
Model Sensemaking Strategies: Exploiting
Meta-Model Patterns to Understand Large Models

Francisco Martı́nez-Lasaca
UGROUND

Madrid, Spain
francisco.martinezl01@

estudiante.uam.es

Pablo Dı́ez
UGROUND

Madrid, Spain
pdiez@uground.com

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain
esther.guerra@uam.es

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
juan.delara@uam.es

Abstract—The increasing popularity of model-based and low-
code platforms has raised the need to understand large models
– especially in industrial settings. However, current approaches
mainly rely on graph-based visual metaphors, which do not
scale well with large model sizes. To address this issue, we
introduce model sensemaking strategies: purposeful model vi-
sualisations based on alternative visual metaphors. We define
them as reusable patterns that yield tailored visualisations when
applied to meta-models. This paper presents a catalogue of
domain-specific and domain-agnostic sensemaking strategies, and
a recommender that suggests suitable strategies for a given
meta-model. To showcase the framework’s applicability, we have
implemented some of these strategies in Dandelion, an industrial,
low-code graphical language workbench for the cloud. Using this
platform, we have evaluated the effectiveness of the strategies to
visualise large industrial models by the UGROUND company.

Index Terms—model sensemaking strategies, large model vi-
sualisation, model-driven engineering, low-code platforms

I. INTRODUCTION

Large and complex models have become pervasive in many
disciplines and domains, including embedded systems, process
modelling, software design, and biology – to name a few.
Understanding these models has become, therefore, a ubiq-
uitous task, which calls for the development of specialised
techniques. Given the limitations of human cognition [1] and
the increasing model complexity [2], many approaches rely
on graphical visualisations – typically under umbrella terms
such as graphs, diagrams, networks, or maps [3]. When
these visualisations incorporate domain-specific mechanisms
to facilitate the user’s understanding process, they can serve as
a cost-effective means of carrying out sensemaking tasks [4].

The increasing popularity of model-based and low-code
platforms has highlighted the need to visualise and understand
large artefacts created with these platforms [5]. In these fields
(and especially within industrial settings), producing effective
visualisations is particularly challenging. Specifically, models
can reach millions of elements, exhibit intricate relationships
with each other, and contain numerous attributes. Therefore,
naı̈ve visualisations are prone to entail overwhelming graphical
information, creating cognitive overload. This is especially
sensitive in low-code tools, used by citizen developers with
different backgrounds and limited modelling skills [6].

Graph-like visualisations – typically offered by modelling
tools – may not suffice for model sensemaking tasks, since

Fig. 1: Sensemaking strategies help unravel model complexity.
Left: UGROUND’s ROSE industrial meta-model with 35
meta-classes, 300+ edges, and 500+ attributes. Right: the same
meta-model through the lens of a Categorical sensemaking
strategy: each rectangle represents a meta-class whose area
is proportional to its number of instances. This visualisation
supports frequent model sensemaking tasks for language en-
gineers: ‘Which are the most relevant DSL concepts for the
users?’, ‘How is the DSL used in practice?’

they may fail to reveal underlying information in the ex-
plored models. Instead, other visualisations such as charts,
plots, maps, or matrices can better support sensemaking tasks.
These may rely on summarisation techniques, using derived
information by aggregating, filtering, or partitioning the ele-
ments within the current model, or sets of them (cf. Fig. 1).
These alternative visualisations can be manually created by
developers of modelling environments, but their construction is
costly. Moreover, flexibility is required to cater to the specifics
of particular domain-specific languages (DSLs).

To overcome these issues, we propose the new notion of
model sensemaking strategy (SMS), drawing from the theory
of sensemaking [4], [7]. Model sensemaking strategies are
aimed at accomplishing specific model understanding tasks,
offering visualisation metaphors for it – like charts, plots,
maps, graphs, or matrices (cf. Fig. 1). SMSs are reusable, since
each strategy exposes a small meta-model pattern that, when
bound to a target meta-model, results in a tailored visualisation
for the target meta-model instances. SMSs are also flexible, as
they can be used to understand (meta-)models at any level of
abstraction, as well as entire modelling ecosystems. Moreover,
SMSs can be organised on dashboards combining SMSs to
perform multiple model understanding tasks simultaneously.

https://orcid.org/0000-0003-4384-170X
https://orcid.org/0000-0001-8775-4451
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362

This paper presents the theoretical foundations of SMSs
and an extensible catalogue of 10 strategies, which can be
depicted using 20 exchangeable visualisations. We have also
built a recommender that suggests suitable SMSs for a given
meta-model automatically. Our approach is implemented atop
Dandelion [8], a scalable, cloud-based graphical language
workbench for industrial low-code development.

To demonstrate the approach’s applicability, we have eval-
uated its effectiveness within the UGROUND company.1

UGROUND uses low-code development within all its projects,
in areas like banking, human resources, insurance, services,
and transportation. UGROUND models can reach hundreds
of thousands of elements and are defined using ROSE [9],
a proprietary technology that interprets models to yield the
final running system [10]. Our challenge was to develop a
workbench to facilitate understanding of UGROUND models
(to help developers of applications) and the ROSE language
itself (to understand how the language is used and help in
its future evolution). Our experience shows that Dandelion
was able to facilitate the understanding of ROSE, the entire
UGROUND modelling ecosystem, and particular models.
Paper structure. Section II analyses related work. Section III
overviews the main components of SMSs, and Section IV
details how they are applied. Section V presents a catalogue
of sensemaking strategies. Section VI discusses the integration
of SMSs into Dandelion. Section VII reports on the evaluation
of the strategies on UGROUND models. Lastly, Section VIII
ends with the conclusions and future work.

II. RELATED WORK

Graphical modelling notations often lack visual scalability.
In particular, the amount of information that can be presented
is constrained due to human comprehension limits (large mod-
els are difficult to grasp [1]) and technology limitations (large
models do not fit on the screen and take long to display [11]).
Hence, techniques have been proposed to visualise, explore,
and comprehend large models.

Next, we revise works on methods for handling large models
(Section II-A), techniques to visualise and comprehend large
artefacts (Section II-B), and, since our solution relies on
reusable patterns, works on pattern-based reuse (Section II-C).

