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ABSTRACT

Modelling languages are intensively used in paradigms like model-
driven engineering to automate all tasks of the development process.
These languages may have variants, in which case the need arises to
deal with language families rather than with individual languages.
However, specifying the syntax and semantics of each language
variant separately is costly, hinders reuse across variants, and may
yield inconsistent semantics between variants.

To attack this problem, we propose a novel, modular way to
describe product lines of modelling languages. Our approach is
compositional, enabling the incremental definition of language
families by means of modules comprising meta-model fragments,
graph transformation rules, and rule extensions. Language variants
are configured by selecting the desired modules, which entails the
composition of a language meta-model and a set of rules defining
its semantics. This paper describes a theory able to check consistent
semantics among all languages within the family, an implemen-
tation as an Eclipse plugin, and an evaluation reporting drastic
specification size reduction w.r.t. an enumerative approach.
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1 INTRODUCTION

Modelling languages are ubiquitous in many engineering disci-
plines to describemanageable abstractions (models) of real, complex
phenomena. This is no exception for software engineering, where
paradigms like model-driven engineering (MDE) [3] make intensive
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use of modelling languages and models to conduct and provide au-
tomation for all phases of the development process. These models
are specified via modelling languages, often domain-specific [21].

Modelling languages comprise abstract syntax (the concepts cov-
ered by the language), concrete syntax (their representation), and
semantics (their meaning). In MDE, the abstract syntax of mod-
elling languages is described by a meta-model; the concrete syntax
by a model describing the rendering of the language elements; and
the semantics by model transformations.

Sometimes, languages that share commonalities are organised
into families. This is the case, for example, of the more than 120
variations of architectural languages reported in [30], and the many
variants of Petri nets [34], access control languages [20] and sym-
bolic automata [7] proposed in the literature. Likewise, language
families can be defined to account for variants of a language directed
to different kinds of user, or contexts of use. For example, within
UML, simple versions of class diagrams are suitable for novices;
complete versions for experts; and restricted ones (e.g., with single
inheritance) for detailed design targeting languages like Java. How-
ever, describing the syntax and semantics of each language variant
separately is costly, does not benefit from reuse across variants, and
may yield inconsistent semantics between variants.

To tackle this issue, product lines [40] have been applied to the
engineering of modelling languages [33]. Product lines permit the
compact definition of a potentially large set of products that share
common features. Hence, earlier works have created product lines
of meta-models [8, 16] and model transformations [9, 44]. However,
the former product lines [8, 16] do not consider semantics, while
the latter do not support meta-model variants [44], are hard to
extend [9], or are not based on formalisms that enable asserting
consistency properties over the language family [9, 32].

In this work, we propose a novel modular approach for defining
language product lines, which considers semantics and ensures
semantic consistency across all members of the language family.
The approach is based on modules that encapsulate a meta-model
fragment and graph transformation rules [14]. Modules can also de-
clare different kinds of dependencies on other modules, and extend
the rules defined in those other modules. Overall, our approach
enables the definition of a large set of language variants in a com-
pact way, and the theory ensures the semantic consistency of each
variant. To demonstrate the practicality of our proposal, we report
on its realisation on a concrete tool called Capone [5] and on an
evaluation that shows its benefits over an enumerative approach.

Paper organization. Sec. 2 motivates our proposal via a running
example. Sec. 3 overviews our approach. Sec. 4 introduces the struc-
ture of our product lines. Sec. 5 expands them to consider behaviour
using rules, and includes the main result of our theory about be-
haviour consistency. Sec. 6 reports on supporting tool, and Sec. 7
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Figure 1: Three network language variants, and one example rule of each. (a) Simple links with node failures and acks. (b) Rich

links with communication failures. (c) Rich links with communication failures and time. Rules use a compact notation with ++
denoting element creation, -- element deletion, and -> attribute change.

on an evaluation. Sec. 8 compares with related work, and Sec. 9 con-
cludes the paper. An appendix includes the proof of Theorem 5.10.

2 MOTIVATION AND RUNNING EXAMPLE

We motivate our approach based on a family of domain-specific
languages (DSLs) to model communication networks, composed of
nodes that exchange messages with each other. We would like to
support different usages of the language family, such as: study the
behaviour of networks with node failures, deal with message loss
probabilities, consider protocols and time performance, among oth-
ers. As usual in MDE, we represent the language syntax with meta-
models, and the semantics via (graph) transformation rules [14].

Fig. 1 shows the meta-model of three language variants within
the family, and one example rule capturing the behaviour of each
one. Variant (a) is for a language with simple links between nodes
(reference linkedTo), supporting node failures (broken) and a simple
protocol (ack). Variant (b) features rich node links (class Link) with
a probability simulating communication loss (lossProb). Variant (c),
in addition, includes timestamps and considers the speed of links.

A naive approach would define separate meta-models and trans-
formation rules for each language variant. However, as Fig. 1 shows,
the meta-models and rules share commonalities which one may
not want to replicate. Moreover, the language family may need to
evolve and be extended over time, so adding new language features
to the family should be easy. However, in a naive approach, incor-
porating an optional feature (e.g., support for ad-hoc networks)
implies duplicating all language variants and adding the new fea-
ture to the duplicates. This entails a combinatorial explosion of
variants. Finally, evolving the rules of each variant separately may
easily lead to inconsistencies between them.

An alternative solution to tackle our example would be to create
one language that incorporates all possible features. However, this
solution is not suitable either, as the language users would need
to deal with an unnecessarily complex language, when a simpler
variant would suffice. Moreover, some language features may be
incompatible if they represent alternative options (e.g., a network
should not have both simple and rich links at the same time).

A sensible solution to define and manage a family of languages,
like the one described, should meet the following requirements:

(1) Succinctness: Specifying a DSL family should require much
less effort than specifying each language variant in isolation.

(2) Extensibility: Adding a new language variant to the family
should be easy, and should not require changing other existing
variants. This allows incremental language construction.

(3) Reusability: The specifications of language variants should be
as reusable as possible, to minimise effort and avoid duplications.

(4) Analysability: It should be possible to analyse a language fam-
ily to ensure that the behaviour of its variants is compatible with
the base behaviour of the language.
In the following, we propose a novel approach to define mod-

elling language variants that satisfies these requirements. It enables
a compact, extensible specification of the syntax of a language fam-
ily (Sec. 4), and a compact, extensible specification of semantics
that ensures consistency across all members of the family (Sec. 5).
First, the next section provides an overview of the approach.

3 OVERVIEW OF THE APPROACH

Fig. 2 shows a scheme of our solution to define families of languages,
whereby each language feature is defined as a module comprising
a meta-model fragment for the syntax, and a set of graph transfor-
mation rules for the semantics.

A set of modulesM1,...,M𝑛 may extend another moduleM. In such
a case, moduleM is said to be a dependency ofM1,...,M𝑛 , andmodules
M1,...,M𝑛 are its extensions. The extensionsM1,...,M𝑛 need to specify
their role in the dependency (label 1 in Fig. 2). The possible roles are
the standard variability options in feature modelling [19]: optional
(the extension can be present or not in a language variant that
includes the dependency), alternative (exactly one of the possible
alternative extensions must be present), OR (one or more of the
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Figure 2: Scheme of a modular language product line.
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OR extensions can be present), or mandatory (if the dependency
is present, so must be the extension). The extension also needs to
specify how to merge its structure (its meta-model) with the one
in the dependency module (label 2), and which of its rules extend
rules in the dependency, if there is any (label 3).

Then, we define amodular language product line (LPL) as a tree of
modules, with relations from the extensions to their dependencies,
and one identified root module. A language variant can be obtained
from the LPL by making a selection of modules that satisfy the de-
pendencies. This induces proper compositions of the meta-models
and rules in the selected modules.

This approach satisfies the requirements of the previous section:
(1) Succinctness: The use of product lines [35, 40] avoids defining

each language variant in isolation. Instead, modules describe
simpler language features, which can be combined to obtain the
desired language variant.

(2) Extensibility: Taking inspiration from practical component-
based systems like OSGI [36] or Eclipse [13], our modules en-
capsulate syntax and semantics, and can extend another module.
This results in an extensible design of languages, since adding
a new module to the LPL does not imply modifying a global
structure – like a “monolithic” 150%meta-model overlapping the
meta-model of all language variants [16], or a “global” feature
model describing all language variants [19].

