
Scalable Model Exploration for Model-Driven

Engineering

Antonio Jiménez-Pastora, Antonio Garmendiaa, Juan de Laraa

aComputer Science Department, Universidad Autónoma de Madrid (Spain)

Abstract

Model-Driven Engineering (MDE) promotes the use of models to conduct all
phases of software development in an automated way. However, for complex
systems, these models may become large and unwieldy, and hence difficult
to process and comprehend.

In order to alleviate this situation, we combine model fragmentation
strategies – to split models into more manageable chunks – with model ab-
straction and visualisation mechanisms, able to provide simpler views of the
models. In this paper, we describe the underlying methods and techniques, as
well as the supporting tools. The feasibility and benefits of our approach are
confirmed based on evaluations in the embedded systems, and the reverse en-
gineering domains, where large benefits in terms of visualisation time (speeds
up of up to 55×), and reduction in memory consumption (reduction of 97%)
are obtained.

Keywords: Model-Driven Engineering, Model Scalability, Model
Fragmentation, Model Visualisation, Model Abstraction

1. Introduction

Model Driven Engineering (MDE) is a software engineering paradigm that
promotes a model-centric approach to software development, where models
are used to specify, design, test, and generate code for the final applica-
tion [39]. While models abstract details of the real system they represent,
they may become large and unwieldy and therefore difficult to understand

Email addresses: antonio.jimenezp@estudiante.uam.es (Antonio Jiménez-Pastor),
antonio.garmendia@uam.es (Antonio Garmendia), Juan.deLara@uam.es (Juan de Lara)

Preprint submitted to Journal of Systems and Software July 20, 2017

and process. This way, large models are problematic from a human point
of view (difficult to explore and comprehend), and from a machine point of
view (large models may not fit in memory, and may become a bottleneck for
model management operations). Hence, methods to cope with large models
are necessary for a wider adoption of MDE in industrial practice and its use
in more complex scenarios meeting today’s need of increasing scale [25].

In this paper we present techniques, backed up by tools, for the scalable
exploration and processing of large MDE models. First, we show a method to
specify strategies for fragmenting models. Most current tools handle models
as monolithic entities, and hence suffer from scalability problems when the
model becomes large. For example, they are unable to load the whole model
in memory. Instead, taking inspiration from the way programming languages
organise projects, our strategies organise a model as a project, which then
can be divided into folders and files. Such strategies are specified over the
meta-model, as annotations of the different classes [19].

Second, we present a method for the visual exploration of models. The
method represents models in a graph-based way, using a generic concrete
graphical syntax. It is based on filtering and abstracting models according
to certain strategies, so that only a few nodes in the focus of interest are fully
displayed, while others are aggregated into “abstract nodes”. Then, different
ways are provided to navigate through abstract nodes to the submodels they
contain. The tool is able to use the defined fragmentation strategies in order
to efficiently navigate through the model structure without the need to show
all the model content. Compared to fully representing a model on the screen,
our approach allows higher space scalability (as fewer nodes are represented),
but requires algorithms to compute and navigate the abstractions. While
the main focus of the tool is on models built using the Eclipse Modelling
Framework (EMF) [40], which is the de-facto standard modelling technology
nowadays, the tool accepts other model formats as well (e.g., GraphML [8])
and is open and extensible in this sense.

As a running example, we use the Knowledge Discovery Meta-model
(KDM) [30]. KDM is an OMG standard in the reverse engineering do-
main, used as a common intermediate representation for existing software
systems and their operating environments. For experimental evaluation, we
use two other meta-models. The first one is based on a synthetic generation

2

of models, but based on a real case study of an EU project1 in the embedded
systems domain. The second experiment is also in the reverse engineering
domain. It is based on the large models (up to 5 million objects) provided
by the GraBaTs’09 competition case study2, which consists in representing
Java programs as models.

As a lesson learnt from these experiments, we conclude that our visual
exploration gives reasonable abstraction times (∼ 2 secs.) for models up
to roughly 10.000 objects. Beyond that point, even for a one-shot explo-
ration, it is advisable to first fragment the model, and then apply the visual
exploration. This shows the power of combining model fragmentation and ab-
straction. We have also observed that large benefits in terms of visualisation
time (speed ups of up to 55×), and number of objects that need to be loaded
(reduction of about 97%) are obtained by using fragmentation in comparison
to using the EMF default tree editor over the original monolithic models. We
also discuss the benefits that model fragmentation brings to large-scale graph
visualisation tools like Gephi [4], and to model respositories and persistence
backends like Connected Data Objects (CDO) [12].

This paper is an extended version of [20], where we provide a detailed
description of the abstraction and exploration algorithms, we have applied
our approach to KDM models, and show additional experiments. The ap-
proach has also been improved, providing a tighter integration of both tools,
so that it is possible to use the fragmentation strategies as a help in the
navigation; supporting staged exploration of fragmented models via proxies;
making the exploration independent of the underlying modelling technology,
and improving extensibility.

The rest of the paper is organised as follows. Section 2 motivates our
approach and provides an overview of its realization. Section 3 describes our
method to define model fragmentation strategies. Section 4 introduces some
techniques for model visualisation and exploration. Section 5 describes tool
support. Section 6 evaluates the approach. Section 7 compares with related
research and Section 8 concludes the paper.

1http://mondo-project.org
2http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs 2009 Case Study

3

2. Motivation and overview of the approach

2.1. Motivation

Several scenarios require exploration and visualisation of large MDE mod-
els. Generally, these scenarios are a form of so-called graph sensemaking [34],
where large graphs are analysed, in order to gain insights of the underlying
data, learn about the problem domain or detect anomalies [47]. Large mod-
els can arise from the extraction of graph-based data from many sources like
social networks, network traffic, intelligence analysis or on-line auctions [34].

In MDE, large models are common in model-based reverse engineering [9],
where the source code of a legacy system is parsed and transformed into a
model conformant to a meta-model. Even for small programs, the resulting
model may become extremely large. This is because the abstract syntax tree
of the source code (and possibly other artefacts, like binaries or configuration
files) needs to be represented as a model, while many times the inherent
modularization mechanisms of the programming language (e.g., division in
files) are not reflected at the model level, yielding a large monolithic model.
Some studies [9] report a multiplier of 4× or 5× between LOCs and number
of model elements, and a factor of about 400× in storage size [37]. These
studies also describe the difficulties of loading monolithic models of such size
into memory.

Meta-models for complex domains may also become large. For example,
the UML meta-model [31] has about 240 classes and more than 580 proper-
ties. Hence, approaches especially targeted to meta-model visualisation and
comprehension have been proposed [7]. Visualisation has also been employed
to help understanding and maintaining model transformations [35], or chains
of transformation executions [46]. Large model visualisation and exploration
has been used to detect anomalies in models in different domains [17]. How-
ever, even though some tools have been proposed for specific tasks like trans-
formation or meta-model visualisation, there is a lack of approaches and
tools directed to generic visualisation of large models, independent of their
meta-models.

2.2. Overview

Figure 1 provides an overview of our approach for scalable model ex-
ploration. Given a model, the first step is to decide whether this model is
too large to be explored as it is, or if it is more efficient to partition the
model into more manageable chunks. If that is the case, the second step is

4

model

too
large?

Select
abstractions
and filters

Specify
fragmentation

strategy

Explore model

meta-
model

«conforms»

Fragment model

no

yes

fragmented
model

2

3

4

5

EMF Splitter

SAMPLER

1

meta-model
with fragmentation
strategy

«conforms»

Figure 1: Overview of the approach.

to specify a fragmentation strategy, based on the meta-model the model is
conformant to. The meta-model specifies the structure (the abstract syntax)
of the valid models of the language. A fragmentation strategy specifies how
models should be physically partitioned. Please note that a fragmentation
strategy is not particular to a single model, but applicable to all instances of
the meta-model.

Once the strategy is specified, the model is split (label 3), resulting in a set
of model fragments, related to each other via cross-references. A fragmented
model is more efficient to explore, since the whole model does not need to be
loaded and processed for its visualisation, but only one fragment at a time.
Fragmenting models is performed using the EMF-Splitter tool [19], and will
be explained in Section 3. The experiment described in Section 6.2 provides
some guidelines on when a model would be too large to be manageable.
Fragmentation strategies are not only used to split existing models, but also
to enforce such organization on newly created models.

Alternatives to model fragmentation include storing the model elements
in backends like NeoEMF [5] and CDO [12] or using model indexers [3]. In the

5

first case, we lose the possibility of using file-based storage for version control,
which allows uniformity of the version control system with the project code-
base. In addition, by using fragmented models we reduce possible conflicts
due to concurrent modifications. Model indexers are useful to speed up model
searches, but would not solve the problem of physically loading a very large
model in memory.

Given a monolithic model, or a fragmented one, our approach provides
different abstraction strategies and filters for its efficient visualisation (label
4 in the figure). The idea is not to show the whole model (or fragment)
on the screen, but just to display a small region of interest, while the rest
of the model is shown in an abstracted way, or is completely eliminated
through a filter. An abstracted model can be navigated (label 5) using a
hyperlink metaphor. This way, an abstract node representing a submodel
can be expanded in the same view as the current model, or in a different
one. Similarly, cross references between different model fragments can be
navigated through proxy nodes (i.e., a virtual node representing a real node in
a different fragment, which is currently not loaded in memory). Additionally,
the structure in the file system (i.e., the folders and files) created by the
fragmentation strategy on the model can be used for its efficient navigation.
The abstraction and navigation strategies are explained in Section 4. Tool
support for fragmentation and exploration is described in Section 5.

3. Fragmenting models

Instead of working with large, monolithic models, we propose fragmenting
them, following modular principles adopted by many programming languages
and IDEs [19]. For example, a Java program is normally not built within a
single file, but organised into projects, (nested) packages and different compi-
lation units (files) within them. These modularity concepts are provided by
the programming language itself. Therefore, our proposal is to adapt these
principles to the construction of models. This way, models will no longer be
monolithic, but organised as a Project. The model can then be fragmented
into Packages (which are mapped to folders in the file system), which may hold
Units (which are mapped into files of the file system). Alternatively, Units can
be placed directly inside a project.

