
Choosing a chatbot development tool

Sara Pérez-Soler, Sandra Juárez-Puerta, Esther Guerra, Juan de Lara

Modelling and Software Engineering Research Group

http://miso.es

Computer Science Department

Universidad Autónoma de Madrid (Spain)

Abstract. Chatbots are programs that supply services to users via

conversation in natural language, acting as virtual assistants within social

networks or web applications. Companies like Google, IBM, Microsoft or Amazon

have released chatbot development tools with different functionalities,

capabilities, approaches and pricing models. With so many options, companies

that want to offer services through chatbots can find choosing the right tool

difficult. To help them make an informed choice, we review the most

representative chatbot development tools with a focus on technical and

managerial aspects.

Keywords: Software Engineering, Chatbots, Natural Language Processing

1. Introduction

Chatbots are programs with a

conversational user interface. Their

popularity is rising because they enable

accessing all sorts of services (e.g.,

booking flights, checking weather

conditions) from web applications or social

networks like Telegram, Twitter, Skype or

Slack. This way, users can access those

services without installing new apps and

interacting with the service is simplified by

the use of natural language (NL) [5].

Many companies are developing

chatbots to automate customer support and

provide ubiquitous access to the company

services. At the same time, plenty of

platforms and frameworks have emerged

to ease chatbot construction. Large

software companies like Google,

Microsoft, IBM or Amazon have created

chatbot development platforms, but many

other alternatives exist. These platforms

provide diverse functionality regarding

natural language processing (NLP), the

structure of the conversation flow, the

ability to connect the chatbot to existing

information systems, or the support for

testing and deployment.

Choosing the best chatbot

development tool for a particular need is

difficult. Making an incorrect tool decision

may lead to non-compliance with chatbot

technical requirements or with software

development company policies. Some

websites and informal blogs compare some

available options to build chatbots [1, 2, 3,

4], and researchers have identified aspects

to consider in chatbot design (functional,

integration, analytics and quality

assurance) [8]. Instead, we analyse

technical and managerial factors of the

most representative chatbot creation tools,

to help developers and managers in making

informed choices on the optimal tools for

their interest. This analysis can be used as

a reading grid to select a tool based on

technical criteria (e.g., “we need a chatbot

to access our current information system

by text and voice, in both English and

Spanish,”) and managerial constraints

(e.g., “my developers lack experience in

developing chatbots, we do not have the

capacity to deploy on-premises, and we

are already using Amazon cloud”).

http://miso.es/

Figure 1: (a) Example of user interaction. (b) Working scheme of a chatbot.

2. What’s in a chatbot?

A chatbot is a program supporting

user interaction via conversation in NL,

and normally accessible through the web

or social networks. As an example, assume

that a vet clinic has an information system

with a database storing information about

veterinarians and appointments, and

decides to bring its services closer to

customers by means of a chatbot to which

customers can ask about opening hours and

make appointments. This chatbot would

allow the clinic to offer 24/7 service,

reduce costs (e.g., decreasing customer

telephone calls) and widen the potential

customers. Figure 1(a) shows an example

of a user interacting with the envisioned

chatbot.

As Figure 1(b) shows, a chatbot is

organized around intents that represent

possible user’s intentions and permit

accessing the offered services. These

intents typically reflect use cases of the

chatbot. As an example, the chatbot for the

clinic would define two intents: one to

inform about opening hours, and another

for making appointments. Upon receiving

a user input in NL (label 1 in the figure),

the chatbot identifies the matching intent

(label 2). Depending on the intent, the

chatbot may need to access external

services, like the clinic database if the

intent is setting an appointment (label 3).

Finally, the chatbot replies to the user, e.g.,

confirming the appointment (label 4).

Figure 2(a) shows a process diagram

with the main activities that designing a

chatbot entails. The development process

is not necessarily linear, but often requires

iteration. Moreover, activities like

validation and testing are needed

throughout the process. Figure 2(b)

contains a structural diagram (a UML class

diagram) with the constituent elements of a

chatbot. The numbers in this diagram

identify the process step where the

elements are defined.

First, developers must identify the

intents that the chatbot will handle. While

traditional applications typically offer their

functionality via graphical interfaces,

chatbots expose it through conversation.

