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ABSTRACT

Simulation is widely adopted by the research community to analyze
and study complex systems. It is based on the idea of creating
a model representing the target system under study, so that the
experiments can be executed over the model instead of the target
system. However, since the model is a simplification of a real-world
system, the obtained results entail an accuracy loss, which makes
determining the reliability of the experiments a complex task.

Testing can be applied to check the correctness of systems. Thus,
an oracle is used to determine if a test is correct or not. In the field
of simulation, an oracle can be applied to determine the reliability
of the results, but in most cases, the oracle is not available or is
computationally too expensive to be applied.

In this work, we propose to use metamorphic testing to detect
faults in simulated distributed systems. In essence, we use meta-
morphic relations — representing the relevant properties of the
system under study - as an oracle. Thus, the results provided are
contrasted against these relations to determine their reliability. In
order to show the applicability of this approach, we have modelled
different distributed systems architectures using the SIMCAN sim-
ulator and a high performance application that is executed over the
models.
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«» Software and its engineering — Software testing and de-
bugging.
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1 INTRODUCTION

During the last decades, simulation has been widely adopted by
the industry and the research community to analyze and study
distributed systems [11]. According to the definition provided by
Robert E. Shannon, simulation is “the process of designing a model
of a real system and conducting experiments with this model for the
purpose of understanding the behavior of the system and/or evaluating
various strategies for the operation of the system” [24]. In computer
science, simulation can be seen as a technique to represent the
behavior of real-world systems — like HPC data-centers or clouds —
using a program that executes algorithms to imitate the internal
processes of the target system being simulated [7].

One approach to validate a simulation is to reproduce the same
experiment over the real-world target system and compare the
obtained results against the ones provided in the simulated envi-
ronment [20]. Unfortunately, in many cases, there is no real-world
data available from the target system. Another approach consists in
validating the simulator used to conduct the research. This implies
determining whether the simulator program properly represents
the behavior of the entities being simulated. In the case of dis-
tributed systems, these entities are disks, CPUs and communication
networks, among others. Therefore, to demonstrate that a simulator
is accurate, it is required to create — and validate — every potential
model that can be reproduced by the simulator, which is unpracti-
cal and unfeasible due to time and computational restrictions. In
this paper, we propose an approach for locating errors both in the
model representing the target system, and in the simulator used
to simulate its behaviour, by applying metamorphic testing (MeT)
techniques.

Testing has been widely applied during the last decades to check
the correctness of systems [2, 13]. There are two fundamental prob-
lems in testing: the oracle problem [6] and the reliable test set prob-
lem [9]. The former refers to the capability of having a mechanism —
called oracle - to decide if the result provided by a test is correct, or
not. The latter consists in generating a proper test suite for testing
the target system. In our setting, we would like to create oracles
to decide if the results provided by the simulators are reliable, or
not. However, the oracle problem applies in our context, since for
most simulation scenarios, the oracle is not available or it is com-
putationally too expensive. In the past, those programs without an
oracle have been considered as non-testable programs [29]. Some
examples of this kind of applications are, among others, simulation
of scientific and complex systems, machine learning algorithms,
and search engines [23].
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To attack these problems, we propose to combine MeT with
simulation to detect errors in simulated distributed systems. The
main objective of our approach is to provide valuable information
for helping researchers to decide if a simulator is reliable enough
to simulate a model representing real-world systems. In order to
accomplish this objective, we use MeT techniques, that is, instead
of checking the output provided by the simulation with the out-
put provided by an oracle, we use metamorphic relations (MRs)
which reflect the underlying behavior of the system under study
by relating the inputs of different tests with their outputs.

In our approach, the researcher first executes the simulation of
the model representing the target system. We refer to this execution
as source test case. Next, a wide-spectrum of follow-up test cases is
created. Generally, follow-up test cases are automatically generated
by applying modifications over a source test case. For each follow-
up test case, we use the results provided by the source test case
against the one provided by the follow-up test case, to check if the
MR is fulfilled. In such a case, we consider that the test passes.
Otherwise, we say that the test fails, which means that for this test
case, the model does not represent the expected behavior. Since
MeT alleviates the two fundamental problems of testing [6], it
can be considered adequate to verify the results provided by the
simulations.