This kind of hierarchical organization allows structuring or defining dif-
ferent ways to fragment a model. Fragmentation strategies are specified at
the meta-model level, where the different classes can be tagged as Project,

6

name: String

icon=“file://...”

extension=“invmodel”

IdentifiableElement

name: String

icon@1: path

Container

Project Package Unit

*
contents

Containee

Modularity pattern

extension@1: String

Segment *

KDM meta-model (excerpt)

PackageCodeModel

name: String

icon=“file://...”

name: String

icon=“file://...”

InterfaceUnitInventoryModel

* ***

name: String

icon=“file://...”

«partial typing»

«total typing»

Project root

:Segment

name= “eclipse.core”

Fragmented model

Package

Unit
:InventoryModel

name= “source.invmodel”

proxy-reference

:Package

name= “java”

proxy-reference

:ClassUnit

name= “BufferedWriter.class”

Unit

proxy-

reference

eclipse.core

java

source.invmodel

[Eclipse project]

[folder]

[file]

Physical deployment

BufferedWriter.class [file]

…
:Project :Package:Package

:Unit

«total typing»

Pattern instance

@2

@1

@0

@1
@Project

@name @name

@Package @Package

@name

@name

@Unit

name: String

icon=“file://...”

extension=“interface”

@name

@Unit

«contents»

«contents» «contents»

name: String

icon=“file://...”

extension=“class”

@name

ClassUnit
@Unit

«contents»

name: String

icon=“file://...”

extension=“lang”

@name

LanguageUnit
@Unit

«contents»

*

«contents»

name: String

icon=“…”

name: String

icon=“…”

name: String

icon=“…”

name: String

icon=“…”

extension=“…”

:Unit

name: String

icon=“…”

extension=“…”

:Unit

name: String

icon=“…”

extension=“…”

:Unit

name: String

icon=“…”

extension=“…”

:contents

:contents
:contents

:contents :contents

:contents

«annotates»

Figure 2: Pattern to describe the modular structure of a meta-model (top).
Instantiation of the pattern and application to the KDM meta-model (mid-
dle). A structured model and its physical deployment (bottom).

Package and Unit, giving rise to different possible model organizations. Con-
ceptually, the different model organizations are configured by instantiating
the meta-model shown at the top of Figure 2 (labelled “modularity pattern”),
and then mapping such instantiation to the meta-model to which we want
to apply the fragmentation strategy.

The figure shows one instance of the pattern meta-model (labelled “pat-
tern instance”), made of a Project instance, two nested Package instances, and
four types of Units. While the first type of unit can be placed directly in-
side the project, the other three are inside the first package. Actually, this
is the fragmentation strategy that we have created for KDM [30]. KDM is
a standard specification of the Object Management Group (OMG) that is
widely used in software modernization projects [10]. KDM is used to repre-
sent existing software artefacts (legacy code) in different languages (COBOL,
C, Fortran, Java) in a platform independent way. KDM models can become
extremely large, as normally the whole code and additional artefacts of a soft-

7

ware application are included in a monolithic KDM model. Therefore, we
define a fragmentation strategy over the meta-model, so that KDM models
can be split.

We have tagged the elements in the KDM meta-model with the role names
of the modularity meta-model they have been assigned. It can be observed
that the root class of the KDM meta-model (class Segment) is mapped to
Project. In EMF [40], meta-models normally contain a root class. This class
is instantiated once in every model, and every object in such model is con-
tained directly or indirectly in such object. Therefore, when such class is
instantiated, we will create a Project as a side effect. Then, classes CodeModel

and Package are marked as Package. This means that, when such classes are
instantiated, we will create a folder in the file system. Finally, the classes
InventoryModel, InterfaceUnit, ClassUnit and LanguageUnit are marked as Unit. There-
fore, when we instantiate such classes, we will create a file, containing all ob-
jects of classes included (i.e., reachable by composition references) directly
or indirectly in them.

Conceptually, the instantiation of the fragmentation strategy over the
particular meta-model (KDM in this case), can be explained using multi-
level modelling [2]. This is an approach enabling modelling at an arbitrary
number of meta-levels, not necessarily two. Multi-level modelling allows
characterizing features of objects at lower meta-levels, not only at the next
one, by the use of potency. The potency is a natural number (or zero)
attached to all model elements, which indicates at how many meta-levels the
element can be instantiated (if not specified, the element takes the potency
of its enclosing container).

The modularity pattern can be instantiated twice, at two subsequent
meta-levels, and hence has potency 2 (indicated using the notation @2 in the
figure). However, the icon and extension fields have potency 1 (shown using
the notation @1), so that they can be instantiated just once, and hence they
receive a value at the next meta-level. The extension field holds the extension
name of the associated fragment file, while the icon contains a path to the file
icon. For example, the InventoryModel has as extension invmodel and has been
given an icon, as shown in the box labelled “physical deployment”. Please
note that while these fields with potency 1 produce extensions to the KDM
meta-model (slots marked in yellow), the elements with potency 2 (like name

or Project) simply require a mapping from some compatible element in the
KDM meta-model. This can be seen as a partial a-posteriori typing of the
KDM meta-model with respect to the modularity pattern [15, 33]. It is a

8

partial typing, because not every element of the KDM meta-model receives
a typing with respect to the modularity pattern. For example, the elements
inside a Unit do not receive a type. In practice, to represent this orthogonal
typing, we instantiate the pattern meta-model and annotate the KDM meta-
model with this instance. The annotation is realised as a separate model
(an annotation model), with cross-references to the meta-model, as shown in
Figure 2.

In our implementation, when creating a project we create a (hidden) file,
which contains the root object, and similar for packages. All such model
fragments are related to each other via proxy nodes and cross-references.
These are normal model references, but which span different files. A schema
of the obtained modular structure of a model is shown at the bottom of
Figure 2 (boxes “Fragmented model” and “Physical deployment”).

Details on tool support for this fragmentation approach will be given in
Section 5.1.

4. Exploring models

When working with models it is very useful to explore them to obtain
some insight using our intuition; to analyse their different parts or to find
unusual or interesting features. However, big models are impossible to be
completely represented in a computer screen at once. When using the EMF
framework, it is common that models lack a dedicated graphical editor pro-
viding visualisation and exploration services. One reason is that frequently,
only a meta-model is developed, but no further effort is spent to create
a graphical concrete syntax. Hence, the current situation in EMF is that
many times models are visualised using the tree editor, which difficults their
comprehensibility. This is so as this editor does not provide facilities to visu-
alise, search and navigate in a graph-based way. For example, it may display
two related elements at very distant places, just because they belong to two
different container objects. Instead, showing those elements closer, using
a graph-based representation may be more intuitive in some cases. Even
if a specialised editor exists, these editors usually do not offer support for
scalable exploration. As a generic solution to this issue, we have developed
a new framework that offers graph-based exploration for arbitrary models.
The framework is targeted to large models, and its key idea is not showing all
model elements at once, but displaying only a region of interest, and abstract

9

or filter the other elements. Then, different navigation strategies can be used
to walk through the model.

The first step is to simplify a large graph3. If this graph has extra in-
formation about its allowed structure (meta-data, e.g., via a meta-model), it
will be useful for making such simplification. Our proposal is based on the
composition of small operations (called Simplification Operations) that, af-
ter a finite number of steps, obtain the desired simpler graph representation.
Hence, after each step in the simplification, we will obtain a new graph hav-
ing fewer vertices than the previous graph, but preserving the information
contained in the original graph. These operations can be linearly combined
into Nested Simplification Algorithms. Once we have used one of those algo-
rithms, the resulting graph is displayed using some graph layout algorithm.
Though our framework allows creating and using different layout algorithms
in an extensible way, layouting is not the main focus of this paper. Finally,
it is possible to navigate through the graph, using what we call Exploration
Operations.

The rest of this section is organised as follows. In Section 4.1 we detail the
simplification operations currently available, while in Section 4.2 we describe
the exploration operations.

4.1. Simplification Operations

The simplification operations are the key elements of our approach to
explore graphs. When composed, they form a nested simplification algorithm,
which applied to a complex graph produces a simpler and more readable
graph. This simpler graph is easier to explore using the two exploration
operations described in Section 4.2.

We classify the possible simplification operations in three types:

• Filters. These operations are based on deleting vertices. A filter
selects a collection of vertices and removes them from the graph. To
keep the information of those vertices, the filter creates new edges.
Hence, as shown in Figure 3, if the filter deletes a node b, it creates an
edge between each node a that has an edge reaching b, and each node c

receiving an edge from b. We call them “abstract edges”, because they
do not belong to the original graph, but they represent several original

3In the following we use graph and model interchangeably.

10

•a

��

•a

��

•b

��

filter(b) //

•c •c

Figure 3: Filter operation over a graph.

edges. In practice, we depict such edges differently, to avoid confusion
with the original graph edges. Several filters can be defined over the
same graph. Indeed, any algorithm that selects and removes vertices
should be considered as a filter. For instance, we can filter vertices by
their type, by their name (as in case of Figure 3), or by the number of
neighbours, among many other criteria.

• Global abstractions. This strategy aggregates together vertices that
have some relation. Hence, they detect a pattern in the graph and, in
the new graph, they create just a vertex to represent such pattern. For
instance, if we have a tree, we may not want to represent all leaves,
but just convey that a vertex has some children, and hence the children
are aggregated in one node. Another example is applying a clustering
algorithm (like k-means) [36] over the graph and collect together the
vertices in the same cluster. In such case, the graph would be repre-
sented as a collection of (connected) abstract vertices. These abstract
vertices can have abstract edges between them, one abstract edge repre-
senting one or more edges between concrete nodes inside each abstract
node.

• Local abstractions. This kind of abstractions follows the same idea
as the global abstractions, adding in the new graph “abstract”4 vertices
that represent a collection of vertices of the previous graph. The dif-
ference with global abstractions is that local abstractions search the
pattern around a specific vertex of the graph. A possible local strat-

4We use abstract vertex and aggregated vertex to refer to vertices abstracting a part of
the model

11

•a

}} �� !!

��

•a

~~

��

��
•b

�� �� ��

•d •e •b

��

•{d,e}

•f •g •h •c

�� �� ��

leaves compactification
// •{f,g,h} •c

��
•i •j •k •{i,j,k}

Figure 4: Leaves Compactification over a graph.

egy is to focus on a vertex, i.e., create a new graph with a vertex and
its neighbours, while all the other vertices are aggregated in a single
vertex.