To match the intent corresponding to a

user input phrase, developers can resort to

NLP libraries – like the Stanford Parser

[6] or the Natural Language Toolkit

(NLTK) [7] – as they permit analysing the

phrase structure and provide facilities for

tokenizing and part-of-speech tagging,

among others. This gives unlimited

flexibility regarding the NL structure, but

the implementation is costly. Hence, for

narrow domains (like our clinic), it is

simpler to train the chatbot with training

phrases (i.e., examples of expected

Figure 2: (a) Process diagram for chatbot design. (b) Structural diagram of chatbot

concepts.

 phrases) characterizing each intent. We can

find libraries and services that apply

machine learning for this purpose, like

Microsoft’s LUIS (https://luis.ai) or Rasa

NLU (https://rasa.com). These libraries

also support extracting parameters from

phrases. A parameter is a piece of relevant

information that needs to be extracted from

a phrase, such as the date of an

appointment. Parameters are conformant to

a given entity type. Most chatbot

development tools provide predefined

entities (e.g., dates, numbers) and

developers can define new ones (e.g., pet

types). In addition, chatbots may define

fall-back intents, used when the chatbot

does not recognize the user utterance.

Besides intents, developers need to

define the dialogue structure to

accomplish a task. For example, after the

user requests an appointment in Figure

1(a), the chatbot asks the kind of pet and

problem, and only then the appointment is

fixed. For this purpose, the chatbot needs

to store the dialogue state – often in so-

called contexts – to carry the information

of previous input phrases through the

stages of the conversation.

Moreover, developers need to identify

the actions that each intent triggers. These

may comprise invocations to external

services, and include the chatbot response

either in NL or using rich messages or

mechanisms specific to the deployment

platform. In our example, the chatbot

needs to access the clinic information

system to check for available slots and set

appointments, and replies with the

appointed date and time.

Finally, developers must deploy the

chatbot in some channel. Typical channels

are social networks, websites, or smart

speakers like Amazon Echo or Google

Home. In addition to NL, each channel

may support specific interaction

possibilities that can be exploited to obtain

effective chatbots. For instance, to prompt

the user to select among a small set of

options (e.g., the available appointment

slots within one day), presenting each

option as a button can be less error-prone.

However, different channels may support

distinct interaction mechanisms. For

example, Telegram supports buttons, but

Twitter and intelligent speakers do not.

3. Choosing a tool based on
technical factors

The growing popularity of chatbots

has caused the emergence of many tools

for their construction. These range from

low-level NLP services helping in the

encoding of intents and their training

phrases, to comprehensive low-code

https://luis.ai/
https://rasa.com/docs/rasa/nlu/about/

development platforms covering most

steps in the chatbot creation process.

Table 1 compares the main available

software options for chatbot construction.

It includes proposals of both large

companies (Dialogflow by Google, Watson

by IBM, Lex by Amazon, Bot Framework

and LUIS by Microsoft) and younger

chatbot specialized companies (FlowXO,

Landbot.io, Chatfuel, Rasa, SmartLoop,

Xenioo, Botkit which has been recently

acquired by Microsoft, ChatterBot and

Pandorabots). All are domain-independent

but Chatfuel, which targets marketing

applications.

The features analysed in the table

stem from a thorough analysis of each tool.

We distinguish between technical features

(e.g., input processing) which are

discussed in this section, and managerial

features (e.g., pricing model) presented in

the next section.

The first row in the table indicates

whether the software is a library, a

framework, a platform or a service. While

platforms and frameworks offer support

for the whole bot creation life-

cycle, services and libraries support only

some steps, typically related to NLP.

Frameworks provide sets of classes that

need to be complemented with custom

code for each created chatbot, and hence

chatbots are built via programming. Most

platforms are cloud-based, low-code

development environments to define

chatbots graphically or via forms, and

frequently support hosting the deployed

chatbot logic for a channel. In addition,

some platforms and frameworks (e.g.,

Dialogflow, Bot Framework, Rasa) also

support the use of their NLP modules via

services.

Rows 2–26 in the table analyse

decisive technical dimensions when

selecting a chatbot development tool.