(3) Reusability: Extension modules can reuse the syntax and se-
mantics declared in their dependencies.

(4) Analysability: We rely on graph transformation to express
the semantics of modules. As Sec. 5 will show, this enables
consistency checking across all members of a language family.

4 LANGUAGE PRODUCT LINES: STRUCTURE

Next, we present the formalization of our approach. We start by
considering the abstract syntax of the languages, while Sec. 5 will
expand the notion of module with rules to express behaviour. We
use graphs to encode models and meta-models, using the notion of
E-graph. An E-graph [14] is defined by two sets of nodes – graph
and data nodes – and three kinds of edges: the regular graph edges
connecting two graph nodes, and special edges for node and edge
attribution (i.e., connecting graph nodes and edges, to data nodes).

Definition 4.1 (Language Module). A language module is defined
by a tuple𝑀 = ⟨𝑀𝑀,𝑀𝐷 , 𝑅𝑂, 𝐼𝑁 ,Ψ⟩, where:
• 𝑀𝑀 is a meta-model;
• 𝑀𝐷 is a module, called dependency;
• 𝑅𝑂 ∈ {𝐴𝐿𝑇,𝑂𝑅,𝑂𝑃𝑇,𝑀𝐴𝑁 } is the role of 𝑀 in the depen-
dency, one among alternative, OR, optional, and mandatory.
• 𝐼𝑁 = 𝑀𝑀 ←− 𝐶 −→ 𝑀𝑀 (𝑀𝐷 ) is an inclusion span between
𝑀𝑀 and the meta-model of𝑀’s dependency.
• Ψ is a boolean formula that uses modules as variables.

𝑀 is called top if𝑀𝐷 = 𝑀 andΨ = 𝑡𝑟𝑢𝑒 . We use predicate 𝑡𝑜𝑝 (𝑀) to
identify top modules: 𝑡𝑜𝑝 (𝑀) ⇐⇒ 𝑀𝐷 (𝑀) = 𝑀 ∧ Ψ(𝑀) = 𝑡𝑟𝑢𝑒 .

In this and subsequent definitions, we use the following notation.
Given a module 𝑀𝑖 , we use 𝑀𝑀 (𝑀𝑖 ) for the meta-model of 𝑀𝑖 ,
and similarly for the other components of𝑀𝑖 (i.e.,𝑀𝐷 , 𝑅𝑂 , 𝐼𝑁 , Ψ).
𝐷𝐸𝑃+ (𝑀𝑖 ) denotes the transitive closure of its dependencies (i.e., its
dependency, the dependency of its dependency, etc.). 𝐷𝐸𝑃 (𝑀𝑖 ) =
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Figure 3: Language product line for the example.

𝐷𝐸𝑃+ (𝑀𝑖 ) \ {𝑀𝑖 } is the transitive closure excluding itself, which
is empty in top modules, and equals to 𝐷𝐸𝑃+ in non-top modules.
𝐷𝐸𝑃∗ (𝑀𝑖 ) = 𝐷𝐸𝑃+ (𝑀𝑖 ) ∪ {𝑀𝑖 } is the reflexive transitive closure
(i.e., including the module 𝑀𝑖 as well). Note that, typically, 𝐼𝑁 is
the identity inclusion for top modules.

An LPL is a set of modules with a single top (1), closed under
the modules’ dependencies (2), and without dependency cycles (3).

Definition 4.2 (Language Product Line). A language product line
𝐿𝑃𝐿 = {𝑀𝑖 }𝑖∈𝐼 is a set of modules s.t.

∃1𝑀𝑖 ∈ 𝐿𝑃𝐿 · 𝑡𝑜𝑝 (𝑀𝑖 ) ∧ (1)
∀𝑀𝑖 ∈ 𝐿𝑃𝐿 · 𝑀𝐷 (𝑀𝑖 ) ∈ 𝐿𝑃𝐿 ∧ (2)

𝑀𝑖 ∈ 𝐷𝐸𝑃+ (𝑀𝑖 ) =⇒ 𝑡𝑜𝑝 (𝑀𝑖 ) (3)

Example. Fig. 3 shows the LPL for the running example. It com-
prises 8 modules: Networking, NodeFailures, Ack, TimeStamped, Sim-
pleLink, RichLink, Speed, and CommFailures. Each module shows its
meta-model inside. For extensibility, dependencies are expressed
from a module (e.g., Ack) to its dependency (e.g., Networking). This
permits adding new modules to the LPL without modifying ex-
isting ones. The figure omits the dependency of the top module
(Networking) and span 𝐼𝑁 is implicit, given by the equality of names
in meta-model elements in both an extension module and its de-
pendency. For example, Message in Ack is mapped to Message in
Networking. Module TimeStamped has a formula Ψ stating that, if
a language variant includes the module TimeStamped, it must also
include the module Speed. For clarity, the figure omits the formula
Ψ when it is 𝑡𝑟𝑢𝑒 , as is the case for all modules but TimeStamped.

We use𝑇𝑂𝑃 (𝐿𝑃𝐿) to denote the only top module in 𝐿𝑃𝐿. Given a
module𝑀𝑖 ∈ 𝐿𝑃𝐿, we define the sets𝑋 (𝑀𝑖 ) = {𝑀𝑗 ∈ 𝐿𝑃𝐿 |𝑀𝐷 (𝑀𝑗 )
= 𝑀𝑖 ∧ 𝑅𝑂 (𝑀𝑗 ) = 𝑋 )} for 𝑋 ∈ {𝐴𝐿𝑇,𝑂𝑅,𝑂𝑃𝑇,𝑀𝐴𝑁 }, to obtain
the extension modules of𝑀𝑖 with role 𝑋 .

Example. The top module of the LPL of Fig.3 is Networking. For
this module, we have 𝐴𝐿𝑇 (Networking) = {SimpleLink, RichLink},
𝑂𝑃𝑇 (Networking) = {NodeFailures, Ack, TimeStamped}, while𝑀𝐴𝑁 (
Networking) and 𝑂𝑅(Networking) are empty.

Given an LPL, a specific language of the family can be obtained
by choosing a valid configuration of modules, as per Def. 4.3.

Definition 4.3 (Language Configuration). Given a language product
line 𝐿𝑃𝐿, a configuration 𝜌 ⊆ 𝐿𝑃𝐿 is a set of modules s.t.:



MODELS ’22, October 23–28, 2022, Montreal, QC, Canada J. de Lara et al.

𝑇𝑂𝑃 (𝐿𝑃𝐿) ∈ 𝜌 ∧ (1)
𝑀 ∈ 𝜌 =⇒ (∀𝑀𝑖 ∈ 𝑀𝐴𝑁 (𝑀) ·𝑀𝑖 ∈ 𝜌 ∧ (2)

𝐴𝐿𝑇 (𝑀) ≠ ∅ =⇒ ∃1𝑀𝑖 ∈ 𝐴𝐿𝑇 (𝑀) ·𝑀𝑖 ∈ 𝜌 ∧ (3)
𝑂𝑅(𝑀) ≠ ∅ =⇒ ∃𝑀𝑖 ∈ 𝑂𝑅(𝑀) ·𝑀𝑖 ∈ 𝜌 ∧ (4)
𝑀𝐷 (𝑀) ∈ 𝜌) ∧ (5)∧

𝑀𝑖 ∈𝐿𝑃𝐿
Ψ(𝑀𝑖 ) [𝑡𝑟𝑢𝑒/𝜌, 𝑓 𝑎𝑙𝑠𝑒/(𝐿𝑃𝐿 \ 𝜌)] = 𝑡𝑟𝑢𝑒 (6)

We use 𝐶𝐹𝐺 (𝐿𝑃𝐿) to denote the set of all configurations of 𝐿𝑃𝐿.

A configuration should contain the topmodule of the LPL (1), and
if a configuration includes a module, then it should also include: all
its mandatory extension modules (2), exactly one of its alternative
extension modules (3), at least one of its OR extension modules
(4), and its dependency (5). Recall that the top module has itself
as its only dependency. Finally, the formula of all modules in the
LPL should evaluate to true when substituting the modules that the
configuration includes by true, and the rest by false (6).

