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Multi-level modelling promotes flexibility in modelling by enabling the use of several meta-levels instead
of just two, as is the case in mainstream two-level modelling approaches. While this approach leads to
simpler models for some scenarios, it introduces an additional degree of freedom as designers can decide the
meta-level where an element should reside, having to ascertain the suitability of such decisions.

In this respect, model refactorings have been successfully applied in the context of two level-modelling to
rearrange the elements of a model while preserving its meaning. Following this idea, we propose a catalogue
of 17 novel refactorings specific to multi-level models. Their objective is to help designers in rearranging
elements across and within meta-levels and exploring the consequences. In this paper, we detail each
refactoring in the catalogue, show a classification across different dimensions, and describe the support we
provide in our METADEPTH tool. We present two experiments to assess two aspects of our refactorings. The
first one validates the predicted semantic side effects of the refactorings on the basis of more than 210.000
refactoring applications. The second one measures the impact of refactorings on three quality attributes of
multi-level models.
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1. INTRODUCTION
Model-Driven Engineering (MDE) [Schmidt 2006; Brambilla et al. 2012] promotes
models as the main assets of the software development process. Hence, models are used
to describe, understand, reason, simulate, test and generate code for the final system,
among other activities. The set of valid models that can be constructed is described by a
meta-model, which declares the admissible model types, properties and relations, as
well as the constraints that models should fulfil. Then, models are built by instantiating
this meta-model. Hence, MDE has traditionally adopted a two-level, top-down meta-
modelling approach, where meta-models reside in a certain meta-level, and models are
created one meta-level below by using types from the meta-model [de Lara and Guerra
2017].

In contrast, multi-level modelling approaches allow organizing models and their
descriptions in several meta-levels, not necessarily two. This has been shown to reduce
the accidental complexity of models in certain scenarios, typically, when the type-object
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pattern or one of its variants arise [Atkinson and Kühne 2008; de Lara et al. 2014].
In this way, multi-level modelling enhances flexibility in MDE by providing modellers
with the freedom to design how the different model elements should be organized in
levels. However, this freedom may also become a burden, as modellers may need to try
different design alternatives in order to find an optimal organization of model elements
in meta-levels, or they may have to reconsider previous decisions and subsequently
repair a possible large set of instances at several meta-levels below. Performing these
rearrangements by hand is costly, time consuming and error prone.

In the context of programming, refactoring [Fowler 1999; Opdyke and Johnson 1990] is
a technique to restructure a piece of code without changing its external behaviour. It can
be used for different purposes, like reducing complexity, enhancing comprehensibility,
increasing efficiency or reducing memory footprint. Refactorings have also been adapted
to work with models [Mens and Tourwé 2004] – most notably for UML [Sunyé et al.
2001] – ontologies [Gröner et al. 2010], process models [Weber et al. 2011; Fdhila
et al. 2015], architectures [Zimmermann 2015] and databases [Vial 2015]. However,
refactorings in a multi-level setting are currently lacking. These would need to consider
not only the rearrangement of elements within a model at a given meta-level, but also
the possibility to move up or down information across levels, creating new meta-levels,
compacting existing ones, or repairing existing instances at lower meta-levels.

In this paper, we provide a classification of multi-level refactorings, and present a
catalogue with the definition of 17 novel refactorings including their pre-conditions
and consequences. Multi-level refactorings capture common reorganizations of multi-
level models. Just like standard model refactorings, some of them lead to simpler
models, while others generalise or specialise concepts within a domain. Some multi-
level refactorings are side-effect free, but others have semantic effects as they impact
the features of existing instances of the refactored elements. To illustrate our catalogue,
we use an example in the context of domain-specific process modelling. To demonstrate
the feasibility of our approach, we provide an implementation of the refactorings in
METADEPTH [de Lara and Guerra 2010], a textual multi-level modelling tool developed
by our group.

The application of our refactorings is guided by the modeller, who decides where to
apply them. This way, after the modeller selects a refactoring and the element to refactor,
our implementation checks the refactoring pre-conditions, applies the refactoring, and
repairs any inconsistent instance when the refactoring has side effects. Performing these
tasks manually would be costly and error-prone. Heuristic mechanisms to automatically
detect refactoring opportunities are planned for future work.

Multi-level models may become complex, so having a precise understanding of the
consequences of their refactoring on existing and future instances is crucial. For this
purpose, the definition of each refactoring states the side effects of its application, if
there is any. To assess the predicted (or absence of) side effects, we have performed
an experiment based on the generation of test models using model mutation, their
automated refactoring, and the exhaustive bounded instantiation of the original and
refactored models to detect side effects. Altogether, we have automatically performed
more than 210.000 refactoring applications, and validated the semantic equivalence of
the original and refactored models using more than 20.500.000 model instances. This
approach we have taken for our evaluation can serve to other researchers as a basis to
validate in-place transformations or refactorings for flat (i.e., non-multi-level) models.

In addition to side effects, refactorings may impact some quality attributes of a multi-
level model, like simplicity, reusability or domain-specificity. To assess this impact, a
second experiment measures the variation of internal metrics on multi-level models
before and after the refactoring application. For this purpose, we used the 210.000 refac-
toring applications and the models of the first experiment. Our results help developers

2



in understanding the consequences of the chosen refactorings, and permit classifying
refactorings according to their impact.

There is currently a vivid interest in multi-level modelling, as demonstrated by the
MULTI workshop series1, the recent Dagstuhl seminar on this topic [Almeida et al.
2017], and the plethora of emerging tools and frameworks like our own METADEPTH,
DeepTelos [Jeusfeld and Neumayr 2016], DeepJava [Kühne and Schreiber 2007], Deep-
Ruby [Neumayr et al. 2017], the DPF Workbench [Lamo et al. 2013], Dual Deep
Modelling [Neumayr et al. 2018], Melanee [Atkinson et al. 2015], ML2 [de Carvalho and
Almeida 2018; Fonseca 2017], MultEcore [Macı́as et al. 2016], OMLM [Igamberdiev et al.
2018], SLICER [Selway et al. 2017], XMF and XModeler [Clark et al. 2015; Frank 2014].
We believe the catalogue we present in this paper can be a landmark to provide all these
tools with advanced refactoring capabilities, needed to make multi-level modelling tools
more mature.

The rest of the paper is organized as follows. First, Section 2 introduces multi-level
modelling and a running example. Then, Section 3 provides a classification for multi-
level refactorings, and Section 4 enumerates the refactorings in our catalogue, detailing
four representative ones: pull up clabject, extract clabject type, push down feature
and replace reference by instantiation. Next, Section 5 describes common themes and
techniques used across refactorings. Section 6 presents tool support. Section 7 describes
the experiments to assess the semantic side effects of each refactoring, and their impact
on quality attributes. Finally, Section 8 analyses related works, and Section 9 concludes
the paper. The appendix contains the detailed description of all refactorings except
those presented in Section 4.

2. MULTI-LEVEL MODELLING
In this section, we introduce multi-level modelling with a focus on its architecture
(Section 2.1), its main concepts through a running example (Section 2.2), its benefits
(Section 2.3), and the challenges we aim to solve using refactorings, stressing the need
for a catalogue (Section 2.4).

2.1. Architecture of multi-level frameworks
Multi-level modelling allows building modelling solutions where models are succes-
sively instantiated (or refined) in several consecutive meta-levels2. It is a conservative
extension of two-level modelling as, in the limit case, multi-level solutions which only
involve two meta-levels are equivalent to standard two-level meta-modelling.

Multi-level modelling enhances flexibility by enabling an arbitrary number of meta-
levels. It is appropriate in scenarios where the type-object pattern or some of its variants
arise [de Lara et al. 2014], giving rise to smaller models than two-level solutions [Atkin-
son and Kühne 2008]. Our studies show that these scenarios are pervasive in domains
like software architecture (where it is necessary to model component types and in-
stances, port types and instances, and connector types and instances) and business
process/enterprise modelling (e.g., to represent activity types and instances). They
also occur in a significant number of OMG specifications (more than 35% of modelling
specifications in year 2014) [de Lara et al. 2014].

Standard two-level modelling. Figure 1 shows the differences between two-level and
multi-level modelling. Part (a) of the figure depicts a typical two-level architecture as ad-
vocated by the OMG’s Meta-Object Facility (MOF) [OMG 2016] or the Eclipse Modelling
Framework (EMF) [Steinberg et al. 2008]. In this architecture, a meta-meta-model

1http://www.miso.es/multi
2We use the term meta-level and level interchangeably.
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defines a meta-modelling language (e.g., the ecore in case of EMF) that is used to build
domain meta-models one level below. In their turn, meta-models can be instantiated
to create models. The offered meta-modelling facilities (e.g., inheritance) are defined
at the meta-meta-model and can only be used in meta-models. Implementation-wise,
meta-models are usually compiled into classes of a programming language (e.g., Java in
case of EMF), and models are created by instantiating those classes. Users can work
with just two consecutive meta-levels at a time, and meta-models (typically built by
language engineers) are frequently “hard” and compiled to enable model creation.
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Fig. 1: (a) Standard meta-modelling architecture. (b) Multi-level, orthogonal classification archi-
tecture (adapted from [de Lara et al. 2014])

Orthogonal classification architecture: linguistic and ontological typings. Figure 1(b)
shows a typical multi-level architecture that relies on the Orthogonal Classification
Architecture (OCA) proposed by Atkinson and Kühne [Atkinson and Kühne 2002]. It
distinguishes between linguistic typing (or physical dimension) and ontological typing
(or logical dimension). Linguistic typing refers to the meta-modelling primitive used to
create an element (model, clabject, field), wherein a linguistic meta-model makes all
meta-modelling facilities available to all meta-levels [de Lara et al. 2015]. Ontological
typing refers to the classification of an element within a domain. All meta-levels in a
multi-level model are “soft”, and the ontological typing is reified and explicitly modelled
in the linguistic meta-model, hence enabling an arbitrary number of meta-levels. This
is the architecture we follow in this paper.

2.2. Multi-level modelling by example
As a running example, assume we need a system that allows describing process models
for particular domains, like software engineering, learning management or business
processes. Figure 2 shows a simplified multi-level solution, inspired by [de Lara et al.
2015]. The top-level model defines the concepts, properties and relations that process
modelling languages in any domain have, like TaskType and different GatewayTypes. The
model in the intermediate level is an instance of the top-level model, and defines kinds
of tasks and gateways for a specific domain – in this case, the software engineering
domain – like Analysis or Coding which are instances of TaskType. Finally, the bottom-level
model is an instance of the middle model, and corresponds to a concrete software process
model.

Clabjects. In a multi-level model, the elements in the top meta-level are pure types,
the elements in the bottom level are pure instances, and the elements in the interme-
diate level have a type facet as they can be instantiated in the level below, as well as
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an instance facet because they are instances of elements in the level above. For this
reason, elements in the different levels are uniformly called clabjects (merging of the
words class and object) [Atkinson and Kühne 2008].

TaskType
GatewayType

Seq Join Fork

src

tar

*
*

initial@1: boolean=false

start: Date

effort: int

DSPM@2

a: Analysis d1: Design d2: Design c: Coding

SETask: TaskType
Inner:Seq

A2D: Seq D2C: Seq

s:src

t:tar t:tars:src

s:src

t:tar

start=“1/11/2015”

effort=1

duration=10

ad1:A2D d12:Inner

start=“11/11/2015”

effort=1

duration=5

start=“17/11/2015”

effort=1

duration=10

start=“28/11/15”

effort=3

duration=10

dc:D2C

Artifact

Reqs DesignDoc

notation: String

Code

lang: String

LOC: int

duration: int

SEPM@1

initial = true

MySwProject@0

dd2:DesignDoc

notation=“UML”r:Reqs

produces
*

cl:Code

lang=“Java”

LOC=2500

dd1:DesignDoc

notation=“Acme”

Analysis: TaskType

:t:s :s :s:t :t

:produces :produces :produces :produces

linguistic 

extension
consumes

*

1

1 1 1

1

1

Design: TaskType Coding: TaskType

Fig. 2: Example multi-level model. Domain-specific meta-modelling language for process mod-
elling (top); instantiation for software process modelling (middle); concrete software process
model (bottom)

Potency. Models, clabjects, fields and references have an attached potency [Atkinson
and Kühne 2002] to control their allowed instantiation depth. This is a number equal
to or bigger than 0, which controls the number of successive levels in which an element
can be instantiated. When an element is instantiated, the instance is automatically
assigned the potency of the element minus 1. Elements with potency 0 cannot be
instantiated in lower levels, because they are pure instances.

Figure 2 depicts potencies after the “@” symbol. The elements that do not declare
a potency receive the potency of their immediate container (the owner class for fields
and references, and the enclosing model for clabjects). For instance, the top-level model
DSPM has potency 2, and hence, all its clabjects receive this potency by default so that
their instantiation can only occur in the two subsequent levels. Alternatively, clabjects
could have declared a potency lower than the model’s one. The potency of a model is
sometimes called its level [Atkinson and Kühne 2008].

The potency of fields indicates how many levels below the fields can receive a value.
This allows defining the properties of instances beyond the immediate lower level. In
the top-level model of the figure, all fields receive potency 2 from their owner clabjects,
except field initial which explicitly sets its potency to 1. In this way, fields start and effort
in TaskType have potency 2, and therefore, any task at level 0 has these two properties.
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Instead, field initial with potency 1 can only receive a value at the next level. This latter
field is meant to signal the TaskType instances that are initial. For example, Analysis
tasks are initial, but Design tasks are not.

Regarding references, they can declare a cardinality if their potency is bigger than 0,
in which case, the cardinality constrains the instances at the next level below only. For
example, GatewayType.src has potency 2 and cardinality *, while its instance Inner.s has
potency 1 and cardinality 1..1. This means that, at the intermediate level, clabject Inner
can have any number of references typed by GatewayType.src, but at the bottom level,
d12 must have exactly one reference typed by Inner.s.

Linguistic extensions. The three-level solution in Figure 2 allows defining new process
modelling languages for other domains (e.g., educational processes) as instances of
the top-level model. Hence, one can see the top-level model as a domain-specific meta-
modelling language for process modelling [de Lara et al. 2015]. However, some domains
may require using concepts which either were not devised when designing the top-most
level, or they are domain-specific and cannot be generalised (i.e., they do not belong to
the top level). In such cases, it is still possible to extend models at any level including
the bottom one with new clabjects, fields and references accounting for the new concepts.
These are called linguistic extensions [de Lara and Guerra 2010].

In the example, the modeller added some linguistic extensions to the SEPM model,
which we show inside a shaded polygon. Such extensions model new concepts specific to
software engineering processes, like clabjects Reqs and Code, which are not instances
of any top-level element. These two clabjects do not make sense at the upper level, as
they do not apply to process models in other domains. The new field duration in SETask is
another necessary linguistic extension as any software engineering task needs to have
a duration.

Technically, linguistic extensions are possible by the dual ontological-linguistic classi-
fication for model elements introduced by the OCA, as depicted in Figure 1(b). Ontologi-
cal classification represents instantiations within a domain, and linguistic classification
refers to the meta-modelling primitive used to build a model element. For example,
the ontological type of Analysis is TaskType, which is defined in the upper level, while its
linguistic type is Clabject, which is defined by the meta-modelling framework. Hence,
linguistic extensions are elements with linguistic type but no ontological type.

Inheritance and subtyping. The OCA also permits using inheritance at any meta-
level, whenever the clabjects in the inheritance hierarchy have the same or covariant
ontological type [de Lara et al. 2014]. For example, SETask and its children share the
same ontological type TaskType. For fields with type facet, inheritance works as usual:
the children clabjects receive the features defined by the parent clabject. For fields
with instance facet, the children clabjects receive the value of the inherited fields and
can override it, like in prototype-based languages [Noble et al. 1999]. Similar to the
UML notation, clabjects with name in italics (e.g., GatewayType and SETask) are abstract
and cannot be instantiated. Creating abstract clabjects, like SETask, as instances of
non-abstract clabjects, is allowed.

2.3. Benefits of multi-level modelling
So far, we have seen that multi-level modelling provides flexibility on the number of
meta-levels, supports language refinement by means of linguistic extensions, and allows
using meta-modelling facilities like inheritance at any meta-level.

In comparison, using a two-level architecture to create a system like the one in Fig-
ure 2 would require workarounds that would introduce accidental complexity [Atkinson
and Kühne 2008]. As an example, Figure 3 shows an excerpt of the running example
using two-level and multi-level modelling. The two-level solution encodes DSPM as a
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meta-model (MM in the architecture of Figure 1(a)), and both SEPM and MySwProject
as an instance of it (M in Figure 1(a)). Elements instantiated at several levels in the
multi-level solution need to be replicated using the type-object pattern [Martin et al.
1997] in the two-level solution. This is why DSPM in Figure 3(a) declares two classes
to represent task types and their instances (TaskType and TaskInstance respectively). In
addition, DSPM should be extended with further classes and features to allow task
types to define inheritance hierarchies or declare task-specific properties and their
cardinality (like SETask.duration in Figure 2). These linguistic facilities do not need to be
modelled in a multi-level setting because they are globally available in the linguistic
meta-model [de Lara et al. 2014]. As Figure 2 shows, the multi-level model has less
elements than the two-level solution (3 objects vs 4 objects and 2 references).

