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Abstract. Chatbots are programs that supply services to users via 

conversation in natural language, acting as virtual assistants within social 

networks or web applications. Companies like Google, IBM, Microsoft or Amazon 

have released chatbot development tools with different functionalities, 

capabilities, approaches and pricing models. With so many options, companies 

that want to offer services through chatbots can find choosing the right tool 

difficult. To help them make an informed choice, we review the most 

representative chatbot development tools with a focus on technical and 

managerial aspects. 
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1. Introduction 

Chatbots are programs with a 

conversational user interface. Their 

popularity is rising because they enable 

accessing all sorts of services (e.g., 

booking flights, checking weather 

conditions) from web applications or social 

networks like Telegram, Twitter, Skype or 

Slack. This way, users can access those 

services without installing new apps and 

interacting with the service is simplified by 

the use of natural language (NL) [5]. 

Many companies are developing 

chatbots to automate customer support and 

provide ubiquitous access to the company 

services. At the same time, plenty of 

platforms and frameworks have emerged 

to ease chatbot construction. Large 

software companies like Google, 

Microsoft, IBM or Amazon have created 

chatbot development platforms, but many 

other alternatives exist. These platforms 

provide diverse functionality regarding 

natural language processing (NLP), the 

structure of the conversation flow, the 

ability to connect the chatbot to existing 

information systems, or the support for 

testing and deployment. 

Choosing the best chatbot 

development tool for a particular need is 

difficult. Making an incorrect tool decision 

may lead to non-compliance with chatbot 

technical requirements or with software 

development company policies. Some 

websites and informal blogs compare some 

available options to build chatbots [1, 2, 3, 

4], and researchers have identified aspects 

to consider in chatbot design (functional, 

integration, analytics and quality 

assurance) [8]. Instead, we analyse 

technical and managerial factors of the 

most representative chatbot creation tools, 

to help developers and managers in making 

informed choices on the optimal tools for 

their interest. This analysis can be used as 

a reading grid to select a tool based on 

technical criteria (e.g., “we need a chatbot 

to access our current information system 

by text and voice, in both English and 

Spanish,”) and managerial constraints 

(e.g., “my developers lack experience in 

developing chatbots, we do not have the 

capacity to deploy on-premises, and we 

are already using Amazon cloud”). 

http://miso.es/


 
Figure 1: (a) Example of user interaction. (b) Working scheme of a chatbot. 

 

2. What’s in a chatbot? 

A chatbot is a program supporting 

user interaction via conversation in NL, 

and normally accessible through the web 

or social networks. As an example, assume 

that a vet clinic has an information system 

with a database storing information about 

veterinarians and appointments, and 

decides to bring its services closer to 

customers by means of a chatbot to which 

customers can ask about opening hours and 

make appointments. This chatbot would 

allow the clinic to offer 24/7 service, 

reduce costs (e.g., decreasing customer 

telephone calls) and widen the potential 

customers. Figure 1(a) shows an example 

of a user interacting with the envisioned 

chatbot. 

As Figure 1(b) shows, a chatbot is 

organized around intents that represent 

possible user’s intentions and permit 

accessing the offered services. These 

intents typically reflect use cases of the 

chatbot. As an example, the chatbot for the 

clinic would define two intents: one to 

inform about opening hours, and another 

for making appointments. Upon receiving 

a user input in NL (label 1 in the figure), 

the chatbot identifies the matching intent 

(label 2). Depending on the intent, the 

chatbot may need to access external 

services, like the clinic database if the 

intent is setting an appointment (label 3). 

Finally, the chatbot replies to the user, e.g., 

confirming the appointment (label 4). 

Figure 2(a) shows a process diagram 

with the main activities that designing a 

chatbot entails. The development process 

is not necessarily linear, but often requires 

iteration. Moreover, activities like 

validation and testing are needed 

throughout the process. Figure 2(b) 

contains a structural diagram (a UML class 

diagram) with the constituent elements of a 

chatbot. The numbers in this diagram 

identify the process step where the 

elements are defined.   

First, developers must identify the 

intents that the chatbot will handle. While 

traditional applications typically offer their 

functionality via graphical interfaces, 

chatbots expose it through conversation. 