Example. The LPL of Fig. 3 admits 24 configurations, includ-
ing 𝜌0 = {Networking, SimpleLink} (the smallest configuration),
𝜌1 = {Networking, SimpleLink, NodeFailures, Ack}, 𝜌2 = {Networking,
RichLink,CommFailures}, and 𝜌3 = {Networking, RichLink,CommFailures,
TimeStamped, Speed}. Due to Ψ(TimeStamped), a configuration that
selects TimeStamped must select Speed as well. Configurations can
include zero or more modules of OPT(Networking), and must include
one or more modules of OR(RichLink) when RichLink is selected.

Given a configuration 𝜌 , we derive a product meta-model by
merging the meta-models of all modules in 𝜌 , using the inclusion
spans as glueing points. This is formalized using the categorical
notion of co-limit [26].

Definition 4.4 (Derivation). Given a language product line 𝐿𝑃𝐿 and
a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐿𝑃𝐿), a product meta-model 𝑀𝑀𝜌 is
given by the co-limit object of all meta-models and spans in the set
{𝐼𝑁 (𝑀𝑖 ) = ⟨𝑀𝑀 (𝑀𝑖 ) ←− 𝐶 −→ 𝑀𝑀 (𝑀𝐷 (𝑀𝑖 ))⟩ | 𝑀𝑖 ∈ 𝜌}.
Remark. Since we use a simple notion of meta-model (an E-graph),
we do not require well-formedness conditions of the derived meta-
model. Richer notions of meta-model, e.g., with inheritance or
named attributes, would require such conditions to avoid, e.g., in-
heritance cycles or repeated attribute/reference names.

Example. Figs. 1(a), 1(b) and 1(c) from Sec. 2 show the product
meta-models𝑀𝑀𝜌1 ,𝑀𝑀𝜌2 and𝑀𝑀𝜌3 , respectively.

Given a language product line 𝐿𝑃𝐿 and a module 𝑀 ∈ 𝐿𝑃𝐿,
we need to derive the meta-model used to type the rules of 𝑀 .
This meta-model – called the effective meta-model of 𝑀 – is com-
posed out of the meta-models of the modules included in all con-
figurations that include 𝑀 . Hence, we define the set 𝐶𝐷𝐸𝑃 (𝑀) =⋂
𝜌𝑖 ∈𝐶𝐹𝐺 (𝐿𝑃𝐿) · 𝑀∈𝜌𝑖 , which is the intersection of all configura-

tions that include 𝑀 , and comprises the explicit module depen-
dencies of𝑀 (i.e., 𝐷𝐸𝑃∗ (𝑀)) and other implicit dependencies due
to the formula Ψ in modules. Then, the effective meta-model of
𝑀 , written 𝐸𝐹𝐹 (𝑀), is 𝑀𝑀𝐶𝐷𝐸𝑃 (𝑀 ) , calculated as in Def. 4.4 but
using 𝐶𝐷𝐸𝑃 (𝑀) instead of a configuration 𝜌 . Intuitively, it is the
common slice of any product meta-model𝑀𝑀𝜌 s.t.𝑀 ∈ 𝜌 .

Example. The effective meta-model of CommFailures is 𝑀𝑀𝜌2
in Fig. 1(b), as 𝐶𝐷𝐸𝑃 (CommFailures) = {CommFailures, RichLink,
Networking}. In turn,𝐶𝐷𝐸𝑃 (TimeStamped) = {TimeStamped, Network-
ing, Speed, RichLink}, since Speed is in every configuration that in-
cludes TimeStamped – due to the formula in the latter module –
while RichLink belongs to any configuration containing Speed.

We purposely mix the product space (i.e., the modules) and the
variability space (i.e., the feature model). One can see our modules
as features, and derive a feature model from their dependencies,
which then can be used to select a configuration, as Sec. 6 shows.

5 LANGUAGE PRODUCT LINES: BEHAVIOUR

Next, we extend LPLs with behaviour. First, Sec. 5.1 defines rules and
extension rules, which Sec. 5.2 uses to extend modules and LPLs with
behaviour. Then, Sec. 5.3 analyses the conditions for a behavioural
LPL to define a consistent behaviour, where the behaviour of every
language does not contradict that of simpler language versions.

5.1 Rules and Extension Rules

We use graph transformation rules – following the double pushout
approach [14] – to express module behaviour. In this approach, a
rule is defined by a span of three graphs: a left-hand side graph
𝐿, a right-hand side graph 𝑅, and a kernel graph 𝐾 identifying the
elements of 𝐿 and 𝑅 that the rule preserves. In addition, a rule has
a set of negative application conditions (NACs), as Def. 5.1 shows.

Definition 5.1 (Graph Transformation Rule). A rule 𝑟 = ⟨𝐿 𝑙←−
𝐾

𝑟−→ 𝑅, 𝑁𝐴𝐶 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩ is made of an injective span of
(E-graph) morphisms, and a set of negative application conditions
as injective (E-graph) morphisms.

Remark. We assume rules over typed E-graphs, where 𝐿, 𝐾 and 𝑅
have a type morphism to a common meta-model.

Example. Fig. 4(a) shows a rule example that follows Def. 5.1.
Morphisms 𝑙 and 𝑟 identify elements with equal name. The rule is
applicable when a non-broken node has a message and is connected
to another non-broken node (graph 𝐿). Applying the rule deletes
the edge from the message to the first node (graph 𝐾 ) and creates
an edge from the message to the second node (graph 𝑅). We will
use a more compact notation, used in tools like Henshin [1] (cf.
Fig. 4(b)) where all graphs 𝐿, 𝐾 , 𝑅 and 𝑁𝑖 are overlapped. Elements
in 𝐿 \ 𝐾 (those deleted) are marked with −−, those in 𝑅 \ 𝐾 (those
created) are marked with ++, and those in a NAC (those forbidden)
are marked with !! plus a subindex if there are several NACs.

n1: Node 

m: Message 

at 

n2: Node 

-- ++ at lin
ke

d
To

 

broken=false broken=false 

n1: Node 

m: Message 

at 

n2: Node 

lin
ke

d
To

 

broken=false broken=false 

n1: Node 

m: Message 

n2: Node 

lin
ke

d
To

 

broken=false broken=false 

n1: Node 

m: Message 

n2: Node 

lin
ke

d
To

 

broken=false broken=false 

L K R 

l r 

(a) 

(b) 

at 

Figure 4: Rule using Def. 5.1 (a) and compact notation (b).
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𝐿

𝑛𝐿

��

𝑚𝐿
!!

(1)
𝐾𝑙oo 𝑟 //

𝑛𝐾

��

𝑚𝐾
""

(2)
𝑅

𝑛𝑅

��

𝑚𝑅
!!

Δ𝐿

𝑛′
𝐿

��

Δ𝐾Δ𝑙oo Δ𝑟 //

𝑛′
𝐾

��

Δ𝑅

𝑛′
𝑅

��

𝑁 ′
𝑖

𝑚′
𝑁
  

(3)

𝐿′

𝑙𝑙
��

𝑛′𝑖oo 𝐾 ′𝑙 ′oo 𝑟 ′ //

𝑘𝑘
  

𝑅′

𝑟𝑟

��

𝑁 ′′
𝑖

𝐿′′𝑛′′𝑖oo 𝐾 ′′𝑙 ′′oo 𝑟 ′′ // 𝑅′′

Figure 5: Δ-rule application to a rule.

To enable the reuse of the rule-based behaviour defined for one
module in its extensions, we propose a mechanism for rule ex-
tension based on higher-order rules [46]. Our extension rules add
elements to a base rule. We support two kinds of extension rules:
adding elements to 𝐿, 𝐾 and 𝑅 (called Δ-rules), and adding extra
NACs (called NAC-rules). Def. 5.2 is for Δ-rules.

Definition 5.2 (Δ-rule). A Δ-rule Δ𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅,Δ𝐿
Δ𝑙←−

Δ𝐾
Δ𝑟−→ Δ𝑅,𝑚 = ⟨𝑚𝑋 : 𝑋 → Δ𝑋 ⟩ (for 𝑋 ∈ {𝐿, 𝐾, 𝑅})⟩ is composed

of two spans and a triple𝑚 = ⟨𝑚𝐿,𝑚𝐾 ,𝑚𝑅⟩ of injective morphisms
s.t. all squares commute (𝑚𝐿 ◦ 𝑙 = Δ𝑙 ◦𝑚𝐾 ,𝑚𝑅 ◦ 𝑟 = Δ𝑟 ◦𝑚𝐾 ).