TaskType

initial: boolean=false

TaskInstance

effort: int

type

Analysis: TaskType

initial=true effort=1

:type
a: TaskInstance

DSPM

SEPM + MySwProject

TaskType

initial@1: boolean=false

effort: int

DSPM@2

SEPM@1
Analysis: TaskType

initial=true

MySwProject@0

a: Analysis

effort=1

(a) (b)

Fig. 3: Excerpt of running example using two levels (a) and three levels (b)

On the other hand, the standard two-level meta-modelling architecture of the OMG
considers four meta-levels [Bézivin and Gerbé 2001], where the “real world” being
modelled is placed at M0, right below M in Figure 1(a). Still, using this architecture, the
three levels in Figure 2 should be shoehorned into two levels (MM and M). In contrast,
multi-level modelling provides the ability to work with any number of levels. As an
example, Figure 4 extends our running example with a fourth level in order to be able
to describe processes in different software engineering subdomains, like web or mobile
engineering. The figure shows the definition of the web engineering subdomain (WEPM)
and an instance of it describing a specific web process (aWebProc). The example shows
that the depth of a multi-level solution does not need to be decided a priori, but the
potency of the top-level model can be left open (indicated by the potency “*” in DSPM).
When instantiating elements with open potency, it is possible to assign them a concrete
value (e.g., 2 in case of SEPM), or leave it open. Further examples of multi-level models
with four or more levels can be checked out in [Rossini et al. 2015; Neumayr et al. 2018].

2.4. Relevance and need for a catalogue of multi-level refactorings
As Figures 2, 3 and 4 illustrate, multi-level modelling provides flexibility on the number
of meta-levels a system spans, and linguistic extensions allow handling unforeseen
or domain-specific concerns. However, at the same time, modellers have the burden
to decide the level on which each model element should be defined. In Figure 2, the
linguistic extensions (Artifact and its children, the duration field) would be unnecessary
if the top-level model defined the concepts of resource type and task duration, which
is sensible as most process modelling languages use some kind of resource, and tasks
usually have duration. For example, the educational domain may define the task type
Exam comprising the resource type Questionnaire. By creating in the top-level model
a type ResourceType for Artifact, we would generalize a concept initially found in the
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TaskType
DSPM@ *

SETaskType:

TaskType

SEPM@2

Design:

TaskType

Coding:

TaskType

WEPM@1

aWebProc@0

admModuleDesign:

UIDesign

logoDesign:

GraphicDesign

WebDesign:

Design

UIDesign:

Design

GraphicDesign:

Design

Fig. 4: Excerpt of multi-level model with four levels

software engineering domain to make it available to other domains, and enabling the
creation of multiple types of resource within a domain. In contrast, field effort in the
top level suggests specificity to domains where tasks are manual, and might be better
placed at the middle level to make it specific to the software engineering domain. By
relocating the field in this way, the generic process modelling language gets reduced,
eliminating elements that only apply to a domain.

Figure 5 shows how the running example would be restructured by applying the
above-mentioned changes (field duration is pulled up, field effort is pushed down, and
a new clabject type for Artifact is extracted). The dashed coloured regions enclose the
modified elements and have attached the name of the refactoring that would perform
the changes.

TaskType

effort: int

DSPM@2

Artifact

Reqs DesignDoc Code

SEPM@1

MySwProject@0

produces

consumes

SETask: 

TaskType

duration: int

*
*
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SETask: 

TaskType
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*
*

pushDownFeature

pullUpFeature

TaskType

duration: int = 0

DSPM@2

Artifact:

ResourceType

Reqs: 

ResourceType

DesignDoc:

ResourceType

Code: 

ResourceType

SEPM@1

MySwProject@0

produces:uses

consumes:uses

*
*

extractClabjectType

Resource

Type

uses

*

repair instances

(if needed)

repair instances

(if needed)

SETask: 

TaskType

effort: int

Fig. 5: Safe restructuring of running example using refactorings

Performing these restructurings by hand is tedious and error-prone, as some rear-
rangements require changing several parts of a model. For example, extracting the
clabject type ResourceType for Artifact implies not only assigning a type to Artifact, but also
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to all its subclabjects, common fields and incoming references (see right of Figure 5). If
the modeller forgets performing any of these changes, the resulting multi-level model
will be erroneous. Moreover, similar to model/meta-model co-evolution scenarios [Hebig
et al. 2017], a change in a model may render invalid its instances at lower meta-levels,
and so they need to be repaired. Doing so manually is costly and error-prone, especially
if the number of instances to repair is large.

On the other hand, some multi-level restructurings may alter the set of instances a
model accepts or rejects (i.e., the model semantics). In Figure 5, pulling field duration
one level up makes any existing instance of TaskType to acquire a new slot for duration,
changing its instance set. Hence, it is crucial that the modeller comprehends the
implications of a restructuring before its application. We will discuss side effects more
in detail in Section 3.2. In Figure 5, we mark refactorings that may potentially have
side effects with symbol , and we use symbol to indicate that, on this particular
example, the refactorings have no secondary effects and there is no need to repair
instances.

To facilitate exploring multi-level organization alternatives and help in the automa-
tion of rearrangements across levels, the remainder of this paper proposes multi-level
refactorings which serve the following goals:

— Assess whether a multi-level restructuring application is safe (i.e., it does not yield
incorrect models). In Figure 5, all restructurings can be safely applied.

— Report the consequences and side effects of a restructuring (e.g., clabjects that would
gain extra fields). For example, pulling up a feature may have side effects in some
cases, but not in the multi-level model of Figure 5.

— Perform the restructuring automatically, which may involve changing different parts
of a multi-level model. In Figure 5, refactoring extract clabject type creates the
clabject type ResourceType for Artifact and its subclabjects, and the reference type uses
for references produces and consumes.

— Repair instances that become invalid as a result of a restructuring. In Figure 5, no
repair action is needed.

— Improve some quality attribute of a multi-level model, like its reusability, domain-
specificity or simplicity. Section 7.2 will analyse this aspect in more detail.

To rearrange the information in the multi-level models, our refactorings sometimes
change instantiation by inheritance (e.g., an instance of a clabject becomes its subclab-
ject after being promoted to an upper level), or vice versa (e.g., a subclabject is pushed
one level down to be an instance). While inheritance is the main classification relation
in standard two-level modelling, instantiation is the relation that permits layering a
multi-level model. Our refactorings can also help in the migration of two-level designs
into multi-level ones by converting type-object pattern instances into multi-level models
(see Figure 3) or by replacing inheritance by instantiation.

3. MULTI-LEVEL MODEL REFACTORINGS: CLASSIFICATION AND SEMANTIC SIDE EFFECTS
Next, we present a classification of multi-level refactorings according to their application
strategy, impact on the number of levels, granularity and availability of variants
(Section 3.1). Then, we discuss the implications of having refactorings with semantic
side effects (Section 3.2).

3.1. Classification of multi-level refactorings
We classify multi-level refactorings along several dimensions. Figure 6 shows the multi-
level refactorings in our catalogue, their relations and their classification. To keep
familiarity with standard refactorings [Fowler 1999], we have adopted some of their
names, like pull up feature. However, multi-level refactorings impact several meta-
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levels, while standard ones only impact one. For example, the standard pull up feature
moves a feature to a superclass through the inheritance relation, while the multi-level
counterpart moves a feature from a clabject to its type through the instantiation relation
and may have side effects.

pull up
feature

create
clabject

type

create
feature

type

pull up
clabject «involves»

push down
clabject

push down
feature

«inverse»

Legend:

bottom-up top-down

extract
clabject

type

atomic
refactoring

composite
refactoring

semantic
side effects

intra-level

stratify
potency

level
expanding

level
collapsing

collapse
clabject

with
instances

collapse
inheritance
hierarchy

collapse
clabject

with type

split
clabject

refactoring
with variants

set feature
type

set clabject
type

unset clabject
type

unset feature
type

replace
reference

by instantiation

Fig. 6: Classification of multi-level refactorings

Multi-level refactorings can be generally classified as bottom-up if they create or
move information to an upper level, top-down if they create or move information to a
lower level, or intra-level if they rearrange information within a level. Standard model
refactorings [Mens and Tourwé 2004] are a particular case of intra-level refactoring,
though in a multi-level setting, they may need to be adapted to tackle discrepancies
between the potencies or the ontological typing of the refactored elements. This clas-
sification also reflects two different modelling styles [Atkinson et al. 2011]: creating
first types and then instances (top-down), or creating first instances and then types
(bottom-up). The former is dominant in standard two-level modelling, while the latter
permits an example-based approach to type construction [López-Fernández et al. 2015].
Both modelling styles are conveniently supported by refactorings in each category.

We also classify refactorings depending on whether their application may create
new levels (level expanding), collapse two adjacent levels (level collapsing), or do not
introduce new levels (level preserving). For example, the pull up clabject refactoring
moves a clabject to a higher level, and when applied to a clabject defined in the top level,
it creates a new level above to be able to pull up the clabject. Conversely, refactoring
collapse clabject with instances merges a clabject with all its instances, which may
imply collapsing two levels (in this case, by removing the upper level) if one of them
becomes empty.

Some refactorings have an inverse that performs the reverse operation, like pull up
clabject and push down clabject which are inverse of each other. The execution of a
refactoring may require applying others. For example, pulling up a clabject also pulls up
all its features. Moreover, we distinguish atomic and composite refactorings. The latter
involve the coordinated execution of two or more atomic or composite refactorings. For
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example, refactoring collapse clabject with instances consists of three atomic refactor-
ings: push down clabject (which also makes its instances inherit from the pushed down
clabject), unset clabject type of the instances, and then collapse inheritance hierarchy.

Finally, some refactorings have variants. For example, the default behaviour of refac-
toring push down feature is moving a feature to all instances of a clabject; alternatively,
one can move the features to only a subset of the instances.

3.2. Side effects of refactorings
Code refactorings are meant to preserve behaviour [Fowler 1999]. As we deal with
multi-level models, we do not have execution traces, but instead, we investigate the
set of instances of the involved models. We do so because, from the point of view of the
modeller, it is important to understand whether a refactoring alters the instances of
the model being modified. Hence, we investigate semantic side effects of multi-level
refactorings, that is, whether their application modifies the set of instances at any
level (called instance-data preservation in [Noy and Klein 2004]). To analyse the effects
of a refactoring at a certain level l, we check if the set of instances at lower meta-
levels is preserved before and after the refactoring. Multi-level refactorings with side
effects may need to repair existing instances, e.g., to add or remove fields. This is
not necessary in standard model refactorings because they focus on one meta-level
only [Weber et al. 2011], although the refactoring of interrelated models may require
change propagation [Sunyé et al. 2001].

As an example, consider the pull up feature refactoring in Figure 7. The multi-level
model (a-b-c) is based on the example in Figure 2: model (a) is an excerpt of DSPM,
model (b) contains instantiations for the software engineering and educational domains,
and model (c) has potency 0. The refactoring receives as parameters the elements where
the refactoring is to be applied (SETask.duration in this case). Applying the refactoring to
field SETask.duration yields the multi-level model (d-e-f). The refactoring pulls the field
up to clabject TaskType in model (d), and this makes the EduTask instance in model (f) to
receive a duration slot with default value 0 which did not have before. This means that
the refactoring does not preserve the set of instances of model (b) at level 0.

EduTask: 

TaskType

initial=true

SETask: 

TaskType

duration: int

:SETask

start=“9/1/16”

duration=7

@2

@1

@0

(a)

(b)

(c)

:EduTask

start=“1/1/16”

TaskType

initial@1: boolean=false

start: Date

TaskType

initial@1: boolean=false

start: Date

duration: int = 0

@2(d)

EduTask: 

TaskType

initial=true

SETask: 

TaskType

:SETask

start=“9/1/16”

duration=7

@1

@0

(e)

(f)

:EduTask

start=“1/1/16”

Fig. 7: Example of refactoring pull up feature: field duration is pulled up from SETask to TaskType

Figure 8 shows another example where model (c) does not conform to models (a-b), but
does conform to the refactored models (d-e). This is so as clabject et has a field duration
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(highlighted in the figure) which does not receive from EduTask in model (b), but receives
it from clabject TaskType in model (d) (as duration has potency 2 in TaskType). Hence, the
set of instances of (a-b) is not preserved, thereby we say the refactoring introduced a
side effect. Section A.6 provides more details on the effects of this refactoring.

set: SETask

start=“9/1/16”

duration=7

@0

et: EduTask

start=“1/1/16”

duration=6

EduTask: 

TaskType

initial=true

SETask: 

TaskType

duration: int

@2

@1

(a)

(b)

TaskType

initial@1: boolean=false

start: Date

TaskType

initial@1: boolean=false

start: Date

duration: int = 0

@2(d)

EduTask: 

TaskType

initial=true

SETask: 

TaskType

@1(e)

«conforms» «conforms»

(c)

Fig. 8: Model showing that pull up feature does not preserve semantics

Side effects do not imply that a refactoring is incorrect, but they just signal conse-
quences of its application. Still, refactorings should not create inconsistent models. For
example, pull up feature requires assigning a default value to the pulled-up feature, or
set it to optional, to keep the conformance of existing models. Otherwise, in Figure 7,
any existing instance of EduTask would become inconsistent by lacking a slot for duration.
Alternatively, the refactoring could create a slot with a default value in each existing
instance of EduTask.

Hence, our refactorings tackle the meta-model/model co-evolution problem as follows:
refactorings without side effects do not need to adapt the lower meta-levels where the
refactoring is applied, while refactorings with side effects automatically co-evolve the
lower levels.

4. CATALOGUE OF MULTI-LEVEL MODEL REFACTORINGS
Table I summarizes the 17 refactorings in our catalogue (see also Figure 6). The last
column refers to the paper section where each refactoring is detailed.

We assume an unambiguous way to refer to the clabjects and features to which a
refactoring is applied. In textual environments, this can be achieved by assigning a
unique name to each clabject and feature, like in Figure 2. In graphical environments,
one can click on the relevant elements. Refactorings take parameters, typically sets of
these identifiers and new names for moved or created elements.

In the interest of brevity, this section does not detail all refactorings in the catalogue,
but instead, we just describe some representative ones. For each refactoring, we provide:
its type according to the classification of Section 3, its utility (scenarios where the
refactoring is useful), an example based on Figure 2, variants (if any), consequences
(considerations to take into account when the refactoring is applied), pre-conditions to
apply the refactoring, description of conditions for having side effects (when possible),

12



Table I: Catalogue of multi-level refactorings, categorized according to their application direc-
tion (BU=bottom-up, TD=top-down, IL=intra-level), impact on the number of levels (LE=level-
expanding, LC=level-collapsing, LP=level-preserving), granularity (A=atomic, C=composite), and
semantic side effects (y=yes, n=no).

refactoring description di
re

ct
io

n
le

ve
ls

gr
an

ul
ar

it
y

si
de

ef
fe

ct
s

se
ct

io
n

1 collapse clabject
with instances

Moves all features of a clabject to its instances, and removes the clab-
ject.

TD LC C n A.1

2 collapse clabject
with type

Moves all features of a clabject to its ontological type, and removes the
clabject.

BU LC A n A.2

3 collapse inheritance
hierarchy

Moves all features of a clabject to its direct children in the inheritance
hierarchy, and removes the clabject.

IL LP A n A.3

4 create clabject type Creates an ontological type for a clabject. The type is created with no
features, so the features of the clabject become linguistic extensions.

BU LE A n A.4

5 create feature type Creates an ontological type for a feature lacking one. BU LP A y A.5
6 extract clabject type Creates an ontological type for a set of clabjects. The created type in-

cludes the common features of the set of clabjects.
BU LE C n 4.2

7 pull up clabject Moves a clabject, its features and its incoming references to an upper
level.

BU LE A n 4.1

8 pull up feature Moves a feature from an instance to its ontological type. By default,
a feature can be pulled up only if all instances of the ontological type
declare the feature. Alternatively, it could be present in a subset of the
instances.

BU LP A y A.6

9 push down clabject Moves a clabject and its features to a lower level. TD LC A n A.7
10 push down feature Moves a feature from a clabject to its instances (all instances in the

main variant, a selection of instances in the alternative one).
TD LP A y 4.3

11 replace reference
by instantiation

Replaces a reference modelling a type-object relation [de Lara et al.
2014] within one meta-level, by instantiation. This is done by pulling
up the element playing the role of type.

BU LE C y 4.4

12 set clabject type Assigns an existing ontological type to a clabject lacking one, and to
all possible matching features of the clabject with respect to features
of the type. The unmatched features of the clabject become linguistic
extensions.

BU LP A y A.8

13 set feature type Assigns an existing ontological type to a feature lacking one. BU LP A n A.9
14 split clabject Creates an instance of a clabject in a lower level, and moves all fea-

tures with potency higher than 1 to the instance.
TD LE A n A.10

15 stratify potency Reorganizes the features of a clabject according to their potency along
an inheritance hierarchy of abstract clabjects with decreasing po-
tency [de Lara et al. 2014].

IL LP A n A.11

16 unset clabject type Removes the ontological type of a clabject, and consequently, the onto-
logical type of all features within the clabject. The clabject becomes a
linguistic extension. In the main variant, the clabject only retains the
features it defines. In the alternative variant, it retains the features it
defines, and also those declared by its type.