Next, we give some examples of simplification operations.

• Leaves Compactification: this is a global abstraction that considers
the graph as a tree and aggregates together the leaves of the tree,
differentiating the leaves according to their parents. If the graph to be
represented is an EMF model, then the tree structure can be extracted
from the containment relations between objects. Figure 4 shows an
example of this operation, where the children of nodes b and c are added
together in two nodes, and the leaf nodes of a (d and e) are aggregated
in another node. Concrete edges with source or target an abstract node
are aggregated into an abstract edge (e.g., edge between b and {f, g, h}).
In practice, the aggregated nodes are not assigned a label made of the
concatenation of the inner nodes. Instead, they are unlabelled, and
their contents can be inspected via exploration operations.

• Bi-Clustering: this is a global abstraction that applies the Cheeger
Cut of the graph to separate it in two balanced pieces [11]. Essentially,
this algorithm divides the vertices in two sets, minimizing the number
of edges to/from nodes belonging to different sets. Hence, the end result
is a graph with two abstract vertices. An example of this operation is

12

•a •b

•c •d •e •f
bi-cluster

// {a,c,d,g}• •{b,e,f,h}

•g •h

Figure 5: Cheeger Cut over a graph.

•a •b •a •b

•c •d •e •f
local focus(a,3)

// •c •d •{f,h,e}

•g •h •{g}

Figure 6: Local Focus on a graph.

shown in Figure 5. Applying this abstraction allows us to know if the
model we are visualizing is strongly connected [11].

• Local Focus: this is a local abstraction. It receives two parameters:
a vertex of the graph and a positive integer n, which is the number
of original vertices that will remain in the abstraction. This operation
uses the vertex given as root of the graph and makes a breadth first
search until it finds n vertices. These n + 1 vertices are added to the
new graph and the rest are put together in a single node according to
their parents in the breadth search. An example of the operation is
shown in Figure 6, where the operations leaves three neighbours of a,
aggregating the other nodes.

4.2. Exploring models

As in our approach the model is not presented entirely to the user, but
some parts of the graph will be filtered or aggregated into other nodes, there

13

is the need for exploration operations. There are two kinds of exploration
operations:

• Expanding a vertex. Our graphs have some vertices that represent
a collection of the original graph vertices. Hence, if we want to explore
the graph, we need to access the content of those aggregated nodes.
The expansion can be performed within the same graph, or a new view
with the expanded graph can be created.

• Search. When we are analysing a graph, we usually want to look and
focus on a vertex of the graph. This exploration operation typically re-
quires defining some kind of filtering criteria and then select the desired
vertex from a reduced list of results.

In addition, we can use the information given by the model fragmentation
for exploration in two ways:

• Staged exploration. When a fragment of a model is to be visualised,
only such fragment needs to be loaded in memory and visualised. In
model fragments, some special nodes called proxies [40] represent nodes
that actually belong to other fragments. Proxy nodes represent the
boundaries of a fragment. They can be navigated, and so the system
will load the fragment were the real node pointed by the proxy resides.

• Hierarchical exploration. This is the exploration via the folders
and files produced by the fragmentation strategy. This way, folders
and units are represented as special nodes. They can be expanded, and
so the system will load the content of the given unit (i.e., its model
elements) or the files and folders within the given folder (which are
represented as nodes).

5. Tool support

We have provided tool support for the previous concepts as a set of Eclipse
plugins [13]. The architecture of the tool is shown in Figure 7.

In a first step, the engineer designing a meta-model may decide to ap-
ply a fragmentation strategy to a meta-model. This is supported by EMF-
Splitter, which generates a customised, modular modelling environment, so

14

Model
engineer

meta-
model

EMF
Splitter

Language
engineer

Fragmentation strategy

modular
environment

SAMPLER

fragmented
model

«conforms to»

Eclipse

1

1

«uses»

1

CustomEditor

Model exploration

«generates»

Figure 7: Architecture of the combined tools.

that models can be created according to the specified fragmentation strat-
egy. EMF-Splitter will be described in Section 5.1. Then, the models (frag-
mented or not) can be visualised using the described techniques in Section 4.
Such visualisation is supported by SAMPLER and will be described in Sec-
tion 5.2. Both plugins are independent, but can be used in coordination to
explore large models. In particular, EMF-Splitter offers an extension point
(CustomEditor in the figure) to visualise models using customised editors. By
default, visualisation is done with the EMF tree editor, but SAMPLER im-
plements such extension point, so that models can also be visualised with it.
In particular, this combination of tools allows using the exploration strategies
for fragmented models described in Section 4.2. We describe this combined
tool support in Section 5.3.

The choice of realizing our approach as Eclipse plugins is justified by
the use of EMF as underlying modelling framework for EMF-Splitter (while
SAMPLER is still independent of the modelling platform). Moreover, this
choice permits interoperability with the rich Eclipse ecosystem of EMF-based
MDE tools. Finally, Eclipse extension points facilitate the extensibility of
both SAMPLER and EMF-Splitter.

15

Figure 8: Environment generated by EMF-Splitter for the KDM meta-model.

5.1. EMF-Splitter

We have built tool support to apply fragmentation strategies to a meta-
model. The tool produces a customised modelling environment that splits
monolithic instances of the meta-model according to the fragmentation strat-
egy and also supports the creation of models according to such organization.
Our tool is called EMF-Splitter, it is built atop of Eclipse and is freely avail-
able at http://www.miso.es/tools/EMFSplitter.html.

The tool allows applying fragmentation strategies to a meta-model, and
generates a customised modelling environment for it (called “modular envi-
ronment” in Figure 7). This environment allows creating models, which are
no longer monolithic, but are fragmented according to the defined strategy.
In addition, it allows fragmenting an existing monolithic model according to
the strategy, and also to compose a fragmented model into a unique file.

Figure 8 presents the generated modelling environment for KDM. The en-
vironment shows an Eclipse project, named org.eclipse.jdt.apt.core.reverse.engineering,
created from the KDM Code Model of the project org.eclipse.jdt.apt.core. This
project is one of the plug-ins that are part of Eclipse Java Development Tools
Core (JDT Core). The project explorer shows the structure of folders and

16

files generated from the model, which follows the specified fragmentation
strategy. The project mimics the structure that a Java project would have.
In particular, we have chosen icons for folders and units that resemble the
ones used by the JDT browser to represent packages and Java classes, but
it actually is a model conformant to the KDM meta-model, split across the
file system. The project explorer to the left makes evident the hierarchical
structure of the model and facilitates model navigation. To the right, a tree
editor shows the content of one of the fragments. This approach promotes
scalability, as the original model has about 104.591 model elements, while
the fragmentation strategy fragments it into 358 files. These files are much
reduced in size, which allows faster loading of each fragment, and a bet-
ter navigation of the model. We will discuss the benefits of fragmentation
through a set of experiments in Section 6.

5.2. SAMPLER

To solve the visualisation and exploring problems, we have developed a
tool called SAMPLER (ScAlable Model exPLorER). This is a collection of
Eclipse plug-ins that implement the visualisation and exploration facilities
described in Section 4. The tool is highly extensible, enabling the addition of
new filters and simplification operations through Eclipse extension points. It
is also agnostic with respect to the modelling technology, currently support-
ing EMF models and graphs stored in the GraphML format [8], but support
for other formats can be added through extension points as well. The tool is
freely available at http://miso.es/tools/sampler.html.

5.2.1. Architecture

Some of the SAMPLER strengths are its versatility and its extensibil-
ity. This has been achieved using the plug-in and extension-point mecha-
nisms of Eclipse. An overview of its main components is shown in Figure 9.
The GraphAbstraction plug-in provides the basic interfaces for abstracting a
graph. It provides some extension-points so that developers can extend the
tool. In particular, Search can be used to implement new search criteria. Step

is used to declare simplification operations (see Section 4.1). They can be fil-
ters, global or local operations. The steps declared using this extension point
can be used by the user to create custom nested simplification algorithms,
using the Algorithm extension. Finally, it also offers an extension to configure
the simplification algorithm (extension Configuration).

17

Graph
Abstraction

1
Step

Search

Configurations

Draw
Models

1

Diagram

Layouts

1

SAMPLER.
EMF

1

SAMPLER.
GraphML

1

Diagram

Configurations

1

Step

Layout
Algorithm

LayoutBridge

Algorithm Algorithm

Layouts
Zest

1

Search

Layout
Algorithm

SAMPLER

Spectral

1

Figure 9: Architecture of SAMPLER

SAMPLER provides by default some implementation of these extension
points, for example offering simplification operations like Connected Components

and Leaves Compactification, nested algorithms like Show All (shows all nodes in
the graph), Total Compactification (aggregates all nodes in the graph in a single
node), Connected Components (aggregates the graph connected components as
single nodes), and Leaves (aggregates the leaves of the graph). It provides
some default configurations for these algorithms, like the maximum number
of nodes to show, among others.

The figure also shows a component named Spectral, which provides several
global abstractions based on the analysis of the Laplacian spectrum of the
graph (a matrix combining vertex degree and vertex adjacency) [11]. The use
of this spectrum has been proven its potential while analysing unstructured
graphs. As SAMPLER is intended to deal with any kind of model, these
general algorithms can be useful. The Spectral component implements some
simplification operations (bi-clustering, iterative-clustering and hierarchical
clustering), and a nested simplification algorithm (bi-cluster algorithm). In
addition, the Spectral component configures the graph abstraction with the

18

maximum number of clusters.
The Layouts component provides interfaces to add layout algorithms that

SAMPLER can apply to the models. The figure shows component Layouts.Zest,
which is a wrapper for the layout algorithms provided by the Zest Eclipse li-
brary5. These include grid, radial, spring and tree layouts, among others.
The DrawModels components adds an Eclipse-based user interface to SAM-
PLER. It also provides an extension-point (diagram) to handle different types
of graphs, so that SAMPLER can deal with different technology such as EMF
and GraphML.