In order to show the applicability of this methodology, we present
an empirical study directed to analyze the accuracy of the SIMCAN
simulator. For this, we model a correct and a flawed architecture,
and inject an artificial flaw in SIMCAN. The results show that the
approach is able to detect both misbehaviors in the incorrect model,
and in the faulty version of the simulator.

Paper organization. Section 2 analyses related work. Section 3 presents
our approach to analyze the reliability of simulated distributed sys-
tems. Section 4 introduces the SIMCAN simulator, and Section 5
presents an empirical study to investigate its reliability. Finally,
Section 6 concludes with some directions for future work.

2 RELATED WORK

During the last decade, the number of publications related to MeT
has considerably increased [23]. In this section, we analyze the
works applying MeT over simulation.

Lin and collaborators [12] present an approach, called exploratory
metamorphic testing, to detect bugs. This proposal consists in defin-
ing the multiple iterations of tests for performing continuous simu-
lations, and then keeping multiple MRs open for investigating the
testing-result patterns. This approach has been applied to discover
mismatches and constraints in automatically calibrating parameters
for a water management model.

Olsen and Raunak proposed an overall framework and guidelines
to apply MeT for simulation validation [21]. The authors of this
work also present three different case studies to show the appli-
cation of this approach: a networked agent-based models (ABM)
of gossip propagation; a multiscale ABM of cancer; and a discrete-
event simulation (DES) of airport arrival, check in, and security.
The proposed process for simulation validation using MeT does not
take into account the quality of the MRs, assuming these have been
properly designed to detect flaws in the simulation.
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A similar process has been followed to analyze and optimize
cloud computing systems using simulation techniques. Nufiez and
Hierons presented a methodology to semi-automatically test and
validate cloud configurations by combining simulation techniques
and MeT [18]. To that end, the authors propose several MRs focusing
on different aspects of the system: performance, functionality and
energy consumption. The empirical study presented in that work
analyses two different cloud configurations, clearly showing the
existing flaws in the misconfigured cloud model. TEA-Cloud is
a complete framework that integrates simulation with MeT for
validating cloud system designs [16]. In that work, the behavior
of the cloud is formally presented through a collection of MRs.
The authors present an experimental study divided in two parts.
First, different experiments are carried out to assess the validity of
the MRs. Next, a complete empirical study is carried out to check
the effectiveness and applicability of the framework. For this, 15
different mutants are used and around 16000 different follow-up test
cases were automatically generated. Cafiizares and collaborators [4]
present an approach where cloud models are optimized to improve
the energy consumption. In this case, Genetics Algorithms (GAs)
are applied in the MeT process to generate variants of the original
model to be improved.

In the field of intelligent and expert systems, there are some
works in the current literature that combine MeT and simulation
techniques. CloudExperts is an intelligent system that applies MeT
to calculate the most appropriate cloud simulator for simulating a
cloud configuration that fulfils the requirements of the user [15].
In that work, the proposed system uses the time required to exe-
cute the simulation, the features to be simulated, and the number
of tests successfully executed by each simulator to make a final
recommendation. An expert system for locating errors in memory
systems is described in [3]. The system combines simulation and
MeT enabling the automatic generation of appropriate test cases
and deciding if their outputs are correct.

In the field of autonomous vehicles (AVs), MeT has been success-
fully applied to detect faults. Igbal and collaborators [10] conducted
a case study to investigate the fault-detection effectiveness of exist-
ing Advanced Driver-Assistance Systems (ADAS) testing standards.
In particular, the authors focus the research in the Lane Keeping As-
sist System (LKAS). In order to check the robustness of that system,
MeT was applied to detect bugs over 40 different scenarios. The
results obtained in the study revealed a real-world bug in the LKAS
system. Valle presents an approach to apply Quality-of-Service
(QoS) aware MeT to test AVs modeled in MATLAB/Simulink [27].
In this work, MRs are defined by using a set of QoS measures ap-
plied to AVs. Additionally, mutation testing is applied to assess the
approach in an AV modeled in Simulink.