A Δ-rule is applied to a standard rule via three injective mor-
phisms, performing pushouts (POs), as per Def. 5.3. A PO is a glue-
ing construction that merges two graphs by the common elements
identified by another one [26].

Definition 5.3 (Δ-rule Application). Given a Δ-rule Δ𝑟 , a rule 𝑟 ′,
and a triple 𝑛 = ⟨𝑛𝑋 : 𝑋 → 𝑋 ′⟩ (for 𝑋 ∈ {𝐿, 𝐾, 𝑅}) of injective
morphisms s.t. the back squares (1) and (2) in Fig. 5 commute, then

Δ𝑟 is applied to 𝑟 ′ (written 𝑟 ′
Δ𝑟
=⇒ 𝑟 ′′) yielding rule 𝑟 ′′ = ⟨𝐿′′ 𝑙 ′′←−

𝐾 ′′
𝑟 ′′−→ 𝑅′′, 𝑁𝐴𝐶′′ = {𝐿′′

𝑛′′𝑖−→ 𝑁 ′′
𝑖
}𝑖∈𝐼 ⟩, which is built as follows:

(1) Span 𝐿′′
𝑙 ′′←− 𝐾 ′′ 𝑟 ′′−→ 𝑅′′ is obtained by the POs of the spans

𝑋 ′
𝑛𝑋←− 𝑋 𝑚𝑋−→ Δ𝑋 (for 𝑋∈{𝐿, 𝐾, 𝑅}), where morphisms 𝑙 ′′

and 𝑟 ′′ exist due to the universal PO property (over 𝐾 ′′1).

(2) The set 𝑁𝐴𝐶′′ is obtained by the POs of the spans 𝑁 ′
𝑖

𝑛′𝑖←−

𝐿′
𝑙𝑙−→ 𝐿′′ (square (3) in Fig. 5) for every 𝐿′

𝑛′𝑖−→ 𝑁 ′
𝑖
in 𝑁𝐴𝐶′.

A Δ-rule Δ′𝑟 can also be applied to another Δ-rule Δ𝑟 yielding
a composed Δ-rule that performs the actions of both Δ-rules. The
main idea is to match Δ′𝑟 on Δ𝐿 ← Δ𝐾 → Δ𝑅, and compose the
actions of both rules, as Def. 5.4 shows.

Definition 5.4 (Δ-rule Composition). Let Δ𝑟 and Δ′𝑟 be two Δ-rules,
and 𝑛 = ⟨𝑛𝑋 : 𝑋 ′ → Δ𝑋 ⟩ (for 𝑋 = {𝐿, 𝐾, 𝑅}) be a triple of mor-
phisms s.t. the squares (1) and (2) (at the top) in Fig. 6 commute. The
composition of Δ′𝑟 and Δ𝑟 through 𝑛, written Δ′𝑟 +𝑛 Δ𝑟 , is a Δ-rule

⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅,Δ𝐿′′
Δ𝑙 ′′←− Δ𝐾 ′′

Δ𝑟 ′′−→ Δ𝑅′′,𝑚′′ = ⟨𝑚′′
𝐿
,𝑚′′

𝐾
,𝑚′′

𝑅
⟩⟩

where the span Δ𝐿′′
Δ𝑙 ′′←− Δ𝐾 ′′

Δ𝑟 ′′−→ Δ𝑅′′ results from the POs of

1𝑙 ′′ uniquely exists since we have 𝐾 ′
𝑙𝑙◦𝑙 ′−−−→ 𝐿′′

𝑛′
𝐿
◦Δ𝑙

←−−−− Δ𝐾 , and similarly for 𝑟 ′′ .

𝐿

𝑚𝐿

��

𝑚′′
𝐿

��

𝐾𝑙oo 𝑟 //

𝑚𝐾

��

𝑚′′
𝐾

��

𝑅

𝑚𝑅

��

𝑚′′
𝑅

��

Δ𝐿

Δ𝑚𝐿

��

(1)
Δ𝐾Δ𝑙oo Δ𝑟 //

Δ𝑚𝐾

��

(2)
Δ𝑅

Δ𝑚𝑅

��

𝐿′
𝑛𝐿

cc

𝑚′
𝐿

��

𝐾 ′𝑙 ′oo 𝑟 ′ //

𝑚′
𝐾

��

𝑛𝐾

dd

𝑅′

𝑚′
𝑅

��

𝑛𝑅

cc

Δ𝐿′′ Δ𝐾 ′′Δ𝑙 ′′oo Δ𝑟 ′′ // Δ𝑅′′

Δ𝐿′
𝑛′
𝐿

cc

Δ𝐾 ′Δ𝑙 ′oo Δ𝑟 ′ //

𝑛′
𝐾

cc

Δ𝑅′
𝑛′
𝑅

cc

Figure 6: Δ-rule composition.

spans Δ𝑋
𝑛𝑋←− 𝑋 ′

𝑚′
𝑋−→ Δ𝑋 ′ (for 𝑋∈{𝐿, 𝐾, 𝑅}) 2, and 𝑚′′

𝑋
: 𝑋 →

Δ𝑋 = Δ𝑚𝑋 ◦𝑚𝑋 (for 𝑋 = {𝐿, 𝐾, 𝑅}).

Given aΔ-ruleΔ𝑟 and aΔ- or standard rule 𝑟 , wewrite𝑛 : Δ𝑟 → 𝑟

to denote the morphism triple between Δ𝑟 and 𝑟 .

NAC-rules rewrite standard rules by adding them a NAC.

Definition 5.5 (NAC-rule and Application). A NAC-rule 𝑁𝑟 = ⟨𝑛 :
𝑁𝐿 → 𝑁 ⟩ consists of an injective morphism.

Given a rule 𝑟 and an injective morphism𝑚 : 𝑁𝐿 → 𝐿, applying

𝑁𝑟 to 𝑟 via𝑚 (written 𝑟
𝑁𝑟
=⇒ 𝑟 ′) yields 𝑟 ′ = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶 ∪

{𝐿 𝑛′−→ 𝑁 ′}⟩, where 𝑁 ′ is the PO object of 𝑁
𝑛←− 𝑁𝐿 𝑚−→ 𝐿.

Example. Fig. 7 shows examples of Δ- and NAC-rule applications.
Fig. 7(a) shows a standard rule move defined on the context of
module Networking. Fig. 7(b) shows a Δ-rule, called Δmove-rl, used
to increase a rule having two nodes with a link between them. We
use a compact notation for Δ- and NAC-rules, where the added
elements are enclosed in regions labelled as Δ followed by the place
of addition: {preserve} for 𝐿, 𝐾 and 𝑅; {delete} for 𝐿; {create} for 𝑅; and
{forbid} for adding a new NAC. This way, the Δ-rule in Fig. 7(b) adds
a Link node and two edges to the 𝐿, 𝐾 and 𝑅 of a rule. Similarly,
the Δ-rule in Fig. 7(c) adds an attribute and a condition; and the
NAC-rule in Fig. 7(d) adds a NAC.

For illustration of Def. 5.4, Fig. 7(e) shows the Δ-rule resulting
from the composition of the Δ-rules (b) and (c), via the Link l. Please
note that rule (c) is applied on the Δ{preserve} part of rule (b). The
resulting Δ-rule performs all actions of the two Δ-rules. Fig. 7(f) is
the rule resulting of applying Δ-rule (e) to the rule in Fig. 7(a), so
that additional preserved elements are added to (a) (cf. Def. 5.3). The
rule in Fig. 7(g) is the result of applying the NAC-rule (d) to the rule
(f) twice (cf. Def. 5.5). This adds two NACs to (f) via two different
morphisms: one identifying n with n1, and another identifying n
with n2. These NACs are marked with !!1 and !!2.