5.2.2. Usage

When a model is opened with SAMPLER, the user may choose between
different nested simplification algorithms to apply. In addition, it is also
possible to create a custom algorithm on the spot using the simple operations
(filters, global and local abstractions) that are available in the tool. The
operations that are implemented in SAMPLER by default are:

• Filter by EClass : this is a filter based on EMF models that remove
from the graph the vertices that instantiate a certain EClass.

• Compactification of leaves : this is a global abstraction that explores
the containment tree of an EMF model and for each set of leaves of the
same parent creates an aggregated node.

• Connected components : this is a global abstraction that aggregates
all the vertices of the model in the same connected component. It is
possible to configure this abstraction to use strong connectivity.

• Clustering : these include several clustering algorithms that put to-
gether all the vertices of the model in the same cluster. The possible
clustering algorithms includes the bi-clustering method mentioned in
Section 4.1. It also includes an iterative extension of this algorithm,
which creates as many clusters as desired by just iterating the process
in each of the obtained partial clusters. These algorithms have been
chosen as examples of clustering, but any new clustering criteria can
be implemented and added to SAMPLER by the user.

5https://www.eclipse.org/gef/zest/

19

Figure 10: Creating a custom nested simplification algorithm.

• Focus on a vertex : this is a local abstraction that, given a vertex of
the models, makes a breadth first search on the graph until it finds
a number of vertices. Those vertices are represented without changes
and the others are aggregated in a new vertex.

While the first two operations are specific to EMF technology, the three
last ones are technology independent. Figure 10 shows an example of a cus-
tom nested simplification algorithm. The algorithm created works as follows.
First, it takes the original graph and joins all the leaves of the containment
tree together (which we called Compactification of leaves). Second, it focuses
on a vertex that is sought in the graph. Finally, a clustering algorithm is
applied to split the result into two nodes. The resulting graph is then drawn
on the screen. Figure 11 presents the result of applying such algorithm to
a simple graph after selecting the vertex number 10 for the second step. As
expected, the result has only two vertices and one of them is marked because
it contains the original vertex that we sought at step 2.

It is also possible select a layout algorithm to be used to draw the simpli-
fied graph obtained after the execution of the nested simplification algorithm
selected by the user.

20

Figure 11: Result of applying the custom algorithm.

Once the user has configured the initial algorithms to be applied to the
model, SAMPLER represents the model in an Eclipse Editor. It shows in
different colours the vertices that have been inherited from the original graph
(called original vertices) and the vertices that aggregate a collection of model
nodes (we call them compacted vertices). Figure 12 shows an example of
how SAMPLER works. We can see an abstracted KDM model where we
have applied the Focus on a vertex operation over the vertex Package (with
label 6, whose border appears in red) and show the 4 nearest vertices (in
blue, with labels 345, 332, 7 and 19). The other vertices are compacted
according to their parents in the containment tree, which has resulted in five
compacted nodes shown in yellow and brown. The currently selected node
is the aggregated vertex labelled as -:Value (shown in yellow). By default
SAMPLER draws differently containment and non-containment references
(dashed and dotted edges respectively).

In addition, the names of the references and the attributes of objects can
be shown or omitted (they have been omitted in the figure). The Node In-
formation view (at the bottom) shows the information contained in a vertex
of the graph that the user has currently selected (see the bottom of the fig-
ure). In case an aggregated vertex is selected, it shows the different vertices

21

Figure 12: Exploring a model with SAMPLER.

it contains, and allows visualising their features.
At this point, it is possible to explore the model in three different ways.

The first on is by expanding a compacted vertex. After removing the com-
pacted vertex, SAMPLER takes the first vertex v in the collection it contains,
and adds it to the graph. Then, it adds new compacted vertices containing
the vertices v is connected to (and were inside the compacted vertex). Sec-
ond, it is possible to search an original vertex. Using different search criteria
it is possible to select and inspect the information of an original vertex of
the model and, if a local abstraction is being applied, use it as the main
vertex for this abstraction. Third, one can apply extra filter operations after
the nested simplification algorithm. We consider this an exploration feature
because it is independent of the current used algorithm, and allows remov-
ing some vertices that are not important to the user. Finally, as obtaining
an interesting visualisation for a model can sometimes be tedious and time
consuming, SAMPLER offers the option to save the status of the exploration
of the model. This way, the user can load it to recover the abstracted graph
exactly in the same state it was saved, so she can continue exploring the
model from this point.

22

5.3. Combining EMF Splitter and SAMPLER

While EMF-Splitter and SAMPLER can be run separately, as Figure 7
shows, they have been integrated to work in a coordinated way. In particular,
SAMPLER provides the possibility of opening and visualising fragmented
models with it, and SAMPLER is able to explore the fragmented models in
stages, and also using the structure in the file system created by EMF-Splitter
(as explained in Section 4).

Figure 13 shows a snapshot of the exploration of the KDM fragmented
model named org.eclipse.jdt.apt.core.reverse.engineering (a part of it was shown in
Figure 8). The left of the figure shows the project explorer, containing the
fragmented model across the file system, as created by EMF-Splitter. The
right part (labels 1 and 2) are model browsers contributed by SAMPLER.
The tab with label 1 visualises the root node of the model (node with label
1, coloured in red) and depicts a part of its structure. For example, node 6
indicates the existence of a file with name references.invmodel, node with label
3 (name external) and 4 (name org.eclipse.jdt.apt.core) indicate two folders. Node
with label 4 is expanded, showing its content. Please note that, because
SAMPLER reads the content of the file system, it shows in the form of
nodes some hidden files created by EMF-Splitter (node with labels 5 and 10,
with name ending in xmi). These nodes can be omitted using a filter created
for this purpose.

The tab on the right (with label 2) shows the expansion of the node
org.eclipse.jdt.apt.core (a folder in the left tab). The expanded model is shown
aggregated using a leaves-local abstraction, which shows a maximum of five
nodes and aggregates together several nodes within two abstract nodes. Over-
all, compared to Figure 8, SAMPLER provides an alternative graph-based
visualisation to the EMF tree editor, as well as abstraction and exploration
mechanisms.

6. Evaluation

Next, we evaluate the performance of our tools to deal with large models.
For this purpose, we present five experiments. In the first one (Section 6.1),
our intention is to analyse to what extent large models can be explored
with SAMPLER. When models become difficult to be visualised with the
tool, they are fragmented first using a fragmentation strategy, so that the
smaller chunks can be visualised individually. Hence, in a second experiment
(Section 6.2) we analyse the incurred cost of fragmentation. Finally, we make

23

Figure 13: Visualisation of a KDM model using SAMPLER.

three experiments (described in Section 6.3) assessing the advantages of our
approach with respect to de-facto standard tools like the EMF’s default tree
editor, CDO (a widely used model repository and persistence backend) and
Gephi (a popular graph visualisation tool).

In all our tests, we use the following environment:

• Execution environment:

– Operating System: Windows 7 Professional Service Pack 1.

– Processor: Intel(R) Core(TM) i7-2600, 3.40GHz

– RAM: 12 GB

• Java Virtual Machine Configuration:

– Execution environment: Java SE 1.8 (jre1.8.0 40)

– Initial memory: 512 MB

– Maximum memory: 8 GB

In the experiments we use both synthetically generated models and mod-
els developed by third parties. For this purpose, we use two meta-models.

24

One is based on a case study of the EU project MONDO in the domain of
component-based embedded systems. The other one is a meta-model for Java
(JDTAST), taken from the reverse engineering domain. This is a meta-model
used by the Modisco reverse engineering tool to represent Java programs in
the form of models (i.e., similar to the abstract syntax tree, but allowing
references between elements, forming a graph) [9]. For the first case we use
a synthetic model generator, while for the second we use models resulting
from reverse engineering Java projects.

6.1. Exploration performance

In this section the goal is to check the performance of some of the SAM-
PLER abstraction strategies for large models. We present two experiments,
one using synthetic models, and the other one using real models created by
third parties.

6.1.1. Synthetic models

For the first experiment, we generate models using an EMF random in-
stantiator from the ATLANMOD team6. We use a meta-model taken from
a case study of the EU project MONDO in the domain of component-based
embedded systems. A small excerpt of the meta-model is shown in Figure 14
(the complete one has about 150 classes). A WindPark, has a set of control
parameters (inputs, outputs, variables, etc.), and organises the controllers
for the WindTurbines hierarchically. There is a large number of predefined
controllers (subclasses of WTC, just two classes are shown for illustration),
each with its own set of control parameters. For the experiment, we consider
models with sizes ranging from 100 to 6.000 model elements. For each size,
we generate 500 different models.

In each test, we take four measures: the time taken to read the model,
and the execution time of three simplification algorithms:

• A local algorithm that, given an object of the model, shows this el-
ement and n of its neighbours while the others are compacted (local
algorithm).

• A global algorithm that explores the whole model detecting the leaves
of the containment tree and compact them (global algorithm).

6http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/

25

@Project
WindPark

@Package
WindTurbine

@Unit
Subsystem

@Unit
SystemInput

@Unit
System
Variable

@Unit
SystemOutput

* *
WTC *

CtrlUnit1
WTC

StateMonitor
… …

*
* *

out1 inp1

inputs

vars

…

outputs

wts

subs

wtcs

*

subsys

Figure 14: Excerpt of the meta-model of one of the MONDO case studies,
with fragmentation strategy annotations.

y = 0,0103x + 0,9636

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

Ti
m

e
 (

m
s)

Number of elements

y = 2E-05x2 + 0,1119x - 9,8364

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000

Ti
m

e
(m

s)

Number of elements

y = 0,0001x2 + 0,3766x - 17,999

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000

Ti
m

e
 (

m
s)

Number of elements

Figure 15: Performance (ms) of the different algorithms of abstraction. From
left to right: local, global and compactification.

• A global algorithm that creates only one composite node with all ele-
ments inside it. This is a measure of how much time SAMPLER takes
to explore the whole model (compactification algorithm).

For each test model and for each algorithm, we initiate a new Java Vir-
tual Machine with the configuration mentioned above and run the methods
directly on it without doing any previous warmups. Thus, our measures give
information about the time that will take using the tool for the first time.