In the field of social networks, Ahlgren and collaborators [1] de-
scribe how the system MIA (Metamorphic Interaction Automaton)
is applied to test WW, Facebook’s simulation of its platforms. WW
is a multi-agent simulation environment where each agent is a bot
- isolated from real users — that simulates classes of user behav-
ior. WW simulates user interactions with bots trained by machine
learning. The approach uses a suite of over 40 metamorphic test
cases. The offline mode simulation shows that the test flakiness can
be reduced from 50% (of all online tests) to 0% (offline).
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Some of these works consist in validating and optimizing cloud
system models using MeT. In contrast, our proposed approach dif-
fers in several aspects: i) Since this work focuses in detecting faults
in both the model representing the target system, and in the sim-
ulator, the underlying architecture must be specified with a high
level of detail, where parameters like the latency of the network,
the read bandwidth of the storage disks and the configuration of
the file systems, among others, must be specified to accurately rep-
resent the target system. On the contrary, cloud models use a more
generalized configuration of the underlying architecture and, there-
fore, these parameters are not considered,; ii) To study distributed
systems, it is key to select appropriate distributed applications to be
executed over the model, hence stressing the different components
of the system, like disks, CPUs and memories, to analyze the over-
all system behavior. However, in cloud systems, the workload is
usually represented by the users accessing the cloud for requesting
resources, instead of the applications executed by the users; and
iii) In this work we analyze the reliability of the simulator and the
model for representing the behaviour of distributed systems. Thus,
the goal is not to optimize the models under study.

3 ANALYZING THE RELIABILITY OF
SIMULATED DISTRIBUTED SYSTEMS

A model of a distributed system is a simplification of a real-world
system, reflecting its most relevant features, and discarding those
that are not significant for its behavior of interest. Since the execu-
tion of the experiments is carried out over the model - not over the
real system — the reliability of the results heavily depends of two
main factors: the level of detail provided in the model to represent
the target system, and the accuracy of the simulator to imitate the
behavior of hardware components, like communication networks,
disks and CPUs, among others.

The wide adoption of simulation by the research community
is mainly due to the possibility of executing the experiments in a
regular computer, since the target system is not required, while its
main weakness is the reliability of the results. Simulators contain
processes and algorithms that imitate the behavior of the devices of
the target system. Increasing the level of accuracy of the simulator
requires processing more features, which in turn requires more
complex algorithms and computational power. Thus, the accuracy-
performance tradeoff of the selected simulator must be carefully
considered, to obtain reasonable simulation execution times.

In order to analyze the reliability of simulated distributed sys-
tems, it is crucial to execute a proper application that uses the sim-
ulated hardware — and software — parts of the target system. Thus,
using different configurations of the application to be executed in
the model, allows focusing the operations over different subsys-
tems. For instance, a CPU-intensive application massively performs
computing operations over the different CPUs of the system, while
a data-intensive application massively performs data operations
over the storage devices. This way, a model of a distributed system
consists of two different parts: the underlying architecture of the
system, and the application(s) to be executed over this architecture.

In this paper, we present an approach to analyze the reliability of
simulators and models for representing the behavior of real-world
distributed systems. Since we have not an oracle to determine if the
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results provided by the simulation are reliable, or not, we use MeT
techniques to alleviate this issue. MeT uses metamorphic relations
(MRs) to reflect the expected properties of the target system. The
inputs of different tests are related to the observed outputs. Thus, an
MR can be seen as a formula i(MR) = o(MR), where i(MR) refers
to the relation between a source test case and a follow-up test case,
and o(MR) refers to the relation that must be fulfilled by the outputs
obtained from the source test case and the follow-up test case.
The rest of this section is divided into three parts. Section 3.1
shows the main components of the distributed systems and how
these are organized to create a model. Next, in Section 3.2, we
describe a model of a distributed application that can be executed
over architecture models. Finally, Section 3.3 shows the notation and
MRs used to analyze the accuracy of distributed system simulators.

3.1 Modeling the architecture of distributed
systems

Broadly speaking, a distributed system consists of different nodes
interconnected through a communication network. In general, each
node, which is also referred to as blade, consists of four basic sub-
systems: computing, storage, memory and networking.

In large distributed systems, like data-centers or HPC systems,
the blades are organized in racks. The idea is to maximize the
density of computers to reduce the required space to assemble the
system. To that end, a rack accommodates several boards, each one
containing different blades. Figure 1 shows a general architecture
of a distributed system. The racks can be configured to contain
internal switches for the interconnection of blades, which also
provide a connection with the external communication network.
Using this schema, a wide spectrum of scenarios can be represented,
from a basic distributed system consisting of two different nodes
interconnected through a switch, to a large HPC system consisting
of thousands of blades organized in racks.