Remark. The application of NAC- and Δ-rules to a given rule, and
the composition of Δ-rules, are independent:

2Morphisms Δ𝑙 ′′ and Δ𝑟 ′′ uniquely exist by the universal PO property of Δ𝐾 ′′ : Δ𝑙 ′′

uniquely exists since Δ𝐾
Δ𝑚𝐿◦Δ𝑙−−−−−−→ Δ𝐿′′

𝑛′
𝐿
◦Δ𝑙 ′

←−−−−− Δ𝐾 ′ , and similarly for Δ𝑟 ′′ .
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(a) move  
        [in Networking] 

(b) move-rl  
       [in RichLink] 

(d) NAC-broken 
       [in NodeFailures] 

n1: Node 

m: Message 

at 

n2: Node 

at -- ++ 

n1: Node n2: Node 

l: Link 

from to 

{preserve} 

(c) move-cf  
      [in CommFailures] 

{preserve} 

l: Link 

lossProb=p 
random(0,1)> p 

n: Node 

broken=true 

{forbid} 

(e) move-rl+move-cf 

n1: Node n2: Node 

l: Link 

from to 

random(0,1)> p 

lossProb=p 

{preserve} 

(g) move’’ 

n1: Node n2: Node 

l: Link 
from to 

random(0,1)> p 

lossProb=p 

m: Message 
at at 
-- ++ 

broken=true broken=true 

(f) move’ 

n1: Node n2: Node 

l: Link from to 

lossProb=p 

m: Message 
at at 
-- ++ 

random(0,1)> p 

!!1 !!2 

Figure 7: (a) Rule from module Networking. (b) Δ-rule from
RichLink. (c) Δ-rule from CommFailures. (d) NAC-rule from

module NodeFailures. (e) Δ-rule resulting from composing

Δ-rules (b) and (c). (f) Result of applying Δ-rule (e) to rule (a).

(g) Result of applying NAC-broken to rule (f) twice.

• Given a rule 𝑟 and a set 𝐷 = {𝑚𝑖 : Δ𝑟𝑖 → 𝑟 }𝑖∈𝐼 of morphism
triples from Δ-rules into 𝑟 , we can apply each Δ-rule in 𝐷 to 𝑟
in any order, yielding the same result since Δ-rules are non-
deleting and there is no forbidding context for their application.

We use the notation 𝑟
𝐷
=⇒ 𝑟 ′ for the sequential application

𝑟
Δ𝑟0
=⇒ 𝑟0

Δ𝑟1
=⇒ . . . 𝑟 ′ of each Δ-rule in 𝐷 starting from 𝑟 .

• The composition of a set of Δ-rules (Δ𝑟𝑖 ) with a Δ-rule (Δ𝑟 )
is independent of the application order. Given a set 𝐷 =

{𝑚𝑖 : Δ𝑟𝑖 → Δ𝑟 }𝑖∈𝐼 , ⨿𝐷 denotes the Δ-rule that results from
composing each Δ𝑟𝑖 (through𝑚𝑖 ) to Δ𝑟 in sequence.
• The application of NAC-rules is independent of the application
order. Given a set 𝑁 of morphisms from NAC-rules into a rule

𝑟 , we write 𝑟
𝑁
=⇒ 𝑟 ′ to denote the sequential application of

each NAC-rule in 𝑁 starting from 𝑟 .

5.2 Behavioural Language Product Lines

To add behaviour to LPLs, we incorporate into modules a set 𝑅 of
rules, two sets Δ𝑅 and 𝑁𝑅 of extension rules (called Δ-rules and
NAC-rules), and two sets 𝐸𝑋 and 𝑁𝐸𝑋 of morphisms from the ex-
tension rules to (standard and Δ-) rules in the module dependencies.

Definition 5.6 (Behavioural Module). A behavioural module extends
Def. 4.1 of language module as follows. A behavioural module
𝑀 = ⟨𝑀𝑀,𝑀𝐷 , 𝑅𝑂, 𝐼𝑁 ,Ψ, 𝑅,Δ𝑅, NR, 𝐸𝑋,NEX⟩ consists of:

• 𝑀𝑀 ,𝑀𝐷 , 𝑅𝑂 , 𝐼𝑁 and Ψ as in Def. 4.1

• Sets 𝑅 = {𝑟𝑖 }𝑖∈𝐼 of rules, Δ𝑅 = {Δ𝑟 𝑗 } 𝑗∈ 𝐽 of Δ-rules, and NR =

{𝑁𝑟𝑘 }𝑘∈𝐾 of NAC-rules, all typed by the effective meta-model
of𝑀 , 𝐸𝐹𝐹 (𝑀)
• A set 𝐸𝑋 = {𝑚𝑖 𝑗 : Δ𝑟𝑖 → 𝑟 𝑗 | Δ𝑟𝑖 ∈ Δ𝑅 ∧ 𝑟 𝑗 ∈ (𝑅(𝑀𝑗 ) ∪
Δ𝑅(𝑀𝑗 )) ∧𝑀𝑗 ∈ 𝐷𝐸𝑃 (𝑀)} of morphism triples𝑚𝑖 𝑗 mapping
each Δ𝑟𝑖 ∈ Δ𝑅 to at least a (Δ- or standard) rule 𝑟 𝑗 in some
module𝑀𝑗 of𝑀’s dependencies
• A set NEX = {𝑚𝑖 𝑗 : 𝑁𝐿𝑖 → 𝐿𝑗 | 𝑁𝑟𝑖 ∈ NR ∧ 𝑟 𝑗 ∈ 𝑅(𝑀𝑗 ) ∧
𝑀𝑗 ∈ 𝐷𝐸𝑃 (𝑀)} of morphisms𝑚𝑖 𝑗 mapping each NAC-rule
𝑁𝑟𝑖 = ⟨𝑛𝑖 : 𝑁𝐿𝑖 → 𝑁𝑖 ⟩ ∈ NR to at least a rule 𝑟 𝑗 (with LHS 𝐿𝑗 )
in some module𝑀𝑗 of𝑀’s dependencies

Definition 5.6 uses 𝑅(𝑀𝑗 ) (resp. Δ𝑅(𝑀𝑗 )) to refer to set 𝑅 (resp.
Δ𝑅) within the behavioural module 𝑀𝑗 . In the remainder of the
section, we will use a similar notation for the other components of
behavioural modules. Since sets 𝐸𝑋 and NEX in Def. 5.6 contain
morphisms to (Δ-)rules in 𝐷𝐸𝑃 (𝑀), this entails that top modules
cannot define extensions for their own rules.

We omit the definitions of behavioural LPL, configuration of a
behavioural LPL and 𝐶𝐹𝐺 since they are the same as in Defs. 4.2
and 4.3, only considering behavioural modules instead of mod-
ules. However, we need to provide a new notion of derivation that
complements that of Def. 4.4 (yielding a meta-model) with rule
composition via the extension rules (yielding a set of rules). First,
we define the sets of extension rules that apply to a given rule.

Definition 5.7 (Rule Extensions). Given a behavioural language
product line 𝐵𝑃𝐿, a behavioural module𝑀𝑖 ∈ 𝐵𝑃𝐿, a rule 𝑟 ∈ 𝑅(𝑀𝑖 ),
and a Δ-rule Δ𝑟 ∈ Δ𝑅(𝑀𝑖 ), we define the sets:
• 𝐸𝑋 (Δ𝑟 ) = {𝑚 𝑗 : Δ𝑟 𝑗 → Δ𝑟 | 𝑀𝑗 ∈ 𝐵𝑃𝐿 ∧ 𝑀𝑖 ∈ 𝐷𝐸𝑃 (𝑀𝑗 ) ∧
𝑚 𝑗 ∈ 𝐸𝑋 (𝑀𝑗 )} of all morphism triples from every Δ-rule Δ𝑟 𝑗
rewriting Δ𝑟
• CEX (𝑟 ) = {𝑚 𝑗 : ⨿𝐸𝑋 (Δ𝑟 𝑗 ) → 𝑟 | 𝑀𝑗 ∈ 𝐵𝑃𝐿 ∧𝑀𝑖 ∈ 𝐷𝐸𝑃 (𝑀𝑗 )
∧ Δ𝑟 𝑗 → 𝑟 ∈ 𝐸𝑋 (𝑀𝑗 )} of all morphism triples from every
Δ-rule Δ𝑟 𝑗 (composed with all possible extensions in 𝐸𝑋 (Δ𝑟 𝑗 ))
rewriting 𝑟
• NEX (𝑟 ) = {𝑚 : 𝑁𝐿 → 𝐿 | 𝑀𝑗 ∈ 𝐵𝑃𝐿 ∧𝑀𝑖 ∈ 𝐷𝐸𝑃 (𝑀𝑗 ) ∧𝑚 ∈
NEX (𝑀𝑗 )} of all morphisms from every NAC-rule 𝑁𝑟 adding
a NAC to 𝑟

Given a behavioural LPL and a configuration, we can perform a
behavioural derivation. This yields the set of rules in the selected
modules, extended by the rule extensions defined in those modules.