The graphics in Figure 15 show that every algorithm takes no more than 8
seconds for 6.000 elements in the model (which can be considered reasonable
for an exploration application) and that the local and global algorithms take
a quadratic polynomial time to execute. As expected, the total compacti-
fication algorithm is the most efficient one, as it does not need to perform
any computation, while the most demanding method is the global algorithm,

26

Figure 16: JDTAST meta-model, with fragmentation strategy annotations.

because it needs to identify the leaves of the model containment tree. The
times for both the local and global algorithms can be adjusted by quadratic
polynomial curves, while the compactification can be adjusted by a linear
polynomial.

6.1.2. Realistic large models

In the second experiment, we execute the same algorithms in the same
conditions over the two first sets of JDTAST models of the GraBaTs compe-
tition, which have a larger size. A small excerpt of the JDTAST meta-model
is shown in Figure 16 (the meta-model contains more than 120 classes). A
Java model is made of projects, which are divided in binary and source pack-
ages, each having class files and compilation units. The four models of the
GraBaTs competition contain a model-based representation of several large
Java projects. The smallest model (set0) has about 71.000 model elements,
while the largest one (set4) has about 5.000.000 model elements.

Table 1 shows the results of the experiment for the three algorithms to-
gether with the estimation from the run of the smaller tests. As it can be
noted, the time required to create the abstraction of the model is more than
24 minutes with the set0 model and more than 5 hours with the set1 model
(which has about 204.000 elements). Those times are not acceptable for an
interactive application, and hence we resort to model fragmentation. The
next subsection analyses its performance.

27

Model
Local Algorithm Global Algorithm Compactification

Measure Estimation Measure Estimation Measure Estimation
set0 24min27s 1min22s 20min24s 13min6s 0,78s 0,75s

(71.458 els)
set1 5h43min16s 10min11s 3h48min9s 1h42min6s 2,8s 2,97s

(203.938 els)

Table 1: Performance of SAMPLER over some JDTAST models.

6.2. Fragmentation performance

In this subsection we evaluate the performance of the fragmentation strat-
egy, using the same two case studies as in the previous section.

6.2.1. Synthetic models

First, we evaluate the fragmentation performance using the same syn-
thetic models used with SAMPLER. Figure 14 shows an excerpt of the meta-
model for wind turbines, with the annotations of the desired fragmentation
strategy. This way, class WindPark is the root class, and has been tagged as
Project. WindTurbines are tagged as Package, so that folders will be created for
each (nested) wind turbine system. All control parameters (inputs, outputs,
variables, etc) are stored in a separate file depending on their type, while the
set of components of each subsystem controller (class Subsystem) is stored in
a file as well.

Figure 17 shows the results of the fragmentation of the synthetic models.
As can be seen, EMF-Splitter is able to split a model that contains 6.000
objects in less than a minute and merge back all fragments into a monolithic
model in less than 10 seconds, as shown in Figure 17(a). For splitting, the
times include loading the monolithic model, perform the fragmentation in
memory, and serialize all the fragments in disk using XMI. For merging, the
times include loading all fragments from disk, performing the merging in
memory, and serializing the monolithic model back in disk in XMI format.
We can see that splitting is more time consuming than merging, due to the
computation that needs to be performed to locate the right folder or unit
each element belongs to.

In Figure 17(b), we compare the number of initial and final objects, before
and after the fragmentation. It can be observed that more objects (proxy
references) need to be created in order to maintain the cross-references be-
tween the different fragments. The amount of proxies created depends on the
number of files created by the fragmentation strategy. Figure 17(c) shows
the average number of files created for each model size. In average around

28

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000

Ti
m

e
(s

ec
)

Number of elements

Average split time

Average merge time

(a) Merge and split time.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000

N
u

m
b

er
 o

f
e

le
m

en
ts

Number of elements

Initial number of objects

Average number of objects after the split

(b) Comparison of initial and final objects.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 n
u

m
b

er
 o

f
fi

le
s

Number of elements

(c) Average number of files.

Figure 17: Results of splitting/merging IKERLAN’s synthetic models.

29

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600 1800

Ti
m

e(
se

c)

Average number of files

Figure 18: Effect of the number of files created in split time. Average times
of all models, with sizes in the range 100 - 6.000 elements.

1.800 files are created for models that contain 6.000 objects. We also observe
that in average one proxy object or two as a maximum is created for each
model fragment. Therefore, we can conclude that the overload caused by the
splitting (in terms of increased size per fragment) is low. Moreover, it should
be stressed that fragmenting a monolithic model is a one-time operation,
which needs to be performed just once, as the fragmented model can then
be used in place of the monolithic one.

Figure 17(a) shows an increase of splitting time at around 1.000 objects.
This can be attributed to a combined effect of model size and number of
generated fragment files (see Figure 17(c), where the number of files also
increases abruptly at around such number of objects). Figure 18 shows the
effect of the generated number of fragment files in the average split time of
all models in the experiment, with sizes ranging from 100 to 6.000 elements.
A linear increase can be observed. To better understand the effect of the
number of fragments, Figure 19 shows the variation in split time for a set of
13 models with 6.000 elements each, but leading to a number of fragments
ranging from 800 to 2.000 files. It can be observed that fragmenting models
leading to around 800 fragments is 20 seconds faster than fragmenting models
(of the same size) leading to around 2.000 fragment files.

6.2.2. Realistic large models

In the second experiment, we used the JDTAST models of the GraBaTs
competition. Figure 16 shows the fragmentation strategy applied to the JD-
TAST meta-model. In this case, the IJavaModel class is mapped to Project

30

20

25

30

35

40

45

800 1000 1200 1400 1600 1800 2000

Ti
m

e
(s

ec
s)

Average number of files

Figure 19: Effect of the number of files in split time. Average times of a set
of models of size 6.000.

and the IJavaProject class is tagged as Package. This is possible because there
is a composition relation from IJavaModel (the project) to IJavaProject, as the
patterns demands by means of relation javaProjects. Another composition rela-
tion between IJavaProject and IPackageFragmentRoot allows classes which inherit
from the latter (BinaryPackageFragmentRoot and SourcePackageFragmentRoot) to be
tagged as Package. Additionally the relation packageFragments enables IPackage-

Fragment to be tagged as Package. Finally, both IClassFile and ICompilationUnit are
annotated as Unit.

After the application of the modularity pattern, we split all the models
of the GraBaTs case study, turning each one of them into an Eclipse project.
As an example, Figure 20 shows the generated modelling environment with
an Eclipse project, named Projectset0, created from the model set0.xmi. The
project explorer shows the structure of folders and files generated from the
model, which follows the specified fragmentation strategy. The project cre-
ated from the model has similar structure to a Java project. As can be seen,
we have chosen icons for folders and units that resemble the ones used by
the Java plugin to represent packages and Java classes. However, the project
is a model conformant to the JDTAST meta-model, fragmented across the
file system. The project explorer to the left shows the hierarchical model
structure, and can be used to navigate through it. To the right, a tree editor
shows the content of one of the fragments. While the original model has
about 70.000 model elements, the fragmentation strategy fragments it into
1.800 files of much lower size (with an average of 40 elements). This allows
faster loading of each fragment, and a better navigation of the model.

31

Figure 20: Environment generated by EMF-Splitter for the JDTAST meta-
model.

Table 2 and Figure 21 present the results of the experiment. The graphic
shows a comparison between split and merge times. As in the experiment of
Section 6.2.1, splitting is slower than merging. The table contains more de-
tailed information, including columns for the split time, merge time (merging
all files of a fragmented model into one file), generated number of files, mean
and maximum number of elements of each fragment, and the total number
of elements in the whole model. We can observe that the maximum number
of elements in a file is repeated for models set2, set3 and set4. The reason
is that this group of models was built by adding Java classes incrementally.
For example, set2 is formed by set1 and the addition of some Java packages.

The results show that with the fragmentation, the exploration of the files
with SAMPLER would become easier, because the largest average fragment

32

Model Split time Merge time #files Avg Max # model elements
set0 1min34s 8s 1.779 40,17 1.322 71.458
set1 3min51s 38s 6.240 32,68 4.549 203.938
set2 9min5s 1min24s 6.050 345,27 50.718 2.088.890
set3 12min28s 3min20s 4.460 1.031,24 50.718 4.599.358
set4 13min28s 8min32s 5.068 980,04 50.718 4.966.846

Table 2: Results of splitting and merging the JDTAST models.

set0 set1 set2 set3 set4

Split time 01:34 03:51 09:05 12:28 13:28

Merge time 00:08 00:38 01:24 03:20 08:32

00:00

01:26

02:53

04:19

05:46

07:12

08:38

10:05

11:31

12:58

14:24

Ti
m

e
(m

m
:s

s)

Figure 21: Split/merge times over the JDTAST models.

size is about 1.000 elements (which are easily explorable with SAMPLER),
while the maximum number of elements in a file is 50.718, which would take
about a minute and a half to be visualised.

6.3. Comparing with third party tools

In this section, the goal is to assess the benefits that our approach has over
de-facto standard tools. Firstly, we compare (both in terms of time to open a
model and in reduction of memory size) with the standard modelling choice
within the Eclipse ecosystem: using monolithic models with the default XMI
serialization and EMF’s default tree editor. Second, we compare with CDO,
a common alternative to XMI for model persistence. Finally, we also compare
with Gephi, one of the most widely used tools for graph visualisation.

33

set0 set1 set2 set3 set4

EMF tree editor 00:03 00:04 00:23 01:28 02:33

EMFSplitter 00:02 00:02 00:03 0:00:03 00:03

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

02:18

02:36

Ti
m

e
(m

m
:s

s)

Figure 22: Time required to opening the model with EMF’s reflective tree
editor (grey columns to the left) and EMF-Splitter (black columns to the
right).

6.3.1. Fragmentation vs. Monolithic models and EMF tree editor

In this experiment, the objective is to assess the gain obtained by using a
fragmentation strategy in case that it is used in combination with the default
tree editor (instead of SAMPLER). This way, we compare the time needed
to open the monolithic models with the default model visualisation of EMF
(the reflective tree editor), with respect to open the largest model fragment
produced by the fragmentation strategy. Figure 22 shows the time needed
by the tree editor to open the complete models (grey columns to the left of
each series). It can be observed that, for the largest model, it needs two and
a half minutes to open.