In order to study a distributed system using simulation, it is
required to create a model of the target system. The model must
reflect the underlying configuration of the system, which consists
of different parameters like, just to name a few, the topology of the
system, the hardware features of each blade, and the configuration
of the storage system. However, the level of detail applied to create
the model heavily depends on the simulator used to represent its
behavior.

3.2 Modeling distributed applications

Usually, distributed systems are studied by executing a well-known
application — or benchmark - and analyzing the provided results,
which determine different aspects of the system, like performance,
scalability or the existence of system bottlenecks, among others.
Hence, it is key to use an adequate application to accurately ana-
lyze the required features of the target system. For instance, the
computers that appear in the Top500 list [25], that is, the 500 most
powerful computers in the world, are analyzed using the LINPACK
Benchmark [8] that, basically, solves a dense system of linear equa-
tions. However, other applications can be used, for instance, to
analyze the performance of the storage system [22].



MET’22, May 9, 2022, Pittsburgh, PA, USA

Communication network

Switches
) A
oo )
Board

Board

Switches

Board

Board

=N

Operating 1
Network :
M ey

Blade
IH

Figure 1: Architecture system model

These applications are executed over a real production-ready
system, which means that it is not possible to apply short-term archi-
tectural modifications anymore. Instead, in simulation, researchers
are usually interested in contrasting the results of different mod-
els, where several configurations can be stressed to analyze their
strengths and weaknesses. It is therefore required a flexible and
versatile application that can be easily modified to represent a wide-
range of configurations in a scalable way. To that end, we use an
application model that has been used in the past to analyze the
behavior of different distributed systems [14].

This application deploys two different types of process to com-
pute a data-set: coordinators and workers. The former type focuses
on delivering data among the worker processes and receiving the
results. The latter type focuses on performing the computation over
the input data to generate the results. Figure 2 shows a schema of
this application, where the processes are grouped in n domains.
Each domain contains k processes, one coordinator and k-1 workers.
The processes of the same domain cannot communicate with those
processes belonging to a different domain. The following steps are
performed until the data-set is completely processed: 1) Each coor-
dinator reads a slice of data from the data-set, which is stored in a
storage device; 2) The slice of data is divided into different portions
and are sent to the workers of the same domain; 3) Each worker
computes the data and generates partial results; 4) The intermediate
results are sent to the coordinator; 5) The coordinator receives the
results from the worker processes and write them to disk.

3.3 Definition of MRs

In MeT, the properties that define the underlying behavior of the
target system must be reflected in the MRs. Since a model of a
distributed system contains a high number of inter-related parame-
ters that affect the overall system performance, the MRs must be
carefully designed. For instance, if the MRs are too general, that is,
the features reflected in the relations represent basic characteristics
of the underlying system under study, then the major part of the
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Figure 2: Application model

test cases will likely satisfy the MRs and, consequently, the existing
errors will not be discovered. In MeT, defining high-quality MRs is
key to reach valuable results.

Before defining the MRs, we need to create a model m that repre-
sents the target system and, next, use MeT techniques to determine
if the results provided by the simulator S to simulate the behavior
of m are reliable.

A model of a distributed system can be represented by a tuple
m = (s, a), with s the underlying architecture, and a the application
to be executed on s. From the point of view of the simulator S, a test
case is defined as the simulation of a model m (i.e., the simulation
of the execution of a over s), denoted by S(m). The simulated time
estimated to execute a over s is denoted by S¢ime(m).

We use the following notation to represent the features of the
system architecture s:

® scomp = Total number of computing nodes.

® ssro = Total number of storage nodes.

® Ssize = Scomp t Ssto-

® S,Cores = Number of CPU cores for each processor.

® SCPUspeed = Speed of each CPU core.

® SNerBan = Network bandwidth.

® SNetLar = Network latency.

® SpiskSize = Storage disk capacity.

® SpiskRead = Write bandwidth of each storage disk.

® spiskwrite = Read bandwidth of each storage disk.
Similarly, we use the following notation to represent the features

of the application a:

® 4;01alProc = Total number of processes deployed in a.

e a;. = Number of processes for each domain.

°®a, = a’”’;—if”"c = Number of domains.

® a;,:q = Size of the data-set to be processed by a.

® dg.liver = Amount of data (in MB) delivered to each worker
process.

® a,.¢u1: = Size of partial results (in MB) generated by each
worker process.
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Figure 3: Metamorphic relations for validating distributed system simulations

® acpy = Computing performed (in MIs) for each worker pro-
cess to compute a portion of data.