Definition 5.8 (Behavioural Derivation). Given a behavioural prod-
uct line 𝐵𝑃𝐿 and a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐵𝑃𝐿), we obtain a set
𝑅 = {𝑟 ′′

𝑖
}𝑖∈𝐼 of rules, where each 𝑟 ′′𝑖 is obtained by the rewriting

𝑟𝑖
CEX (𝑟𝑖 )
========⇒ 𝑟 ′

𝑖

NEX (𝑟𝑖 )
========⇒ 𝑟 ′′

𝑖
of each rule 𝑟𝑖 ∈

⋃
𝑀𝑗 ∈𝜌 𝑅(𝑀𝑗 ) defined

by the modules included in the configuration. We sometimes use
the notation 𝜌 (𝑟𝑖 ) to refer to the resulting rule 𝑟 ′′

𝑖
above.

Example. Assume configuration 𝜌 = {Networking, RichLink, Comm-
Failures, NodeFailures} and the rules of Fig. 7. Then, 𝐸𝑋 (Δmove-rl) =
{Δmove-cf→Δmove-rl}, and Fig. 7(e) shows theΔ-rule⨿𝐸𝑋 (Δ𝑚𝑜𝑣𝑒−𝑟𝑙 ) .
This way, CEX (move) = {⨿𝐸𝑋 (Δ𝑚𝑜𝑣𝑒−𝑟𝑙 )→move}, and rulemove' in

Fig. 7(f) derives frommove
CEX (𝑚𝑜𝑣𝑒 )
===========⇒move'. Note that𝐸𝑋 (RichLink)

contains a morphism triple from Δmove-rl to move. Composing
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Δmove-rl with all extensions in 𝐸𝑋 (Δmove-rl) preserves such mor-
phism triples (since composition adds elements to the Δ part of
the rule only), which are then used in set CEX (move). Finally,
NEX (move) contains two morphisms from NAC-broken in mod-
ule NodeFailures to move. Thus, move'' (cf. Fig. 7(g)) is obtained by

move'
NEX (𝑚𝑜𝑣𝑒 )
============⇒move''. The morphisms in NEX , from NAC-broken

to move, are also valid morphisms from NAC-broken into move’, since
the previous derivation via CEX only adds elements to move.

5.3 Consistent Extensions

We distinguish a particular class of extension rules, called modular
extensions, which only incorporate into another rule elements of
meta-model types added by the module. That is, modular exten-
sions do not add elements of types existing in the meta-model of a
dependency, since this would risk changing the semantics of the
extended rules. Instead, modular extensions “decorate” existing
rules with elements reflecting the semantics of the new elements
added to the meta-model.

Definition 5.9 (Modular Extension). Given a behavioural product
line 𝐵𝑃𝐿 and a behavioural module𝑀 ∈ 𝐵𝑃𝐿:
(1) A Δ-rule Δ𝑟 ∈ Δ𝑅 is a modular extension if each element

in Δ𝑋 \ 𝑋 (for 𝑋 ∈ {𝐿, 𝐾, 𝑅}) is typed by 𝑀𝑀 \𝐶 (for 𝐼𝑁 =

⟨𝑀𝑀 ← 𝐶 → 𝑀𝑀 (𝑀𝐷 )⟩).
(2) A NAC-rule 𝑁𝑟 ∈ 𝑁𝑅 is a modular extension if each element

in 𝑁 \ 𝑁𝐿 is typed by 𝑀𝑀 \ 𝐶 (for 𝐼𝑁 = ⟨𝑀𝑀 ← 𝐶 →
𝑀𝑀 (𝑀𝐷 )⟩).

(3) Given a rule 𝑟𝑖 ∈ 𝑅 and a rewriting 𝑟𝑖
CEX (𝑟𝑖 )
========⇒ 𝑟 ′

𝑖

NEX (𝑟𝑖 )
========⇒

𝜌 (𝑟𝑖 ), we say that 𝜌 (𝑟𝑖 ) is a modular extension of 𝑟 if all rule
extensions in 𝐶𝐸𝑋 (𝑟𝑖 ) and 𝑁𝐸𝑋 (𝑟𝑖 ) are modular extensions.

Given a Δ- or NAC-rule 𝑟 , we use predicate𝑚𝑜𝑑−𝑒𝑥𝑡 (𝑟 ) to indicate
that 𝑟 is a modular extension.

Remark. The composition of two modular extensions is a modular
extension, by transitivity of Def. 5.9 (1,2).

Example. The Δ-rule Δmove-rl in Fig. 7(b) is a modular extension,
since it adds a node of type Link and edges of types from and to, be-
longing to the meta-model of RichLink but not to that of Networking.
This Δ-rule would not be a modular extension if it added, e.g., a
Message node, as this may change the semantics of the base rule on
models typed by the meta-model of Networking. Instead, Δmove-rl
adds extra elements that only affect models typed by 𝐸𝐹𝐹 (RichLink).
Similarly, the NAC-rule NAC-broken is a modular extension since it
adds an attribute of type broken, which belongs to the meta-model
in NodeFailures but not to the one in Networking. Finally, rule move”
(Fig. 7(g)) is a modular extension of rule move (Fig. 7(a)), since
Δmove-rl, Δmove-cf and NAC-broken are modular extensions.

Modularly extended rules become of special interest in our set-
ting, since they do not change the semantics of the base rule in
models conformant to simpler language versions. Theorem 5.10
(whose proof is in the appendix) captures this property.

Theorem 5.10 (Consistent Extension Semantics). Let: 𝐵𝑃𝐿 be a be-
havioural LPL; 𝜌 ∈ 𝐶𝐹𝐺 (𝐵𝑃𝐿) be a configuration; 𝑟 ∈ 𝑅(𝑀𝑖 ) with
𝑀𝑖 ∈ 𝜌 be a rule in some behavioural module𝑀𝑖 of the configura-
tion 𝜌 ; and 𝐺𝜌 be a model typed by 𝑀𝑀𝜌 . Then, for every direct
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Figure 8: Consistent extension.
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Figure 9: Consistent extension example: Applying rule

𝜌2 (move) to 𝐺𝜌2 implies that applying move to 𝐺 is possible.

derivation 𝐺𝜌
𝜌 (𝑟 )
=⇒ 𝐻𝜌 , there is a corresponding direct derivation

𝐺
𝑟

=⇒ 𝐻 , if 𝜌 (𝑟 ) is a modular extension of 𝑟 (and where 𝐺 , 𝐺𝜌 , 𝐻
and 𝐻𝜌 are models related as Fig. 8 shows).

Example. Fig. 9 shows a consistent extension. Given the configu-
ration 𝜌2 = {Networking, RichLink, CommFailures}, the extended rule
𝜌2 (move) (Fig. 7(f)) is only applicable to a model (like 𝐺𝜌2 in the
figure) if rule move (the base rule in Networking) is applicable to the
model deprived of the elements introduced by MM𝜌2 .

The next corollary summarizes the implications of Theorem 5.10.

Corollary 5.11. Given a behavioural LPL 𝐵𝑃𝐿, a configuration 𝜌 ∈
𝐶𝐹𝐺 (𝐵𝑃𝐿), and a rule 𝑟 ∈ 𝑅(𝑀𝑖 ) with𝑀𝑖 ∈ 𝜌 and𝑚𝑜𝑑 −𝑒𝑥𝑡 (𝜌 (𝑟 )):
(1) 𝜌 (𝑟 ) does not delete more elements with types of 𝐸𝐹𝐹 (𝑀𝑖 )

than 𝑟 (implied by item (2) in the proof of Theorem 5.10).
(2) 𝜌 (𝑟 ) does not create more elements with types of 𝐸𝐹𝐹 (𝑀𝑖 )

than 𝑟 (implied by item (3) in the proof of Theorem 5.10).
(3) 𝜌 (𝑟 ) is not applicable more often than 𝑟 (implied by item (1)

in the proof of Theorem 5.10).

Finally, we define consistent behavioural LPLs as those where all
extension rules of each module are modular extensions, and only
the top module defines rules.
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Figure 10: Capone in action: (1) Defining a module. (2) Module’s rules. (3) Derived feature model. (4) Selecting a variant.