To match the intent corresponding to a 

user input phrase, developers can resort to 

NLP libraries – like the Stanford Parser 

[6] or the Natural Language Toolkit 

(NLTK) [7] – as they permit analysing the 

phrase structure and provide facilities for 

tokenizing and part-of-speech tagging, 

among others. This gives unlimited 

flexibility regarding the NL structure, but 

the implementation is costly. Hence, for 

narrow domains (like our clinic), it is 

simpler to train the chatbot with training 

phrases (i.e., examples of expected  



 
Figure 2: (a) Process diagram for chatbot design. (b) Structural diagram of chatbot 

concepts. 

 phrases) characterizing each intent. We can 

find libraries and services that apply 

machine learning for this purpose, like 

Microsoft’s LUIS (https://luis.ai) or Rasa 

NLU (https://rasa.com). These libraries 

also support extracting parameters from 

phrases. A parameter is a piece of relevant 

information that needs to be extracted from 

a phrase, such as the date of an 

appointment. Parameters are conformant to 

a given entity type. Most chatbot 

development tools provide predefined 

entities (e.g., dates, numbers) and 

developers can define new ones (e.g., pet 

types). In addition, chatbots may define 

fall-back intents, used when the chatbot 

does not recognize the user utterance. 

Besides intents, developers need to 

define the dialogue structure to 

accomplish a task. For example, after the 

user requests an appointment in Figure 

1(a), the chatbot asks the kind of pet and 

problem, and only then the appointment is 

fixed. For this purpose, the chatbot needs 

to store the dialogue state – often in so-

called contexts – to carry the information 

of previous input phrases through the 

stages of the conversation. 

Moreover, developers need to identify 

the actions that each intent triggers. These 

may comprise invocations to external 

services, and include the chatbot response 

either in NL or using rich messages or 

mechanisms specific to the deployment 

platform. In our example, the chatbot 

needs to access the clinic information 

system to check for available slots and set 

appointments, and replies with the 

appointed date and time. 

Finally, developers must deploy the 

chatbot in some channel. Typical channels 

are social networks, websites, or smart 

speakers like Amazon Echo or Google 

Home. In addition to NL, each channel 

may support specific interaction 

possibilities that can be exploited to obtain 

effective chatbots. For instance, to prompt 

the user to select among a small set of 

options (e.g., the available appointment 

slots within one day), presenting each 

option as a button can be less error-prone. 

However, different channels may support 

distinct interaction mechanisms. For 

example, Telegram supports buttons, but 

Twitter and intelligent speakers do not. 

3. Choosing a tool based on 
technical factors 

The growing popularity of chatbots 

has caused the emergence of many tools 

for their construction. These range from 

low-level NLP services helping in the 

encoding of intents and their training 

phrases, to comprehensive low-code 

https://luis.ai/
https://rasa.com/docs/rasa/nlu/about/


development platforms covering most 

steps in the chatbot creation process. 

Table 1 compares the main available 

software options for chatbot construction. 

It includes proposals of both large 

companies (Dialogflow by Google, Watson 

by IBM, Lex by Amazon, Bot Framework 

and LUIS by Microsoft) and younger 

chatbot specialized companies (FlowXO, 

Landbot.io, Chatfuel, Rasa, SmartLoop, 

Xenioo, Botkit which has been recently 

acquired by Microsoft, ChatterBot and 

Pandorabots). All are domain-independent 

but Chatfuel, which targets marketing 

applications. 

The features analysed in the table 

stem from a thorough analysis of each tool. 

We distinguish between technical features 

(e.g., input processing) which are 

discussed in this section, and managerial 

features (e.g., pricing model) presented in 

the next section. 

The first row in the table indicates 

whether the software is a library, a 

framework, a platform or a service. While 

platforms and frameworks offer support 

for the whole bot creation life-

cycle, services and libraries support only 

some steps, typically related to NLP. 

Frameworks provide sets of classes that 

need to be complemented with custom 

code for each created chatbot, and hence 

chatbots are built via programming. Most 

platforms are cloud-based, low-code 

development environments to define 

chatbots graphically or via forms, and 

frequently support hosting the deployed 

chatbot logic for a channel. In addition, 

some platforms and frameworks (e.g., 

Dialogflow, Bot Framework, Rasa) also 

support the use of their NLP modules via 

services.  