A. Handling large models
Traditionally, handling large models effectively has been

one of the main challenges in Model-Driven Engineering
(MDE) [2]. For example, part of the problem in the Eclipse
Modeling Framework (EMF) ecosystem stems from its depen-
dence on file-based model persistence (often, one model per
file), and the lack of proper model modularisation primitives
in Ecore [12]. To tackle this problem, some researchers
propose model components, which can be composed via
interfaces [13]. Additionally, solutions based on model par-
titioning have been devised to handle existing large models.
These include model fragmentation according to user-defined
strategies [14], [15]; partial model loading [16]; and model

1 https://www.uground.com

decomposition into smaller valid submodels [17]. Moreover,
indexers [18] (similar to those in relational databases) and
caching techniques for queries [19], [20] have been proposed
for faster model element retrieval.

However, while all the previous works alleviate some of the
scalability problems of modelling tools, they only target the
abstract syntax of models and neglect their concrete syntax and
visualisation aspects. Moreover, they do not provide concrete
facilities for model comprehension tasks.

B. Visualising and comprehending large graphs and models

Most techniques to visualise, explore, and comprehend large
models come from the field of graph visualisation. Large struc-
tured datasets are often represented as graphs, and numerous
efforts target effective large-graph visualisations [21], [22].
Many of these efforts have been triggered by the field of Visual
Analytics, which employs analytical reasoning facilitated by
interactive visual interfaces [23], [24].

For example, [25] surveys techniques for visualising graph
structures, including node colouring, contour drawing, adja-
cency matrices, and their embedding into graphs. In [26],
techniques for visualising dynamic graphs are studied so
that interaction techniques do not produce abrupt, disrup-
tive changes in the user experience. FACETS proposes the
exploration of large graphs driven by the most interesting
neighbourhood of the current node [27].

Related to visual analytics, Pienta et al. [7] propose graph
sensemaking as “the iterative process of understanding and
making sense out of graph-formatted data, where a user
gradually builds up a representation of the information space
to achieve the user’s goal.” They also provide a survey of
the graph exploration and visualisation literature, and create a
taxonomy of graph sensemaking techniques [4].

We have taken inspiration from this trend of works, adapting
the idea to the ‘modelware’ technical space, and making SMSs
reusable. Plain graphs have no explicit semantics – nodes and
edges have no types or properties –, which enables aggressive
simplifications. However, when applying SMSs to models, we
need to consider the structure and semantics provided by their
meta-models, the possibility of applying SMSs to meta-models
themselves, and the analysis of whole modelling ecosystems.

The need to understand and monitor large code repositories
has triggered the appearance of tools [28] offering dashboards
to visualise aspects of the construction process (e.g., commits)
and the code itself (e.g., LoC). Similarly, our SMSs can be
grouped in dashboards, and are adaptable to different DSLs.

There is little literature on applications for the visualisation
and understanding of large models. For instance, visualisation
techniques based on semantic zoom [29] have been applied
to UML diagrams [30], [31] and OWL ontologies [32] to
improve their understanding. Layering has been used with
UML diagrams [33]. Similarly, in [34], label management [35]
and vertical message compaction are applied to reduce the
height of sequence diagrams and make them fit on a screen.
While useful, all these works target specific languages. In

https://www.uground.com

contrast, language-independent catalogues of model abstrac-
tions have been proposed in [36] to simplify models for better
comprehension, and in [11] to facilitate the exploration and
processing of large models. Still, these abstractions do not
consider the models’ concrete syntax. Model views [37] can
be defined to extract a relevant portion of the model via a query
language. Still, the result would be a model, while SMSs can
benefit from different visualisation metaphors.

More recently, a taxonomy of advanced visualisation tech-
niques for conceptual modelling was proposed in [38] based
on an analysis of 46 tools (like IntelliJ IDEA, Google Maps
or PowerPoint). In most of them, visualisations were built
ad-hoc and were not reusable. Finally, a few modelling tools
have been designed to permit a flexible definition of concrete
syntaxes. This is the case of JJodel [39], a web-based mod-
elling environment supporting the definition of views reactive
to variations on the model objects, in the style of Visual Basic.
VizDSL is a DSL to define interactive data visualisations,
which can be applied to render models [40] (i.e., define their
concrete syntax), but does not target or directly support SMSs.
Our approach, in contrast, focuses on strategies that are defined
once and can be repeatedly reused for different DSLs.

C. Genericity and pattern-based reuse

Our SMSs become reusable by exposing a meta-model
pattern, which can then be bound to target meta-models via
a binding. This is a type of generic approach that other
researchers have also exploited to define generic refactor-
ings [41], generic model abstractions [36], generic model
fragmentation strategies [42], or generic model transfor-
mations [43], [44]. Several tools, like Kermeta [45] or
MetaDepth [46], support the definition of generic operations.
All the approaches have in common that the generic operation
exposes a small meta-model that has to be bound to make
the operation reusable. We provide three contributions in this
area: we can bind to the linguistic meta-model to define
agnostic SMSs, applicable to any (meta-)model; our binding
offers an expression language enabling gathering information
from lower meta-levels; and we offer a recommender that
automatically precomputes feasible bindings.

Generally, researchers have profited from pattern-based ap-
proaches to define model transformations [47], DSLs and
services for them [48], and have been employed in specific
domains like secure systems development [49] or dependabil-
ity engineering [50]. However, to our knowledge, ours is the
first application of patterns to define SMSs.

III. OVERVIEW

Our approach relies on the definition of model sensemaking
strategies (SMSs) that can be reused and customised for
specific DSLs. Fig. 2 overviews their main components.