Definition 5.12 (Consistent Behavioural LPL). A behavioural LPL
𝐵𝑃𝐿 is consistent if∀𝑀𝑖 ∈ 𝐵𝑃𝐿 ·¬𝑡𝑜𝑝 (𝑀𝑖 ) =⇒ (𝑅(𝑀𝑖 ) = ∅∧∀𝑟𝑖 ∈
Δ𝑅(𝑀𝑖 ) ∪ 𝑁𝑅(𝑀𝑖 ) ·𝑚𝑜𝑑 − 𝑒𝑥𝑡 (𝑟𝑖 )).

Consistent LPLs do not allow language variants to incorporate
new actions (i.e., new rules) in the semantics of the top module,
and all extensions are required to be modular. Even if this require-
ment might be too strong for some language families, the result
permits controlling and understanding potential semantic inconsis-
tencies between language variants. We leave for future work the
investigation of finer granular notions of (in-)consistency.

Example. The running example is not a consistent LPL. The top
module declares three rules: send, move and receive. While all mod-
ules define modular extensions, module Ack needs to introduce a
new rule to send back ack messages (cf. Fig. 10). Using our approach,
the designer of the language family can identify the non-consistent
variants with the base behaviour and the reasons for inconsistency.

6 TOOL SUPPORT

All the concepts above are realised in Capone (Component-bAsed
PrOduct liNEs), an Eclipse plugin relying on EMF [43] as the mod-
elling technology and Henshin [1] for the rules, and extending
FeatureIDE [31], a framework to construct product-line solutions,
so as to support composition of language modules, Henshin rules,
and EMF meta-models for a language configuration selection [5] .

Fig. 10 shows Capone in action. The view with label 1 shows the
definition of amodule using a domain-specific language designed by
us, and realised using the Xtext framework [49]. The editor permits
declaring themeta-model fragment referencing an existing ecore file,
and instead of requiring explicit meta-model mappings, it relies on
equality of names (of classes, attributes, references) for meta-model
merging. Modules can also declare a formula and a dependency, and
refer to a henshin file with their rules (see view with label 2 for an

example henshin file). The editor suggests possible rules to extend,
obtained from the module’s dependencies recursively (shown in the
pop-up window with label a). To compose Henshin rules, Capone
relies on equality of identifiers. Interestingly, the implementation
does not need to distinguish NAC- from Δ-rules, since NACs in
Henshin are expressed as elements tagged as forbid.

The views with labels 3 and 4 are contributed by FeatureIDE. The
view with label 3 contains the feature model capturing the module
structure of the LPL. Our tool generates this model automatically
out of the module structure. Feature models in FeatureIDE are more
restricted than the ones we support. In particular, features cannot
mix groups of OR/alternative children features with other types of
features. Hence, the resulting featuremodel introduces intermediate
features for this (cf. NetworkingALT in the view with label 3). Finally,
modules’ Ψ formulae are added as cross-tree constraints of the
feature model (cf. label (b) in the figure).

Overall, users can select a specific configuration of the generated
feature model (view 4). Then, Capone uses this configuration to
merge the meta-models and rules corresponding to the language
variant selected. Alternatively, it is possible to generate the meta-
models and rules for all language variants.

7 EVALUATION

Next, we aim at answering two research questions (RQs), which
assess the satisfaction of requirements 1 and 2 stated in Sec. 2:

RQ1 What is the effort reduction of the approach w.r.t. an explicit
definition of each language variant?

RQ2 What is the typical effort for adding a new feature to an LPL?

To answer these RQs, we compared 4 language families built
using our approach, w.r.t. an enumerative approach that would
create each language variant separately from scratch.
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Table 1: Metrics comparing LPLs (left) and behavioural LPLs (right) with respect to an enumerative approach.

LPL (structure) Enumerative app. Behavioural LPL Enumerative app.

Name # Configs # Mods MMs size (avg) MMs size (avg) Size reduc. (%) # Rules (avg) Rules size (avg) # Rules (avg) Rules size (avg) Size reduc. (%)

Graphs 16 8 28 (3.5) 200 (12.5) 86.0% 10 (1.25) 63 (6.3) 56 (3.5) 760 (13.57) 91.7%
Networking 24 8 25 (3.13) 324 (13.5) 92.3% 15 (1.85) 58 (3.87) 108 (4.5) 936 (8.67) 93.8%

State machines 48 11 38 (3.45) 864 (18) 95.6% 13 (1.62) 68 (5.23) 160 (3.3) 2312 (14.45) 97.1%
Petri nets 64 13 49 (3.77) 1440 (22.5) 96.6% 27 (2.07) 125 (4.63) 768 (12) 5504 (7.16) 97.7%

Experiment setup.We created 4 behavioural LPLs: Networking (the
running example); Graphs (with language variants like un-/directed
edges and node hierarchy) along with a transformation implement-
ing a breadth-first traversal; State machines (with variants like hier-
archy, parallelism and time) plus a simulator; and Petri nets (with
variants like bounded places, inhibitor and read arcs, and attribute
or object tokens) plus a simulator. The examples are from the PL
literature [9, 28], and are available at [6].

Results. Table 1 displays the results. The first two columns show
the language family name and the number of configurations (i.e.,
language variants). The rest of the table shows the size reduction of
the structural part (the meta-model) and the behavioural part (the
rules) achieved by the LPLs, compared to an enumerative approach.

Regarding the structure (columns 3–6), the table reports: the
number of modules in the LPL; the total (and average) meta-model
size in eachmodule, as given by the number of classes, attributes and
references in each meta-model; the total (and average) meta-model
size in each language variant of the enumerative approach; and the
total meta-model size reduction (%) that our approach brings.

Regarding the behaviour (columns 7–11), the table shows: the
number of Henshin rules in the LPL (and the average per module);
the total (and average) size of the rules, as given by the number
of objects, attributes and references in each rule; the number of
rules in the enumerative approach (and the average per language
variant); the total (and average) added size of all rules; and the total
rule size reduction that the LPL approach brings.

Answering RQ1. In the study, our approach reduces the specification
size of the structure by 86%–96.6%, and the rules size by 91.7%–
97.7%. This reduction is correlated with the size of the language
family (number of configurations/language variants).

Answering RQ2. In the study, adding a new module requires meta-
models of size 3 to 4 (cf. column 3 of the table). This effort is con-
siderably larger in the enumerative approach, where meta-model
sizes range between 12.5 and 22.5 (column 5). Moreover, adding
a new optional module implies doubling the number of language
variants. For the semantics, each module has between 1.25 and 2.07
rules on average (column 7), with size between 3.87 and 6.3 (col-
umn 8). Instead, each variant in the enumerative approach requires
between 3.3 and 12 rules (column 9), with size between 7.16 and
14.45 (column 10). Hence, extending a language family built with
an enumerative approach requires creating more and bigger rules.

Threats to validity. The results are very promising, evincing sub-
stantial size reduction when defining a language family with our
proposal. However, experiments with real developers are needed to
assess the correlation between this size reduction and the actual ef-
fort to build the LPLs. We have used 4 LPLs. While we speculate that
other language families may yield similar results (maintaining the

correlation of size with number of configurations), more extensive
experiments are needed for extra confidence in our claims.

8 RELATEDWORK

We discuss our approach with respect to modelling language en-
gineering, and review approaches to transforming rewrite rules.

Modelling language engineering. Product lines have been used to
define the abstract syntax of language families concisely. For exam-
ple, Merlin [16] supports definition of product lines of meta-models
and the efficient analysis of their well-formedness properties. Mer-
lin is not compositional, but it overlaps all meta-models in a so-
called 150% meta-model, where elements attach formulae stating
the configurations they belong to. MetaDepth [8] uses multi-level
modelling to define language families, and product lines for their
customization. None of these works considers semantics, and lan-
guages cannot be defined incrementally by composing modules.

Other proposals based on product lines consider semantics. Leduc
et al. [27] define languages via extensible meta-models, and use
the visitor pattern (combined with Java or an action language)
for the semantics, hampering analysis. They also lack means, like
our configurations, to select between possible language extensions.
In [9], a 150% meta-model captures variability within a domain,
and defines transformations on top in a modular way. Being based
on a 150% meta-model, extension is challenging, and analysis is
complex since transformations are written in EOL [24]. Méndez
et al. [32] reverse engineer LPLs from DSL variants. Their LPLs
consider syntax and operational semantics. Compatibility of opera-
tions is checked by comparing their signatures and ASTs, but truly
behavioural analyses are difficult since operations are Java-like.