Rows 2–26 in the table analyse 

decisive technical dimensions when 

selecting a chatbot development tool. 

These comprise aspects related to the 

processing of the user input text (rows 2–

7), the dialogue support (rows 8–13), the 

chatbot deployment (rows 14–15), the 

integration with other systems (rows 16–

17), testing and development support (rows 

18–22), execution support (rows 23–25) 

and security aspects (row 26). 

Input processing. Some approaches allow 

defining the expected input phrases using 

regular expressions or patterns (row #2), 

while others permit specifying intents via 

training phrases and then apply NLP (row 

#3). In addition, platforms like Landbot.io 

also support user inputs by means of 

buttons and widgets. Most approaches 

based on NLP can identify parameters in 

the input phrases, with the exception of 

Chatfuel and ChatterBot (row #4). Another 

important aspect in NLP is the language 

support (row #5). All approaches consider 

some of the most spoken languages 

(English, Spanish), and some platforms 

excel for their wide language support (e.g., 

Dialogflow includes 22). Interestingly, 

Rasa can use pre-trained language models 

(e.g., fastText word vectors are available 

for hundreds of languages [9]) but 

developers can train their own. Only a few 

approaches – the NLP service LUIS, 

Watson, Lex, Bot Framework, and the 

Enterprise non-free edition of Dialogflow – 

provide sentence sentiment analysis, which 

can be useful in specific domains such as 

marketing. Finally, in addition to text, 

several approaches natively support voice-

based interaction (row #7). This interaction 

kind could be added by hand to approaches 

based on programming languages (e.g., 

Botkit) or which are open source. 

Dialogue. This dimension looks at the 

capabilities to organize the conversation 

flow. All platforms and most frameworks 

automatically store the parameter values 

extracted from user phrases to allow their 

reuse in the future, while libraries require 

programming this facility (row #8). This 

storage can be volatile (active only during 

the current user interaction) or persistent. 

Intents and entities (rows #9 and #10) are 

common primitives of platforms like 

Dialogflow, Watson and Lex. Approaches 



Table 1: Comparison of chatbot libraries, frameworks, platforms and services. 

 

supporting NLP define intents by sets of 

training phrases. These phrases may be 

examples of expected user utterances, or to 

improve the user experience, they may be 

obtained from existing conversation logs 

(e.g., when migrating a traditional 

customer support system into a chatbot). 

Regarding the dialogue structure (row 

#11), we find two main definition styles: 

explicitly by means of a conversation tree 

where nodes correspond to dialogue steps, 

or implicitly via dependent contexts and 
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1. Kind (Library, Framework, Platform, Service) P P P F P P P F P P F S L P

2. Regular expressions/patterns             

3. NLP for phrase match          

4. Text processing to obtain phrase parameters         

5. Number of languages: very high (≥50), high (≥10), some 

(<10), 1 (represented with flag)
h h h h h v s h v

6. Sentiment analysis     

7. Speech recognition      

8. Storage of phrase parameters: volatile, persistent, both b b b b b v v b v v v v

9. Support for intents         

10. Support for entities: predefined, user-def, both b b b b p p b b b b

11. Dialogue structure: tree, followup intents, dsl f f f f t t t t f t f d

12. Utterances to reengage users    

13. Specification of chatbot answers            

14. Integration with social networks/websites: high (≥10), 

some (<10), 1 (represented with logo)
h s s h s h s s s s

15. Interaction support for specific social networks    

16. Call to services from chatbot         

17. Chatbot usage via API       

18. Pre-built components: chatbot templates, intents, small 

talks, services
cts c i cs c c c t

19. Version control: native, code-based n n n c c c c

20. Chat console for testing           

21. Debug mechanisms     

22. Validation support 

23. Hosted deployment           

24. Support for analytics       

25. User message persistence        

S
ec 26. Cloud security     
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28. Developer expertise: low, high l l l h l l l h l l h h h l

29. Code hosting: external, on-premises e e e o e e e o e e o o o e

30. Group work     
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32. Open source   

33. New channels    

34. No vendor lock-in    
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follow-up intents which are activated upon 

matching their parent intent (e.g., an intent 

for making appointments which declares a 

follow-up intent to inform the kind of pet). 