The figure also shows a comparison with the time needed to open the
largest fragment in each model (black columns to the right of each series).
As this time is much smaller, the times are detailed in Table 3. It can be
observed that for the largest model it takes less than 3 seconds, which is more

34

than 55 times less than the time used for the monolithic model. The largest
fragment (CompletionEngine.java) is the same for set2, set3 and set4 because (as
previously mentioned) the latter two models are extensions of set2. Hence,
we can conclude that the fragmentation strategy really makes more scalable
the model visualisation using the default tree model editor.

Model Fragment # Model Time Gain w.r.t.
elements monolithic

set0 ProblemReporter.class 1.322 1,67s 1,57x
set1 BaseConfigurationBlock.java 4.549 1,76s 2,19x
set2 CompletionEngine.java 50.718 2,65s 8,77x
set3 CompletionEngine.java 50.718 2,65s 33,36x
set4 CompletionEngine.java 50.718 2,65s 55,76x

Table 3: Time required (ms) to open the biggest fragment model of each
project with the tree editor.

Next, we assess the benefits in terms of memory consumption with re-
spect to the tree editor and monolithic models. For this purpose we evaluate
the combined use of EMF-Splitter and SAMPLER, which may use the infor-
mation provided by the fragmentation strategy, as discussed in Section 5.3.
For this kind of exploration, it is not necessary to load the entire model as
we evaluated in Section 6.1. Instead, only the resources associated with the
root class need to be loaded, and then the nodes corresponding to folders and
files can be expanded on demand, providing a drill down hierarchical visual-
isation. Therefore, we calculated the minimum number of objects that need
to be loaded to display each object in the model. This number of objects is
the sum of all objects in all fragments existing in the path from the given
object to the root.

Table 4 shows the results of the evaluation. The columns depict the aver-
age number of loaded objects, the minimum and maximum. It can be noted
that generally, the total number of elements to load is much lower than the ac-
tual model size. For example, for set4 with almost 4.000.000 model elements,
the number of elements to load in the worst case is 54.160, which amounts
to a reduction of 98,9% of the objects that need to be held in memory. This
great reduction shows the power of fragmentation for scalability.

As we have seen, the hierarchical exploration of SAMPLER uses the frag-
mentation produced by EMF-Splitter, so that the content of nodes repre-
senting packages (folders) can be displayed by double-clicking on it. For this
purpose, SAMPLER needs to read such information from the file system.
Therefore, we made an assessment consisting in computing for each folder

35

Model Average Min Max Reduction w.r.t. tree editor
(worst case)

set0 502,26 250 1.613 97,74%
set1 719,26 34 4.800 97,65%
set2 11.590,62 61 54.141 97,4%
set3 7.859,59 83 54.163 98,82%
set4 7.550,56 89 54.169 98,9%

Table 4: Necessary number of loaded objects to explore the fragmented mod-
els.

the amount of resources (files and folders) that it contains directly or indi-
rectly. Table 5 shows the results, with the average and maximum number
of resources to show, which allows the exploration of the fragmented model.
Again, the low numbers even for the biggest model suggest a high scalability
of the combined exploration.

Model
Directly Contained Resources Directly/Indirectly Contained Resources

Average Amount of Resources Max Average Amount of Resources Max
set0 18,27 231 53,61 1.882
set1 28,98 270 85,88 6.463
set2 21,37 270 68,30 6.347
set3 12,20 157 46,86 4.858
set4 11,97 157 45,99 5.531

Table 5: Resources contained by the models at each hierarchical stage.

6.3.2. Fragmentation vs. Database Persistence Layer

An alternative to fragmentation is to use a more performing backend,
not based on file storage. A widely used option is CDO, which is both
a model repository and a persistence framework. CDO has many drivers
for persistence, usually connected to relational databases. In order to use
CDO, the meta-models need to be migrated, and the models inserted in the
backend. Similar to fragmentation, model insertion is a pre-requisite to use
the CDO technology. Therefore, we compare model insertion time in CDO
with model fragmentation time in EMF-Splitter. As a concrete backend,
we use DB Store, because it is the default choice for CDO. Furthermore, it
has been maintained throughout the different versions of CDO and supports
all its features. For model versioning, we use the default choice, which is
branching.

In the experiment, we measure the time required for CDO to import
the JDTAST models. Importing each model was repeated three times and

36

set0 set1 set2 set3 set4

Split7time7(EMFSplitter) 0:01:34 0:03:51 0:09:05 0:12:28 0:13:28

Import7model7time7(CDO) 0:00:06 0:00:12 0:03:43 0:35:44 1:02:14

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

Ti
m

e
 (

h
h

:m
m

:s
s)

Figure 23: Time required to split the models with EMF-Splitter (grey
columns to the left) and import the models into CDO (black columns to
the right).

the result average is shown in Figure 23. The figure also shows the splitting
model time (see also Figure 21). While model insertion in CDO is faster than
fragmentation for the first three models, fragmentation is faster for the last
two models of bigger size. This suggests a better scalability of fragmentation
to handle large monolithic models. It must be stressed that CDO optimizes
the persistence of some EMF features, like object identifiers. CDO uses
counters as identifiers for newly inserted objects, which is more efficient than
using Universally Unique Identifier (UUIDs), the scheme provided by EMF.

As it can be observed, inserting large monolithic models into CDO is
very costly, and takes more than one hour for set4. Hence, a natural ques-
tion is whether a pre-processing phase of fragmentation enhances this time.
That is, we may wonder whether fragmented models are faster to insert than
monolithic ones. To answer this question, we performed another experiment
comparing the performance of CDO for importing large monolithic models
and for importing the same model divided into files. For this experiment, we

37

set0 set1 set2 set3 set4

Fragmented model (CDO) 0:00:29 0:01:21 0:04:41 0:14:41 0:43:20

Monolithic model (CDO) 0:00:06 0:00:12 0:03:43 0:35:44 1:02:14

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

Ti
m

e
 (

h
h

:m
m

:s
s)

Figure 24: Time required by CDO to import fragmented (grey columns to
the left), and monolithic models (black columns to the right).

use the models of JDTAST, fragmented in Section 6.2.2 using EMF-Splitter.
The operation of importing the fragmented models was repeated three times
and the average time in shown in Figure 24. It can be observed that frag-
mentation reduces the import time both for the set3 and set4 models, while
the overhead of file access results in slightly higher insertion times for the
three smaller models. Hence, this experiment shows that large monolithic
models take longer to process by CDO than fragmented ones. Even though
model insertion in CDO is an operation that needs to be performed once, for
set3 and set4 it pays off to fragment them first.

6.3.3. Fragmentation vs. Gephi

The goal of this experiment is to compare with a graph visualisation
tool outside the Eclipse ecosystem. A typical choice would be Gephi7 [4],
a popular, open-source tool for graph exploration and analysis. In order to
make a reasonable comparison, we converted each JDTAST model (set0, set1,

7https://gephi.org/

38

set2, set3 and set4) from XMI into the GraphML format. The experiment
measures the time needed by Gephi to open those models. In particular, we
measure the time spanning since the windows of Gephi open (i.e. since the
Java Virtual Machine is already started) until the graph is completely drawn
in the screen. We did such tests 10 times to obtain an average of the time
we want to measure.

We obtained the following qualitative results:

• set0 and set1 are properly opened.

• set2, set3 and set4 required more memory than the default Gephi mem-
ory for the virtual machine. Once opened, it was impossible to work
with those graphs because Gephi got frozen very often doing internal
computations. Actually, these graphs are beyond Gephi’s announced
capabilities in its web page (100.000 nodes and 1.000.000 edges).

Table 6 summarises the time required to load the models in Gephi, the
time needed to split the models using EMF-Splitter, and the time needed
to load the biggest fragment using the default tree editor. Generally, split-
ting the models is slower than loading the model in Gephi. However, model
splitting is a one-time operation, which only needs to be performed once.
Opening the model afterwards takes – in the worst case – the time of opening
the biggest fragment. Those numbers are much lower than loading the whole
model, as Table 6 shows. It has the additional advantage that the amount
of objects in memory is considerably lower, and hence the visualisation tech-
niques can be done faster. Therefore, we can conclude that fragmentation
is a very useful pre-drawing technique for tools aiming at large scale graph
exploration.

Model Gephi Split time Load Biggest Fragment
set0 3s 1min34s 1, 67s
set1 6s 3min51s 1, 76s
set2 3min40s 9min4s 2, 65s
set3 9min36s 12min27s 2, 65s
set4 14min10s 13min28s 2, 65s

Table 6: Comparison between opening a model with Gephi, splitting the
model with EMF-Splitter, and loading the biggest fragment produced.

39

6.4. Discussion and Threats to Validity
In these experiments, we have evaluated the scalability of our model vi-

sualisation mechanisms, obtaining good results for large models when the
fragmentation strategies are used. In terms of size, we see large reduction
of size of the biggest fragment with respect to the total model size (see Ta-
ble 2), which implies a drastic reduction in loading time using the default
tree editor (see Figure 22 and Table 4). Moreover, fragmentation allows the
handling of large models using SAMPLER (as seen in Section 6.2), which
offers more sophisticated visualisation mechanisms than the tree editor. We
have seen that fragmentation is generally a useful pre-processing technique
when the model is to be visualized (as we have seen in the Gephi experiment)
or inserted into model backend (as we have seen in the CDO experiment).
Overall, we can conclude that for the experiments performed, the proposal
provides good scalability, and that fragmentation can be a good complement
to other tools to handle very large models.

The performance of the abstraction-based visualisations provided by SAM-
PLER is limited by two factors: model loading and computation of the ab-
straction. The first problem is aggravated by the fact that EMF loads all
elements of the XMI files in memory. Partial loading mechanisms, like those
developed by Wei et al. [48] could be of help. Second, some graph abstraction
algorithms have quadratic growth (see Figure 15) on the number of elements.
If the model is large, then simply these times are too large. XML databases,
like BaseX are another persistence alternative that we plan to investigate in
future work [21].

Fragmenting an existing, large monolithic model can be time consuming,
as shown in Table 2. However, this is a one-time operation, and it benefits if
the fragmented model is visualised more repeatedly. Also, please note that
the fragmented models are not read-only, and can be modified. Hence, once
a monolithic model is fragmented, there is no need to merge it back anymore.