An SMS yields an interactive visual representation for
(graph-based) data according to a visual metaphor, e.g., plots,
bar charts, or adjacency matrices. In our model-centric ap-
proach, data is extracted from the (meta-)model(s) being

algorithmic
preprocessing

required
data

interaction
mapper

visual
representation

context
meta-model

«conforms»

«typed
by»

user
interaction

visualisation
variant choice Model Sensemaking Strategy

modelling
editor

(meta-)
model(s)

target
meta-model

binding

«conforms»

element
resolver data injector

properties

Language
engineer

Citizen
developer

«typed
by»

Fig. 2: Components of a model sensemaking strategy (SMS).

explored via a data injector. This data may undergo an algo-
rithmic preprocessing step, if necessary. Some SMSs support
multiple visualisation variants, which can be switched at run-
time. For example, Fig. 2 shows some supported visualisation
alternatives for the Categorical SMS: pie, donut, and bar
chart. All the steps depend on the context meta-model of the
SMS, which the SMS exposes to make it reusable. Finally,
SMSs can define and expose properties to refine the resulting
visualisations (e.g., specifying the axes titles in a bar chart).

Any DSL can reuse an SMS by means of a binding.
This specifies how the SMS context meta-model elements are
mapped to those of the DSL target meta-model. For efficiency,
we do not rely on an explicit model-to-model transformation
from the DSL models to the format of the SMSs. Instead,
we use notions of generic programming [51], where the SMS
can be seen as a generic component that is instantiated by a
binding to the target meta-model. As next section shows, this
target meta-model can be a domain meta-model (specifying the
abstract syntax of a DSL), or the linguistic meta-model of the
modelling environment. In the first case, the SMS is applicable
to instances of the meta-model; in the second, to each (meta-
)model built within the environment. To support our approach,
we include a recommender that computes possible bindings,
and provides a language to compute derived expressions.

SMSs provide interaction support at run-time. The inter-
action mapper specifies the (reactive) behaviour of the visu-
alisations upon user interaction. It establishes a bidirectional
communication with the modelling editor, bridging the gap
between the impacted model elements and their representation
in the SMS. For example, when a tree view SMS is equipped
with interaction, it becomes a navigation utility that allows the
user to navigate the model by clicking on the tree nodes.

While modelling with a DSL, citizen developers (i.e., final
users) have available the SMSs previously configured (and
bound) by a language engineer. SMSs are presented in a
dashboard to allow multiple sensemaking tasks at once.

IV. APPLYING SENSEMAKING STRATEGIES

The key component for applying an SMS is its binding,
which maps every concept of the SMS’s context meta-model

context
meta-model

target
meta-model

binding

A

B C

D

E F
g

f h i
G

Fig. 3: Binding a context meta-model to a target meta-model.

visual
representation

model

context
meta-model

Series → Conference
name → name
categories → papers

Category → Paper
name → country
weight → numAuthors

binding

«conforms»

Conference

name : string
year : int

Paper

title : string
country : string
numAuthors : int

papers

*

staff
…

target
meta-model

papers

MODELS23 : Conference

paper1 : Paper

title = …
country=“DE”
numAuthors = 3

paper3 : Paper

title = …
country=“FR”
numAuthors = 3

paper2 : Paper

title = …
country=“DE”
numAuthors = 5

…
staff

«typed by»

data

Series

name: string

Category

name : string
weight : number [0..1]

categories

*

papers …

MODELS22
: Conference

…

MODELS21
: Conference

…

…

0

10

20

30

40

50

60

M'23 M'22 M'21

DE FR UK ES

…

…

Fig. 4: Application example of the Categorical SMS.

to elements of the target meta-model – see Fig. 3.
As an example, suppose the MODELS organisation wants to

study the origin countries of the submitted papers per edition
of the conference. The Categorical SMS fits this intent. Fig. 4
depicts the application of this SMS to an example meta-model
(with conferences and associated papers), and the resulting
visualisation for a sample model – more on this SMS in
Section V-A. The SMS is applied via a binding, which, once
established, allows the visualisation of any conformant model
using the strategy. Moreover, if the SMS supports multiple
visualisation variants, these can be switched at run-time.

The rest of the section delves into the context meta-model
(Section IV-A), the binding (Section IV-B), the target meta-
model (Section IV-C), and SMSs properties (Section IV-D).

A. The context meta-model

The context meta-model defines the application pattern of
an SMS. It has to be bound to a target meta-model so that
the SMS can be used to visualise meta-model instances. Each
element of the context meta-model (i.e., classes, attributes, and
references) can be deemed conceptual “holes” to be populated
by elements of the target meta-model. Context meta-models
usually contain few elements, enabling their application to a
wide range of target meta-models.

B. The binding

The binding determines how to apply an SMS to (the
instances of) a target meta-model. It is a structure-preserving

mapping b : C → T relating each class, attribute, and
reference of the context meta-model C to elements of the
target meta-model T . We closely follow [36], [52] for the
definition of its well-formedness conditions:
Classes. If c is a class in C, then b(c) is also a class in T .
Class subtyping is preserved and reflected: c1 is a subtype

of c2 in C (written c1 ≤ c2) iff b(c1) ≤ b(c2).
Attributes. If a is an attribute defined or inherited in class c

in C, then b(a) is also an attribute inherited or defined in
class b(c). The type of the attribute must be preserved or
refined in the binding: b(a).type ≤ a.type. For instance,
an attribute of type double can be bound to an integer.

References. If r is a reference from class c1 to class c2 in
C, then b(r) is a reference from class c′1 to c′2 in T , s.t.
b(c1) ≤ c′1 ∧ c′2 ≤ b(c2).

Composition is preserved: if r is a composition in C, then
so must be b(r).

Cardinalities. If f is an attribute or reference in C, with a
multiplicity interval [l..h], then b(f) should have multi-
plicity [l′..h′], with l ≤ l′ ∧ h′ ≤ h.

C
b // T

M ′ � � //

P.B.type′

OO

M

type

OO

P.B.

Fig. 5: Extracting a
model M ′ of the
context meta-model
C via a binding b.

Non-injective mappings are sup-
ported, e.g., binding two classes c1
and c2 in C to one class c′ in T is
allowed (i.e., b(c1) = b(c2) = c′). The
same holds for attributes and refer-
ences. Generally, a well-formed bind-
ing b ensures that, for any model M
conformant to T , slicing M w.r.t. the
bound elements b(C) yields a valid
model M ′ of C, as Fig. 5 depicts.
Slicing a model M w.r.t. a “smaller” meta-model can be
expressed using the categorical notion of pullback (P.B.) [53].
We refer to [54] for more details.