TD LP A y A.12

17 unset feature type Removes the ontological type of a feature, which becomes a linguistic
extension.

TD LP A y A.13

and the refactoring working scheme (description of the operations that the refactoring
performs). As the reader will notice, the pre-condition of all refactorings includes some
multi-level-specific aspect, such as requiring an element to have or not an ontological
type, to have or not instances in lower meta-levels, or to have a specific potency value.
The appendix includes the rest of refactorings not presented in this section.

4.1. Pull up clabject
This refactoring promotes a clabject, its features and its incoming references to the
upper meta-level.

Type. Bottom-up; might be level expanding; atomic; no semantic side effects.
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Utility. Some clabject needs to be made more general in order to become available for
other models or domains. Once pulled up, any model management operation defined
over the clabject becomes applicable to all its instances.

Example. In Figure 9, model (a) contains the definition of a common concept in any
process modelling language, which is TaskType. Model (b) defines specific kinds of
tasks for software process modelling, all of which inherit from the base class SETask.
Since many domains will likely need tasks with duration, the refactoring moves class
SETask to the upper level, renamed as DurableTaskType to make it domain-agnostic.
Since this refactoring has no semantic side effects in models with potency 0, model
(c) remains unchanged (see model (f)).

Analysis: DurableTaskType

initial=true

TaskType

initial@1: boolean=false

start: Date

DurableTaskType

duration: int

:Analysis

start=“09/11/2015”

duration=7

@2

@1

@0

(d)

(e)

(f)

TaskType

initial@1: boolean=false

start: Date

:Analysis

start=“09/11/2015”

duration=7

@2

@1

@0

(a)

(b)

(c)

Analysis: TaskType

initial=true

SETask: TaskType

duration: int

pullUpClabject(
SETask,
“DurableTaskType”)

Fig. 9: Example of refactoring pull up clabject: clabject SETask is promoted one level up, renamed
as DurableTaskType

Consequences. Promoting a clabject one level up makes it available for its instantiation
in the level where it originally belonged, in addition to the levels where it could
be instantiated before the refactoring. Thus, in Figure 9, DurableTaskType can be
instantiated in model (e) and indirectly in model (f). Moreover, the pulled clabject
maintains the values assigned to its slots. For example, if SETask provided a value
for field initial in model (b), DurableTaskType.initial in model (d) would be assigned this
value as default.
This refactoring is different from just creating a subclabject of TaskType, as in that
case, SETask would remain at level 1, and the type of Analysis would not change to
DurableTaskType.

Pre-conditions. This refactoring cannot be applied to clabjects that refer to, or are
referred by, clabjects without ontological type, as these references could not be pulled
up. Similarly, the refactoring cannot be applied to clabjects that receive or own
references that are instantiated at some level below, as pulling up such references
would make the instances at the lower level incorrect. Clabjects with instances
cannot be pulled up using this refactoring, but refactorings create clabject type or
extract clabject type should be used instead.

Working scheme. Refactoring pullUpClabject(C, name), where C is the clabject to pull up
and name its new name, works as follows:
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(1) If C resides in a model M with no ontological type, then create a new model MM,
and make MM the ontological type of M. This causes a level expansion.

(2) Create a new non-abstract clabject C’ in the ontological type of M.
(3) Rename C’ to name, and give it the potency of C plus 1.
(4) Copy all fields from C to C’, increasing their potency by 1, and assigning as

default value the one they have in C.
(5) Pull up each reference going from C to some clabject D. These references are

pulled up to C’ and set to point to the ontological type of D.
(6) Pull up each reference going from some clabject D to C. These references are

pulled up to the ontological type of D and set to point to C’.
(7) If C has an ontological type, make C’ inherit from it.
(8) Make each subclass of C an instance of C’ and a subclass of C’s superclasses.
(9) Remove C, its properties and its incident references from M.
In this algorithm, if C contained slots (i.e., fields with potency 0), they would be
handled by step 4 (i.e., they would be copied to the new class C’ with potency 1 and
the slot content as default value). Although steps 4 and 5 can be performed using
refactoring pull up feature, they are explicitly stated in the algorithm for clarity.
In model (d) of Figure 9, DurableTaskType is non-abstract (step 2), has potency 2 (step
3), defines a field duration with potency 2 (step 4), and inherits from TaskType (step 7).
Subclasses of SETask (Analysis) become instances of DurableTaskType (step 8).

4.2. Extract clabject type
This refactoring creates a new ontological type for one or more clabjects lacking one.
The created type contains the common features of all involved clabjects.

Type. Bottom-up; might be level expanding; composite; no semantic side effects.
Utility. Several untyped clabjects (linguistic extensions) are relevant at a higher level

because they are useful in other domains, and they share a number of commonalities.
Hence, the linguistic extensions are found to be instances of a common primitive,
which is reified at the upper meta-level. This refactoring is also useful for bottom-up
modelling [López-Fernández et al. 2015], where instances are created first in an
exploratory way, and types are derived afterwards from the features of the instances.

Example. In Figure 10, model (b) defines the linguistic extension Artifact to model the
resources that software engineering tasks can produce and consume, while the
linguistic extension Environment refers to the development environment for coding.
On reflection, the designer realises that both extensions correspond to different
kinds of resources, and many domains will likely need their own domain-specific
resources as well. By applying extract clabject type over Artifact and Environment, a
new clabject ResourceType is created in the top level and becomes available to other
domains. Moreover, references codedIn, produces and consumes become generalized
by TaskType.uses (see model (d)). After applying this refactoring, model (c) remains
unchanged as the refactoring has no side effects in the bottom level.

Consequences. The level above the selected linguistic extensions is expanded with a
new primitive, which becomes their ontological type (i.e., they cease to be linguistic
extensions). Common features to all selected extensions are pulled up to the new
primitive. The primitive can be instantiated to create clabjects with structural
similarity to the original linguistic extensions.
This refactoring is similar to Fowler’s extract superclass [Fowler 1999]. However,
while Fowler’s uses the inheritance relation to create a superclass with the common
fields of a set of classes, ours uses the instantiation relation to create a new type at a
higher level.
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TaskType

SETask: 

TaskType
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@1

@0

(a)

(b)

(c)

produces * c
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n
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s

*

uses

*

Environment

name: String

Artifact

name: String

Code

Coding: TaskType

codedIn 0..1

TaskType

SETask: 

TaskType

@2

@1

@0

(d)

(e)

(f)
:produces

Environment: 

ResourceType

name: String

Coding: TaskType

codedIn:

uses 0..1

:Coding :Code

name=“f.c”

ResourceType

Artifact:

ResourceType

produces:
uses *

Code: 

ResourceType

consumes:
uses*

:produces
:Coding :Code

name=“f.c”

Fig. 10: Example of refactoring extract clabject type: a new clabject ResourceType is created at
level 2, as a type for clabjects Environment and Artifact at level 1

Pre-conditions. This refactoring can only be applied to clabjects without an ontological
type and without parent clabjects. Moreover, all refactored clabjects must have the
same potency and reside in the same level.

Working scheme. Refactoring extractClabjectType(C={Ci}i∈I , name), where Ci are the clab-
jects to generalize and name is the name of their new ontological type, works as
follows:
(1) If all Ci reside in a model M with no ontological type, then create a model MM,

and make MM the ontological type of M. This causes a level expansion.
(2) Create a new non-abstract clabject C’ in the ontological type of M.
(3) Rename C’ to name, and give it the potency of the Ci clabjects plus 1.
(4) Set the ontological type of every Ci and its children clabjects to C’.
(5) Let P={pj}j∈J be the maximal set of common fields (with primitive type) for all

clabjects in C.
(6) For every pj ∈ P:

(a) create a clone p’j in C’, with its potency increased by 1.
(b) set the type of pj in every Ci to p’j .

(7) For each reference rj from a clabject Ci ∈ C to some clabject D with ontological
type:
(a) if no reference r exists from C’ to the ontological type of D, with potency

equals to the potency of rj plus 1, then create one with cardinality *.
(b) set the type of rj to r.

(8) For each reference rj from some clabject D with ontological type to a clabject Ci ∈
C:
(a) if no reference r exists from the ontological type of D to C’, and potency equals

to the potency of rj plus 1, then create one with cardinality *.
(b) set the type of rj to r.

While this is a composite refactoring, the previous algorithm is presented in full
detail for clarity, with no mention to the refactorings making up the composite.
Steps 1 to 4 correspond to applications of the atomic refactoring create clabject type,
which would be applied on one clabject Ci ∈ C. Then, steps 6 to 8 apply the atomic
refactoring create feature type to each feature in P. Finally, we apply set clabject type
to the other clabjects in C, to set their type to the newly created clabject, and also
type their features.
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In Figure 10, ResourceType in model (d) becomes the ontological type of Environment,
Artifact and its child clabject Code (step 4). Step 6 is executed for field name, as this
field is defined by all the clabjects to be generalised. Step 8 is executed for references
codedIn, produces and consumes, for which the new reference type uses is created in
the top level. The name of the created reference type can be asked to the user (see
Section 6). The algorithm generalises the cardinality of the created reference type to
*. While it can be adjusted to be the exact number of instances (3 in the example),
generalising provides more flexibility.

4.3. Push down feature
This refactoring moves a feature (field or reference) from a clabject to all its instances.
Alternatively, the variant moves the feature to a subset of instances.

Type. Top-down; level preserving; atomic; the alternative variant, which moves a fea-
ture to a subset of instances, has semantic side effects.

Utility. A feature deemed general across domains, is found to be specific to some
particular domains or set of clabjects. Optional features which frequently do not get
any value on instances may be indicative of this situation.

Example. In model (a) of Figure 11, TaskType defines the field effort with potency 2,
assuming that all tasks two levels below will have a measurable effort. Since this
may not be the case in all domains (e.g., in domains where tasks are automatic)
or for all instances, this refactoring moves the field to the subset of instances of
TaskType for which the field makes sense (in this example, to SETask). This yields the
multi-level model (d-e-f). The application of this refactoring has semantic side effects,
as PerformBackup and its instances in the bottom level defined the field before the
refactoring, but not afterwards.

effort: int

TaskType

:Analysis

effort = 16

@2

@1

@0

(a)

(b)

(c)

TaskType ResourceType
0..1
uses

Analysis:
Task
Type

Coding:
Task
Type

Reqs:
Resource

Type

Code:
Resource

Type

(g)
@2

(h)
@1

0..1
uses

Analysis:
TaskType

Coding:TaskType

Reqs:
ResourceType

Code:
ResourceType

(i)
@2

(j)
@1

SETask:
TaskType

SEResource:
ResourceType

TaskType ResourceType

pushDownFeature
(TaskType.uses, {})

Perform

Backup: 

TaskType

SETask: 

TaskType

Analysis: 

TaskType

:Perform

Backup

effort = -1

TaskType

:Analysis

effort = 16

@2

@1

@0

(d)

(e)

(f)

Perform

Backup: 

TaskType

SETask: 

TaskType

Analysis: 

TaskType

:Perform

Backup

effort: int

Fig. 11: Examples of push down feature: (a-f) primitive field, (g-j) reference

The right of Figure 11 shows another example, where the reference uses defined in
model (g) is pushed down to all instances of TaskType. The refactoring introduces two
abstract clabjects SETask and SEResource from which all instances of TaskType and
ResourceType inherit, and which become the source and target of the pushed down
reference. This variant of the refactoring, where a feature is moved to all instances
of the clabject that defines the feature, has no semantic side effects.

Variants. In the main variant, the feature is pushed down to all instances of the clabject.
In the alternative variant, a subset of the instances is selected.
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Consequences. The clabject that initially defined the feature becomes more general
and applicable to further domains. The alternative variant of this refactoring has
semantic side effects, as any instance clabject not selected for pushing down the
feature will lack the feature after the refactoring. As a consequence, some repair
actions may be necessary to remove the lacking feature from these clabjects and
their instances (see PerformBackup and its instance in the left refactoring of Figure 11
for an example). The refactoring performs these repairing actions automatically.
While Fowler’s refactoring push down field [Fowler 1999] moves a field to a selected
number of subclasses, our refactoring moves it to a subset of instances in a lower
level and may require repairing actions for the non-selected instances.

Pre-conditions. The pushed down feature should have potency bigger than 0, and the
owner clabject should have instances. If the feature is a reference, in addition, the
target clabject should have instances, but not the reference.

Side effects. The refactoring has side effects if the feature is not pushed down to all
instances of the feature owner (alternative variant). This is so as the instances where
the field is not pushed down will lack the feature.

Working scheme. Refactoring pushDownFeature(C.f, D={Di}i∈I ), where f is a feature owned
by C, and Di are the selected instances of C to push down f, works as follows:
(1) If D is empty, initialize D with the set of all direct instances of C.
(2) If |D| > 1 and the Di do not inherit from a common clabject, then create an

abstract clabject A instance of C, and set each Di to inherit from A.
(3) If |D| = 1 then let P be the unique D0 in D. Else let P be the common ancestor A of

all Di.
(4) Create a clone f’ of f, with its potency decreased by 1. Assign f’ to P.
(5) If f is a reference pointing to a clabject E, then:

(a) if the instances of E do not inherit from a common clabject, then create an
abstract clabject F instance of E, and set each instance of E to inherit from F.
Else let F be the common ancestor of the instances of E.

(b) f’ is set to point to F, and f’s cardinality is copied to f’.
(6) Remove f from C. Remove the instances of f from any instance Dj of C with Dj /∈

D, and so on recursively for their instances in lower levels.
If the algorithm receives an empty set of instances, it initializes set D with all
instances of C, i.e., it applies the main variant of the refactoring (step 1). In the left
refactoring of Figure 11, the field effort is moved to SETask as set D only contains this
clabject (steps 3 and 4). Moreover, a repair action removes the field from PerformBackup
and its instances in the bottom level (step 6). In the refactoring to the right, reference
uses is pushed down to all instances of TaskType (steps 1, 3, 4 and 5). This induces the
creation of two abstract clabjects (steps 2 and 5a).

4.4. Replace reference by instantiation
This refactoring replaces a reference modelling an instance-of relation by real instantia-
tion. This explicit modelling of instantiation with a reference is known as the type-object
pattern [de Lara et al. 2014; Martin et al. 1997]. The refactoring rearranges an oc-
currence of this pattern (i.e., two classes with roles type and object in the same level,
related by a reference that emulates the instance-of relation) into a multi-level solution
that makes use of the built-in instantiation relation provided by the meta-modelling
framework. As described in our previous work [de Lara et al. 2014], the type-object
pattern is recurrent when there is the need to emulate multiple levels within one. Thus,
this refactoring helps in migrating two-level solutions into multi-level ones.

Type. Bottom-up; might be level expanding; composite; it has semantic side effects.
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Utility. A reference emulating the instantiation relation is replaced by real instan-
tiation to obtain a simpler modelling solution (less objects and references), or to
benefit from the facilities that instantiation provides (e.g., conformance checking of
instances with respect to types, ability to define constraints on types to be evaluated
on their instances, automatic provision of slots in instances for all fields defined in
their types, etc.) [de Lara et al. 2014].

Example. Model (a) in Figure 12 contains clabjects TaskType and Task related by a
reference emulating the instantiation relation. While TaskType declares the field
initial instantiable on task types, Task declares field start instantiable on specific tasks.
Model (b) instantiates model (a) to define the task type Analysis and one “instance”
of it, emulated by a link between them. The refactoring replaces both references in
model (a-b) by instantiation. For this purpose, TaskType is promoted one meta-level
up with increased potency, holding field initial with potency 1 so that it is available on
TaskType instances, and field start with potency 2 so that it is available at the bottom
level. Analysis is promoted to level 1, and becomes the type of clabject a. Altogether,
the resulting model (c-d-e) has less elements.

initial: boolean

TaskType

@1

@0

(a)

(b)

Analysis:TaskType

start: Date

Task
type

tasks
*

initial=true

a: Task

start=“1/5/2016”

initial@1: boolean

start: Date

TaskType

@1

@0

(d)

(e)

Analysis: TaskType

initial=true

a: Analysis

start=“1/5/2016”

(c) @2

1

Fig. 12: (a-b) Type-object pattern. (c-d-e) Refactoring by replace reference by instantiation

Consequences. The resulting model uses the built-in instantiation relation in place of
references. This leads to more meta-levels, but the top-level model is simpler as
there is no need to define separate classes for types (e.g., TaskType) and objects (e.g.,
Task). For example, model (c) in Figure 12 has one clabject, while model (a) has two
clabjects and a reference.
This refactoring is different from Fowler’s refactoring in-line class [Fowler 1999],
which would merge TaskType and Task and does not consider multiple levels. In-
stead, replace reference by instantiation promotes TaskType and Analysis one level up,
increases the potency of field start, and removes the reference type.

Pre-conditions. The clabject playing the role of type should have the same potency as
the clabject playing the role of object, and cannot hold any reference apart from the
one being replaced by instantiation, nor be the target of any reference. This is so
as this clabject and its (direct and indirect) instances will be pulled up to upper
levels. Similarly, the clabject with role type and its instances cannot have sub- or
superclabjects.