In order to check the reliability of the results provided by S,
different MRs are used as an oracle. To that end, we define a source
test case m, and create different follow-up test cases from m. Once
the source test case and the follow-up test cases are executed us-
ing S, the results are contrasted against the MRs to analyze if the
properties reflected in the MRs are satisfied.

Figure 3 presents several MRs for checking the reliability of
simulated distributed systems, where the source test case is denoted
by m = (s, a) and the follow-up test case is denoted by m’ = (s’, a’).
For clarity, we assume that the features that are not explicitly used
in the MRs are equal in both m and m’.

4 OVERVIEW OF THE SIMCAN SIMULATOR

SIMCAN is a modular simulation platform for modeling and sim-
ulating both distributed systems and applications. It is publicly
available as open source software'. SIMCAN has been written in
C++ using OMNeT++ [28], a simulation framework to build net-
work simulators, and INET [26], an open-source model library for
OMNeT++ that provides protocols, agents and other models to sim-
ulate communication networks. SIMCAN has been successfully
used in a wide variety of fields, like testing [5], teaching [19], and
optimization of HPC systems [14].

File DataCenter Simulation Help
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Figure 4: Snapshot of SIMCAN GUI

A repository of components organizes all the modules that can
be used to build a distributed system. Figure 4 shows a snapshot
of SIMCAN’s GUI, where the left frame shows the repository of
components like disks, CPUs and memories, and the right frame

! Available at http://www.simcansimulator.com

shows the architecture of the model. Thus, components from the
left frame can be easily included in the model to represent the target
system. Moreover, for each hardware device, different modules can
be coded to represent its behavior using different techniques and
algorithms, hence providing a high level of flexibility to create and
configure a wide-spectrum of system configurations.

Additionally, SIMCAN provides different APIs that allow re-
searchers to code distributed applications. These APIs have been
carefully designed to ease the coding process. On the one hand,
SIMCAN provides a POSIX-like APL which contains the main func-
tions to interact with files, memory and network facilities. On the
other hand, an API based on MPI (Message Passing Interface) can
be used to develop high performance applications.

5 EMPIRICAL STUDY

Next, we present an empirical study to demonstrate the applicability
of our approach. The main objective is to check if the behavior of
different models, representing distributed systems, is the expected
one. To that end, we use the MRs described in Section 3.3 and the
SIMCAN simulator [17].

In this study, we consider the two models m; and my shown in
Figure 5. The architectural configuration of both models is the same,
consisting of one rack having two boards — each one containing
8 blades — and one switch connected to the main network. The
storage system consists of one storage server directly connected to
the main network. However, while m; is correctly configured, model
my provides a wrong configuration of the file system. Specifically,
my only considers the first server in the servers list for accessing
the data, keeping the rest ones unreachable. This is appreciated in
Figure 5.b, where the processes executed in the racks cannot access
the additional storage servers (included in the follow-up test cases).
For simplicity, we consider both models homogenous, that is, every
blade of the system has the same hardware characteristics. Table 1
shows the main configuration parameters of these models.

’ Communication network ‘ ’ Communication n?twor‘k

et

b) Model m, with 16 blades and a missconfigured file system

a) Model m; with 16 blades and 1 storage node

Figure 5: Models of distributed systems
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System architecture s Application a
Scomp = 16 AtotalProc = 16
Ssto =1 ag =8

SnCores = 1 an =2

Adara = 140 MB
Adeliver = 2MB

SCPUspeed = 23650 MIPS
SNetBan = 1Gbps
SNetLat = 0.46 s Aresylr =1 MB
SDiskRead = 565 Mbps | acpu = 10000000 MIs
SDiskwrite = 318 Mpbs -

Table 1: Main parameters of the models m1 and m2

int cpulndex = 0;

// Locate and assign CPU core
cpulndex = searchIdleCPU();
sm_cpu->setNextModuleIndex(cpulndex);

// Update state!
isCPU_Idle[cpuIndex]=false;

// Send request to CPU-core
sendRequestMessage (sm_cpu, toCPUGate[sm_cpu->getNextModuleIndex()1);

Listing 1: Excerpt of the correct CPU scheduler code

int cpulndex = 0;

// Locate and assign CPU core
sm_cpu->setNextModuleIndex(cpulndex);
cpulndex = searchIdleCPU(); « // Bug!