These comprise aspects related to the

processing of the user input text (rows 2–

7), the dialogue support (rows 8–13), the

chatbot deployment (rows 14–15), the

integration with other systems (rows 16–

17), testing and development support (rows

18–22), execution support (rows 23–25)

and security aspects (row 26).

Input processing. Some approaches allow

defining the expected input phrases using

regular expressions or patterns (row #2),

while others permit specifying intents via

training phrases and then apply NLP (row

#3). In addition, platforms like Landbot.io

also support user inputs by means of

buttons and widgets. Most approaches

based on NLP can identify parameters in

the input phrases, with the exception of

Chatfuel and ChatterBot (row #4). Another

important aspect in NLP is the language

support (row #5). All approaches consider

some of the most spoken languages

(English, Spanish), and some platforms

excel for their wide language support (e.g.,

Dialogflow includes 22). Interestingly,

Rasa can use pre-trained language models

(e.g., fastText word vectors are available

for hundreds of languages [9]) but

developers can train their own. Only a few

approaches – the NLP service LUIS,

Watson, Lex, Bot Framework, and the

Enterprise non-free edition of Dialogflow –

provide sentence sentiment analysis, which

can be useful in specific domains such as

marketing. Finally, in addition to text,

several approaches natively support voice-

based interaction (row #7). This interaction

kind could be added by hand to approaches

based on programming languages (e.g.,

Botkit) or which are open source.

Dialogue. This dimension looks at the

capabilities to organize the conversation

flow. All platforms and most frameworks

automatically store the parameter values

extracted from user phrases to allow their

reuse in the future, while libraries require

programming this facility (row #8). This

storage can be volatile (active only during

the current user interaction) or persistent.

Intents and entities (rows #9 and #10) are

common primitives of platforms like

Dialogflow, Watson and Lex. Approaches

Table 1: Comparison of chatbot libraries, frameworks, platforms and services.

supporting NLP define intents by sets of

training phrases. These phrases may be

examples of expected user utterances, or to

improve the user experience, they may be

obtained from existing conversation logs

(e.g., when migrating a traditional

customer support system into a chatbot).

Regarding the dialogue structure (row

#11), we find two main definition styles:

explicitly by means of a conversation tree

where nodes correspond to dialogue steps,

or implicitly via dependent contexts and

D
ia

lo
g

fl
o

w
 (

G
o

o
g

le
)

[v
2

]

W
a
ts

o
n

 (
IB

M
)

[v
2

]

L
e
x

 (
A

m
a
z
o

n
)

[0
7

/0
6

/2
0

2
0

]

B
o

t
F

ra
m

e
w

o
rk

 +
 L

U
IS

 (
M

ic
ro

so
ft

)
[v

4
]

F
lo

w
X

O
 [

0
7

/0
6

/2
0

2
0

]

L
a
n

d
b

o
t.

io
 [

0
7

/0
6

/2
0

2
0

]

C
h

a
tf

u
e
l

[0
7

/0
6

/2
0

2
0

]

R
a
sa

 [
1

0
.1

.2
]

S
m

a
rt

L
o

o
p

 [
0

7
/0

6
/2

0
2

0
]

X
e
n

io
o

 [
0

7
/0

6
/2

0
2

0
]

B
o

tk
it

 (
p

a
rt

 o
f

B
o

t
F

ra
m

e
w

o
rk

)
[4

.9
.0

]

L
U

IS
 [

0
5

/1
9/
2

0
2

0
]

C
h

a
tt

e
rB

o
t

[1
.0

.5
]

P
a
n

d
o

ra
b

o
ts

 [
0

7
/0

6
/2

0
2

0
]