Fig. 3 exemplifies these binding criteria. For example, we
can map reference g to i because i is inherited by E, which
is bound from the owner of g. Formally, b(g) = i, which is
correct since b(B) = E ≤ G (the source of i), and for the
target of i, F , we have F ≤ b(C) = F , as required by the
well-formedness criterion for references.

In practice, a structural mapping may be too restrictive.
Hence, our approach enables the specification of derived
property bindings using an expression language. For example,
imagine that Paper.numAuthors in the target meta-model of
Fig. 4 did not exist, and a Paper.authors reference to a class
Author was introduced. The binding of Category.weight could,
then, be expressed / this.getReference(“authors”).target.length. In
this case, the keyword this represents the bound Paper object.
Section VI-A will give more details about this language.

C. The target meta-model

SMSs can be applied to (meta-)models independently of
their level of abstraction. The only requirement is establishing
a sound binding. This setting is especially suitable for multi-
level modelling as, in this modelling paradigm, (meta-)models
can conform in two ways to other models: via ontological
or linguistic conformance [55]. This leads to two scenarios,

Domain
meta-model

Binding
Context

meta-model

Linguistic
meta-model

«conforms»
(ontological)

«
co

n
fo

rm
s»

(l
in

gu
is

ti
c)

target
«conforms»
(linguistic)

(a) Domain-specific SMS.

Binding
Context

meta-model

Linguistic
meta-model

«conforms»
(ontological)

«
co

n
fo

rm
s»

(l
in

gu
is

ti
c)

target«conforms»
(linguistic)

(b) Domain-agnostic SMS.

Models

Domain
meta-models

mega-model

Models

Fig. 6: SMS classification by target meta-model.

domain-specific and domain-agnostic SMS applications, de-
pending on the type of conformance to the target meta-model.

Fig. 6 depicts both cases. On the one hand, domain-specific
SMS applications emerge from ontological conformance. As
shown in Fig. 6a, the binding targets a specific domain meta-
model, thereby allowing the visualisations of any (ontologi-
cally) conformant model. Fig. 4 exemplifies the application of
a domain-specific SMS.

On the other hand, domain-agnostic SMS applications are
bound to the linguistic meta-model of the modelling frame-
work, as depicted in Fig. 6b.2 As, by construction, every
(meta-)model conforms (linguistically) to the linguistic meta-
model, this allows the visualisation of any (meta-)model. This
approach is helpful in two situations:

a) To understand (complex) meta-models. By targeting the
linguistic meta-model, domain-agnostic bindings treat
domain meta-models as (linguistic) instances. Therefore,
they can be applied to any meta-model, regardless of their
domain or complexity. For example, Fig. 10 displays an
SMS representing a meta-model as a heat-map, while
Fig. 13 shows SMSs counting the number of elements
within a meta-model; their division into concrete/abstract
classes and enums using a bar chart; the prevalence of
attribute names using a cloud map; and the distribution of
meta-classes as data- or connection-centric using a scatter
plot. Since these SMSs are domain-agnostic, they can be
used to understand models as well.

b) To understand whole modelling ecosystems (i.e., mega-
models). Models at any level of abstraction are (linguistic)
instances of the linguistic meta-model. This means that
bindings of agnostic SMSs can gather data about element
instances through the expression language. For example,
we can use an agnostic SMS to understand how a
language is used, by presenting a proportional area chart,
where meta-classes are represented as rectangles with size
proportional to their number of instances (cf. Fig. 1).

D. Strategy properties

SMSs feature properties to customise the resulting visual-
isations. Each SMS defines its own set of properties, which

2 See Section VI for more details on Dandelion’s linguistic meta-model.

can be mandatory or optional, and are typed. For instance,
all the SMSs define a title property (a mandatory string), and
SMSs displaying Cartesian axes allow the definition of X and
Y labels (optional strings). Unlike bindings, properties are
independent of the target meta-model and are populated by
value.

V. CATALOGUE OF SENSEMAKING STRATEGIES

We have developed a catalogue of 10 SMSs, which can
be displayed using 20 visualisations. We employ a consistent
format organised into sections to describe SMSs – similar to
traditional software design patterns [56]. Namely, intent (i.e.,
the goal of the strategy), presentation metaphor, context meta-
model, visualisation variants, and properties. We accompany
our explanations with motivating examples.

Table I summarises the implemented SMSs and the sup-
ported visualisation variants. We have grouped similar SMSs
by common presentation metaphors (PM), including numerical
charts and plots; SMSs grouping elements into categories;
metric-based SMSs; SMSs for models with time; and SMSs
targeting model structure. The entire catalogue of supported
strategies can be found on the tool’s website.3

For space constraints, we detail only two SMSs: Categorical
(Section V-A) and Weighted Hierarchy (Section V-B).

A. Categorical

Aggregation is a powerful technique for summarising large
amounts of data: elements that share a feature are grouped
together, partitioning datasets into categories. The Categorical
SMS exploits this technique in the realm of models to visualise
categories and their incidence.

a) Intent: The Categorical SMS aims to understand
partitions of objects to a set of (unknown) categories. Some
involved sensemaking tasks include: ‘What categories emerge
from the data?’ and ‘What is the incidence of each category?’.
The last task can be refined into discovering the most and least
frequent categories.

b) Presentation metaphor: This is a grouping-based
SMS. Other examples under the same metaphor include cluster
analysis and pattern matching.

c) Context meta-model: It contains two classes, Series
and Category, both identified by name (cf. Fig. 4). Each series
is associated with a set of categories, refining the scope of the
analysis. Categories expose an optional numeric weight, which
determines the contribution of the bound object to its category
tally. This weight is assumed to be 1 if left unspecified. Objects
sharing a Category.name are aggregated into the same category,
and the visualisation is replicated for each series.

d) Visualisation variants: Vertical and horizontal bar
charts, (semi-circle) donut, pie, and proportional area charts
(see Fig. 11).

e) Properties: The SMS introduces optional X label and
Y label string properties. These only apply to bar charts, the
visualisation variants that display axes labels.

f) Motivating example: The example in Fig. 4.