Side effects. This refactoring always has side effects, because it eliminates a reference
and a clabject. This way, instantiating the clabject with object role (i.e., Task in
Figure 12) leads to a model which is not accepted by the refactored solution.
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Working scheme. Refactoring replaceRefByInst(D.f), where D is a clabject playing the role
of object in a type-object occurrence, and f is a reference owned by D to be replaced by
instantiation, works as follows:
(1) Let C be the target of D.f.
(2) For each instance Ci of C:

(a) apply refactoring setClabjectType(Ci, D).
(b) apply refactoring pullUpClabject(Ci).
(c) for each clabject Dij instance of D that is connected to Ci by an instance f’ of f:

i. remove f’ from Dij .
ii. apply refactoring setClabjectType(Dij , Ci).

(3) Remove f from D.
(4) Apply refactoring pullUpClabject(C), and decrease the potency of all fields in C by

1.
(5) Apply refactoring setClabjectType(D, C). Set D to abstract.
(6) For each children clabject Ci of D:

(a) apply refactoring setClabjectType(Ci, C).
(7) Apply refactoring collapseClabjectWithType(D).
For simplicity, the algorithm assumes D has potency 1. If it had higher potency, the
refactoring should be applied to level 1, and then iterated to higher meta-levels. The
algorithm in case the instance-of reference is defined in the type clabject instead of
in the object clabject is similar.
Figure 13 illustrates the working scheme. Model (a) contains an occurrence of the
type-object pattern, and model (b) has two instances of TaskType and Task. The strategy
is producing a powertype as a first step (model (c-d)), unfolding it into a multi-level
model (model (e-f-g)), and then making use of potency for fields (model (h-i-j)).
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Fig. 13: Steps in the refactoring replace reference by instantiation

More in detail, we apply the refactoring replaceRefByInst (Task.type) to model (a), leading
to model (h-i-j) as follows. First, the type of Analysis and Design is set to Task (step 2a),
and both clabjects are pulled one level up, which makes them inherit from Task (step
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2b, see Section 4.1). The type of a and d is set to Analysis and Design respectively (step
2c). The obtained model (c-d) reflects a powertype [Odell 1994] relation between the
clabjects: TaskType is the powertype of Task because the original instances of TaskType
become subclabjects of Task once pulled up. In step 4, the powertype is unfolded by
promoting TaskType one level up (see model e). The potency of initial is set to 1 so that
the instances of TaskType can give it a value (see model f). In step 5, Task is assigned
type TaskType and made abstract. In step 6a, the type of Analysis and Design is also
set to TaskType, and their field initial is retyped to TaskType.initial. These steps lead to
model (e-f-g), where Task declares the field start that is common to Analysis and Design.
While this could be the refactoring result, we choose to take advantage of potency,
collapsing Task with its type (step 7). The resulting model (h-i-j) has less elements
than (a-b) (5 clabjects w.r.t. 6, and 0 references w.r.t. 3). Moreover, the obtained
solution is more flexible as one can add further fields to Analysis and Design without
changing the top-level model, which is not possible in model (a-b).

5. COMMON THEMES AND TECHNIQUES USED IN REFACTORINGS
In this section, we analyse two recurring themes or techniques used across refactorings.
On the one hand, in both bottom-up and top-down refactorings there is the need to
replace instantiation by inheritance, or vice versa. On the other hand, some refactorings
need to create “artificial” abstract clabjects, typically as the source or target of references
being pulled up or pushed down. We call these clabjects “representatives”, and are an
idiomatic form to represent a powertype relation.

5.1. Trading inheritance and instantiation
Some refactorings replace inheritance of clabjects by instantiation of clabjects (push
down clabject), or instantiation of clabjects by inheritance of clabjects (pull up clabject,
and some intermediate steps of replace reference by instantiation, see Figure 13).

For example, Figure 9 shows an application of the bottom-up refactoring pull up
clabject to the clabject SETask, which gets promoted to a higher level. As a result, its
type TaskType becomes its superclabject after the refactoring, and its subclabject Analysis
becomes its instance.

Refactoring push down clabject performs the inverse operation, as Figure 14 illus-
trates. In this example, the modeller realizes that clabject SEDocumentation in model (a)
is specific to the domain of software engineering and should be pushed one level down.
After applying the refactoring, DocumentationType becomes the type of SEDocumentation,
and is made concrete to allow its instantiation. Moreover, the instances of SEDocumen-
tation in model (b) (like Diagram) become its children clabjects, which allows them to
inherit field format.

There are also refactorings that move features between clabjects and their types,
and hence, they interchange inheritance of features by instantiation of features. The
consequence is that clabjects that originally inherited a feature end up receiving the
feature through instantiation after applying the refactoring (e.g., in refactorings pull
up feature and collapse clabject with type), or vice versa (e.g., in refactorings push down
feature, split clabject and collapse clabject with instances).

As an example, the push down feature refactoring application in Figure 11 moves field
TaskType.effort with potency 2 one level down. Hence, the instances of TaskType, which
originally received the field through instantiation, receive it through inheritance after
the refactoring.

5.2. Clabject representatives and the powertype pattern
Clabject representatives are abstract clabjects from which all instances of a given
type inherit. Hence, they are an idiom to model the powertype pattern [de Lara et al.
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Fig. 14: Example of push down clabject: clabject SEDocumentation is pushed one level down

2014]. As an example, model (a) in Figure 15 shows an occurrence of the powertype
pattern, while models (b-c) show the idiomatic representation of the pattern using
representatives. In both cases, Analysis and Design are instances of TaskType and inherit
from Task. However, in models (b-c), TaskType belongs to a higher meta-level, Task is
its representative, and any instance of TaskType is required to inherit from Task. The
advantage of this solution is that TaskType can define its own fields (like initial), and its
instances (i.e., Analysis and Design) can assign them a value.

initial@1: boolean

TaskType

@1

Analysis: TaskType

start: Date

Task: TaskType

initial=true

Design: TaskType

initial=false

@2

TaskType

Analysis: 

TaskType
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Task: TaskType

Design: 

TaskType

«powertype» «powertype»

(a)

(b)

(c)

Fig. 15: (a) Powertype. (b-c) Its realization using clabject representatives

The following refactorings create clabject representatives: push down feature, split
clabject, push down clabject, and intermediate steps of replace reference by instantiation.
For example, when push down feature is applied to reference TaskType.uses in models
(g-h) of Figure 11, two clabject representatives are created at level 1: SETask, which
stores the pushed down reference, and SEResource, which becomes the reference target.
In this way, the previously existing instances of TaskType get to inherit the reference from
their representative. In the example of refactoring replace reference by instantiation
in Figure 13, all instances of TaskType in model (f) inherit from Task, which is the
clabject representative of TaskType. In Figure 14, refactoring push down clabject moves
SEDocumentation one level below, becoming the representative of DocumentationType in
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model (e). Although the refactoring makes all instances of SEDocumentation subclabjects
of the representative, the designer could create further instances of DocumentationType
that do not inherit from SEDocumentation. That is, clabject representatives work by
convention, but are not enforced by the multi-level system. In order to enforce it, one
could use refactoring collapse clabject with type to collapse the representative with its
type. For example, in Figure 15, Task would be promoted and collapsed with TaskType, so
that the instances of TaskType at level 0 would receive field start. This is actually done in
the last step of refactoring replace reference by instantiation (see Figure 13).

6. TOOL SUPPORT
We have implemented the presented catalogue of refactorings in our multi-level mod-
elling tool METADEPTH [de Lara and Guerra 2010]. This is a textual console-based
tool which enables modelling at any number of levels, and supports dual ontological/lin-
guistic typing and deep characterization through potency. It integrates the Epsilon
languages for model management [Paige et al. 2009], which allows defining constraints,
code generators, in-place and model-to-model transformations. METADEPTH supports
derived attributes, the definition of methods for clabjects, and the analysis of constraints
by model finding [Guerra and de Lara 2017].

The left of Listing 1 shows an excerpt of the multi-level model in Figure 2 using
METADEPTH’s syntax. Lines 1–14 define the model DSPM with potency 2. All elements
inside the model receive this potency, except field initial which declares potency 1. Lines
21–38 show an excerpt of the model SEPM one level below. It can be noted how instanti-
ating a model has similar syntax as instantiating a clabject. Finally, lines 41–50 show
an excerpt of the model MySwProject at level 0.

For this work, METADEPTH has been extended with commands to perform refac-
torings. The commands check the pre-condition associated to the selected refactoring
and automatically rearrange the multi-level model, asking the user for any required
information and reporting any possible semantic side effects.

As an example, typing extractType ResourceType Artifact in the console performs the
refactoring described in Section 4.2, where the name of the new reference type (uses
in the example) is prompted to the user. If instead of applying extractType, we try
to apply pullUpClabject on SETask, the system informs that the refactoring cannot be
applied because SETask has instances. If, after extractType, we perform the refactorings
pullUpFeature SETask.duration and pushDownFeature TaskType.effort, we obtain the multi-level
model in the right column of Listing 1 (also shown graphically in Figure 16).

To identify easily the elements affected by a refactoring, the tool annotates the
refactored fields and clabjects. Annotations in METADEPTH have a similar syntax to
Java annotations. For example, the annotation in line 77 of Listing 1 is attached to field
effort, and indicates that the field was pushed down. Figure 16 shows these annotations
using stereotypes.

Regarding side effects, neither extractType nor the main variant of pushDownFeature
(which pushes a feature to all instances of the owner clabject) have side effects. In
contrast, pullUpFeature may have secondary effects if the type where the feature is
being pulled up (TaskType in our case) has other instances apart from SETask and its
subclabjects. As this is not the case, the system issues no warnings, and hence the
developer is ensured that the refactorings do not modify the model semantics.

7. EVALUATION
In this section, we evaluate two aspects of our refactoring catalogue. In the first place,
we assess the side effects of our refactorings, stated in the side effects section of their
definition. Hence, our goal is to answer the following research question (RQ1):
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1 Model DSPM@2 {
2 Node TaskType {
3 initial@1 : boolean = false;
4 start : Date;
5 effort : int;
6 }
7 abstract Node GatewayType {
8 src : TaskType[∗];
9 tar : TaskType[∗];

10 }
11 Node Seq : GatewayType;
12 Node Join : GatewayType;
13 Node Fork : GatewayType;
14 }
15
16
17
18
19
20
21 // Instance of DSPM −−−−−−−−−
22 DSPM SEPM {
23 abstract TaskType SETask {
24 duration : int;
25 produces : Artifact[∗];
26 consumes : Artifact[∗];
27 }
28 TaskType Analysis : SETask {
29 initial = true;
30 }
31 ...
32 abstract Node Artifact;
33 Node Code : Artifact {
34 lang : String;
35 LOC : int;
36 }
37 ...
38 }
39
40
41 // Instance of SEPM −−−−−−−−−−
42 SEPM MySwProject {
43 Analysis a {
44 start = ”1/11/2015”;
45 effort = 1;
46 duration = 10;
47 ...
48 }
49 ...
50 }
51

52 Model DSPM@2 {
53 Node TaskType {
54 initial@1 : boolean = false;
55 start : Date;
56 @extractType
57 uses : ResourceType[∗];
58 @pullUpFeature
59 duration : int;
60 }
61 @extractType
62 Node ResourceType;
63 abstract Node GatewayType {
64 src : TaskType[∗];
65 tar : TaskType[∗];
66 }
67 Node Seq : GatewayType;
68 Node Join : GatewayType;
69 Node Fork : GatewayType;
70 }
71
72 // Instance of DSPM −−−−−−−−−
73 DSPM SEPM {
74 abstract TaskType SETask {
75 produces : Artifact[∗] { uses };
76 consumes : Artifact[∗] { uses };
77 @pushDownFeature
78 effort : int;
79 }
80 TaskType Analysis : SETask {
81 initial = true;
82 }
83 ...
84 abstract ResourceType Artifact;
85 ResourceType Code : Artifact {
86 lang : String;
87 LOC : int;
88 }
89 ...
90 }
91
92 // Instance of SEPM −−−−−−−−−−
93 SEPM MySwProject {
94 Analysis a {
95 start = ”1/11/2015”;
96 effort = 1;
97 duration = 10;
98 ...
99 }

100 ...
101 }

Listing 1: Multi-level model (left) and refactored model (right)

RQ1: Do the refactorings in the catalogue yield the predicted side effects?

Side effects are an important aspect of our refactorings because they inform the modeller
of the impact of applying a refactoring on existing instances. If a refactoring has side
effects, it means it changes the set of instances of the refactored model, e.g., by adding
or removing fields from the instances. Hence, it is essential to ensure that side effects
are correctly identified for the catalogue to be useful.

Secondly, we assess the effect of refactorings on the quality of multi-level models.
Therefore, our aim is to answer the following research question (RQ2):

RQ2: What is the impact of refactorings on quality attributes of multi-level models?
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Fig. 16: Two upper levels of the refactored multi-level model

For this purpose, we propose metrics to determine three quality attributes of multi-
level models (reusability, domain-specificity and simplicity) and observe the impact of
refactorings on these metrics.

7.1. RQ1: Assessing refactoring side effects
To perform this evaluation, we use a technique based on model mutation and exhaustive
model instantiation, inspired by [Daniel et al. 2007]. Roughly, the idea is generating a
wide set of models by model mutation, to which we automatically apply the refactorings
whenever their pre-conditions hold, ensuring that all corner cases are covered. Then,
we check whether the refactoring applications modify the semantics of the multi-level
models, in which case, we analyse whether the side effects are the ones we had predicted.
Next, we describe the experiment setting (Section 7.1.1), its results (Section 7.1.2) and
threats to validity (Section 7.1.3).

7.1.1. Experiment design and setting. Figure 17(a) shows the main steps in the evaluation.
First, each refactoring being evaluated contributes several seed models. These are
small multi-level models with situations of interest, which satisfy the refactoring pre-
conditions (that is, they enable the refactoring application). Then, these models are
mutated using sequences of mutation operations up to a given length. Table II describes
the considered mutations. All mutations are additive, that is, they add information to
the model, but do not change or destroy the original intent encoded in the seeds. The
rationale is that, if the refactoring is applicable to a seed model, it will be likely (but not
necessarily) applicable to its mutants. As a result of the mutations, we obtain a large
population of test models. The refactoring under test is then applied on each such model
m, leading to a refactored model m′. The goal of the experiment is to show that both
models m and m′ have the same semantics when the refactoring is meant to preserve
the semantics, or to identify the situations where the refactoring does not preserve it.
For this purpose, we systematically instantiate m and m′ up to a given bound, giving
rise to sets SEM(m) and SEM(m′) of valid instances of m and m′, respectively. For
m and m′ to be semantically equivalent, m needs to accept SEM(m′), and m′ should
accept SEM(m).

In order to answer RQ1, we measure, for each refactoring r, the number of pairs of
original and refactored models 〈m,m′〉 in which some model in SEM(m) is not accepted
by m′, or some model in SEM(m′) is not accepted by m. There is a discrepancy if this
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Fig. 17: (a) Steps to evaluate the side effects of a refactoring. (b) Evaluating refactoring set clabject
type

Table II: Multi-level model mutations

Name Description
CreateField Creates a new field in a random clabject
CreateReference Creates a new reference in a random clabject
CreateSubClabject Creates a new clabject, child of a random clabject
CreateSuperClabject Creates a new clabject, parent of a random clabject
InstantiateClabject Creates an instance of a random clabject
InstantiateReference Creates an instance of a random reference type

number is 0 but we predicted side effects for r; or if this number is positive but we did
not predict side effects for r.

Figure 17(b) illustrates this process for the evaluation of refactoring set clabject type.
This refactoring (detailed in appendix A.8) assigns an existing type to an untyped
clabject, as well as to as many compatible fields of the clabject as possible. We used four
seed models in the experiment, one of which is shown in the figure with label 2. The
refactoring is applicable to this model, as it can be used to type cl1 by Clabj1. We applied
mutation operators randomly to the four seed models, obtaining 10.736 models. Label 3
in the figure shows two of them: m1 and m2. In model m1, the mutation operator create
field added the integer field f1 to Clabj1. In model m2, in addition, a string field f1 was
added to cl1. The refactoring is still applicable to m1, but not to m2 because typing cl1
by Clabj1 would cause a clash between cl1.f1 with type String and Clabj1.f1 with type int.
Hence, we only apply the refactoring to m1 and obtain model m′1, where cl1 gets typed
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by Clabj1 (see label 4). To discover possible semantic side effects, we generate instances
of m1 and check if they conform to m′1, and we generate instances of m′1 and check if
they conform to m1. Label 5 in the figure shows an instance of m1 which contains one
clabject a. This model is not conformant to m′1 because a lacks field f1, defined in Clabj1
with potency 2. This is a side effect correctly identified by the refactoring definition (see
appendix A.8).

The experiment was performed using METADEPTH 0.33, enlarged with a program
specifically created to carry out the steps in Figure 17(a). To generate the set SEM( ),
we chose a bound of 3 instances per type and reference, and to generate the test model
population, we applied all possible mutation sequences of lengths 1, 2 and 3 using
the mutation operators of Table II. To discard errors in the refactoring application, a
random 1% sample of the applied refactorings were manually revised independently
by both authors (i.e., a total of 2.137 applications). The experiments were run on a
PC with an intel Core i7 4770 and 16Gb RAM. The seed models used are available at
http://miso.es/ml-refacts.