1. Kind (Library, Framework, Platform, Service) P P P F P P P F P P F S L P

2. Regular expressions/patterns

3. NLP for phrase match

4. Text processing to obtain phrase parameters

5. Number of languages: very high (≥50), high (≥10), some

(<10), 1 (represented with flag)
h h h h h v s h v

6. Sentiment analysis

7. Speech recognition

8. Storage of phrase parameters: volatile, persistent, both b b b b b v v b v v v v

9. Support for intents

10. Support for entities: predefined, user-def, both b b b b p p b b b b

11. Dialogue structure: tree, followup intents, dsl f f f f t t t t f t f d

12. Utterances to reengage users

13. Specification of chatbot answers

14. Integration with social networks/websites: high (≥10),

some (<10), 1 (represented with logo)
h s s h s h s s s s

15. Interaction support for specific social networks

16. Call to services from chatbot

17. Chatbot usage via API

18. Pre-built components: chatbot templates, intents, small

talks, services
cts c i cs c c c t

19. Version control: native, code-based n n n c c c c

20. Chat console for testing

21. Debug mechanisms

22. Validation support

23. Hosted deployment

24. Support for analytics

25. User message persistence

S
ec 26. Cloud security

27. Pricing model: free, pay-as-you-go, quota, advanced feats fp fp fp fpa fq fa fa fa fa fq f fq f fqa

28. Developer expertise: low, high l l l h l l l h l l h h h l

29. Code hosting: external, on-premises e e e o e e e o e e o o o e

30. Group work

31. i8n

32. Open source

33. New channels

34. No vendor lock-in

In
p

u
t

p
ro

c
e
ss

in
g

D
ia

lo
g

u
e

D
e
p

lo
y

m
e

n
t

M
a

n
a

g
er

ia
l

F
a

ct
o

rs
T

ec
h

n
ic

a
l

F
a

ct
o

rs

O
rg

an
i

za
ti

o
n

D
e
v

e
lo

p
m

e
n

t
O

p
e
ra

ti
o

n
a
l

S
y

s.

in
te

g
.

D
e
v

e
lo

p
m

e
n

t
a
n

d

te
st

in
g

E

x
ec

u
ti

o
n

follow-up intents which are activated upon

matching their parent intent (e.g., an intent

for making appointments which declares a

follow-up intent to inform the kind of pet).

More differently, Pandorabots uses the

Artificial Intelligence Markup Language

(AIML, http://www.aiml.foundation/), an

XML format from the ‘90s aimed to be a

scripting standard for chatbots. Being

based on templates, it is in stark

contraposition to modern approaches based

on NLP. Some platforms also permit

defining utterances that the chatbot can use

to reengage unresponsive users (row #12).

Finally, all approaches but LUIS and Botkit

permit specifying the chatbot answers (row

#13).

Deployment. While some approaches

allow deploying chatbots in many social

networks, others target specific ones (row

#14). For example, Chatfuel chatbots are

specific for Facebook messenger,

Landbot.io chatbots can be deployed just

on WhatsApp Business and websites, while

Dialogflow has 15 channel integrations

including websites, services like Skype,

intelligent speakers and social networks

like Slack, Viber, Twitter and Telegram.

Libraries and services lack deployment

options, since this is out of their scope. In

addition, Dialogflow, Bot Framework,

Xenioo and Pandorabots permit including

custom interaction mechanisms for the

selected channel, like buttons in Telegram

(row #15).

System integration. Several approaches

enable calling services from the chatbots

(row #16). In some cases, like Dialogflow,

this is done by associating the URL of the

service to an intent, so that matching the

intent triggers a POST message to the

service. In other cases, it is possible to

define programs with custom code. For

this purpose, Dialogflow supports Cloud

Functions for Firebase, and Lex supports

AWS lambdas.

Conversely, some approaches offer an

API that permits integrating parts of the

chatbots with existing applications (row

#17). For example, Dialogflow chatbots

can be used programmatically to check the

most probable matching intent given a user

phrase.

Development and testing. Some tools

offer pre-built components that can be

added into new chatbots (row #18). These

include generic chatbot templates (e.g., for

a coffee shop or a hotel booking system),

predefined intents, predefined small talks

(answers to simple phrases and questions),

or services (e.g., to build a Q&A chatbot

from a knowledge base). Regarding

version control (row #19), all frameworks

and libraries rely on code and can be used

with any generic version control system,

while only some platforms (Dialogflow,

Watson and Lex) give native support for

versioning though this is simpler than

state-of-the-art versioning systems like

GitHub.

As for testing, most approaches

provide a web chat console to test the

chatbots manually (row #20). For

debugging (row #21), frameworks and

libraries can rely on the support of the

programming language, while only one

platform (Dialogflow) offers debugging

facilities to inspect the matched intent and

related information. In addition,

Dialogflow incorporates checks of the

chatbot quality, such as detecting intents

with similar training phrases (row #22).