// Update state!
isCPU_Idle[cpulndex]=false;

// Send request to CPU-core
sendRequestMessage (sm_cpu, toCPUGate[sm_cpu->getNextModuleIndex()1);

Listing 2: Excerpt of the faulty CPU scheduler code

From now on, we refer to these two models as source test cases.
In order to analyze them, we first generate different follow-up test
cases using the MRs of Figure 3. Next, we execute the source test
cases and the follow-up test cases using the SIMCAN simulator.
Then, the results of each source test case are contrasted with the
ones obtained from the follow-up test cases using the MRs. When
these results satisfy the MRs, we assume that the behavior of the
system is the expected one. Instead, when these results do not
satisfy the relation, we consider that the model does not properly
represent the behavior of the target system.

Additionally, we have created a faulty version of the SIMCAN
simulator, which is denoted by s In particular, we have injected a
fault in the CPU scheduler, which manages the computing requests
from the processes and assigns a CPU-core to execute the code.
Listing 1 shows the correct code of the CPU scheduler, while List-
ing 2 shows the faulty version, which only considers one CPU-core
to execute the code (line 5), keeping the rest of the cores idle.

Table 2 shows the results of the study, where the first three
columns depict the MR used to generate the follow-up test cases, the
modification applied over the source test case to generate the follow-
up test case, and a description of the follow-up test case. The next
four columns show the results obtained from the simulation. Thus,
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the columns labelled as Stime(m7) and Stime(my) show the results
of executing the follow-up test cases related to models m; and mg,
respectively, using the correct version of SIMCAN. The last two
columns (S{ime(m{) and S{ime(mé )) show the results of executing
the follow-up test cases using the faulty version of SIMCAN.
Executing the source test cases using the correct version of SIM-
CAN - denoted by S — yields the same value for S;jme(m1) and
Stime(m2), 215.786 seconds. Likewise, the execution of the source

test cases using the faulty version of SIMCAN (S{ime) yields the
same results, 215.786 seconds. Next, the results obtained from the
source test cases and the ones obtained from the follow-up test
cases are used to check if the MRs are satisfied. We use the symbol
V'to represent that a test case fulfills the MR and the system behaves
as expected. The results are shown in bold text with the symbol
X when the MR is not satisfied. However, in those cases where
an error produces a wrong behaviour of the system, which is not
detected by the MRs, the results are shown in bold text with the
symbol ®.

The first MR (MR; ) refers to the capacity of the system of increas-
ing the number of blades. Thus, scaling up the system hardware
should provide and improvement in the overall performance. In
this case, the number of processes is also increased in such a way
that each process has a dedicated CPU-core to be executed. The
results show that every follow-up test case satisfies MR; using both
versions of SIMCAN, S and /. MRy does not detect the fault of sf
because each blade has only one CPU-core.

However, it is worth noting that increasing the number of com-
puting nodes does not guarantee — in all the cases — an increment
in the overall performance. Particularly, for those follow-up test
cases related to MRy, this occurs when the target system contains
56 and 72 computing nodes. Essentially, the time required to fully
process the data-set heavily depends on the number of iterations
performed by the domains (see Figure 2). Thus, it is possible that,
in the last iteration, the remaining data is delivered among some
domains, keeping the rest ones idle, hence limiting the exploitation
of parallelism. In this particular case, 24 computing nodes require 4
iterations to fully process the data-set, while 32 computing nodes
require 3 iterations. Similarly, using 40, 48, 56, 64 and 72 comput-
ing nodes require 2 iterations and, consequently, the performance
obtained is similar in these cases. Furthermore, since all the coor-
dinator processes are concurrently requesting data from the same
server, it is expected to generate a system bottleneck, which causes
some performance variations like the ones presented in these tests.

The next MR, MRy, refers to the capacity of the system to increase
the number of CPU-cores per processor. Similar to the previous
MR, we increase the number of cores in proportion with the num-
ber of processes. This MR is fulfilled by every follow-up test case
generated from MRy when the simulator S is used to run the sim-
ulations, that is, Sime(s, @) > Stime(s’, @’). However, when § is
used to run the simulations, the two first test cases do not fulfill
MR, since S{ime(s, a) # S{ime(s', a’) for the models m; and ms.
These results reveal the existing bug in the CPU scheduler that
only makes use of one core of the CPU processor, hence forcing all
the processes executed in the same blade use the same CPU-core.

