services to keep in contact with clients.

In this setting, we observe a growing need to automate social activities, lever-
aging on popular social network platforms, like Twitter. On the one hand, users
of social networks — possibly lacking any programming skills — may wish to define
simple applications involving the participation of a community of users. On the
other, companies may like to open their information systems to social networks
platforms, but this integration effort needs to be done by hand.

We claim that social networks based on instant messaging, in particular Twit-
ter, are suitable as front-ends for computer-based applications. We call them
tweet-based applications, and they present many advantages in some scenarios.
First, instant messaging systems are designed to support a high load of users and
messages, serving as a robust front-end, difficult to achieve for companies or end
users. Second, many people are familiar with Twitter, and have it already in-
stalled. Hence, they do not need to learn a new application, or even install a new
one. Third, applications can leverage from Twitter’s social network structure.

We foresee three main kinds of scenarios for tweet-based applications. In the
first one, Twitter is used as a front-end, which then needs to be connected to an

! http://www.twitter.com
2 http://www.whatsapp.com/

existing information system (e.g., an airport may send notifications with flight in-
formation, or with status updates via Twitter to interested users). In the second
scenario, small, simple, self-contained applications can be designed by unexpe-
rienced end users (e.g., outdoors educational games based on quizzes). Finally,
an important scenario is the quick construction of applications to coordinate a
large amount of people upon unexpected events, like natural disasters.

These scenarios present several challenges for this technology. First, if tweets
are used as simple communication mechanism with the application, the relevant
information needs to be extracted from them. Second, a mechanism is needed to
specify simple actions, like querying the extracted information, or synthesizing
messages. Finally, a quick, easy way for constructing this kind of applications is
needed, enabling their use by non-experts, but supporting also their deployment
into servers, and their integration with existing information systems.

This paper presents Twiagle, a tool for constructing tweet-based applications,
including a Domain Specific Language (DSL) for expressing patterns, and a
DSLs for describing actions. Sec. 2 describes our architecture for Tweet-based
applications, Sec. 3 describes Twiagle using an example, and Sec. 4 ends with
the conclusions and prospects for future work.

2 Architecture

. tweet-based application
Wi Patterns

The working scheme of D ees. ()
our solution for tweet- & ""’m y o metcher

. . . m e Twitter @user
based applications is shown 3 D = O R [cond]

ser atcl

in the inset figure, where Community set end
the numbers illustrate a Queries [, Soccion: (2

aggregation, ..

typical interaction. Firstly [| Sxiting
(label 1), users send tweets = e e

. . @ message synthesis
or private messages via

Twitter. Then, the relevant information in tweets is extracted. Our solution
relies on the definition of patterns, expected to be found in tweets. Not every
tweet is sought, buy only those mentioning the user associated to the application,
or private messages directed to it (label 2). The patterns (label 3) are defined by
social media experts, or software engineers. A typical application may include
different queries, selecting the relevant concepts in matching tweets, or calculat-
ing different aggregation values from them (label 4). In addition, data can be
obtained or sent to existing information systems (label 5). The data extracted
from queries, or provided by the information system can be used to synthesize
tweets or private messages, directed to the users (label 6). Finally, conditions
can be defined to signal the end of the execution.

In order to facilitate the construction of such system, we provide a Model-
Driven Engineering solution, based on two domain-specific languages (DSLs).
The first DSL (called Twittern) helps in the definition of relevant patterns, and
concepts to be found in them. The latter are sets of relevant words, or fragments,
and sets of synonyms can be automatically extracted from Wordnet [2]. The

second DSL, called Twition, is targeted to the description of the processing
logic of tweet-based applications. It allows defining queries on tweets matching
some pattern, using an SQL-like syntax. Queries can be used to select relevant
information from tweets, or to calculate aggregated information from a set of
tweets. The DSL also provides commands to synthesize private messages and
tweets. Finally, it is also possible to define data hooks, a way to push extracted
data into an existing information system, or to gather data from it. The next
section describes a tool that realizes this approach.

3 Twiagle by Example

We show Twiagle’s capabilities through an example consisting in a simple voting
among a set of users (see Fig. 1). The first step is to describe the interesting
information in Tweets, using the Twittern DSL. A pattern is made of concepts,
and in its simplest form, a concept is a set of words, which can be either defined
explicitly by the designer, or can be automatically taken from a synonym set
provided by Wordnet. We have also included specific Twitter concepts, like pat-
terns to detect user names, URLs (specially pictures), and to define collections
of interesting hashtags. The meta-data information present in tweets, like the
originator, date or geoposition can be retrieved and does not need to be explicitly
declared in patterns. Patterns also indicate if concepts have to appear in some
specific order, or allow the interleaving of concepts with other words. It is also
possible to specify that some concept cannot occur in a pattern, and whether
concepts are to be sought ignoring upper/lower case, accents, and permitting
missing vowels, as this is a usual idiom in tweets.