Execution. Once a chatbot is defined, all

platforms and most frameworks support its

execution on their clouds (row #23). This

solution can be optimal for many

companies, especially if they already use

the cloud services of the platform vendor

(e.g., Google, Azure or AWS); however,

this may not be always suitable. In some

cases, like Watson, there is a special

pricing plan to deploy the chatbot on third-

party clouds. Finally, some approaches

permit obtaining analytics about the

chatbot usage (row #24) or persisting the

user phrases (row #25). Developers might

find the latter feature useful to adjust the

accuracy of the intent recognition and

improve the user experience [10].

Approaches like Watson automate this

http://www.aiml.foundation/

task, while others like Dialogflow require

uploading the conversation logs and

retraining.

Security. Chatbots may need to

incorporate security aspects, especially if

they work with private user data. While in

general, implementing any security

capability is the developers’ responsibility,

some tools can provide a security layer

atop the cloud where the chatbot is

deployed (row #26). Hence, approaches

without deployment services do not offer

this possibility natively. Instead,

Dialogflow, Watson, Lex and Azure

(Microsoft cloud for the Bot Framework

and LUIS) provide a layer with features

like firewalls; authentication and

authorization when used via API; and

secure connections (e.g., SSL or

HTTPS/TLS). In addition, social networks

like Whatsapp or Telegram support

message encryption and user

authentication.

4. Adding managerial factors
to the equation

In addition to technical factors, some

managerial factors may influence the

selection of a development tool. Rows 27–

34 in Table 1 classify those factors among

organizational, related to development, or

operational. We elicited those factors by a

thorough analysis of the tools’ features,

and classified them using as a basis typical

concerns in software projects.

Organizational factors. A critical

selection factor is the pricing model of the

approach (row #27). Most offer a free

version suitable for small businesses or for

experimentation (e.g., Dialogflow provides

five free assistants and Watson supports

10,000 API calls). In addition, they

provide other pricing models, typically

collecting small fees for every interaction

with the chatbot (the pay-as-you-go option

of Dialogflow), limiting the number of

interactions or active chatbots (the

different plans of FlowXO), or supplying

advanced features (e.g., webhooks in

Landbot.io are not free).

The expertise of the development

team on chatbot-related technology is also

important (row #28). Development

platforms allow creating simple chatbots

with no need for coding and require less

expertise than approaches based on

programming, though these latter are less

constrained.

Development related factors. Like any

kind of software, chatbot construction

should follow proper engineering

processes. In this respect, using a platform

may be problematic if the chatbot

development has to be harmonized with

the company development culture and

processes. For example, platforms host the

chatbot specifications on their clouds,

while the backend needs to reside in a

different place; instead, chatbots developed

with libraries, frameworks and services can

run on-premises (row #29). Likewise,

some code facilities such as versioning or

debugging are standard for frameworks

and libraries but may be unavailable for

some platforms. The same applies to group

work (row #30): platforms currently do not

support synchronous collaborative

development, so working on different parts

of a chatbot cannot be parallelised among

developers.

Depending on the domain or the

company strategy, the need to support

several languages (i8n) can be necessary

(row #31). Rather than developing a

chatbot for each language, platforms like

Dialogflow offer multi-language support

by enabling the specification of different

training phrases for each language over the

same intent.

Interestingly, among the reviewed

approaches, only the community edition of

Rasa, Botkit and ChatterBot are open

source (row #32). No platform is open

source, which may result in vendor lock-in,

but it is possible to make public the chatbot

specifications built with any platform.

Operational factors. Once a chatbot is in

operation, the need to deploy it in novel

channels or new versions of existing ones

may arise (row #33). If the chatbot was

developed using a platform, the available

deployment options might be limited (e.g.,

Watson does not provide out-of-the-box

deployment in Telegram). Libraries and

(extensible) frameworks like Rasa, Botkit,

LUIS and ChatterBot are more flexible, as

they allow the manual implementation of

the required deployment.

Finally, platform-based approaches

imply vendor lock-in as there are currently

no migration tools using neutral exchange

formats between platforms (row #34);

however, an advantage of platforms is the

ability to use the services of the provider

(IBM, Google). Instead, libraries and

frameworks require coding the chatbot

logic in a programming language (like

Python in case of Rasa), which brings

more independence and safety with respect

to possible policy changes of the platform

owner company. This independence is

stronger in open-source systems (row #32)

since they could even be personalized to

the developer needs.