Regarding language composition, Durán and Zschaler [11, 12]
combine definitions of languages and their rule-based behaviour
to build more complex languages. While this is achieved using an
amalgamation construction, akin to our Δ-rules, there is no notion
of product line, language module, dependency, or configuration.
Being based on graph transformation [50], their approach supports
analysing whether the rule behaviour is protected at the level of
traces, and not only on individual rules as we do. We will take inspi-
ration on that approach for its application to product lines, where
languages are composed in more intricate ways out of fragments.

Concern-oriented design [23] (an evolution of the reusable as-
pect models approach [22]) supports components encapsulating
design concerns plus a feature model as the configuration interface.
Concerns are composed incrementally via configuration selections,
but compositional semantics is not considered. In the Kermeta lan-
guage workbench [17], the operational semantics of languages is
defined using the K3 meta-language in the form of aspects that are
statically woven into the language syntax. While Kermeta enables
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a modular language definition, it lacks an explicit variability model,
which prevents the construction of language families. GEMOC Stu-
dio/Melange [10] improves the Kermeta workbench by supporting
language families and variation points, but the analysis of the com-
posed language is limited to type checking to ensure type safety.

Jurack et al. [18] define algebraic component concepts for (EMF)
models with well-defined interfaces, but components lack a spec-
ification of their semantics. LanGems [47] uses roles to define
interfaces for language modules, but lacks product-line capabil-
ities. Moreover, semantics is specified by operations in metaclasses,
which is challenging to analyse. MontiCore [4] and Neverlang [15]
enable component-based language definition. However, they both
deal with textual languages and use textual grammars for the ab-
stract syntax, while we target meta-model-based languages.

Delta-oriented programming [41] permits building software
products by defining a core module and a set of delta modules
that specify changes to the core module. A software product is built
by applying the delta modules to the core one. While highly expres-
sive, ensuring confluence or semantic consistency is not possible in
general. Hence, in the context of delta-oriented modelling, Pietsch
et al. [38, 39] formalized delta operation as transformation rules
and provided techniques for analysis, measurement and refactoring.
Our approach works one meta-level up, but it would be interesting
to consider their quality assurance techniques in our future work.

Rule transformation. Rule rewriting can be considered a particu-
lar realisation of rule inheritance/refinement, see [48] for a sur-
vey. Rule rewriting has also been studied in the literature. Parisi-
Presicce [37] rewrites graph grammars by introducing high-level
replacement systems where the productions are grammars and
graph morphisms. Bottoni et al. [2] propose an incremental view on
the syntax-directed construction of semantics of visual languages,
which involves modifying triple graph rules where patterns declare
conditions that a model must satisfy. The notion of higher-order
transformation proposed in [29] permits applying transformations
to rewriting rules, and obtain a valid graph rule. Our extension rules
also rewrite rules, though their actions are limited to rule/NAC ex-
tension (i.e., they are non-deleting). Differently from the approaches
mentioned above, variability-based rules [44] encode several rules
into a single specification. While we could use variability-based
rules to specify semantic variants, we opted for a modular approach
to allow an incremental rule construction.

Transformations have not only been applied to rule rewriting,
but also to product line rewriting. Taentzer et al. [45] use cate-
gory theory to formalize the notion of transformation of software
product lines, which combines modifications of feature models and
product domain models. These transformations are proved to be
sound. Instead, our extension rules modify rules, but preserve the
domain meta-models and module dependencies.

9 CONCLUSIONS AND FUTUREWORK

We have presented a new modular approach to defining modelling
language families, considering their abstract syntax and semantics.
It is based on product line techniques, and involves the definition
of language modules with interdependencies. Modules comprise a
meta-model fragment, rules, and extension rules that expand the
rules of other dependent modules. We have developed analysis for

LPL behaviour consistency, demonstrated the applicability of the
approach by an implementation atop Eclipse, and reported on an
evaluation showing drastic size reductions.

In the future, we would like to apply our approach to industry
cases and improve our tooling. On the theory side, we would like
to lift existing analysis techniques for graph transformation (e.g.,
conflicts, dependencies [25]) to the product line level, develop finer
granular analysis of (in-)consistency, devise effective testing tech-
niques for LPLs, and consider richer meta-model notions (e.g., with
OCL constraints, as in [16]). We will also consider generalizing the
approach to support extension modules with several dependencies,
whereby an LPL may span a directed acyclic graph instead of a
tree [42], and enable modules with several alternative/OR groups.

APPENDIX: PROOF OF THEOREM 5.10

Model 𝐺 in Fig. 8 is a pullback (PB) object, containing exactly the
elements of 𝐺𝜌 that are typed by the meta-model in module 𝑀𝑖 .
The spans 𝐿 ← 𝐾 → 𝑅 and 𝐿𝜌 (𝑟 ) ← 𝐾𝜌 (𝑟 ) → 𝑅𝜌 (𝑟 ) of rules 𝑟 and
𝜌 (𝑟 ) are shown at the bottom, where morphisms 𝑙 ′, 𝑘′ and 𝑟 ′ exist
because 𝜌 (𝑟 ) is an extension of 𝑟 (cf. Def. 5.3). Spans 𝐺 ← 𝐷 → 𝐻

and 𝐺𝜌 ← 𝐷𝜌 → 𝐻𝜌 result from the direct derivations of 𝑟 and
𝜌 (𝑟 ). We need to show that: (1) morphism𝑚 : 𝐿 → 𝐺 exists and 𝑟
is applicable, i.e., NACs are satisfied, (2) morphisms 𝑑 : 𝐷 → 𝐷𝜌
and ℎ : 𝐻 → 𝐻𝜌 exist, and (3) square (1) is PB.

(1) Morphism𝑚 : 𝐿 → 𝐺 exists since 𝐿 is the PB object of 𝐺 →
𝐺𝜌 ← 𝐿𝜌 (𝑟 ) . Indeed, on the one hand, 𝜌 (𝑟 ) is a modular
extension of 𝑟 , so 𝐿𝜌 (𝑟 ) \ 𝐿 is typed by𝑀𝑀𝜌 \𝑀𝑀 (𝑀𝑖 ). On
the other hand, 𝐺 only contains the elements of 𝐺𝜌 typed by
𝑀𝑀 (𝑀𝑖 ). Hence, the PB object of𝐺 → 𝐺𝜌 ← 𝐿𝜌 (𝑟 ) contains
exactly the elements of 𝐿𝜌 (𝑟 ) typed by𝑀𝑀 (𝑀𝑖 ), i.e., 𝐿.
If 𝜌 (𝑟 ) is applicable, all of its NACs are satisfied (𝐺𝜌 has no
occurrence of them). NACs in 𝜌 (𝑟 ) may either have been
added by a NAC-rule, or have existed in 𝑟 . In the first case,
the NAC-rule should be a modular extension adding elements
typed by𝑀𝑀𝜌 \𝑀𝑀 (𝑀𝑖 ) and therefore not present in 𝐺 . In
the second case, the NAC of 𝜌 (𝑟 ) may have been enlarged by
modular extensions, whose elements cannot be in 𝐺 either.

(2) Since 𝜌 (𝑟 ) is a modular extension of 𝑟 , both rules delete the
same elements typed by𝑀𝑀 (𝑀𝑖 ). In addition, 𝜌 (𝑟 )may delete
more elements typed by 𝑀𝑀𝜌 \ 𝑀𝑀 (𝑀𝑖 ). Therefore, there
must be a morphism 𝑑 : 𝐷 → 𝐷𝜌 .
Morphismℎ : 𝐻 → 𝐻𝜌 exists because of the universal pushout
property. Since𝐻 is a pushout object, and we have 𝐾 → 𝐷 →
𝐷𝜌 → 𝐻𝜌 and 𝐾 → 𝑅 → 𝑅𝜌 (𝑟 ) → 𝐻𝜌 , there is a unique
morphism 𝐻 → 𝐻𝜌 as required.

(3) Square (1) would not be a PB if the rule 𝜌 (𝑟 ) would create ele-
ments typed by𝑀𝑀𝜌 \𝑀𝑀 (𝑀𝑖 ). However, this is not possible
since 𝜌 (𝑟 ) is a modular extension.
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