3 https://miso.es/tools/Dandelion.html

https://miso.es/tools/Dandelion.html

TABLE I: Overview of model sensemaking strategies and their visualisation variants.

PM SMS Visualisation variants Description

D Numerical line graph, area chart, scatter plot For (x, y) coordinates.
D Numerical + Frequency bubble chart For (x, y) coordinates with an associated frequency.

G Categorical vertical/horizontal bar chart, (semi-circle) donut
chart, pie chart, proportional area chart To partition data into categories.

M Metric Distribution boxplot To depict the most important percentiles of a metric.
M Free Metric highlighted number, icon and number To visualise an unconstrained value.
M Bounded Metric angular gauge, gauge chart To visualise a value bounded in a min..max range.
M Literal Metric word cloud To represent frequency in a textual field.

T Time-Based Gantt chart For timed tasks with start and finish dates.

S Connectivity adjacency matrix/heat map, chord diagram For cross-referenced objects.
S Weighted Hierarchy treemap For nested objects.

PM = presentation metaphor: D = data, G = grouping, M = metric, T = time, S = structural.

B. Weighted hierarchy

Containment plays a central role in enabling abstraction
in software engineering. It describes the relationship between
two objects where one object is a part of – or belongs to –
the other. It creates hierarchical structures where the parent
objects (the containers) contain child objects (the containees).
Conceptually, the lifespan of the containees is contingent on
that of the container: when the container is deleted, so are the
containees. The Weighted Hierarchy SMS exploits the support
of composition (a restrictive form of association) in many
DSLs to visualise recursive containment relationships, where
each element can be attributed a weight.

a) Intent: The Weighted Hierarchy SMS aims to un-
derstand (multi-level) hierarchies emerging from containment
relationships, and the relevance of their elements. The main
sensemaking tasks to answer are ‘What is the structure of
the examined component?’, ‘What is the relevance of the
components?’.

b) Presentation metaphor: This is a structural-based
SMS. The other SMS that belongs to this group is Connectiv-
ity, which relaxes the composition to an association.

c) Context meta-model: The strategy fuses the con-
cepts of containers and containees into a single class,
HierarchicalElement (cf. Fig. 7). These have a name and an
optional numeric weight, which is the children collection’s size
by default. What characterises the SMS is that hierarchical
elements are related to themselves via a children composition,
supporting recursive containment relationships.

d) Visualisation variants: The SMS can be visualised
with Treemaps spanning multiple levels.

e) Properties: The SMS introduces a title property.
f) Motivating example: We can use this SMS to un-

derstand the structure of (meta-)models. Fig. 7 depicts an
agnostic application of the strategy on Dandelion’s linguistic
meta-model. The figure shows a small fragment of it, dis-
playing SemanticNode (Dandelion’s concept representing both
classes and objects) and ObjectProperty, which is the concept
representing both references and links. The binding maps

context
meta-model

Hierarchical Element → SemanticNode
name → name
children → / this

.properties

.filter (p ⇒ p instanceof ObjectProperty
&& p.isComposite)

.map (op⇒ op.target)

binding

SemanticNode

TypedElement

name: string
……

target meta-model
(Dandelion’s linguistic meta-model)

Generalizable
Element

HierarchicalElement

name : string
weight : number [0..1]

children
*

ObjectProperty

isComposite: bool

Property
properties

*

target *

visual
representation

«typed by»

data

«conforms»
(linguistic)ROSE model

o1 : ontology
t2 : taxonomy

t1 : taxonomy

t4 : taxonomy

t3 : taxonomy
o2 : ontology

Fig. 7: Weighted Hierarchy SMS, bound to Dandelion’s lin-
guistic meta-model, and used to understand a ROSE model.

HierarchicalElement to SemanticNode, and children to an expres-
sion that obtains the target SemanticNodes of each composition
relation. This SMS application can then be used to analyse
arbitrary (meta-)models, such as particular UGROUND ROSE
models, as illustrated in the figure.

VI. ARCHITECTURE AND TOOL SUPPORT

We have implemented SMSs atop Dandelion [8],4 a cloud-
based graphical language workbench for industrial low-code
development. This section describes the architecture of our
solution (Section VI-A), and the tool itself (Section VI-B).

A. Architecture

The architecture of Dandelion is split into two main compo-
nents: the frontend and the backend, as shown in Fig. 8. The
frontend exposes a web-based graphical editor where citizen
developers create and explore models, and language engineers
create and configure meta-models. With the incorporation of
SMSs support, they can also select SMSs and bind them to the
DSL under construction. SMSs are created by an interaction
expert. All model management is transparent as it takes

4 https://miso.es/tools/Dandelion.html

https://miso.es/tools/Dandelion.html

Citizen
developer

Dandelion
backend

persistence
mechanism

Database

Dandelion
frontend

message
passing

creates and/or
explores model

creates and configures
meta-models

Language
engineer

external
services

Layout
ServiceInjector

ServiceMeta-modelling
assist. service

«conforms»

meta-models models

Sensemaking
Strateg. Service

SMS Recomm.
Service

SMS Resolver
Service

Interaction
expert

implements

SMSs

+ binds SMSs+ uses SMSs

Fig. 8: Extending Dandelion’s architecture to support SMSs.

place at the backend, which communicates with the frontend
bidirectionally via message passing. The backend implements
a flexible persistence mechanism, based on Elasticsearch [57]
to integrate with different (meta-)model sources.

SMSs are integrated into Dandelion through the Sensemak-
ing Strategies Service. Dandelion already supports a series
of external services, such as layouting, to arrange graphical
elements on the canvas; injectors, to import/export models
from/to other formats, such as EMF [12]; or meta-modelling
assistants, like DROID [58], which recommends attributes and
references when building a meta-model. The new service
is split into a Recommendation Service, serving the SMS
recommender; and a Resolver Service, to execute SMSs.