5. Building a chatbot in
practice

Practitioners can exploit the

information in Table 1 to select the best

tool depending on the scenario. While this

analysis can be hand-crafted, we envision a

recommender system that automatically

identifies the optimal tools from the

chatbot requirements.

As an illustration, let’s assume two

scenarios for our vet clinic chatbot. In the

first one, the clinic wants to reach as many

potential clients as possible, so it asks for a

chatbot that is multi-language and works

on different social networks and intelligent

speakers. Moreover, the software company

that will develop the chatbot lacks the

infrastructure to host the bot. Given these

requirements, the only suitable chatbot

creation tool is Dialogflow.

In the second scenario, the clinic is in

a process of expansion so the chatbot may

be likely extended in the future. Hence, the

software company is thinking of using

either Rasa or Botkit to avoid vendor lock-

in. Since the company has an expert team

of Python developers, and wants to have

support for debugging and testing, it opts

for Rasa.

We have built prototypical chatbots

using the tools selected in the scenarios:

Dialogflow and Rasa. The chatbots

communicate with a backend that holds a

database written in Java and PostgreSQL.

The chatbots for Telegram, including their

specification, are available at

https://github.com/SaraPerezSoler/VetClinic.

The chatbot specification in

Dialogflow has four intents: a welcome

intent, a fall-back intent, an intent to query

the opening hours, and another to set

appointments. The welcome and fall-back

intents were predefined in Dialogflow and

reused in our chatbot without modification.

To make the chatbot multi-language, each

intent has to be trained with phrases in

every targeted language. The appointment

intent has a follow-up asking for the type

of pet. This control flow is specified via a

context. We defined an entity to recognise

pet types, and reused the date and time

system entities. The backend is

accessed by a webhook that calls the

database service via a POST request;

alternatively, the behaviour could be

implemented with a JavaScript in-line

editor available in the platform. The

deployment in Telegram was

straightforward using Dialogflow’s

integration options, and there are

integrations for intelligent speakers as

well.

Differently from Dialogflow, creating

a chatbot in Rasa is not done via a

graphical interface, but requires

programming in Python and defining

configuration files (YAML and

markdown) storing the entities, intents,

conversation flow, training phrases, bot

responses, actions, forms, NLP

configuration and credentials to access

external services. The Rasa chatbot has

one fall-back action and three intents:

https://github.com/SaraPerezSoler/VetClinic

greeting, time and make_appointment. To

define the parameters of the last intent, we

subclassed a specific Rasa class to store

the name and type of the parameters,

validation methods, and other details. The

chatbot actions (e.g., querying the

database, calling external services) were

programmed in Python as well. The

chatbot behaviour can be debugged and

tested using standard Python tooling.

Unlike Dialogflow, the developer must

perform the chatbot deployment as Rasa

does not host bots.

6. Open Challenges

Overall, the existing tools cover a

wide spectrum of possibilities to ease

chatbot creation in different scenarios.

However, designing, developing and

testing chatbots still pose some challenges.

First, most platforms offer general,

informal guidelines for chatbot design, but

design patterns and quality metrics for

chatbots are missing. With regards to

development, most tools rely on training

phrases to specify intents; while this is

suitable in closed domains, supporting less

constrained conversations would require

the tools to incorporate more sophisticated

NLP mechanisms [13, 14] and better

support to expand the training set using

techniques such as reinforcement learning

(e.g., via trial-and-error conversations with

real or simulated users). Also related to

quality, existing tools give poor support for

testing chatbots in a systematic and

automated manner; at best, they provide a

console for manual testing, and basic

debugging mechanisms (rows 20–21 in

Table 1). Some dedicated testing tools are

emerging, like https://www.botium.at/.

Ultimately, the success of a chatbot

depends on its usability and the user

experience. Some technical factors in

Table 1 may help to improve this usability:

NLP enables more natural conversations,

phrase parameters avoid users to provide a

different sentence per piece of information,

sentiment analysis can contribute to better

grasp the meaning of a phrase and act

accordingly, speech recognition supports

spoken conversation, rich dialog

structuring mechanisms allow more

sophisticated conversation flows, and

message persistence can be exploited to

improve chatbot accuracy by the analysis

of real conversations. To complement this,

chatbot development tools should invest in

embedding guidelines and heuristics

targeted to chatbot usability [11, 12].