More differently, Pandorabots uses the 

Artificial Intelligence Markup Language 

(AIML, http://www.aiml.foundation/), an 

XML format from the ‘90s aimed to be a 

scripting standard for chatbots. Being 

based on templates, it is in stark 

contraposition to modern approaches based 

on NLP. Some platforms also permit 

defining utterances that the chatbot can use 

to reengage unresponsive users (row #12). 

Finally, all approaches but LUIS and Botkit 

permit specifying the chatbot answers (row 

#13). 

Deployment. While some approaches 

allow deploying chatbots in many social 

networks, others target specific ones (row 

#14). For example, Chatfuel chatbots are 

specific for Facebook messenger, 

Landbot.io chatbots can be deployed just 

on WhatsApp Business and websites, while 

Dialogflow has 15 channel integrations 

including websites, services like Skype, 

intelligent speakers and social networks 

like Slack, Viber, Twitter and Telegram. 

Libraries and services lack deployment 

options, since this is out of their scope. In 

addition, Dialogflow, Bot Framework, 

Xenioo and Pandorabots permit including 

custom interaction mechanisms for the 

selected channel, like buttons in Telegram 

(row #15). 

System integration. Several approaches 

enable calling services from the chatbots 

(row #16). In some cases, like Dialogflow, 

this is done by associating the URL of the 

service to an intent, so that matching the 

intent triggers a POST message to the 

service. In other cases, it is possible to 

define programs with custom code. For 

this purpose, Dialogflow supports Cloud 

Functions for Firebase, and Lex supports 

AWS lambdas. 

Conversely, some approaches offer an 

API that permits integrating parts of the 

chatbots with existing applications (row 

#17). For example, Dialogflow chatbots 

can be used programmatically to check the 

most probable matching intent given a user 

phrase. 

Development and testing. Some tools 

offer pre-built components that can be 

added into new chatbots (row #18). These 

include generic chatbot templates (e.g., for 

a coffee shop or a hotel booking system), 

predefined intents, predefined small talks 

(answers to simple phrases and questions), 

or services (e.g., to build a Q&A chatbot 

from a knowledge base). Regarding 

version control (row #19), all frameworks 

and libraries rely on code and can be used 

with any generic version control system, 

while only some platforms (Dialogflow, 

Watson and Lex) give native support for 

versioning though this is simpler than 

state-of-the-art versioning systems like 

GitHub. 

As for testing, most approaches 

provide a web chat console to test the 

chatbots manually (row #20). For 

debugging (row #21), frameworks and 

libraries can rely on the support of the 

programming language, while only one 

platform (Dialogflow) offers debugging 

facilities to inspect the matched intent and 

related information. In addition, 

Dialogflow incorporates checks of the 

chatbot quality, such as detecting intents 

with similar training phrases (row #22). 

Execution. Once a chatbot is defined, all 

platforms and most frameworks support its 

execution on their clouds (row #23). This 

solution can be optimal for many 

companies, especially if they already use 

the cloud services of the platform vendor 

(e.g., Google, Azure or AWS); however, 

this may not be always suitable. In some 

cases, like Watson, there is a special 

pricing plan to deploy the chatbot on third-

party clouds. Finally, some approaches 

permit obtaining analytics about the 

chatbot usage (row #24) or persisting the 

user phrases (row #25). Developers might 

find the latter feature useful to adjust the 

accuracy of the intent recognition and 

improve the user experience [10]. 

Approaches like Watson automate this 

http://www.aiml.foundation/


task, while others like Dialogflow require 

uploading the conversation logs and 

retraining. 

Security. Chatbots may need to 

incorporate security aspects, especially if 

they work with private user data. While in 

general, implementing any security 

capability is the developers’ responsibility, 

some tools can provide a security layer 

atop the cloud where the chatbot is 

deployed (row #26). Hence, approaches 

without deployment services do not offer 

this possibility natively. Instead, 

Dialogflow, Watson, Lex and Azure 

(Microsoft cloud for the Bot Framework 

and LUIS) provide a layer with features 

like firewalls; authentication and 

authorization when used via API; and 

secure connections (e.g., SSL or 

HTTPS/TLS). In addition, social networks 

like Whatsapp or Telegram support 

message encryption and user 

authentication. 