7.1.2. Experiment results. Table III summarizes the results of the experiment. The first
three columns of the table contain the refactoring being evaluated, the number of seed
models, and the number of test models generated from the seeds. We tried to apply
the refactoring to each generated test model; hence, the next two columns show the
number of times the refactoring could not be applied as the test model did not satisfy
the refactoring pre-conditions (e.g., as model m2 in Figure 17(b)), and the number of
refactoring applications (i.e., number of test models minus number of failed refactoring
applications). The remaining columns show the percentage of times the refactoring
could not be applied, the number of instances used to check side effects, the number of
refactored test models in which a side effect was found, and the percentage of refactored
test models with side effects with respect to the total number of test models.

Table III: Results of the evaluation of refactoring side effects

Refactoring #Seeds #Models #Failed #Applics. % Failed #Instances #Side % Side
applics. applics. effects effects

CollapseClabjectWithInst. 3 12.140 10.679 1.461 87,97% 160.644 0 0%
CollapseClabjectWithType 4 24.321 9.440 14.881 28,82% 374.550 0 0%
CollapseInheritHierarchy 3 72.542 0 72.542 0% 5.782.752 0 0%
CreateClabjectType 2 3.198 1.336 1.862 41,78% 121.452 0 0%
CreateFeatureType 3 5.227 0 5.227 0% 372.168 421 8,05%
ExtractClabjectType 4 25.635 0 25.635 0% 4.779.180 0 0%
PullUpClabject 4 11.751 10.426 1.325 88,73% 227.313 0 0%
PullUpFeature 3 7.812 5.194 2.618 66,49% 157.314 870 33,23%
PushDownClabject 3 23.715 9.922 13.793 41,84% 2.016.756 0 0%
PushDownFeature (main) 3 15.656 0 15.656 0% 2.166.834 0 0%
ReplaceRefByInstantiation 2 5.498 3.952 1.546 71,89% 85.851 1.546 100%
SetClabjectType 4 10.736 820 9.916 7,64% 684.096 3.187 32,14%
SetFieldType 3 5.505 0 5.505 0% 376.077 0 0%
SplitClabject 3 9.947 0 9.947 0% 685.722 0 0%
StratifyPotency 3 14.760 0 14.760 0% 1.332.468 0 0%
UnSetClabjType (main) 3 5.471 3.302 2.169 60,36% 92.163 84 3,87%
UnSetClabjType (variant) 3 5.471 3.340 2.131 61,05% 103.560 0 0%
UnSetFeatureType 4 12.711 0 12.711 0% 984.021 1.216 9,57%
Total: 57 272.096 58.411 213.685 21,47% 20.502.921 7.324 3,43%

Overall, refactorings were applied over 213.000 times, and semantic effects were
investigated using more than 20 million model instances. In average, we generated
15.116 test models per refactoring, and 4.773 test models per seed. Each refactoring was

3Available at http://metadepth.org.
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applied 11.871 times in average, with a median of 7.711. Around 96 instance models
were used to validate the side effects of each refactoring application, and no unexpected
side effect was found. Moreover, the high number of refactoring applications suggests
that all corner cases were tested, providing high confidence in the validation of the
predicted refactoring side effects.

In the table, column “% Side effects” gives an indication of the likelihood a refactoring
application has side effects. The most side effect prone refactoring is ReplaceRefByIn-
stantiation (see Section 4.4) with 100% of cases entailing side effects, as expected. This
is so as the refactoring makes a heavy reorganization of the multi-level model, removing
a reference and a clabject, and pulling several clabjects up.

Column “% Failed applics.” gives an intuition of the difficulty to meet the pre-
conditions of each refactoring. Note that even if the original seed model satisfied
the pre-conditions, the mutants generated may not meet them. The refactorings with
the most restrictive pre-conditions are PullUpClabject (88,73%), CollapseClabjectWith-
Instances (87,97%) and ReplaceRefByInstantiation (71,89%).

No refactoring application had unexpected side effects, different from those predicted
in the refactoring definitions. Hence, we can answer RQ1 affirmatively.

7.1.3. Threats to validity. While the presented experiment validates the assumptions
on refactoring side effects by performing a large number of refactoring applications, it
does not constitute a formal proof. For that purpose, formal approaches, for example
based on constraint solving, could be followed. However, our own experience encoding
some of the refactorings in Alloy [Jackson 2002] agrees with the assessment of other
researches: formal proof of refactoring correctness is very hard [Estler and Wehrheim
2008]. In particular, the scalability of model finders to prove the general correctness
of multi-level model refactorings (i.e., applied to any possible test model, not just on
a particular model) is – at the time of writing this paper – not enough for this formal
proof. However, the high number of generated test models enabled more than 213.000
refactoring applications, which provides a high confidence in the correctness of the
results.

Another threat is that the chosen seed models might be biased towards cases leading
to the predicted side effects, or to side-effect free refactoring applications. To alleviate
this problem, we applied sequences of mutation operators (up to length 3) leading to the
creation of around 4.700 test models per seed. Therefore, this effect can be neglected.

An additional issue is whether some refactoring produced side effects different from
the ones predicted. To mitigate this possibility, each refactoring implemented a mecha-
nism to discern whether the non-conformity of an instance was due to the expected side
effect. We also inspected manually 1% sample of the refactoring applications to make
sure they did correctly their work.

Another possibility is that some side effect may have not been caught because it
occurs on model instances outside the search scope (3 instances of each clabject and
reference). As our models do not have OCL constraints, we can discard this possibility
because side effects typically appear on single clabject instances due to errors in its
features, or in references connecting two clabjects. Hence, a bound of 3 is enough in this
case.

The experiment considers models with three meta-levels, which is enough for checking
side effects as these would appear already in three levels. This is so as, if we modify level
2 of a multi-level model, and the instances at level 1 before and after the modification
are the same, then the instances at level 0 before and after need to be the same.

Finally, our experiment evaluates side effects, but not performance or scalability.
Anyhow, performance is not a concern because the user indicates where to apply the
refactoring, the application execution time is negligible (at most linear on the model
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size when the refactoring needs to repair instances), and the scalability is good. For
example, a refactoring like push down feature, which needs to repair instances, has an
average execution time around 10 milliseconds for instance models in the order of ten
thousand elements.

7.2. RQ2: Impact of refactorings on quality attributes
Each refactoring definition includes a utility section explaining when to apply the
refactoring. To further help modellers in understanding the implications of using a
refactoring, we have conducted an experiment to assess how each refactoring affects
three quality attributes of multi-level models. In the following, Section 7.2.1 intro-
duces the considered quality attributes, Section 7.2.2 explains the experiment setting,
Section 7.2.3 analyses the results, and Section 7.2.4 discusses threats to validity.

7.2.1. Quality attributes for multi-level models. Table IV summarizes the considered quality
attributes for multi-level models, as well as the metrics used as indicators for them.

Table IV: Quality attributes and metrics for multi-level models

Attribute Description Metric
Reusability (RE) Degree in which a model m can be reused to create

models one level below
Size of model m (clabjects and fields)

Domain-
specificity (DS)

Degree in which a model m contains domain-specific
elements, not expressible with the primitives offered
by the modelling language one level above

Ratio of linguistic extensions in m (clab-
jects and fields) w.r.t. size of model m
(clabjects and fields)

Simplicity (SIM) Overall simplicity of a multi-level model Size of models in all levels (clabjects and
user-visible fields)

The reusability (RE) of a model at a given level is the degree in which it can be reused
to create instance models one level below. For example, in Figure 2, the DSPM model
at level 2 is expected to be reused to create process models in different domains, like
software engineering (model SEPM in the same figure), education or manufacturing. We
use the model size (number of clabjects and fields) as a metric for this quality attribute.
This metric has been used to quantify the reusability of design models [Bansiya and
Davis 2002] and multi-level models [Gerbig 2017] with the rationale that the more
classes in a design, the more reuse opportunities in different settings. While large meta-
models (like that of UML [UML 2017]) tend to be highly reusable in many contexts,
in our setting, decreasing reusability may be appropriate if the goal is eliminating
unnecessary concepts which constitute an overgeneralization.

The domain-specificity (DS) of a model is calculated as the ratio of linguistic exten-
sions in the model with respect to the model size. The more linguistic extensions, the
more domain-specific concepts the model contains, which cannot be expressed with the
generic primitives offered by the upper level. This metric takes values between 0 (no lin-
guistic extensions) and 1 (all model elements are linguistic extensions). The metric can
be seen as the inverse of the recall metric used to measure ontologies [Guarino 2004; Yu
et al. 2009]. Under this perspective, recall would be an indicator of how good a classifier
a meta-model is for the model at the level below, where 1 – a perfect classification –
means no linguistic extensions, and 0 means no model element is typed.

The last quality attribute we consider is simplicity (SIM). As indicator of this attribute
we compute the size of the whole multi-level model, measured as the number of clabjects
and user-visible fields (i.e., fields that are either untyped or have a value). For example,
in Figure 16, field TaskType.start is user-visible, but field Analysis.start is not user-visible
because it does not assign to the field a value. In this case, the lower the metric (i.e.,
the lower the size), the simpler the model. Size has also been used in [Atkinson and
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Kühne 2008; Atkinson and Kühne 2017] as an indicator of the complexity of multi-level
models.

7.2.2. Experiment design and setting. To measure the impact of our refactorings on the
identified quality attributes, we took the models that enabled the application of refac-
torings in the first experiment, computed the metrics before and after applying the
refactoring, and assessed whether the metric value increased or decreased.

7.2.3. Experiment results. Table V gathers the results of the experiment. The first column
contains the refactoring names and their abbreviation. Column Intent displays the goal
of each refactoring in terms of the three quality attributes, using ↑ to indicate that the
attribute value is expected to increase, ↓ if it is expected to decrease, and a blank cell if
the attribute is not a concern of the refactoring. For example, create clabject type creates
a clabject in an upper level, to act as the type for an untyped clabject in the lower
level; hence, the refactoring aims at making the upper level more reusable by adding
a new concept (RE=↑), the lower level less domain-specific by acknowledging that the
untyped clabject is an instance of a general concept existing at a higher level (DS=↓),
while simplicity is not a concern. Column Real shows the actual qualitative variation
observed in the experiment. In this case, the symbol − indicates no variation, while
∼ represents very low or negligible variation. Finally, the remaining columns provide
the quantitative variation obtained in the experiment for each attribute (interval of
variation and average variation). For simplicity, these quantitative metrics aggregate
the number of both clabjects and features.

Table V: Impact of refactorings on the quality of multi-level models. Columns show refactoring
name; intended and real qualitative impact (↑ for increment, ↓ for decrement, − for no variation,
∼ for negligible variation); and quantitative impact (variation interval [min;max] and average
variation).

Intent Real RE DS SIM
Refactoring RE DS SIM RE DS SIM top-model size linguistic ext. overall size
CollapseClabjectWithInst. (CWI) ↓ ↑ ↓ ↑ ↓ [-5; -2] -2,27 [0,14; 0,86] 0,52 [0; 5] 1,81
CollapseClabjectWithType (CWT) ↑ ↓ ↑ ↓ ↑ [1; 8] 1,95 [-0,71; 0,22] -0,1 [-2; 2] -0,99
CollapseInheritHierarchy (CIH) ↑ ↓ − ↑ [-1; 5] -0,94 [0; 0] 0 [-1; 5] -0,94
CreateClabjectType (CCT) ↑ ↓ ↑ ↓ ↓ [1; 1] 1 [-0,33; -0,12] -0,2 [1; 1] 1
CreateFeatureType (CFT) ↑ ↓ ↑ ↓ ↓ [1; 1] 1 [-0,5; -0,08] -0,16 [0; 1] 0,8
ExtractClabjectType (ECT) ↑ ↓ ↑ ↑ ↓ ↓ [1; 8] 3,98 [-0,93; -0,2] -0,56 [-3; 5] 0,76
PullUpClabject (PUC) ↑ ↓ ↑ ↓ − [2; 6] 2,75 [-0,9; 0,17] -0,27 [0; 0] 0
PullUpFeature (PUF) ↑ ↓ ↑ ↓ − [1; 1] 1 [-0,5; -0,05] -0,17 [0; 0] 0
PushDownClabject (PDC) ↓ ↑ ↓ ↑ ∼ [-9; -1] -3,73 [-0,03; 0,96] 0,64 [0; 1] 0,003
PushDownFeature (main) (PDF) ↓ ↑ ↓ ↑ ↓ [-1; -1] -1 [0,08; 0,5] 0,19 [0; 6] 2,21
ReplaceRefByInstantiation (RRBI) ↑ ↑ ↓ ↑ [3; 6] 3,6 [-1; -1] -1 [-5; -2] -2,28
SetClabjectType (SCT) ↓ − ↓ − [0; 0] 0 [-1; -0,14] -0,45 [0; 0] 0
SetFieldType (SFT) ↓ − ↓ ↑ [0; 0] 0 [-0,33; -0,07] -0,14 [-1; 0] -0,15
SplitClabject (SC) ↓ ↑ ↓ ↑ ↓ [-5; 0] -1,76 [-0,19; 0,66] 0,26 [1; 6] 1,77
StratifyPotency (SP) ↑ ↑ − ↓ [0; 1] 0,84 [0; 0] 0 [0; 1] 0,84
UnSetClabjType (main) (UCT) ↑ − ↑ − [0; 0] 0 [0,1; 1] 0,57 [0; 0] 0
UnSetClabjType (variant) (UCT(v)) ↑ − ↑ ↓ [0; 0] 0 [0,14; 1] 0,61 [0; 5] 1,53
UnSetFeatureType (UFT) ↑ − ↑ ↓ [0; 0] 0 [0,07; 0,33] 0,13 [0; 1] 0,13

As the table shows, the experiment confirms the intent of all refactorings except one:
extract clabject type decreased simplicity instead of augmenting it. In the following, we
analyse the reason for this discrepancy as well as the rest of results.

— Collapse clabject with instances decreases RE of the model the refactoring is applied
to, but increases DS of the lower model. Normally, it also decreases SIM because
even if a clabject is deleted, its features become copied to each of its instances.
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— Collapse clabject with type increases RE of the model where the type resides, as this
type is added features coming from the clabject. The lower model typically decreases
DS as untyped features in the clabject are moved to the upper level; anyhow, the
variation interval shows that it may also increase DS depending on the ratio of
typed/untyped features in the clabject. SIM increases because, overall, a clabject and
its features are deleted.

— Collapse inheritance hierarchy does not affect DS because this refactoring is intra-
level. If the collapsed clabject has only one direct subclabject, SIM increases and
RE decreases because the refactoring deletes one clabject and preserves the number
of features. However, if the clabject has several subclabjects, the features of the
clabject need to be replicated in all its subclabjects, which makes SIM decrease and
RE increase (the number of features becomes larger).

— Create clabject type and create feature type increase RE (they create a new type for a
clabject or feature) and decrease DS (they type an untyped element). The overall size
of the multi-level model increases because of the new type, hence SIM decreases.

— Extract clabject type creates a type for a set of untyped clabjects, with all fields they
have in common. Hence, it increases RE and decreases DS. While it also intends to
improve SIM, the experiment reports a slight average increase in overall size. In
particular, the expected size reduction is proportional to the number of fields with
primitive data type that the untyped clabjects share. However, many refactored
clabjects in our evaluation have a high proportion of references (which are not moved
to the new type) and few common fields with primitive data type. In consequence,
SIM increased for some models in the experiment, but decreased in average.

— Pull up clabject and pull up field promote a clabject or a field to an upper meta-level.
Both increase RE and decrease DS (in the case of pull up clabject, when the clabject
is untyped), leaving SIM unaffected.

— Push down clabject moves a clabject to the lower meta-level. This decreases RE and,
in case the clabject has no ancestors, it augments DS. It may decrease SIM slightly if
the refactoring needs to create clabject representatives (see Figure 25).

— Push down feature moves a feature from a type to its instances, hence decreasing RE
and increasing DS. It may decrease SIM because, in order to move the feature to all
instances, representatives may need to be created (see Figure 11).

— Replace reference by instantiation converts an occurrence of the type-object pattern
into a multi-level solution by promoting some elements one level up. This increases
RE of the top model and overall SIM. Moreover, the model containing the reference
decreases DS as this reference is replaced by the built-in instantiation relation.

— Set clabject type and set field type decrease DS and leave RE intact. In addition, set
field type may increase SIM because its associated indicator counts the number of
user-visible fields, which may decrease when a field is assigned a primitive data type.

— Split clabject reduces RE as it moves features of a clabject one level down. Since the
refactoring also creates new typed elements, DS increases and SIM decreases.

— Stratify potency splits a clabject and organizes its fields according to their potency.
This increases RE and decreases SIM.

— Unset clabject type and unset feature type increase DS of the refactored model. In
addition, unset feature type decreases SIM when the feature has a primitive data
type, as the feature becomes visible to the user. The variant of unset clabject type has
a similar effect, as the clabject keeps the fields of the type, and these fields become
visible to the user.