Chatbot development tools are

rapidly expanding, but we believe that

after diversification comes unification. The

analysed technologies use their own

proprietary formats to define chatbots, and

automated migration tools are missing. To

unify the different approaches, the W3C is

developing a standard for conversational

agents (https://www.w3.org/community/conv/),

and some open-source initiatives aim to

integrate the best of every chatbot

platform, helping to solve the vendor lock-

in problem [15].

References

1. PAT Research. “How to select the best chatbot

platforms for your business?”. Available at

https://www.predictiveanalyticstoday.com/what-

is-chatbot-platform/ (last visited Jan-2020).

2. OMetrics. “2019 chatbot platform comparison

reviews”. Available at:

https://www.ometrics.com/blog/chatbot-platform-

comparison-reviews/ (last visited Jan-2020).

3. Davydova. “25 chatbot platforms: A comparative

table”. Chatbots Journal (May 2017). Available at:

https://chatbotsjournal.com/25-chatbot-platforms-a-

comparative-table-aeefc932eaff (last visited Jan-

2020).

4. VentureHarbour. “10 best chatbot builders in 2019”.

https://www.ventureharbour.com/best-chatbot-

builders/ (last visited Jan-2020).

5. Lebeuf, Storey, Zagalasky. “Software bots”. IEEE

Software 35(1): 18–23 (2018).

6. Marneffe, Maccartney, Manning. “Generating typed

dependency parses from phrase structure parses”.

Proc. LREC’06: 449–454. See also

https://nlp.stanford.edu/software/lex-parser.html

(last visited Jan-2020).

7. Bird, Klein, Loper. “Natural language processing

with Python - Analyzing text with the Natural

https://www.botium.at/
https://www.w3.org/community/conv/
https://www.predictiveanalyticstoday.com/what-is-chatbot-platform/
https://www.predictiveanalyticstoday.com/what-is-chatbot-platform/
https://www.ometrics.com/blog/chatbot-platform-comparison-reviews/
https://www.ometrics.com/blog/chatbot-platform-comparison-reviews/
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://www.ventureharbour.com/best-chatbot-builders/
https://www.ventureharbour.com/best-chatbot-builders/
https://nlp.stanford.edu/software/lex-parser.html

Language Toolkit”. O’Reilly 2009. See also

https://www.nltk.org/ (last visited Jan-2020).

8. Pereira, Díaz. “Chatbot dimensions that matter:

Lessons from the trenches”. Proc. ICWE’18: 129–

135.

9. Grave, Bojanowski, Gupta, Joulin, Mikolov.

“Learning word vectors for 157 languages”. Proc.

LREC 2018.

10. Hancock, Bordes, Mazaré, Weston. “Learning from

dialogue after deployment: Feed yourself, chatbot!”.

Proc. ACL (1) 2019: 3667–3684.

11. Ren, Castro, Acuña, de Lara. “Usability of chatbots:

A systematic mapping study”. Proc. SEKE’19: 479–

617.

12. Haptiki.ai. “10 usability heuristics to design better

chatbots”. https://haptik.ai/blog/usability-heuristics-

chatbots/ (last visited Jan-2020).

13. Pérez-Soler, Guerra, de Lara, Jurado. “The rise of

the (modelling) bots: Towards assisted modelling

via social networks”. Proc. ASE’17: 723–728.

14. Arora, Sabetzadeh, Nejati, Briand. “An active

learning approach for improving the accuracy of

automated domain model extraction”. ACM Trans.

Softw. Eng. Methodol. 28(1): 4:1–4:34 (2019).

15. Daniel, Cabot, Deruelle, Derras. “Multi-platform

chatbot modeling and deployment with the Jarvis

framework”. Proc CAiSE’19: 177–193. See also

https://xatkit.com/ (last visited Jan-2020).

https://www.nltk.org/
https://haptik.ai/blog/usability-heuristics-chatbots/
https://haptik.ai/blog/usability-heuristics-chatbots/
https://xatkit.com/