The SMS recommender takes as input an SMS’s context
meta-model and a target meta-model (Fig. 3) and finds the set
of sound bindings between them. This is a variant of the NP-
hard subgraph isomorphism problem [59], which is compu-
tationally demanding. To avoid a combinatorial explosion of
recommendations, we only consider the bindings of classes,
and we delegate the binding of attributes and references to
the user. Depending on the feasibility of these partial bindings
(i.e., whether every attribute of the context meta-model can be
bound to, at least, one attribute of the target meta-model), they
are tagged perfect or incomplete. The latter are also useful,
as the user can still populate the non-bindable attributes with
derived values through the dedicated expression language.

The SMS resolver interprets SMS applications and yields
interactive diagrams. It requires identifying the type of SMS,
a binding to a target meta-model, the values of the SMS
properties, and a visualisation variant choice. Dandelion has a
catalogue of SMSs, which an interaction expert can extend.

The execution of the resolver comprises three phases: data
extraction, algorithmic preprocessing, and construction of the
visual representation. First, all the relevant model elements
dictated by the binding are obtained. This task is delegated
to an internal interface, IDandelionRepository, to exploit Dan-
delion’s integration with different data providers.5 If there are

5 We follow a very similar approach to the Epsilon Model Connectivity Layer:
https://www.eclipse.org/epsilon/doc/emc.

GeneralizableElement

allInstances(): Set<GeneralizableElement>

Model

SemanticNode

isAbstract: bool
isEnum: bool

getProperty(pName): Property
getAttribute(pName): DataProperty
getReference(pName): ObjectProperty
allInstances(aModel): Set<SemanticNode>

TypedElement

id: string
name: string
documentation: string[0..1]

Property

lowerBound: int
upperBound: int

«enumeration»
PrimitiveType

String
Boolean
Number
EnumType
URL

ObjectProperty

isComposite: bool

DataProperty

value: any[0..1]
type: PrimitiveType

targetedBy

1

target *

supers *

properties

*

elements

*

parent
0..1

types *

Fig. 9: Dandelion’s linguistic meta-model, with operations for
derived bindings.

derived attributes, they are evaluated here. Next, the resolver
may perform an algorithmic preprocessing step, if needed.
For example, metric’s boxplots require computing descriptive
statistics, while categorical strategies have to aggregate data.
The last step is constructing a visual representation (e.g., bar
charts or boxplots) with the data obtained in the previous steps.
Typically, SMSs expose multiple visualisation variants, which
are populated in this step. We rely on two popular libraries
for this task: D3.js [60] and Apache ECharts [61]. As this
step is decoupled from the rest of the resolver, integration of
new visualisation libraries is eased.

Property bindings can be derived thanks to a dedicated
expression language. This language is implemented by ex-
tending Dandelion’s linguistic meta-model with additional
operations (Fig. 9). This meta-model supports multi-level
modelling [55] and is level-agnostic [62], uniformly repre-
senting concepts at any level of abstraction. This way, meta-
classes Model, SemanticNode, and ObjectProperty are used to
represent meta-models and models; classes and objects; and
references and links, respectively. All the attributes (e.g.,
TypedElement.name) are accessible via getters, and navigability
is supported. SemanticNode implements a crucial operation
for derived bindings: allInstances(), which returns all the in-
stances of a given SemanticNode or Model, allowing thus
penetrating into lower levels to extract information. Addi-
tionally, SemanticNode overloads allInstances() to obtain the
node’s instances within a particular model. Finally, we have
implemented this expression language using TypeScript, hence
supporting (higher-order) functions such as map or filter; and
length for the size of a collection.

B. Tool support

We have integrated SMSs in Dandelion in the strategies
dashboard: a panel shown next to the modelling canvas (c.f.
Fig. 10).6 Strategies support different operations: maximising
in a full-screen view, switching visualisation variants, and
forcing a refresh. They can also be rearranged via drag and
drop in the dashboard.

6 Edges in the modelling canvas are hidden for clarity.

https://www.eclipse.org/epsilon/doc/emc

Fig. 10: ROSE meta-model in Dandelion, showing a strategies dashboard with a dependency structure matrix SMS.

Fig. 11: Recommender panel in Dandelion.

The creation of an SMS takes place in a multi-step wizard.
First, a suitable SMS and a visualisation variant are selected.
To guide the decision, the number of suitable bindings is
shown next to each SMS (coming from the SMS Recom-
mender) – see Fig. 11. Next, the wizard displays a description
and the context meta-model of the SMS together with all the
suggested (available) bindings. The last step is completing the
selected partial binding (possibly with derived values), and
setting values to the appropriate properties of the SMS (c.f.
Fig. 12). The strategy is then added to the dashboard.

Fig. 12: Finishing the binding of a domain-agnostic SMS in
Dandelion, employing a derived mapping.

VII. EVALUATION

This section evaluates our approach by demonstrating that
SMSs can be leveraged to understand large industrial low-
code ecosystems. In particular, we examine UGROUND’s
modelling ecosystem, consisting of the ROSE meta-model [9]
and large model instances (with 175,000+ elements). We aim
to answer the following research questions (RQs):
RQ1. Do SMSs help to understand the ROSE meta-model?
RQ2. Can SMSs be used to understand how ROSE is used in

practice?
RQ3. Can SMSs be used to understand ROSE models?

Each RQ challenges the utility of SMSs in gaining in-
sight into the modelling ecosystem differently. With RQ1
(Section VII-A), we question their efficacy to understand a
complex meta-model, which is a useful task for novel language
users and language engineers. With RQ2 (Section VII-B),
we consider said meta-model together with all its instances.
Hence, we evaluate if SMSs can be useful for language
designers to analyse how a DSL is used in practice, and
guide its possible evolution. With RQ3 (Section VII-C), we

Fig. 13: SMSs #1–4 targeting ROSE meta-model (RQ1).

focus on concrete models to evaluate whether SMSs help
creating visualisations tailored for their semantics. This task
is helpful for regular language users, who may need help
understanding a large model (perhaps built by a third person).
Finally, Section VII-D synthesises conclusions, lessons learnt,
and threats to validity.