As a summary, Figure 18 represents refactorings in three axes according to their
qualitative impact on the three considered quality attributes. Each axis represents a
quality attribute (RE, DS, SIM) with three possible values (↑, ∼=, ↓). For simplicity, the
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graphic reflects the average of the different metrics, though some refactorings may
produce a result different from the average. For example, extract clabject type (ECT) may
increase or decrease SIM depending on the number of fields shared by the refactored
clabjects.
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Fig. 18: Tridimensional classification of refactorings according to their impact. The extended
name of refactorings can be consulted in Table V

The graphic shows that some refactorings have the same effect on the quality at-
tributes, like PUC and PUF; CCT, CFT and ECT; UCT(v) and UFT; and CWI, PDF
and SC. All bottom-up refactorings decrease DS, and most of them (7 out of 9) increase
RE. Conversely, all top-down refactorings increase DS, 4 out of 7 decrease RE, and the
remaining 3 do not modify RE. Intra-level refactorings (CIH and SP) leave DS intact.

The graphic also reflects the effects of inverse refactorings. For example, PUC in-
creases RE and decreases DS, while PDC has the reverse effect as it decreases RE and
increases DS. Other inverse refactorings give reverse results in only one metric, like
SCT and UCT which preserve SIM and RE but have opposite effects in DS. Finally, the
graphic is useful to identify uncharted space. For example, no refactoring increases
both RE and DS. This is an unusual combination as it implies increasing both the size
of the top-level model and the number of linguistic extensions at the lower-level model.

7.2.4. Threats to validity. How to measure multi-level models and relate their internal
metrics to external ones is currently under debate in the multi-level community [Atkin-
son and Kühne 2017]. Similarly to previous researchers [Atkinson and Kühne 2008;
Gerbig 2017], we chose RE, DS and SIM as quality attributes, and used top-model size
and overall size as indicators for RE and SIM. However, other means to assess external
attributes like SIM can be appropriate, like user-perceived complexity. Similarly, we
calculate DS as the ratio of linguistic extensions with respect to the model size, though
additional assessments of DS could be performed by real users. Such assessments would
require empirical studies, which we will carry out in the future.

While [Bansiya and Davis 2002] only measures the number of classes, we count
clabjects and features because both play an important role in conceptual models. For
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simplicity of presentation, the evaluation shows both data aggregated. Anyhow, we
manually checked that the aggregated and non-aggregated results vary in the same
direction (i.e., we have not introduced errors when simplifying the presentation of
results).

In [Bansiya and Davis 2002], the number of hierarchies is used to measure func-
tionality, which can be an additional indicator of RE. To assess whether it may lead
to contradictory results with size, we also measured the variation of inheritance hi-
erarchies, noting a positive correlation with size. However, we decided to discard this
second indicator as most refactorings in our catalogue do not modify it. Results on the
variation of inheritance hierarchies can be found at http://miso.es/ml-refacts.

Our refactorings are applied automatically, with no heuristics for their application.
Hence, unlike other works in refactorings for class diagrams or object-oriented programs
(e.g., [Ghannem et al. 2016; Bavota et al. 2010; Bavota et al. 2011]) our evaluation
does not measure the efficacy of any heuristic for refactoring recommendation, but it
analyses the impact of refactorings on three quality attributes. Designing heuristics to
recommend refactorings depending on metrics like SIM is future work.

8. RELATED WORK
In this section, we revise related works on model refactorings or operations involving
several meta-levels (Section 8.1), refactorings working within a single level (Section 8.2),
approaches to proving refactoring correctness (Section 8.3), and proposals to automate
the detection of refactoring opportunities (Section 8.4).

8.1. Inter-level refactorings
While refactorings have been extensively studied for programming languages and
flat models [Fowler 1999; Opdyke and Johnson 1990], they have not been proposed
for multi-level models up to now. The closest work to ours is [Atkinson et al. 2012],
which explores the use of emendation services to repair a multi-level model upon
changing some of its elements (e.g., modifying the potency of a clabject or adding an
attribute). Our refactorings go beyond atomic changes as they may involve a sequence
of modifications, and have a purpose of use, pre-conditions and variants. Emendation
services could be used to implement our refactorings in Melanee, which is the technology
used in [Atkinson et al. 2012].

Our refactorings are not specific to METADEPTH, but they are applicable to any tool
supporting potency-based modelling like Melanee [Atkinson et al. 2012], the extension of
Xmodeller described in [Frank 2014], or the ConceptBase implementation in [Neumayr
et al. 2014], among others.

In our previous work [de Lara et al. 2014; Macı́as et al. 2017], we provided some
guidelines to rearchitect two-level into multi-level solutions; now, we provide a concrete
refactoring (replace reference by instantiation) implementing such guidelines, though we
impose pre-conditions that were not present in [de Lara et al. 2014] (e.g., clabjects with
role type cannot participate in references different from the refactored one). In [Jahn
et al. 2014], the authors discuss the benefits of allowing inheritance at the instance
level, and propose an operator extract prototype which extracts the common features of
a set of objects, and creates a prototype object from which the other ones inherit. Our
refactoring extract clabject type is similar, but we create a clabject at a higher level and
relate it to the initial clabjects by instantiation instead of inheritance.

Some limited versions of multi-level refactorings can also occur in a two-level setting.
For example, promotion transformations [de Lara et al. 2014] can emulate multi-level
modelling by converting a model into a meta-model, i.e., they transform each object in
the model into a class in the meta-model. Refactoring replace reference by instantiation
has shown how to refactor a powertype [Odell 1994] into a multi-level model, and its
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connection with the type-object pattern [Martin et al. 1997]. Converting an object into a
class is similar to our refactoring pull up clabject. Bottom-up meta-modelling [López-
Fernández et al. 2015] uses an induction algorithm to generalize a set of example models
into a meta-model; this algorithm can be implemented using the extract clabject type and
extract feature type bottom-up refactorings. In [Noy and Klein 2004], an ontology-change
operation splits a class into several ones and can specify which of the new classes the
instances of the old one belong to, thus performing changes in two levels.

Our catalogue includes refactorings that may collapse levels. Some researchers have
also proposed mechanisms to flatten multiple levels for different purposes. In [Kainz
et al. 2011], promotion transformations are generated by flattening various levels, with
the goal of enabling multi-level modelling atop standard two-level meta-modelling tools.
In [Guerra and de Lara 2017], the goal of collapsing levels is being able to analyse
multi-level integrity constraints by using standard model finders, which only work with
two levels at a time. In [Gogolla et al. 2005], a collection of models at different levels
is represented in a single model with the aim of comparing several meta-modelling
concepts.

Finally, refactorings with side effects – like push down feature – may require repairing
model instances at lower levels, for example removing slots. This relates to techniques
in meta-model/model co-evolution [Cicchetti et al. 2008; Burger and Gruschko 2010], as
in a two-level setting, modifying a meta-model may invalidate its existing instances.
According to [Cicchetti et al. 2008], model changes can be non-breaking (e.g., generaliz-
ing a property), breaking and resolvable (e.g., removing a property) or breaking and
non-resolvable (e.g., adding a mandatory class). Hence, our refactorings perform either
non-breaking changes, or breaking and resolvable when instances need to be repaired
(e.g., when applying push down feature). Although some authors [von Pilgrim et al.
2013] have tackled the co-refactoring of models and code, which requires propagating
changes between them, such changes cannot be considered to work at two meta-levels
because the code is a realization of the design and the authors do not refactor run-
ning instances. In [von Pilgrim et al. 2013], refactorings are defined as declarative
constraints, which makes them easy to specify but expensive to execute by the use of
constraint solving (10 seconds for models of hundreds of elements).

8.2. Intra-level refactorings
Most existing refactoring proposals work on flat models and involve a single level. These
refactorings are level-agnostic and could be applied to each level in a multi-level model.
Instead, our refactorings are specific to multi-level models and use typical multi-level
concepts like potency.

As an example of refactorings applicable within a single level, Sunyé et al propose
refactorings for UML class diagrams and state machines [Sunyé et al. 2001], and express
their pre- and post-conditions using OCL constraints. Other approaches aim at detecting
complex changes in evolved (meta-)models [Hebig et al. 2017]; instead, we assume a
library of defined refactorings. Steimann [Steimann 2015] defines constraint-based
refactorings where invariants are translated into a constraint satisfaction problem that
is used to calculate additional changes for the refactoring to be executable. In [Sun et al.
2013], the authors translate class diagrams (with operation pre- and post-conditions)
and sequence diagrams into Alloy, to check whether a particular refactoring application
preserves the net effect of the operations. Instead, we have identified pre-conditions
that refactorings need to meet, as well as side effects that some of them may produce.

Another aspect related to model-based refactoring is the language used to specify
refactorings. Some examples are Epsilon [Arcelli et al. 2018] or different model trans-
formation languages like ATL, Kermeta or QVT [Kolahdouz-Rahimi et al. 2014]. While
METADEPTH integrates Epsilon, we opted by a native implementation of the refactor-
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ings in Java because this provides more flexibility to encode complex model navigations
and element creations in the multi-level models, and to obtain a better integration
with the tool. Using Epsilon would have brought extensibility by enabling the addition
of user-defined refactorings, but at the price of increased execution time. To promote
extensibility of refactorings, we plan to migrate METADEPTH to a component-based
architecture able to profit from extension points.

8.3. Refactoring correctness and behaviour preservation
Some approaches to check refactoring correctness are based on formal proofs [Estler
and Wehrheim 2008; Gheyi et al. 2005], either proving that specific applications of
refactorings are correct, or developing refactoring laws for particular specification
languages. For example, in [Gheyi et al. 2005], refactorings for Alloy are studied by
translating Alloy specifications and refactorings into the PVS verification system. While
this approach could be applicable in our setting, we would still need to assess that the
METADEPTH description in PVS conforms to the behaviour of the real running system.
Hence, we opted for performing exhaustive testing as it involves the real system and not
a description of it. Other approaches specify refactorings formally – for example using
graph transformation – and focus on specific properties like conflicts and dependencies
between refactorings [Mens et al. 2007]. Such approaches could be used in the future to
analyse inter-dependencies of our refactorings, as in this paper, we are just interested
in their definition and individual properties.

On a more practical side, some works use testing to check refactoring reliability.
However, creating test programs and oracles manually is complex, tedious, and has the
potential to yield incomplete test suites. Hence, some works [Daniel et al. 2007; Soares
et al. 2013] automatically generate test programs and some form of oracle, ranging
from simple ones (e.g., does the refactoring crash?) to differential testing (i.e., testing
the same refactoring in different tools) and specialized tools like SafeRefactor [Soares
et al. 2010].

Some researchers have investigated ways to detect too strong pre-conditions in
Java refactorings. The approach in [Mongiovi et al. 2017] detects situations where
a refactoring would be rejected by a pre-condition by applying the refactoring and
comparing both behaviours using testing. If the behaviour is the same, a case of overly
strong pre-conditions has been found. While this approach is applicable in our setting,
investigating overly strong pre-conditions is out of the scope of this paper.

Differential pre-condition checking [Overbey et al. 2016] facilitates pre-condition
specification by describing the changes allowed or forbidden by a refactoring on a
semantic model of the program. Then, a refactoring application needs to build such
a semantic model, simulate the transformation, and compare the actual differences
with the specified ones. If the differences match, the refactoring is considered behaviour
preserving and can be executed. While this is a minimalistic way to define refactoring
pre-conditions, in our setting, it is an open question which semantic model could
be powerful enough to express and check all refactoring pre-conditions efficiently.
Instead, we resort to a traditional way to encode pre-conditions, while we have assessed
semantics preservation based on exhaustive bounded instantiation.

Most approaches checking behaviour preservation of refactorings work at the code-
level. One of the few exceptions is [Mansoor et al. 2017], which works with class
and activity diagrams. The authors use multi-objective optimization to find the best
sequence of refactorings that provide a good trade-off between maximizing the quality
of class diagrams and activity diagrams, while preserving the behavioural constraints
defined on activity diagrams. As our models do not have a specification of behaviour
(e.g., operations), we are concerned with the preservation of the set of instances of the
refactored model.
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Regarding input program generation, in [Soares et al. 2013; Mongiovi et al. 2017], the
authors use Alloy and a Java meta-model to exhaustively generate programs within a
given scope. In contrast, [Daniel et al. 2007] follows an imperative approach, proposing
a framework that creates generators that synthesize abstract syntax trees which can be
combined to produce an exhaustive set of input programs to the refactoring. Both works
discovered dozens of bugs in commercial tools by analysing around 150.000 refactoring
applications in the biggest experiment (for a set of 29 refactorings).

In our case, using a purely declarative way to specify model shapes, and a constraint
solver to generate test models, would be complex. Instead, it is more direct to specify seed
models that satisfy the refactoring pre-conditions, and then use mutation operators
exhaustively. To the best of our knowledge, this is a novel technique to test model
refactorings. Regarding experiment size, we performed more than 210.000 refactoring
applications (for a set of 18 refactorings).

8.4. Automated detection of refactoring opportunities
The present paper does not deal with the issue of automatically detecting refactoring
opportunities, but users must select the elements to which a refactoring is to be applied.
We plan to tackle the partial automation of refactoring recommendation in the future,
e.g., by proposing smells that indicate the need for applying a certain refactoring. Next,
we comment on some relevant works on this topic.

Some researchers detect model refactoring opportunities by looking for occurrences
of anti-patterns. As an example, the anti-patterns in [Arcelli et al. 2018] detect perfor-
mance smells in UML models, and trigger refactorings targeted to solve the smells. The
authors distinguish three refactoring application modes: batch, user-driven multiple
(the system detects all anti-patterns, and the user selects the refactoring to apply), and
user-driven single (the user selects an element, the system detects all anti-patterns
where the element participates, and the user selects the refactoring to apply). In our
context, the user-driven multiple mode is the most appropriate.

Other works are based on search. For example, Ghannem et al. [Ghannem et al. 2016]
identify refactoring opportunities on class diagrams by using a genetic algorithm based
on the similarity between the system under study and a set of defect examples. In [Ouni
et al. 2012], the authors look for sequences of refactorings that fix a problem without
changing the design semantics, where semantics is interpreted as cohesion between
class elements. To this aim, they use multi-objective search based on a genetic algorithm
that uses criteria like the similarity of vocabulary of code elements. In our case, the
semantics is the set of instances of a model. Moreover, complex vocabulary semantic
relations – like hypernymy and hyponymy – would be useful to detect refactoring
possibilities, in the style of [Bunk et al. 2017].

Obtaining good cohesion is a concern when the standard refactoring extract class has
to automatically select the most related methods and features to be split into two classes.
This is done by analysing the cohesion between each method pair in [Bavota et al. 2010],
and considering a metric that combines structure (shared attributes, method calls)
and “semantics” (a text similarity metric for identifiers and comments) in [Bavota et al.
2011]. Then, some cohesion metric is used to validate that the generated class split is
good. In our case, depending on the refactoring, the features to move out of a clabject
can be selected either manually by the user (like in pull up feature) or automatically
based on their potency (like in split clabject and stratify potency). This way, when some
of our refactorings chooses to move certain features, it does so with the specific intent
of organizing them according to their potency. Hence, validating the suitability of the
selected feature set does not apply in our case.
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9. CONCLUSIONS AND FUTURE WORK
Multi-level modelling is a promising paradigm that promotes flexibility in modelling
and yields simpler solutions than two-level approaches in some scenarios [de Lara et al.
2014]. However, it requires flexible exploratory phases of design where information can
be rearranged across levels. As manual rearrangements are costly, we have proposed
their automated support. Thus, we have analysed and classified useful multi-level
refactorings, presenting an initial catalogue and tool support. Moreover, we have val-
idated the side effects of refactorings by performing exhaustive testing using more
than 210.000 refactoring applications, verified using more than 20.500.000 instances,
and we have evaluated their impact on three quality properties of multi-level models:
reusability, simplicity and domain-specificity.

Our refactorings apply to multi-level models, which means they include the “model
type” definition at the top-most level. In this sense, they are applicable to any “type
of model”. More importantly, our refactorings enhance flexibility in modelling, which
is liberated from a “top-down” approach (first types and then instances) but can also
proceed “bottom-up” (first instances and then types). Moreover, some of them help in
rearchitecting two-level solutions into multi-level ones. To the best of our knowledge,
this is the first catalogue of multi-level refactorings proposed in the literature, and
we hope it can serve as a basis for their introduction in existing multi-level modelling
tools. The approach we took to evaluate the refactorings is also novel and can be used
to evaluate refactorings and in-place model transformations for flat models.

In the future, we plan to develop a recommender that detects “bad smells” and
suggests refactorings, in the style of [Ouni et al. 2016]. We would also like to devise a
language to describe complex refactorings, allowing their concatenation or iteration.
We also plan to make the catalogue extensible by rearchitecting METADEPTH to a
component architecture (e.g., based on OSGi) where new refactorings can be contributed
in a modular way.
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A. APPENDIX: CATALOGUE OF REFACTORINGS
This appendix details the refactorings not described in detail in the body of the paper.

A.1. Collapse clabject with instances
This refactoring collapses a clabject C with its instances one level below.

Type. Top-down; might be level collapsing; composite; no semantic side effects.
Utility. A concept C deemed general across domains is found to be an overgeneralization,

though it still provides a valid characterization of its instances. In such a case, this
refactoring moves the information from C to its instances – which become linguistic
extensions – and C itself is deleted.