4. Adding managerial factors 
to the equation 

In addition to technical factors, some 

managerial factors may influence the 

selection of a development tool. Rows 27–

34 in Table 1 classify those factors among 

organizational, related to development, or 

operational. We elicited those factors by a 

thorough analysis of the tools’ features, 

and classified them using as a basis typical 

concerns in software projects. 

Organizational factors. A critical 

selection factor is the pricing model of the 

approach (row #27). Most offer a free 

version suitable for small businesses or for 

experimentation (e.g., Dialogflow provides 

five free assistants and Watson supports 

10,000 API calls). In addition, they 

provide other pricing models, typically 

collecting small fees for every interaction 

with the chatbot (the pay-as-you-go option 

of Dialogflow), limiting the number of 

interactions or active chatbots (the 

different plans of FlowXO), or supplying 

advanced features (e.g., webhooks in 

Landbot.io are not free). 

The expertise of the development 

team on chatbot-related technology is also 

important (row #28). Development 

platforms allow creating simple chatbots 

with no need for coding and require less 

expertise than approaches based on 

programming, though these latter are less 

constrained. 

Development related factors. Like any 

kind of software, chatbot construction 

should follow proper engineering 

processes. In this respect, using a platform 

may be problematic if the chatbot 

development has to be harmonized with 

the company development culture and 

processes. For example, platforms host the 

chatbot specifications on their clouds, 

while the backend needs to reside in a 

different place; instead, chatbots developed 

with libraries, frameworks and services can 

run on-premises (row #29). Likewise, 

some code facilities such as versioning or 

debugging are standard for frameworks 

and libraries but may be unavailable for 

some platforms. The same applies to group 

work (row #30): platforms currently do not 

support synchronous collaborative 

development, so working on different parts 

of a chatbot cannot be parallelised among 

developers. 

Depending on the domain or the 

company strategy, the need to support 

several languages (i8n) can be necessary 

(row #31). Rather than developing a 

chatbot for each language, platforms like 

Dialogflow offer multi-language support 

by enabling the specification of different 

training phrases for each language over the 

same intent. 

Interestingly, among the reviewed 

approaches, only the community edition of 

Rasa, Botkit and ChatterBot are open 

source (row #32). No platform is open 

source, which may result in vendor lock-in, 

but it is possible to make public the chatbot 

specifications built with any platform. 

Operational factors. Once a chatbot is in 

operation, the need to deploy it in novel 



channels or new versions of existing ones 

may arise (row #33). If the chatbot was 

developed using a platform, the available 

deployment options might be limited (e.g., 

Watson does not provide out-of-the-box 

deployment in Telegram). Libraries and 

(extensible) frameworks like Rasa, Botkit, 

LUIS and ChatterBot are more flexible, as 

they allow the manual implementation of 

the required deployment. 

Finally, platform-based approaches 

imply vendor lock-in as there are currently 

no migration tools using neutral exchange 

formats between platforms (row #34); 

however, an advantage of platforms is the 

ability to use the services of the provider 

(IBM, Google). Instead, libraries and 

frameworks require coding the chatbot 

logic in a programming language (like 

Python in case of Rasa), which brings 

more independence and safety with respect 

to possible policy changes of the platform 

owner company. This independence is 

stronger in open-source systems (row #32) 

since they could even be personalized to 

the developer needs. 

5. Building a chatbot in 
practice 

Practitioners can exploit the 

information in Table 1 to select the best 

tool depending on the scenario. While this 

analysis can be hand-crafted, we envision a 

recommender system that automatically 

identifies the optimal tools from the 

chatbot requirements. 

As an illustration, let’s assume two 

scenarios for our vet clinic chatbot. In the 

first one, the clinic wants to reach as many 

potential clients as possible, so it asks for a 

chatbot that is multi-language and works 

on different social networks and intelligent 

speakers. Moreover, the software company 

that will develop the chatbot lacks the 

infrastructure to host the bot. Given these 

requirements, the only suitable chatbot 

creation tool is Dialogflow.  

In the second scenario, the clinic is in 

a process of expansion so the chatbot may 

be likely extended in the future. Hence, the 

software company is thinking of using 

either Rasa or Botkit to avoid vendor lock-

in. Since the company has an expert team 

of Python developers, and wants to have 

support for debugging and testing, it opts 

for Rasa. 