A. RQ1: understanding a complex meta-model

Comprehending meta-models is a frequent activity in the
modelling process, which typically entails finding answers to
sensemaking tasks (STs) like the following:
ST1. What are the concepts defined in the meta-model?
ST2. Which attributes do concepts define?
ST3. What are the relationships between concepts?

Meta-models are typically built using editors that may
not be designed explicitly for sensemaking. For example,
graphical editors for meta-models usually rely on a graph-
based visualisation metaphor which, while effective for small
meta-models, does not scale well for large meta-models (cf.
Fig. 1). We argue that SMSs can help alleviating this problem.

To fulfil STs 1–3, we propose the SMSs #1–5 detailed in
Table II. We employ one or more SMSs to answer each ST as,
according to sensemaking theory, sensemaking tasks benefit
from a variety of visualisations for their resolution [7]. Fig. 13
shows SMSs #1–4 applied to UGROUND’s ROSE meta-model
(left in Fig. 1), and Fig. 10 displays SMS #5.

These SMSs allow answering STs 1–3. For ST1, SMS #1
counts the number of concepts, and SMS #2 categorises
them into concrete concepts, abstract concepts, or enums. For
ST2, SMS #3 summarises 500+ attributes in a word cloud,
highlighting four common attribute names, which suggest
the support for error control in many concepts. Additionally,
SMS #4, displays the number of attributes and references
of each concept in a scatterplot. Complex concepts control

TABLE II: SMSs for UGROUND mega-model evaluation.

ST #SMS Sensemaking question SMS type

R
Q

1

ST1 1 How many concepts are there? Free metric
2 Which types of concepts are there? Categorical

ST2 3 Which attributes are there? Literal metric
4 Are concepts data or connection-centric? Numerical

ST3 5 Which concepts are coupled? Connectivity

R
Q

2 ST4 6 What is the distribution of concepts? Categorical
ST5 7 What is the instantiation range of fields? Categorical

R
Q

3 ST6 8 Error codes of objects? Literal metric
ST7 9 States of Scoop rules (reglaScoop)? Categorical
ST8 5 Which concepts are coupled? Connectivity

and slot stand out, having a high, yet balanced number of
attributes and references. Other concepts, like model, are data-
centric, with a high number of attributes (>30). This SMS
provides a bidirectional interaction: selecting a concept in the
plot highlights the corresponding concept in the modelling
canvas, and vice versa. The analysis can be complemented, for
instance, with SMS #5, which presents a dependency structure
matrix to grasp the relationships between concepts. As it is
sorted by degree of incidence, it is suited to answer ST3.
For example, it reveals that concepts like ontology, tipology,
or accesspoint (the first ones in the axes) are highly coupled
to other concepts.

These SMSs are domain-agnostic (i.e., they target the lin-
guistic meta-model) and can therefore be reused for other
meta-models – not necessarily within the UGROUND ecosys-
tem. Some SMSs employ derived bindings, which are spec-
ified using the expression language. For example, SMS #2
categorises concepts into ‘concrete’, ‘abstract’, or ‘enum’
by discriminating the isAbstract and isEnum properties from
SemanticNode in Dandelion’s linguistic meta-model (Fig. 9).

Answering RQ1, SMSs prove effective in understanding
complex meta-models such as ROSE. They synergise by being
presented in a dashboard, providing a holistic and reactive
exploration of the meta-model. Furthermore, the support for
agnostic bindings and derived values enables the implementa-
tion of reusable SMSs for any meta-model.

B. RQ2: understanding a modelling ecosystem

In this RQ, we evaluate if SMSs are useful to understand
how a meta-model is used in practice. This includes analysing
the contents and structure of the emerging modelling ecosys-
tem – comprising meta-models and their instances (domain
models). We consider two sensemaking tasks to this end:
ST4. What is the usage of each language primitive?
ST5. How are fields used?

SMSs #6–7 aim to answer these questions by their applica-
tion to UGROUND’s modelling ecosystem. SMS #6 (Fig. 1,
right) displays a prominent metric of the usage of a meta-
model: the number of instances per meta-class, answering ST4.
SMS #7 (Fig. 14) focuses on specific meta-model concepts
(e.g., technical in the figure) to understand the usage of its
optional attributes. For instance, errores fl with value 100 %
means that every instance of technical populates this attribute.

Fig. 14: SMS #7.

This analysis can be
leveraged for language
evolution: highly used
attributes can be des-
ignated mandatory, and
scarcely used ones can
be deemed redundant.
A similar analysis can
be used for the instan-
tiation range of refer-
ences.

Overall, we can
answer RQ2 positively.
SMSs #6 and #7
are domain-agnostic,
collecting data from model instances and not merely from the
meta-model. Hence, this allows creating effective, reusable
SMSs for any modelling ecosystem.

C. RQ3: understanding specific models

When the meta-model of a domain-specific language is
understood, it is possible to devise tailored SMSs for it. SMSs
#6-8 have been applied to UGROUND models to resolve:
ST6. Which error codes can be triggered by the objects in

this model?
ST7. Which are the states of Scoop rules?
ST8. How are elements connected?

ST6 targets the understanding of the error codes produced
by the defined services within the model. We use a literal
metric (a word cloud) to visualise them. Stop words are
discarded to avoid noise in the visualisation. This way, the
user can quickly grasp the most common errors.

Fig. 15: SMS #9.

Scoop rules are used
to describe the processes
of the information sys-
tem, to be enacted by the
Scoop rule engine. By un-
derstanding the state of
these rules (Active, Draft,
Obsolete, Pending and oth-
ers), we can grasp the
condition of the services
within the model. SMS #9
categorises the states of
Scoop rules (reglaScoop
in the meta-model) by a
estado reference. As multiple states can be grouped under the
same term, the SMS aggregates them with a derived binding.

Finally, we can reuse SMS #5, a dependency structure
matrix, to solve ST8. This is possible because this SMS is
domain-agnostic (i.e., like SMSs #1–5). The resulting visual-
isation is identical to Fig. 10, but the concepts in the matrix
are the objects of the currently analysed model.

Hence, we can answer RQ3 positively: we can use a
combination of domain domain-specific and agnostic SMSs
to understand specific ROSE models.