The question arises whether these results are generalizable to other ar-
bitrary meta-models (i.e., the external validity of the experiments). Frag-
mentation gives good results with meta-models that have a strong hierarchi-
cal structure, reflected by the existence of composition references between
classes. EMF meta-models tend to heavily use composition references and
it is usual to have a root class in every meta-model, which contains directly
or indirectly all other classes. For the experiments and the running exam-
ple, we used three meta-models (developed by third parties), for which the
fragmentation strategies worked well. We can also observe that meta-models

40

for programming languages (e.g., JDTAST) or other ones used in software
modernization (KDM) have such hierarchical structure. However, one may
also find “flat” meta-models with few compositions, for which no option but
to include all objects in the model in the same fragment would be avail-
able. Therefore, we cannot generalize the fragmentation results to arbitrary
meta-models, but we can see that this technique fits especially well in the
reverse engineering domain, or domains in which models are hierarchical.
For example large modelling languages, like the UML tend to have hierar-
chical elements (e.g., models are divided into diagrams and packages), which
would be suitable for fragmentation strategies. A study of how common flat
meta-models are (e.g., by analysing meta-model repositories) is left for future
work.

Finally, these results investigate the efficiency of the approach, but leave
out the usability of the tools. An empirical study with users would be needed
to assess the usability of the approach, which is also left for a future contri-
bution.

7. Related work

In this section we focus on existing works dealing with model fragmenta-
tion, and model exploration and visualisation of large graphs.

Due to the need to process large models, some authors have proposed to
split them for solving different tasks. For instance, Scheidgen and Zubow [38]
propose a persistence framework that allows automatic and transparent frag-
mentation to add, edit and update EMF models. This process is executed
at runtime, with considerable performance gains. The approach has been
used for the analysis of large code repositories [37], so that code projects are
parsed into a model representation, and then analysed using OCL queries. To
guide the fragmentation, the composition references in the meta-model that
are aimed at producing fragments need to be annotated. This is similar to
our approach, but our modularity pattern creates a richer structure, includ-
ing projects and packages. Moreover, EMF-Splitter generates a modelling
environment, which permits creating such fragments while modelling with
the tool. Another difference is the persistence mechanism. EMF fragments
stores fragmented models in memory, and for persistency primarily relies on
distributed file-systems and key-value stores like MongoDB and HBase. For
traditional XMI persistence, fragmentation is currently not reflected in the
file system. Instead, EMF-Splitter relies on XMI files, and fragmentation

41

is reflected in the created folder and file structure. While EMF-Splitter is
limited by the capabilities of current XMI parsers, by being file-based it can
benefit from traditional version control systems (like SVN or git).

Other works [24, 41] decompose models into submodels for enhancing
their comprehensibility. For example, Kelsen and collaborators propose an
algorithm to fragment a model into submodels (actually they can build a
lattice of submodels), where each submodel is conformant to the original
meta-model [24]. The algorithm considers cardinality constraints but not
general OCL constraints, and there is no tool support. Other works use In-
formation Retrieval (IR) algorithms to split a model based on the relevance
of its elements [41]. Therefore, splitting models that belong to the same
meta-model can produce different structures. Customizable graph clustering
techniques, with the purpose of meta-model modularization, have also been
proposed [42]. The techniques are based on several clustering algorithms op-
eration on a distance matrix. Such matrix is obtained by weighting different
meta-model relations (generalization, composition, association) according to
their relevance. While our approach is applicable to existing large models, a
distinctive feature of our work is that we also generate a modelling environ-
ment that enforces the defined modularization strategy when creating a new
model.

Other approaches are based on search techniques [27, 18] guided by qual-
ity criteria. Moody and Flitman [27] use genetic algorithms to cluster a data
model into a multi-level structure, using principles of human information
processing. More recently, inspired by our modularity pattern, and our pre-
vious work on generic transformations [14], Fleck and collaborators present
an approach for model modularization applicable to arbitrary modelling lan-
guages [18]. The approach is based on mapping concrete meta-model ele-
ments to modularization concepts like “module”. Then, a generic transfor-
mation is used to actually split the model elements into modules, according
to quality criteria, like cohesion and coupling. The transformation rules
are applied according to multi-criteria optimisation algorithms. Our mod-
ularization is richer, as we support both projects and packages, and nested
packages, while Fleck’s approach lacks hierarchical decomposition (modules
within modules). However, the idea of using quality criteria to drive the
splitting phase is quite interesting, and we will consider it in future work.

In the previous work of one of the authors [1] a theory of model fragmen-
tation was developed, upon which we have based our practical solution. The
theory is based on graphs and morphisms, and was developed using the Z for-

42

mal language with the help of proof assistants. It describes possible model
organizations, based on fragments (units), clusters (packages) and models
(projects). The theory describes fragmentation devices, like proxy nodes and
cross-links, which are available in EMF; and explains model de-composition
and composition, showing correctness of the obtained model.

Other works directed to define model composition mechanisms [22, 23, 43]
are intrusive. These papers [22, 43] present techniques for model composition
and realise the importance of modularity in models as a research topic to
minimise the effort. Strüber et. al [23] present a structured process for
model-driven distributed software development which is based on split, edit
and merge models for code generation.

Landesberger and collaborators present a survey of graph representa-
tion, exploration and analysis techniques used for the visual analysis of large
graphs [47]. Among other aspects, the authors stress the need for supporting
user interaction techniques for graph exploration. These include lenses (to
focus on an interesting part of a graph), semantic zooming (increasing the
level of detail by drilling down to lower levels of aggregation) and filtering
techniques. Some of the operations supported by SAMPLER, like local focus
can be interpreted as a lense, while the tool provides different ways to explore
aggregated nodes, and filtering criteria. Additional visualisation techniques
for large graphs, like combining node-link and matrix-based representations
are left for future work. Similarly, a more recent survey [34] distinguishes
techniques to obtain both global views of a large graph (like filtering, sam-
pling, partitioning or clustering), and to handle local views (exploration,
navigation). While SAMPLER offers filtering, clustering, exploration and
navigation techniques, we also profit from pre-processing the graph using
model fragmentation. This is a novel pre-processing technique according
to [47, 34].

Regarding concrete tools, MoVi [28] is a visualisation tool that provides
an interactive environment to process models. This tool has some main
functions for a manageable exploration, like details on demand, partitioning,
zoom and filter. However, it does not propose scalability techniques for work-
ing with big models. The ELVIZ framework for model visualisation [32] is
based on the transformation of input models to appropriate output formats.
For example, given a class diagram, ELVIZ can extract the number of meth-
ods per class, and visualise such numbers as a bar chart. ELVIZ facilitates
the generation of input models to different visualisation outputs relying on
mappings. However, this tool does not target large models. The incQuery

43

tool [45] allows querying a model using a pattern-based language. While it
focuses on achieving good performance upon model changes (by an efficient
indexing scheme), our focus is on scalability through fragmentation.

Explen [6, 7] is a tool that uses slicing techniques in order to visualise
large meta-models. Similar to our approach, it is possible to focus on a given
class, and select some slicing criteria (e.g., show the composition relations
only, show only a certain radius of classes, or show the sub/super type hier-
archy). Explen includes a flattening filter, which presents a hierarchy in the
form of a unique class. SAMPLER supports the visualisation of models and
meta-models, and the abstractions/slice criteria are extensible. Moreover,
we support different navigation strategies from abstracted models. In previ-
ous work of one of the authors [16] some reusable abstractions for modelling
languages were presented. Those abstractions produce a simpler view of an
existing model, and are described in a generic way, being applicable “as is”
to different modelling languages. The extensible architecture of SAMPLER
would allow incorporating these abstractions into our approach.

The analysis of large graphs arising in e.g., social networks have produced
some summarization techniques, which try to encode in smaller graphs [26]
or as a variety of statistics [29] the main features of the large graph. For
this purpose, some approaches are based on finding the most often occurring
subtype graphs (cliques, starts, chains, etc) in those bigger graphs. In the
context of MDE, this information is encoded in the meta-model. Other
methods are more flexible, as they allow customization of the interesting
attributes of nodes [44], and nodes with similar values are summarised in a
single node. This would be similar to SAMPLER’s global abstractions.

Regarding tools for graph visualisation, perhaps the most well-known is
Gephi [4]. The tool includes a force-based layout, enables the calculation of
metrics, and dynamic graph analysis. While it is targeted to large graphs,
we have seen that large models arising in the reverse engineering domain
– like set2, set3 and set4 in the JDTAST case study – are beyond Gephi’s
capabilities (according to its web page, it can handle up to 100.000 nodes and
1.000.000 edges). Our experiments have shown that model fragmentation is a
useful pre-processing technique for this kind of tools to handle these graphs.

Instead of using fragmentation, other persistence options to handle large
models have been proposed, like CDO, or NeoEMF [5]. The latter allows
storing the models in graph-based backends. In Section 6.3.2, we have seen
the advantages of fragmentation to insert large models into these backends.
Our approach keeps a file-based approach for storing models, which allows

44

their versioning in traditional version control systems like git or SVN, in a
uniform way with the project code base. Moreover, model fragmentation
permits reducing the possible conflicts that concurrent modifications may
produce. In any case, the open architecture of SAMPLER (see Figure 9)
enables using different modelling technologies, and hence NeoEMF or CDO
could be used by our approach instead of using fragmentation. Similar to
database indexes, model indexes have been proposed [3] to efficiently perform
queries on large models. While this does not fully solve the problem of
loading a very large model into memory, our plan is to combine indexing
with fragmentation.

Altogether, to the best of our knowledge, our approach to combine model
fragmentation and model visualisation techniques for scalable model visual-
isation is novel. Moreover, our report on this combination can be useful to
existing graph visualisation tools.