Example. In Figure 19, the designer has realized that ResourceType in model (a) is
unnecessary in other domains, but its instances still need to define a date. Hence,
the designer applies this refactoring to collapse the clabject with its instances. As
a result, the clabject is removed, and its attribute date is added to its instances
Environment and Artifact with decreased potency 1, but not to Code as this inherits
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the attribute from Artifact. Clabjects Artifact, Environment and Code become linguistic
extensions. The top-most level is removed because it becomes empty after deleting
ResourceType.

ResourceType
@2

@1

@0

(a)

(b)

(c)

Environment:

ResourceType
Artifact: 

ResourceType

id: String

Code:

ResourceType

:Environment :Code

id=“ref.java”

date=“1/1/16”

lang=“java”

date: Date

lang: String

date=“01/01/17”

@1

@0

(d)

(e)

Environment

Artifact

id: String

date: Date

Code

:Environment :Code

id=“ref.java”

date=“1/1/16”

lang=“java”

lang: String

date=“01/01/17”

date: Date

Fig. 19: Example of refactoring collapse clabject with instances: ResourceType is collapsed with
all its instances (Artifact and Environment)

Consequences. The instances of the collapsed clabject C become linguistic extensions.
The features of C are replicated across all its instances with no ancestors. If this
replication is not desired, refactoring push down clabject (which pushes down a
clabject creating a representative at the lower level) should be used instead. The
refactoring can be level collapsing if the level that contained C becomes empty.

Pre-conditions. The clabject C to be collapsed cannot have an ontological type, define
subclabjects, more than one superclabject, or be the source or target of any reference.

Working scheme. Refactoring collapseWithInstances(C), where C is the clabject to collapse,
works as follows:
(1) Apply refactoring pushDownClabject(C).
(2) Apply refactoring collapseHierarchy(C).
In a first step, applying refactoring push down clabject creates a clabject represen-
tative of C in the lower level, and deletes C (see Section A.7). The representative is
an abstract clabject from which all instances of C become to inherit, and declares
all features of C with decreased potency. In a second step, refactoring collapse in-
heritance hierarchy collapses the clabject representative with its direct subclabjects,
which then become owners of the features of the representative (see Section A.3).

A.2. Collapse clabject with type
This refactoring collapses a clabject C with its type, one level above.

Type. Bottom-up; might be level collapsing; atomic; no semantic side effects.
Utility. A clabject C has been created artificially to act as a container of features, which

are found to characterize all clabjects of the same kind as C. This means that the
features have been created at the wrong meta-level. After collapsing C with its type
T, the latter receives C’s features with increased potency, becoming available to all
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instances of T. This way, the features are generalised. The refactoring is also useful
to migrate from a multi-level approach lacking deep characterization (e.g., based on
clabject representatives or powertypes) to a potency-based approach (see Figure 13).

Example. In Figure 20, the designer realises that the features of clabject SEArtifact in
model (b) apply to resource types in other domains. Since this clabject was created
specifically to hold such features, refactoring collapse clabject with type is applied.
This refactoring generalizes those features by collapsing SEArtifact with its type
ResourceType, and moving feature description to ResourceType with potency 2. The
instances of subclabjects of SEArtifact remain unaffected (see salesModule at the bottom
level). The refactoring is level collapsing, and would remove model (b) should no
other clabject existed at that level or below.

ResourceType
@2

@1

@0

(a)

(b)

(c)

SEArtifact: 

ResourceType

description: String

salesModule: Design

id: String

Design:

ResourceType
Code:

ResourceType

id= “sales.uml”

description=“UML design…”

ResourceType
@2

@1

@0

(d)

(e)

(f)
salesModule: Design

id: String

description: String

Design:

ResourceType
Code:

ResourceType

id= “sales.uml”

description=“UML design…”

Fig. 20: Example of refactoring collapse clabject with type: SEArtifact is collapsed with Resource-
Type

Consequences. The type the clabject is collapsed to receives new features, which become
available to all its instances. The collapsed clabject is removed; if this is not desired,
but only its features should be generalized, refactoring pull up feature should be
used instead (see Section A.6).

Pre-conditions. The clabject C to be collapsed cannot have instances but must have a
type. The type of C cannot have other instances apart from C. The target of references
owned by C, and the source of references reaching C, should have a type.

Working scheme. Refactoring collapseWithType(C), where C is the clabject to collapse with
its type, works as follows:
(1) For each feature f of C, apply refactoring pullUpFeature(C.f).
(2) For each incoming reference D.r to C, apply refactoring pullUpFeature(D.r).
(3) Remove C.
(4) If the container model of C becomes empty, remove it.
First, refactoring pull up feature moves all features of C to its type (step 1), and its
incoming references are also moved one level up (step 2). The pulled-up features
have increased potency, and in case of references, their lower bound is relaxed to 0.
Next, C is deleted (step 3), and if the model that contained C becomes empty, it is
deleted as well (step 4).

A.3. Collapse inheritance hierarchy
This refactoring collapses a clabject with its direct subclabjects in the inheritance
hierarchy. It is similar to the collapse hierarchy refactoring in standard object-oriented
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design [Fowler 1999], but considering the potency of the involved elements. Moreover, in
the standard refactoring, it is possible to select the class to collapse, either the superclass
or the subclass. This is also possible in our setting, but keeping the subclabject would
restrict our refactoring to situations where the superclabject has only one subclabject.

Type. Intra-level; level preserving; atomic; no semantic side effects.
Utility. A superclabject adds little value to its subclabjects, so it is merged with them. A

cause of this situation may be the speculative generality design smell [Fowler 1999].
In a multi-level context, this smell arises when the instances of a superclabject
seldom use its features (i.e., their value is left undefined) or when a superclabject
only has a subclabject and no further extension is foreseen.

Example. In Figure 21, clabject ResourceType is not deemed necessary because the de-
signer does not foresee any other subclabject apart from SoftwareType. After collapsing
both clabjects, SoftwareType retains its potency and receives the field critical that was
originally defined by ResourceType. Please note that clabjects may have the same or
higher potency than their superclabjects.
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Fig. 21: Example of refactoring collapse inheritance hierarchy: ResourceType is collapsed with
SoftwareType

Consequences. The inheritance hierarchy becomes more compact and simpler. The col-
lapsed clabject may receive features with lower potency than the clabject, hence
achieving an effect contrary to the stratify potency refactoring (Section A.11), which
separates features with different potencies across a hierarchy of clabjects. A strati-
fication of features in clabjects according to their potency may promote reusability
and yield more flexible models [de Lara et al. 2014].

Pre-conditions. The clabject C to be collapsed cannot have instances or incoming refer-
ences, and must define at least one subclabject.

Working scheme. Refactoring collapseHierarchy(C), where C is the clabject to collapse with
its subclabjects, works as follows:
(1) For each subclabject D of C:

(a) add the superclabjects of C as superclabjects of D.
(b) remove C as superclabject of D.
(c) clone each feature of C in D.

(2) Delete C.
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In this refactoring, each child D of C is added the superclabjects of C (step 1a) and
the features of C (step 1c). Clabject C is removed as superclabject of D (step 1b), and
C is deleted. As the subclabjects of C can hold a potency equal or higher than the
potency of C, they retain their potency.

A.4. Create clabject type
This refactoring creates a new clabject type for an untyped clabject C. If C has subclab-
jects, these get typed to the newly created clabject type as well.

Type. Bottom-up; might be level expanding; atomic; no semantic side effects.
Utility. A concept that is represented by an untyped clabject in an intermediate meta-

level (i.e., a linguistic extension) is relevant at a higher level because either the
concept is useful in other domains, or it is recurrent within the same domain (i.e.,
other instances of the concept need to be created). Hence, this refactoring creates a
type for the clabject at the upper meta-level.

Example. In Figure 22, model (b) defines the concept of resource for the software
engineering domain, but this concept is also useful in other domains. Hence, the
refactoring is applied to SEResource to make this concept more general. This adds a
new clabject ResourceType one level above, from which SEResource and its child clabject
Code become instances. The features of SEResource (i.e., date) and the references where
it participates (i.e., produces and consumes) are not pulled up to ResourceType; to obtain
that behaviour, refactoring extract clabject type should be used instead.
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Fig. 22: Example of refactoring create clabject type: clabject ResourceType is created as type for
SEResource

Consequences. The newly created type becomes applicable to other domains and can be
used to create new instances, which nonetheless have no features. If the features
of the clabject used to create the type are deemed generalizable, then refactoring
extract clabject type, which pulls up all the features as well, should be used instead
(see Section 4.2). Alternatively, the type of selected features of the clabject can be
created using refactoring create feature type (see Section A.5).

Pre-conditions. The clabject C cannot have a type or superclabjects. The upper meta-
level cannot have a clabject with same name as the newly created type.

44



Working scheme. Refactoring createType(C, name), where C is the clabject to type and
name its new name, works as follows:
(1) If C resides in a model M with no ontological type, then create a model MM, and

make MM the ontological type of M. This causes a level expansion.
(2) Create a new non-abstract clabject C’ in the ontological type of M.
(3) Rename C’ to name, and give it the potency of C plus 1.
(4) Set the ontological type of C and its children clabjects to C’.

A.5. Create feature type
This refactoring creates an ontological type for a feature lacking one.

Type. Bottom-up; level preserving; atomic; it has semantic side effects.
Utility. A clabject with ontological type T defines an untyped feature (i.e., a linguistic

extension), and this feature is deemed more general and applicable to other instances
of T. After applying the refactoring, the untyped feature gets typed by a new feature
in T, and this new feature becomes available to all instances of T.

Example. In Figure 23, the designer identifies that reference SETask.consumes (a lin-
guistic extension) should be generalised because it is useful in other domains. For
this purpose, the refactoring creates the new reference requires with cardinality 0..*
between the ontological types of SETask and SEResource. The new reference becomes
the type of SETask.consumes.

(d)
TaskType

@2

@1

@0

(a)

(b)

(c)

mainSys:Code

lang=“C”

date=“1/1/16”

lang: String

Code Coding:

TaskType

SEResource
consumes

SETask: 

TaskType
produces

*

*

sprint1:Coding

:produces

@2

@1

@0

(e)

(f)

lang: String

Code:
ResourceType

SEResource:

ResourceType

consumes
:requires

produces

*

*

ResourceType TaskType

Coding:

TaskType

SETask: 

TaskTypedate: Date

date: Date

mainSys:Code

lang=“C”

date=“1/1/16” sprint1:Coding

:produces

requires*ResourceType

Fig. 23: Example of refactoring create feature type: reference requires is created as type for
consumes

Consequences. The ontological type of the clabject that owns the feature f to be typed
receives a new feature, which becomes the type of f. If f is a reference, the owner
clabject of f can define new links with the same type as f. If f is a field, the refactoring
has side effects as existing instances of the ontological type of the owner clabject of f
will require a slot for the new field.

Pre-conditions. The feature to be typed should not have a type, but its owner clabject
should be typed. If the feature is a reference, its target clabject should be typed
as well. The ontological type of the clabject that owns the feature should not have
another feature with same name as the newly created feature.

Side effects. This refactoring has side effects when the feature to be typed is a field
(not a reference), and there are more clabjects with the same ontological type as the
owner of the field. The effect is that these other clabjects receive the new field.
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Working scheme. Refactoring createFeatureType(C.f, name), where f is an untyped feature
owned by C and name is the name of its new ontological type, works as follows:
(1) Let T be the type of C.
(2) Create a clone f’ of f in T, with its potency increased by 1, and name name.
(3) Set the type of C.f to T.f’.
(4) If T.f’ is a reference:

(a) set its cardinality to 0..*.
(b) set its target to the ontological type of the target clabject of C.f.

(5) If T.f’ is a field:
(a) set its default value according to its data type.
(b) for each clabject C’6=C s.t. C’ is a direct or indirect instance of T and its

potency is in the range [T.potency-1..T.potency-T.f’.potency]:
i. create an instance of f in C’.

The algorithm clones the feature f in the ontological type T of the owner clabject, and
this clone becomes the type of f (steps 2 and 3). If f is a reference, its type receives
cardinality 0..* to increase generality and avoid breaking existing instances (step
4a), and its target is the ontological type of the target of f (step 4b). If f is a field, its
type is assigned an appropriate default value (e.g., 0 in case of integers), and then
it is instantiated in all direct and indirect instances of T (step 5b). The traversal
of the instances of T is performed top-down from higher to lower levels to ensure a
correct instantiation of the field. This repair action is unnecessary for references, as
the minimum cardinality of the reference type is set to 0 (step 4a). Please note that
Figure 23 does not show the intermediate field instantiations.

A.6. Pull up feature
This refactoring moves a feature to the ontological type of the owner clabject.

Type. Bottom-up; level preserving; atomic; it has semantic side effects.
Utility. A clabject with ontological type T defines an untyped feature (i.e., a linguistic

extension), and this feature is deemed more general and applicable to all other
instances of T. After applying the refactoring, the feature is moved to T so that it
characterizes all its instances.

Example. In Figure 24, feature SEResource.date in model (b) also applies to other types
of resource like ComputingSystem, and should be generalised. This refactoring does
so by moving the feature to ResourceType in model (d) with increased potency and a
default value. After pulling up the feature, it becomes available to ComputingSystem
and its instances, hence producing a side effect.

Consequences. The pulled-up feature becomes applicable to any other existing or new
instance of the clabject where the feature is moved to. The consequences of this
refactoring are similar to those of create feature type, but while create feature type
creates a type for the feature, pull up feature in addition removes the feature (i.e., the
feature is effectively moved one level above). This difference is only evident in case
of references, as fields need to be instantiated at any possible level if their potency
allows so, hence their removal is not possible.

Pre-conditions. The feature to be pulled up, and its owner clabject, should have a type.
If the feature is a reference, it should have no instances, and its target should have a
type.

Side effects. This refactoring has side effects when the feature to be typed is a field
(not a reference), and there are more clabjects with the same ontological type as the
owner of the field. The effect is that these other clabjects receive the new field.

Working scheme. Refactoring pullUpFeature(C.f), where f is an untyped feature owned by
C, works as follows:
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Fig. 24: Example of refactoring pull up feature: date is moved from SEResource to ResourceType

(1) Let T be the type of C.
(2) Create a clone f’ of f in T, with its potency increased by 1.
(3) If T.f’ is a reference:

(a) set its minimum cardinality to 0.
(b) set its target to the ontological type of the target clabject of C.f.
(c) remove C.f.

(4) If T.f’ is a field:
(a) set its default value according to its data type.
(b) for each clabject C’ 6=C s.t. C’ is a direct or indirect instance of T and its

potency is in the range [T.potency-1..T.potency-T.f’.potency]:
i. create an instance of f in C’.

(c) set the type of C.f to T.f’.
The working scheme is similar to the one for create feature type. The feature is cloned
in the type of the owner clabject (step 2). If it is a reference (step 3), its cardinality is
generalized, its target is set to the type of the target of the original feature, and the
feature itself deleted. If it is a field (step 4), it becomes an instance of the created
clone, and the latter is instantiated in all direct and indirect instances of its owner
clabject. Please note that clabject server in model (f) of Figure 24 does not show the
feature date because we omit the features with a default value that is not overridden.

A.7. Push down clabject
This refactoring moves a clabject and its features one meta-level down.

Type. Top-down; might be level collapsing; atomic; no semantic side effects.
Utility. A clabject needs to be made less general because it is specific to some domain.

The repeated application of this refactoring can be used to migrate a multi-level so-
lution into a two-level one, where instantiation relations are replaced by inheritance.
This idiom to encode a multi-level model is called static types in [de Lara et al. 2014].

Example. In Figure 25, model (a) defines the clabject Documentation, which is a concept
used in software engineering but it is not general for arbitrary process modelling
domains. The refactoring moves the clabject one level down with decreased potency,
and makes it abstract. The instances of Documentation (CodeComments and DesignDoc)
get to inherit from it. The features of Documentation (size and describes) are pushed
down with decreased potency as well. Moreover, an abstract clabject SETask is created
as representative of all instances of TaskType, in order to use it as the type of reference
Documentation.describes.
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Fig. 25: Example of refactoring push down clabject: clabject Documentation is moved from level 2
to level 1

Consequences. This refactoring replaces instantiation by inheritance: the instances of
the clabject being pushed down become their subclabjects, and clabject represen-
tatives may need to be created (see Section 5.2). If the clabject had instances, it
becomes abstract once pushed down. The pushed-down clabject is deleted from its
original level; if this is not desired, but the clabject and some of its features should
be left in its original level, refactoring split clabject should be used instead (see
Section A.10).

Pre-conditions. The clabject to be pushed down cannot have a type, be the target of
references, or define features with potency 1 or 0. If the clabject inherits features
with potency 1, they should be optional or have a default value. If the clabject defines
references, their target clabject should have instances, but not the references. The
clabject cannot have subclabjects, or more than one superclabject.

Working scheme. Refactoring pushDownClabject(C, name?), where C is the clabject to push
down, and name is an optional parameter that establishes a new name for the clabject,
works as follows:
(1) Let M be the container model of C, and M’ an instance of M.
(2) Create a clabject C’ in M’ with the potency of C minus 1.
(3) Set the name of C’ to name if parameter name is given, or to the name of C

otherwise.
(4) If C has a superclabject D, make D the type of C’.
(5) If C has instances, make C’ abstract.
(6) For each instance I of C:

(a) if C has a superclabject D, make D the type of I.
(b) make C’ the superclabject of I.