Although the next two follow-up test cases (using a;O talProc = 128
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MR | Follow-up test case Description Stime(m}) | Stime(m}) S{ime(m’l) S{ime(m;)
séomp =24, a;otalproc =24 Increases computing nodes and processes to 24 | 173.042 (v') | 173.042 (V') | 173.042 (V) | 173.042 (V)
séomp =32, a;otalProc = Increases computing nodes and processes to 32 | 130.538 (v') | 130.538 (v) | 130.538 (v') | 130.538 (V)
s’wml, =40,d) , iproc = Increases computing nodes and processes to 40 | 88.339 (V) 88.339 (V) 88.339 (V) 88.339 (V)
MR, s’comp =48, a;omlproc =48 Increases computing nodes and processes to 48 | 88.085 (V) 88.085 (V') 88.085 (V') 88.085 (V')
s;omp =56,4, ,.1proc = Increases computing nodes and processes to 56 | 88.138 (V) 88.138 (V) 88.138 (V) 88.138 (V)
s’wmp = 64, a;amlproc =64 Increases computing nodes and processes to 64 | 88.079 (V) 88.079 (V') 88.079 (V) 88.079 (V)
si.amp =72, a;otalProc =72 Increases computing nodes and processes to 72 | 88.130 (V) 88.130 (V') 88.130 (V) 88.130 (V)
séomp =80, 4, ,.1proc = 80 Increases computing nodes and processes to 80 | 45.996 (V) 45.996 (V) 45.996 (V) 45.996 (V)
S Cores = 2 a’mm“,mc =32 Increases number of cores per chip to 2 130.452 (V') | 130.452 (V') | 257.234 (X) | 257.234 (X)
MR ) Cores =% a’mlalpmC =64 Increases number of cores per chip to 4 87.935 (V) 87.935 (V) 257.04 (X) 257.04 (X)
2 S Cores = 8 a'mm”:,mC =128 Increases number of cores per chip to 8 45.316 (V) 45.316 (V') | 172.166 (®) | 172.166 (®)
) Cores = 16, a;otalProc =256 | Increases number of cores per chip to 16 45.316 (V) 45.316 (V') | 172.166 (®) | 172.166 (®)
SNetBan = 10Gbps Increases network bandwidth to 10Gbps 214.845 (V) | 214.845 (V) | 214.845 (V) | 214.845 (V)
MR SNerBan = 40Gbps Increases network bandwidth to 40Gbps 214.766 (V') | 214.766 (V') | 214.766 (V') | 214.766 (V')
3 SNetBan = 100Gbps Increases network bandwidth to 100Gbps 214.751 (V) | 214.751 (V) | 214.751 (V) | 214.751 (V)
Stio =2 Increases storage nodes to 2 214.618 (V') | 215.821(X) | 214.618 (V) | 215.821 (X)
MR, Siro =4 Increases storage nodes to 4 214.417 (V') | 216.104 (X) | 214.417 (V) | 216.104 (X)
Stio =8 Increases storage nodes to 8 214.482 (V') | 216.146 (X) | 214.482 (V) | 216.146 (X)
Siro =16 Increases storage nodes to 16 214.485 (V) | 216.177 (X) | 214.485 (V) | 216.177 (X)
- =600 Mb I disk read bandwidth to 600 Mb
*piskRead ps ricreases disk reac: bandwicih to ps 215.534 () | 215534 (v) | 215.534 (V) | 215534 ()
Spiskwrire = 350 Mbps and write bandwidth to 350 Mbps
. =650 Mb I disk read bandwidth to 650 Mb
SpiskRead ps fiereases diskc reac DAnAwic Lo ps 215.225 () | 215225 (V) | 215.225 (/) | 215.225 ()
Spiskwrire = 200 Mbps and write bandwidth to 400 Mbps
7 = T n
MRs s/DiskRead =700 Mbps Increas.es disk rea.d bandwidth to 700 Mbps 214962 (/) | 214962 (/) | 214962 (V) | 214962 (V)
Shiskwrire = 450 Mbps and write bandwidth to 450 Mbps
. = M I isk idth M
spzskRead 750 Mbps ncreas.es dis rez'id bandwidth to 750 Mbps 214758 (/) | 214758 (v) | 214758 (v) | 214758 (v)
Shiskwrite = 900 Mbps and write bandwidth to 500 Mbps
. =800 Mb I disk read bandwidth to 800 Mb
SpiskRead ps riereases diskc reac bandwicih to ps 21457 (V) | 21457(v) | 21457(Y) | 21457 (V)
Shiskwrize = 220 Mbps and write bandwidth to 550 Mbps
Table 2: Results of the experimental process for the models m1 and m2
and a;o talProc = 256) satisfy this MR, the obtained system perfor- The obtained results clearly show the flaws existing in the simu-