8. Conclusions and future work

In this work, we have proposed the combination of model fragmentation
and model visualisation techniques to explore large models. Model fragmen-
tation is performed by applying fragmentation strategies at the meta-model
level. Model exploration is done by applying different abstraction strategies
to the model, and with the availability of model exploration techniques. We
have performed an evaluation of the approach for large models. We have
seen that for models in the range of up to roughly six thousand elements, ab-
straction gives good results. For large models, such as those of the GraBaTs
case study, a direct visualisation is limited, but our proposal is fragmenting
them first. Fragmentation according to a strategy may be costly (if many
files need to be produced), but it is a one-time operation. In this case, frag-
ments become of manageable size, and then can be visually explored. The
experiments show big gains obtained by fragmentation for the visualisation
of large models (a speed up of 55× in terms of time to load and a reduction
of up to 98% percent in size) with respect to using the standard EMF tree
editor over monolithic models. We have also seen that tools for large scale
graph visualisation, like Gephi, or for model persistence, like CDO, could
benefit from fragmentation as a pre-processing step.

In the future, we would like to improve the visualisation capabilities of
SAMPLER, by enabling combined node-link and matrix representations of
graphs, and supporting hierarchical abstractions. We also plan to integrate

45

Hawk [3], a model indexer, within our tools to achieve better performance
when operating with multiple model fragments. Finally, we will perform em-
pirical studies about the tools usability, as well as a field study on the appli-
cability of the fragmentation strategies. We also plan to integrate other tech-
niques for fragmentation, like those proposed in [41] within our approach.

Acknowledgements

Work supported by the Spanish Ministry of Economy and Competitivity
(TIN2014-52129-R), the R&D programme of the Madrid Region (S2013/ICE-
3006), and the EU commission (FP7-ICT-2013-10, #611125). We thank the
reviewers for their excellent comments on a previous version of this paper.
We also thank Markus Scheidgen for his help in experimenting with EMF
Fragments.

References

[1] N. Amálio, J. de Lara, and E. Guerra. Fragmenta: A theory of fragmen-
tation for MDE. In 18th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MoDELS 2015, pages 106–
115. IEEE, 2015.

[2] C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure.
ACM Trans. Model. Comput. Simul., 12(4):290–321, 2002.

[3] K. Barmpis and D. S. Kolovos. Hawk: towards a scalable model indexing
architecture. In Proceedings of the Workshop on Scalability in Model
Driven Engineering, Budapest, Hungary, page 6. ACM, 2013.

[4] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source
software for exploring and manipulating networks. In Proceedings of the
Third International Conference on Weblogs and Social Media, ICWSM
2009. The AAAI Press, 2009. See also https://gephi.org.

[5] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay. Neo4emf,
A scalable persistence layer for EMF models. In ECMFA, volume 8569
of Lecture Notes in Computer Science, pages 230–241. Springer, 2014.

46

[6] A. Blouin, N. Moha, B. Baudry, and H. A. Sahraoui. Slicing-based
techniques for visualizing large metamodels. In Second IEEE Working
Conference on Software Visualization, VISSOFT, pages 25–29. IEEE
Computer Society, 2014.

[7] A. Blouin, N. Moha, B. Baudry, H. A. Sahraoui, and J. Jézéquel. Assess-
ing the use of slicing-based visualizing techniques on the understanding
of large metamodels. Information & Software Technology, 62:124–142,
2015.

[8] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall.
Graphml progress report. In Graph Drawing, pages 501–512, 2001. See
also http://graphml.graphdrawing.org/.

[9] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. Modisco: A model
driven reverse engineering framework. Information & Software Technol-
ogy, 56(8):1012–1032, 2014.

[10] H. Brunelière, J. Cabot, J. L. C. Izquierdo, L. O. Arrieta, O. Strauß,
and M. Wimmer. Software modernization revisited: Challenges and
prospects. IEEE Computer, 48(8):76–80, 2015.

[11] T. Bühler and M. Hein. Spectral clustering based on the graph p-
laplacian. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, volume 382 of ACM International
Conference Proceeding Series, pages 81–88. ACM, 2009.

[12] Connected Data Objects (CDO). https://eclipse.org/cdo/.

[13] E. Clayberg and D. Rubel. Eclipse plugins, 3rd Edition. Addison-Wesley
Professional, 2008. See also http://www.eclipse.org/.

[14] J. S. Cuadrado, E. Guerra, and J. de Lara. A component model for
model transformations. IEEE Trans. Software Eng., 40(11):1042–1060,
2014.

[15] J. de Lara and E. Guerra. A Posteriori typing for model-driven engi-
neering: Concepts, analysis, and applications. ACM Trans. Softw. Eng.
Methodol., 25(4):31:1–31:60, 2017.

47

[16] J. de Lara, E. Guerra, and J. S. Cuadrado. Reusable abstractions for
modeling languages. Inf. Syst., 38(8):1128–1149, 2013.

[17] K. Dhambri, H. A. Sahraoui, and P. Poulin. Visual detection of design
anomalies. In 12th European Conference on Software Maintenance and
Reengineering, CSMR, pages 279–283. IEEE Computer Society, 2008.

[18] M. Fleck, J. Troya, and M. Wimmer. Towards generic modularization
transformations. In 15th International Conference on Modularity, pages
190–195. ACM, 2016.

[19] A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara. EMF split-
ter: A structured approach to EMF modularity. In XM@MoDELS, vol-
ume 1239 of CEUR Workshop Proceedings, pages 22–31. CEUR-WS.org,
2014.

[20] A. Garmendia, A. Jiménez-Pastor, and J. de Lara. Scalable model
exploration through abstraction and fragmentation strategies. In Big-
MDE’2015, volume 1406 of CEUR Workshop Proceedings, pages 21–30.
CEUR-WS.org, 2015.

[21] C. Grün. Storing and querying large XML instances. PhD thesis, Uni-
versity of Konstanz, 2010. See also http://basex.org.

[22] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On
language-independent model modularisation. T. Asp.-Oriented Soft.
Dev. VI, 6:39–82, 2009.

[23] P. Kelsen and Q. Ma. A modular model composition technique. In
Proceedings of FASE’10, volume 6013 of LNCS, pages 173–187. Springer,
2010.

[24] P. Kelsen, Q. Ma, and C. Glodt. Models within models: Taming model
complexity using the sub-model lattice. In Proceedings of FASE’11,
volume 6603 of LNCS, pages 171–185. Springer, 2011.

[25] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot. A
research roadmap towards achieving scalability in model driven engi-
neering. In Proc. BigMDE ’13, pages 2:1–2:10, New York, NY, USA,
2013. ACM.

48

[26] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: summariz-
ing and understanding large graphs. In Proceedings of the 2014 SIAM
International Conference on Data Mining, pages 91–99. SIAM, 2014.

[27] D. L. Moody and A. Flitman. A methodology for clustering entity re-
lationship models - A human information processing approach. In Con-
ceptual Modeling - ER’99, volume 1728 of Lecture Notes in Computer
Science, pages 114–130. Springer, 1999.

[28] M.-K. Mufida, G. Calvary, S. Dupuy-Chessa, and Y. Laurillau. MoVi:
Models visualization for mastering complexity in model driven engineer-
ing. In Proceedings of the 2015 British HCI Conference, British HCI ’15,
pages 281–282, New York, NY, USA, 2015. ACM.

[29] M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45(2):167–256, 2003.

[30] OMG. Knowledge Discovery Meta-model specification.
http://www.omg.org/spec/KDM/.

[31] OMG. UML 2.5 specification. http://www.omg.org/spec/UML/.

[32] M. Ostendorp, J. Jelschen, and A. Winter. ELVIZ: A query-based ap-
proach to model visualization. In Modellierung 2014, pages 105–120,
2014.

[33] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, and J. de Lara.
Pattern-based development of domain-specific modelling languages. In
18th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MoDELS 2015, pages 166–175. IEEE, 2015.

[34] R. Pienta, J. Abello, M. Kahng, and D. H. Chau. Scalable graph ex-
ploration and visualization: Sensemaking challenges and opportunities.
In 2015 International Conference on Big Data and Smart Computing,
BIGCOMP 2015, Jeju, South Korea, February 9-11, 2015, pages 271–
278. IEEE, 2015.

[35] A. Rentschler, Q. Noorshams, L. Happe, and R. H. Reussner. Interac-
tive visual analytics for efficient maintenance of model transformations.
In Theory and Practice of Model Transformations - 6th International

49

Conference, ICMT 2013, volume 7909 of Lecture Notes in Computer
Science, pages 141–157. Springer, 2013.

[36] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64,
2007.

[37] M. Scheidgen and J. Fischer. Model-based mining of source code repos-
itories. In System Analysis and Modeling: Models and Reusability - 8th
International Conference, SAM 2014, volume 8769 of Lecture Notes in
Computer Science, pages 239–254. Springer, 2014.

[38] M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe. Automated and
transparent model fragmentation for persisting large models. In Proceed-
ings of MoDELS’12, volume 7590 of LNCS, pages 102–118. Springer,
2012.

[39] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering.
Computer, 39(2):25–31, Feb. 2006.

[40] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework, 2nd Edition. Addison-Wesley Professional, 2008.
See also http://www.eclipse.org/modeling/emf/.

[41] D. Strüber, J. Rubin, G. Taentzer, and M. Chechik. Splitting models us-
ing information retrieval and model crawling techniques. In Proceedings
of FASE’14, volume 8411 of LNCS, pages 47–62. Springer, 2014.

[42] D. Strüber, M. Selter, and G. Taentzer. Tool support for clustering large
meta-models. In BigMDE 2013, page 7. ACM, 2013.

[43] D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer. Towards a dis-
tributed modeling process based on composite models. In Proceedings
of FASE’13, volume 7793 of LNCS, pages 6–20. Springer, 2013.

[44] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph
summarization. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 567–580. ACM, 2008.

[45] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth,
Z. Szatmári, and D. Varró. Emf-incquery: An integrated development
environment for live model queries. Sci. Comput. Program., 98:80–99,
2015.

50

[46] M. F. van Amstel, M. G. J. van den Brand, and A. Serebrenik. Traceabil-
ity visualization in model transformations with tracevis. In Proceedings
of the 5th International Conference on Theory and Practice of Model
Transformations, ICMT’12, pages 152–159, Berlin, Heidelberg, 2012.
Springer-Verlag.

[47] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Comput. Graph. Forum,
30(6):1719–1749, 2011.

[48] R. Wei, D. S. Kolovos, A. Garcia-Dominguez, K. Barmpis, and R. F.
Paige. Partial loading of xmi models. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages
and Systems, MODELS ’16, pages 329–339, New York, NY, USA, 2016.
ACM.

51