As a second step, our approach considers the description of actions by means
of the Twition DSL. Twition allows issuing queries using an SQL-like syntax.
They may refer to a set of matches of a pattern, as if they formed an SQL table,
and the concepts in the pattern, as if they were SQL columns. Three kinds of
specialized queries can be issued: Select (to select some concepts from a set of
tweets matching a pattern), Adding (to perform some arithmetical operation on
result sets), and Metadata queries (to obtain a result set made of some tweet
metadata). Similar to data stream management systems [1] we may query using
temporal windows. Currently, we support two kinds of temporal windows, one
considering all data, and another one with the last tweet (@newest annotation).
Once data becomes available from queries, messages can be composed and sent
to a collection of users either publicly (command tweet), or in private, directed
to a certain user (command message). In addition, received tweets can also be
retweeted, and be categorized as favorite. Other commands include facilities to
exchange data with an external source, and to signal the application end.

Each action has a name, so that actions can refer to the data they produce
simply by that name. The type of data does not need to be declared, but it is
inferred by simple rules. The execution model of Twition is based on data flow,
relying on data dependencies, the recommended execution model for reactive,
event-driven, scalable applications [3]. In this way, an action is performed as soon

vote.twi Twitter Pin Authorization y
pattern voteY [ordered loose-vowels ignore-case]= {question?, yes} 1 Please, push the ‘Sign-in’ Twitter button to open the
pattern voteN [ordered loose-vowels ignore-case]= {question?, no} authorization page and obtain a valid PIN to type in here
Open Twitter authorization website W Sign in with Twitter

concept question = {question, inquiry, enquiry, query, interrogation}

t - Input Twatter P 4720531
concept yes = {yes, [~ oo put Twiter Bin 7]

concept no = {no, “n [#2]the subject matter at lsue 2 =i| Remind this decision and don't ask me again 7
ubj i =
v [#3]a sentence of inuiry that asks for a reply & 4
[i ’
& Matching a1l | "0 @ —ry e
Pattern User Tweet vote.twi counttwig & -
o voteY & Angel Mora Ivote YES @VotingSample //counting
¥ voteN & Jesis).Lopez qustion no @VotingSample import "vote.twi”
voteY & Victoria Plaza Ithink it's affirmative @VotingSampl query CW‘:: : CW": N :ﬂm VOET 5
¥ voteN £ JohnDoel what @VotingSample suggests is fal it rom votels
voteY B Analépez My vote is Y @VotingSample . //thanks message
voteN M Belén Alcaide Ithink @VotingSample that is false @newest query users_voting : users from voteY union users from voteN;
message thanku ("Thanks for your vote.") to users_voting;
Direct messages > with | want you vote! tweet partialResults ("Partial results: (¥s) yes, (¥s) no", countY, countN
when (countY + countN) = 5.0;)
e e e -
VOTE
v Thanks for your vote. 7 Query Results
Twiagle results
Tweets
4 @ twiagle results 6
- . efies 4 @ Actions
| want you vete! @VofingSample - 1m © Queri © Aci
VOTE Fartial results: (3.0) yes, (2.0) no [count?] -> 30 3 (shank] -> Performed; true
o ¥Es; [countN] -> 2.0 ' [partialResults] -> Performed: true
Expand + @ [users_voting] s [results] -> Performed: false
[AngelMoraSegural [1037950970]
« i

Fig. 1: (1) Defining patterns with Twittern, (2) Using Wordnet, (3) Testing with live
tweets, (4) Authorizing Twiagle to use Twitter account data, (5) Defining actions with
Twition, (6) Execution Debug, (7) Results shown in the Twitter console.

as its data becomes available, unless it contains an explicit trigger, in which case
it is executed when the data is available and the trigger becomes true.

Twiagle includes a console to test patterns against live tweets, as well as an
execution debug, showing the results of queries and actions performed. The tool
is available at http://www.miso.es/tools/twiagle.html.

4 Conclusions and future work

In this paper, we have introduced Twiagle, a tool to build tweet-based appli-
cations. We are currently increasing the expressiveness of Twittern, improving
Twition with new primitives, taking inspiration from data-stream systems for
tweet querying. We are also working on the deployment mode, and considering
support for other social networks, enabling inter-platform applications.

Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In PODS, pages 1-16. ACM, 2002.

2. G. A. Miller. Wordnet: A lexical database for english. CACM, 38(11):39-41, 1995.

3. Reactive manifesto. http://www.reactivemanifesto.org.