(7) For each feature f in C, apply refactoring pushDownFeature(C.f, {C’}).
(8) Remove C.
(9) If M becomes empty, remove M.
The first step identifies the model M’ where C is to be pushed down. In practice, this
is obtained from the context model where the refactoring command is issued. Since
M’ always exists, the refactoring cannot be level expanding. Then, steps 2 and 3
create a clabject C’ in M’ with the appropriate name. Step 4 changes inheritance by
instantiation (the superclabject of C becomes the type of C’), while step 6 changes
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instantiation by inheritance (instances of C become subclabjects of C’). Step 7 pushes
down each feature of C to C’ (see Section 4.3). Since C’ is the representative of all
instances of C, push down feature has no semantic side effects. The last steps remove
C, as well as the container model of C if it becomes empty.

A.8. Set clabject type
This refactoring assigns an existing type to an untyped clabject, attempting to type as
many features of the clabject as possible.

Type. Bottom-up; level preserving; atomic; it may have semantic side effects.
Utility. A domain-specific concept C (i.e., a linguistic extension) is found to be an

ontological instance of an existing clabject T. Hence, the refactoring assigns the
type T to C, and types as many features of C as possible with respect to matching
features of T. C can be the target of references pointing to instances of T. Any model
management operation defined over T becomes applicable to C.

Example. In Figure 26, the designer realizes that the linguistic extension DevEnviron-
ment in model (b) is a kind of resource, and hence, the designer applies the refactoring
to set the type of DevEnvironment to ResourceType. As a result, reference DevEnviron-
ment.requiredFor gets typed by reference ResourceType.usedIn. The example shows that
the refactoring may have semantic side effects. In this case, clabject Eclipse in the
bottom level receives the field date after applying the refactoring, as ResourceType de-
fines this field with potency 2. Should ResourceType.date would have been mandatory
(i.e., with lower cardinality bigger than 0), the refactoring would have assigned a
default value to field Eclipse.date.
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Fig. 26: Example of refactoring set clabject type: DevEnvironment gets typed by ResourceType

Consequences. The clabject and its subclabjects become typed, as well as the subset of
their features matching some in the assigned clabject type. The unmatched features
in the clabject remain linguistic extensions. The clabject and its instances are in-
creased with the unmatched fields of the clabject type, which is a side effect of the
refactoring.
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Pre-conditions. The clabject C to be typed must be untyped, have no superclabjects,
and its potency should be one less than the potency of its new type T. If C and T have
fields f and f’ with primitive data type and same name, their data type must be the
same, and the potency of f must be one less than the potency of f’. All mandatory
features of T with potency 1 should be matched by some feature in C.

Side effects. There are semantic side effects when the clabject type has unmatched
fields after the refactoring (e.g., date in Figure 26).

Working scheme. Refactoring setClabjectType(C, T), where C is the clabject to type by
clabject T, works as follows:
(1) The type of C and all its subclabjects is set to T.
(2) For each feature f owned by C or its subclabjects:

(a) if there is a compatible feature f’ in T, apply setFeatureType(f, f’).
(3) For each unmatched primitive field f’ of T:

(a) create an instance of f’ in C and every subclabject.
(b) for each instance I of C or its subclabjects:

i. create an instance of f’ in I.
ii. if the created instance has potency 0 and f’ is mandatory, assign a default

value to the created instance according to its type.
In step 1, the type of C and all its subclabjects is set to T. Then, step 2 assigns a type
to as many features of C and its subclabjects as possible, applying refactoring set
feature type (see Section A.9). A feature f of C matches a feature f’ of T if: (i) the potency
of f plus 1 equals the potency of f’; (ii) the types of f and f’ match; (iii) if f and f’ are
fields, their names are equal. If the features are fields, condition (ii) means equality
of data types; in case of references, it means that the target of f should be typed by
the target of f’ or a superclabject. Step 3 creates instances of the unmatched fields
of T in C, its subclabjects, and their instances. If the unmatched field is mandatory,
the created instances with potency 0 receive a value according to the field data type.
This last step, which adds the necessary field instances to the clabjects that need
to be repaired, is the responsible of the side effects. Please note that Figure 26 does
not show intermediate field instantiations (e.g., DevEnvironment.date in model (e)) or
uninitialized instantiations of optional fields (e.g., Eclipse.date in model (f)).

A.9. Set feature type
This refactoring assigns an existing type to a feature lacking one.

Type. Bottom-up; level preserving; atomic; no semantic side effects.
Utility. A domain-specific feature f unique for a clabject (i.e., a linguistic extension) is

found to be an instance of an existing feature f’. Hence, the refactoring assigns the
type f’ to f.

Example. In Figure 27, reference SETask.produces in model (b) is a linguistic extension
unique to software engineering tasks. As an afterthought, the designer realizes
that the reference represents a particular use of a resource, and therefore, it can be
recasted as an instance of TaskType.uses. Applying the refactoring sets the type of
SETask.produces to TaskType.uses, so that it can be treated uniformly with the rest of
instances of the latter. In this way, an expression like self.uses defined on TaskType
and evaluated at sprint1 on model (f) returns the union of the instances of references
consumes and produces defined in model (e).

Consequences. The feature becomes typed and is no longer a linguistic extension. If it
is a reference, this means that it can be treated uniformly with the other instances
of the assigned type.

Pre-conditions. The feature f to be typed should be untyped, but its owner clabject
C should have a type. The feature type f’ assigned to f should be defined in the
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Fig. 27: Example of refactoring set feature type: produces gets typed by uses

ontological type of C or a superclabject of it, should have the potency of f plus 1, and
its maximum cardinality should be either unbounded or bigger than the number of
its instances. If f and f’ are fields, their data types should be the same. If they are
references, the target of f should be an instance of the target of f’ or a subclabject.

Working scheme. Refactoring setFeatureType(C.f, C’.f’), where f is the feature to type by
feature f’, works as follows:
(1) Set f’ as the type of f.
While the refactoring algorithm is trivial, the pre-condition checking is complex.

A.10. Split clabject
This refactoring splits a clabject into two: one with the features with potency 1, and the
other with the features with potency bigger than 1. The latter clabject is moved one
meta-level down, and becomes an instance of the former.

Type. Top-down; might be level expanding; atomic; no semantic side effects.
Utility. A clabject has been attributed features that are not useful in all domains or

expected instances, though some of its features are truly general. To fix this issue,
the refactoring moves the domain-specific features (i.e., with potency bigger than 1)
to a new clabject in the lower meta-level. The repeated application of this refactoring
ultimately removes potencies bigger than 1 from a multi-level model, and can be
used to migrate to systems that do not support deep characterization.

Consequences. The split clabject does no longer deeply characterize instances beyond
the meta-level below. Its features with potency bigger than 1 are pushed down, and
appropriate clabject representatives are created (see Section 5.2).

Example. In Figure 28, ResourceType in model (a) defines some features which are not
applicable to every process modelling domain. Applying the refactoring to the clabject
creates the new clabject SEResource as an instance of it, and as superclabject of the
existing instances of ResourceType (Reqs and ProgDoc). The features of ResourceType
with potency bigger than 1 (lang, date and usedBy) are pushed down into SEResource
with decreased potency. Reference ResourceType.usedBy can be pushed down to SERe-
source because the reference has no instances. Moreover, an abstract clabject SETask
is created as target of the pushed-down reference to preserve the semantics of the
multi-level model.
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Fig. 28: Example of refactoring split clabject: ResourceType at level 2 is split and results in the
creation of SEResource at level 1

Pre-conditions. The clabject to be split cannot be abstract or have potency 0. The
references with potency bigger than 1 owned by the clabject cannot have instances.

Working scheme. Refactoring splitClabject(C, name), where C is the clabject to split, and
name is the name of the introduced clabject, works as follows:
(1) Let M be the container model of C, and M’ an instance of M.
(2) If M’ does not exist, create it.
(3) Create a clabject C’ in M’ with the potency of C minus 1, and named name.
(4) Set the type of C’ to C.
(5) If C has instances, make C’ abstract.
(6) Set C’ as the superclabject of each instance of C or any subclabject of it.
(7) For each feature f in C with potency bigger than 1:

(a) apply refactoring pushDownFeature(C.f, {C’}).
In the first step, the refactoring identifies the model M’ where the new clabject will
be created. In practice, this is obtained from the context model where the refactoring
command is issued. If no such a model exists, it is created in step 2, hence causing
a level expansion. Then, a clabject C’, instance of C, is created (steps 3 and 4). C’
becomes the representative of all existing instances of C and its subclabjects (step
6). Finally, the features of C with potency bigger than 1 are pushed down to C’
using refactoring push down feature (step 7). This refactoring may create clabject
representatives of the instances of the target of the pushed-down references (see
Section 4.3), but it does not produce side effects because C’ is the representative of
all instances of C and its subclabjects.

A.11. Stratify potency
This refactoring reorganizes the features of a clabject according to their potency along a
hierarchy of abstract clabjects with decreasing potency. Note that, as stated in [de Lara
et al. 2014], a clabject can only inherit from a clabject with less or equal potency.

52



Type. Intra-level; level preserving; atomic; no semantic side effects.
Utility. When a clabject owns features with different potencies, organising the features

in a hierarchy of clabjects according to their potency permits a more flexible reuse of
the features via inheritance.

Consequences. The refactored clabject C inherits from a hierarchy of abstract clabjects
with different potencies. The top-most clabject in the hierarchy has potency 1 and
contains all features of C with potency 1; its child has potency 2 and contains all
features of C with potency 2; and so on until the potency of C is reached. The hierarchy
of clabjects provides flexibility as, e.g., other clabjects with potency 1 can be set to
inherit from the top-most clabject in the hierarchy.

Example. In Figure 29, the designer requires modelling different types of resources in
addition to SoftwareType resources. To have flexibility when defining the new resource
types, the designer applies this refactoring to SoftwareType. The refactoring creates
the abstract superclabject ResourceType with potency 1 and containing all features
of SoftwareType with potency 1 (i.e., critical). In this way, the designer can define
other types of resource by adding new subclabjects of ResourceType or SoftwareType as
required according to their features.

SoftwareType

SoftwareType

critical@1: Boolean

version: String

@1

@0

(a)

(b)

(c)

OperSys:

SoftwareType

win:OperSys

critical=true

version=“XP”

@2 @2(d)

critical@1: Boolean

version: String

stratifyPotency(
SoftwareType,
{“ResourceType”})

ResourceType@1

@1

@0

(e)

(f)

OperSys:

SoftwareType

win:OperSys

critical=true

version=“XP”

Fig. 29: Example of refactoring stratify potency: SoftwareType is divided into two clabjects

Pre-conditions. The clabject to stratify cannot have superclabjects or potency 0.
Working scheme. Refactoring stratifyPotency(C, {name1, ...}), where C is the clabject to

stratify, and {name1, ...} is the collection of clabject names in the resulting hierarchy,
works as follows:
(1) Let current = C.
(2) For i=C.potency-1 down to 1:

(a) create an abstract clabject Di with name namei and potency i.
(b) move to Di all features of C with potency i.
(c) if C is the target of a moved reference, set the target to Di.
(d) set Di as the superclabject of current.
(e) set current = Di.

The algorithm iterates each potency value from the potency of C minus 1 down to 1,
creating a clabject for each potency value that contains C’s features with that potency.
The created clabjects are arranged in an inheritance hierarchy with clabject D1 with
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potency 1 on top, and C on bottom. If a reference in C gets moved to some clabject Di,
then its target is also set to Di.

A.12. Unset clabject type
This refactoring unsets the ontological type of a clabject, making it a linguistic extension.
It has two variants. In the main one, the clabject does not retain the fields declared by
its type with potency bigger than 1. In the alternative variant, the clabject keeps all
features.

Type. Top-down; level preserving; atomic; one of its variants has semantic side effects.
Utility. The ontological type of a clabject is not a good classifier for it. Hence, applying

this refactoring removes the instantiation relation between them.
Consequences. The clabject drops its ontological type and becomes a linguistic extension.

In the main variant, the instances of the clabject may need to be repaired to delete
all instances of fields declared in the clabject’s ontological type with potency bigger
than 1; hence, this variant may have side effects. In the alternative variant, the
clabject and its instances retain all features; therefore, this variant has no semantic
side effects.

Example. In Figure 30, SwEngineer in model (b) is an instance of ResourceType, and jdoe
in model (c) is an instance of SwEngineer and can assign a value to field date as this is
defined by ResourceType with potency 2. However, the designer plans to create a new
clabject Actor and type SwEngineer by this new clabject, which is a better classifier.
Hence, as a first step, the designer applies the refactoring to SwEngineer to unset
its type. SwEngineer becomes a linguistic extension. Since the designer applies the
main variant of the refactoring, the fields with potency bigger than 1 in ResourceType
become unavailable to the instances of SwEngineer. This is the case for field date, so
the refactoring removes its slot from clabject jdoe (see model (f)). The ontological type
of reference SwEngineer.requiredFor is unset, but this has no effect in the instances of
SwEngineer.

@2

@1

@0

(d)

(e)

(f)

experience: int

SwEngineer

TaskType

Coding:

TaskType

jdoe:

SwEngineer

experience=10

sprint1:Coding

:requiredFor

usedIn
*

ResourceType

date: Date[0..1]

requiredFor

*

@2

@1

@0

(a)

(b)

(c)

experience: int

SwEngineer:

ResourceType

TaskType

Coding:

TaskType

jdoe:

SwEngineer

experience=10

date=“1/1/16”

sprint1:Coding

:requiredFor

usedIn
*

ResourceType

date: Date[0..1]

requiredFor: usedIn

*

Fig. 30: Example of refactoring unset clabject type: clabject SwEngineer becomes a linguistic
extension
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Pre-conditions. The clabject to untype should have a type, and cannot have superclab-
jects or subclabjects, or be the target of references having a type.

Side effects. The main variant has side effects when the ontological type of the clabject
has fields with potency bigger than 1, as the example of Figure 30 shows.

Working scheme. Refactoring unSetClabjectType(C), where C is the clabject to untype,
works as follows:
(1) Let C’ be the ontological type of C.
(2) Unset the type of C.
(3) Let F be the set of features owned or inherited by C’ with potency bigger than 1.
(4) For each feature f in F:

(a) apply refactoring unSetFeatureType(C.f).
(b) [main] if f is a field (with primitive type):

i. [main] remove f from C.
ii. [main] for each direct and indirect instance I of C, remove f from I.

The algorithm unsets the type of C in step 2. Then, it unsets the type of the features
of C that are instances of features with potency bigger than 1 in C’s ontological type
(step 4a). This is done by applying refactoring unset feature type (Section A.13), which
does not have side effects because the clabject has no type at this point. In addition,
the main variant deletes the identified features and its instances from C and its
instances, but only in case of features with a primitive type (step 4b).

A.13. Unset feature type
This refactoring unsets the ontological type of a feature.

Type. Top-down; level preserving; atomic; it may have semantic side effects.
Utility. The ontological type of a feature is not a good classifier for it. A feature (typically

a reference) was initially thought to be an instance of another, but it is not. Applying
this refactoring removes the instantiation relation between both features.

Consequences. The feature drops its ontological type and becomes a linguistic extension,
but it retains its potency and cardinality. The result of the refactoring may violate
the minimum cardinality of the ontological type of the feature, as the pre-conditions
do not check this. In case of fields, unsetting the type has side effects because the
fields need to be renamed to avoid name collisions of fields in the instance and type
clabjects.

Example. In Figure 31, the designer decides to unset the type of reference SwEngi-
neer.requiredFor, which becomes a linguistic extension. The existing instance of SwEngi-
neer is not affected by this change.

Pre-conditions. The feature to untype should have a type. If it is a field, its new name
should not collide with existing field names in the clabject or its direct and indirect
instances.

Side effects. This refactoring has side effects when the feature is a field as, in this case,
the field needs to be renamed to avoid naming collisions of fields in the instance and
type clabjects.

Working scheme. Refactoring unSetFeatureType(C.f, name?), where f is the feature to un-
type and name its (optional) new name, works as follows:
(1) Unset the type of C.f.
(2) If C.f is a field (with primitive type):

(a) set the name of C.f to name.
(b) set the name of direct and indirect instances of C.f to name.

The refactoring unsets the type of the feature, and in case of fields, they are renamed.
The latter causes a side effect.
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experience: int

SwEngineer:

ResourceType

@2

@1

@0

(d)

(e)

(f)

TaskType

Coding:

TaskType

jdoe:

SwEngineer
sprint1:Coding

:requiredFor

usedIn
*

ResourceType

date: Date[0..1]

requiredFor

*

@2

@1

@0

(a)

(b)

(c)

experience: int

SwEngineer:

ResourceType

TaskType

Coding:

TaskType

jdoe:

SwEngineer

experience=10

date=“1/1/16”

sprint1:Coding

:requiredFor

usedIn
*

ResourceType

date: Date[0..1]

requiredFor: usedIn

*

experience=10

date=“1/1/16”

Fig. 31: Example of refactoring unset feature type: reference requiredFor becomes a linguistic
extension
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