We have built prototypical chatbots 

using the tools selected in the scenarios: 

Dialogflow and Rasa. The chatbots 

communicate with a backend that holds a 

database written in Java and PostgreSQL. 

The chatbots for Telegram, including their 

specification, are available at 

https://github.com/SaraPerezSoler/VetClinic. 

The chatbot specification in 

Dialogflow has four intents: a welcome 

intent, a fall-back intent, an intent to query 

the opening hours, and another to set 

appointments. The welcome and fall-back 

intents were predefined in Dialogflow and 

reused in our chatbot without modification. 

To make the chatbot multi-language, each 

intent has to be trained with phrases in 

every targeted language. The appointment 

intent has a follow-up asking for the type 

of pet. This control flow is specified via a 

context. We defined an entity to recognise 

pet types, and reused the date and time 

system entities. The backend is 

accessed by a webhook that calls the 

database service via a POST request; 

alternatively, the behaviour could be 

implemented with a JavaScript in-line 

editor available in the platform. The 

deployment in Telegram was 

straightforward using Dialogflow’s 

integration options, and there are 

integrations for intelligent speakers as 

well. 

Differently from Dialogflow, creating 

a chatbot in Rasa is not done via a 

graphical interface, but requires 

programming in Python and defining 

configuration files (YAML and 

markdown) storing the entities, intents, 

conversation flow, training phrases, bot 

responses, actions, forms, NLP 

configuration and credentials to access 

external services. The Rasa chatbot has 

one fall-back action and three intents: 

https://github.com/SaraPerezSoler/VetClinic


greeting, time and make_appointment. To 

define the parameters of the last intent, we 

subclassed a specific Rasa class to store 

the name and type of the parameters, 

validation methods, and other details. The 

chatbot actions (e.g., querying the 

database, calling external services) were 

programmed in Python as well. The 

chatbot behaviour can be debugged and 

tested using standard Python tooling. 

Unlike Dialogflow, the developer must 

perform the chatbot deployment as Rasa 

does not host bots. 

6. Open Challenges 

Overall, the existing tools cover a 

wide spectrum of possibilities to ease 

chatbot creation in different scenarios. 

However, designing, developing and 

testing chatbots still pose some challenges. 

First, most platforms offer general, 

informal guidelines for chatbot design, but 

design patterns and quality metrics for 

chatbots are missing. With regards to 

development, most tools rely on training 

phrases to specify intents; while this is 

suitable in closed domains, supporting less 

constrained conversations would require 

the tools to incorporate more sophisticated 

NLP mechanisms [13, 14] and better 

support to expand the training set using 

techniques such as reinforcement learning 

(e.g., via trial-and-error conversations with 

real or simulated users). Also related to 

quality, existing tools give poor support for 

testing chatbots in a systematic and 

automated manner; at best, they provide a 

console for manual testing, and basic 

debugging mechanisms (rows 20–21 in 

Table 1). Some dedicated testing tools are 

emerging, like https://www.botium.at/.  

Ultimately, the success of a chatbot 

depends on its usability and the user 

experience. Some technical factors in 

Table 1 may help to improve this usability: 

NLP enables more natural conversations, 

phrase parameters avoid users to provide a 

different sentence per piece of information, 

sentiment analysis can contribute to better 

grasp the meaning of a phrase and act 

accordingly, speech recognition supports 

spoken conversation, rich dialog 

structuring mechanisms allow more 

sophisticated conversation flows, and 

message persistence can be exploited to 

improve chatbot accuracy by the analysis 

of real conversations. To complement this, 

chatbot development tools should invest in 

embedding guidelines and heuristics 

targeted to chatbot usability [11, 12].  

Chatbot development tools are 

rapidly expanding, but we believe that 

after diversification comes unification. The 

analysed technologies use their own 

proprietary formats to define chatbots, and 

automated migration tools are missing. To 

unify the different approaches, the W3C is 

developing a standard for conversational 

agents (https://www.w3.org/community/conv/), 

and some open-source initiatives aim to 

integrate the best of every chatbot 

platform, helping to solve the vendor lock-

in problem [15]. 
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