mance is considerably less than the expected one. In these scenarios,
using 128 or more processes, only one iteration is required to fully
process the data-set and, therefore, the overall processing time is
significantly reduced, which makes that MR, holds. Consequently,
MRy is not capable of detecting the wrong behaviour of the system
when the faulty version of the simulator (Sf ) is used.

MR3 checks the communication network. In this case, increasing
the bandwidth of the network should result in an improvement
of the overall system performance. Similar to the case of MR;, all
follow-up test cases related to MR3 fulfill the relation for both
models using S and st

MRy deals with the storage system. Let us remark that my has
a misconfigured file system where only one storage server can
be accessed. In this case, the results show a flaw in my, which is
detected by both versions of the simulator (cf. fifth and seventh
column in Table 2). In this case, increasing the capacity of the
storage system does not provide a better performance because all
accesses to the data are performed over the same server, hence
limiting the parallelism to read and write data.

Finally, MRs studies the capacity of the disk drives, increasing
the read and write bandwidth of the drives. Similarly to MR; and
MR, every follow-up test case satisfies this MR using S and &/ .

lation process, both in the model and in the simulator component
representing the behavior of hardware devices. When a correct
simulator S is used to execute a properly designed model, every
follow-up test case fulfills the MRs (see column S¢;me(m])). On the
contrary, using an incorrect model or a faulty simulator produces
results that do not fulfill the MRs, showing a flaw in the system.

As a general conclusion, we think that MeT is adequate to verify
the results obtained from simulating distributed systems and appli-
cations. It is important to remark that each MR focuses on a specific
part of the system, such as computing, storage and networking.
Thus, each MR must be applied to detect flaws in a specific part of
the system. For instance, in this study, those MRs that do not reflect
computing properties are not capable of detecting the bug in the
CPU scheduler (see MR3, MR4 and MRs in Table 2). However, our
proposed MRs are not capable of detecting the fault in the simu-
lator for two specific configurations, which is a limitation of our
approach that we will investigate in future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach to analyze the reliabil-
ity of simulated distributed systems using metamorphic testing. For
this purpose, we have designed different MRs focusing on different
parts of the systems. The applicability of the approach has been
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assessed by analyzing different models of distributed systems using
the SIMCAN simulator. One of these models has been misconfigured
- on purpose — to check if the MRs can detect the flaw. Additionally,
we used a faulty version of the SIMCAN simulator that limits the
applications to use only one CPU-core in multi-core scenarios. In
this study, different follow-up test cases have been generated using
the designed MRs. The MRs have been used both as an oracle to
detect errors and as a template to generate the follow-up test cases.
Notably, the results of this study show that MeT is able to detect
both flaws in the model and in the simulator. Nevertheless, there
are two specific configurations where the MR could not detect the
wrong behaviour of the system using the faulty version of SIMCAN.

One of the main advantages of this approach is the capability of
checking a specific part of the system. Thus, the testing process can
be configured to execute the test cases generated from the selected
MRs, which significantly increases the overall performance. On the
other hand, the main limitation of this approach lies in the design
of the MRs, as these must be carefully created to appropriately
reflect the properties of the target system. Otherwise, the testing
process may produce meaningless results. For instance, if the num-
ber of processes deployed by the application are not increased, it is
possible that some resources remain idle, hence not providing an
improvement in the overall performance. Moreover, the simulator
used to represent the behavior of the models must be carefully
analyzed. In this work, we assume the SIMCAN simulator correct
(its code has been thoroughly revised by different experts), but
generally, one cannot guarantee the absence of small bugs.

As future work, we are planning to investigate how to detect
those cases where the MRs are satisfied by the results provided
by the simulation and the system does not behave as expected.
Additionally, we are planning to study the accuracy of this approach
to detect wrong behaviors in large and complex models, and in the
simulator. To this end, the experiments will be executed both in
a simulator environment and in a real-world system. Finally, we
are also interested in investigating the possibility of combining
different MRs to detect faults in the system under study.
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