D. Conclusions, lessons learnt, and threats to validity

Regarding RQ1, we could analyse the ROSE meta-model,
realising that most concepts are concrete. This fact, together
with a high prevalence of certain attributes among classes may
suggest the usefulness of a meta-model refactoring. Moreover,
given the insights provided by Dandelion, we intend to make
the tool available for new employees in onboarding processes
to help them understand the ROSE language.

For RQ2, the analysis was useful in understanding how
ROSE is used in practice. This analysis helps understanding
scarcely used primitives (like innerJoin) and typical instan-
tiation ranges for fields, providing valuable information for
evolving the DSL definition.

Finally, in RQ3 we have facilitated the analysis of models by
providing tailored visualisations. UGROUND plans to replace
the Scoop engine, and hence needs to migrate its rules.
Therefore, SMSs like #9 can help evolve models progressively.

As validity threats, we have used SMSs to analyse
UGROUND’s ecosystem. Since this is a complex industrial
ecosystem, we also expect our SMSs to be used to understand
other modelling ecosystems. Our evaluation has been driven by
the needs of UGROUND’s company employees when working
with (meta-)models. We plan to complement this evaluation
with user experiments measuring the efficacy of SMSs to
resolve concrete sensemaking tasks.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has introduced the notion of model sensemaking
strategy (SMS), a reusable, generic component for creating
flexible, insightful visualisations for large models. SMSs are
instantiated by a binding to the – domain or linguistic –
meta-model at which they are applied. We have proposed a
catalogue of 10 SMSs and 20 exchangeable visualisations,
supporting the understanding of meta-models, models, and
entire modelling ecosystems. We have implemented SMSs
atop Dandelion, an industrial low-code graphical language
workbench for the cloud, featuring a flexible binding language
and a recommender that suggests suitable SMSs for a given
meta-model. We have reported on an industrial evaluation
demonstrating the effectiveness of SMSs in understanding
UGROUND’s large industrial ecosystem.

As future work, we would like to increase our catalogue
with new graph-based SMSs, and improve existing ones with
more flexibility. We would like to integrate a sensemaking
assistant, which, given a description (in natural language) of
a sensemaking task, recommends a strategy and a binding.
Technically, we are improving the tool, and will work on
its extension to support more layouts, model exploration
strategies, and injectors from other formats.

ACKNOWLEDGEMENTS

This project is funded by the EU Horizon 2020 Research
and Innovation Programme under the Marie Skłodowska-
Curie grant agreement No 813884 and the Spanish MICINN
(PID2021-122270OB-I00, TED2021-129381B-C21).

REFERENCES

[1] D. Moody, “The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Trans.
Software Eng., vol. 35, no. 6, pp. 756–779, 2009.

[2] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra,
J. Sánchez Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, and
J. Cabot, “A research roadmap towards achieving scalability in model
driven engineering,” in Proceedings of the Workshop on Scalability in
Model Driven Engineering. ACM, 2013.

[3] J. Bertin, Semiology of Graphics. University of Wisconsin Press, 1983.
[4] D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card, “The cost structure

of sensemaking,” in Conference on Human Factors in Computing
Systems (INTERACT, CHI). ACM, 1993, pp. 269–276.

[5] M. Tisi, J. Mottu, D. S. Kolovos, J. de Lara, E. Guerra, D. D.
Ruscio, A. Pierantonio, and M. Wimmer, “Lowcomote: Training the
next generation of experts in scalable low-code engineering platforms,”
in STAF Co-Located Events Joint Proceedings, ser. CEUR Workshop
Proceedings, vol. 2405. CEUR-WS.org, 2019, pp. 73–78.

[6] D. D. Ruscio, D. S. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-code development and model-driven engineering:
Two sides of the same coin?” Softw. Syst. Model., vol. 21, no. 2, pp.
437–446, 2022.

[7] R. Pienta, J. Abello, M. Kahng, and D. H. Chau, “Scalable graph
exploration and visualization: Sensemaking challenges and opportuni-
ties,” in International Conference on Big Data and Smart Computing
(BIGCOMP), 2015, pp. 271–278.

[8] F. Martı́nez-Lasaca, P. Dı́ez, E. Guerra, and J. de Lara, “Dandelion: a
scalable, cloud-based graphical language workbench for industrial low-
code development,” Journal of Computer Languages, vol. 76, p. 101217,
2023, https://miso.es/tools/Dandelion.html.

[9] A. Dı́ez, “Recursive ontology-based systems engineering,” 2015.
[Online]. Available: https://patents.google.com/patent/US9760345B2/en

[10] A. Dı́ez, N. Nguyen, F. Dı́ez, and E. Chavarriaga, “MDE for enterprise
application systems,” in MODELSWARD. SciTePress, 2013, pp. 253–
256.

[11] A. Jiménez-Pastor, A. Garmendia, and J. de Lara, “Scalable model
exploration for model-driven engineering,” J. Syst. Softw., vol. 132, pp.
204–225, 2017.

[12] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework, 2nd edition. Pearson Education, 2008.

[13] D. Strüber, S. Jurack, T. Schäfer, S. Schulz, and G. Taentzer, “Managing
model and meta-model components with export and import interfaces,”
in Proceedings of the 4rd Workshop on Scalable Model Driven Engi-
neering part of the Software Technologies: Applications and Foundations
(STAF), ser. CEUR Workshop Proceedings, vol. 1652. CEUR-WS.org,
2016, pp. 31–36.

[14] A. Garmendia, E. Guerra, J. de Lara, A. Garcı́a-Domı́nguez, and D. S.
Kolovos, “Scaling-up domain-specific modelling languages through
modularity services,” Inf. Softw. Technol., vol. 115, pp. 97–118, 2019.

[15] K. Jahed, M. Bagherzadeh, and J. Dingel, “On the benefits of file-level
modularity for EMF models,” Softw. Syst. Model., vol. 20, no. 1, pp.
267–286, 2021.

[16] R. Wei, D. S. Kolovos, A. Garcı́a-Domı́nguez, K. Barmpis, and R. F.
Paige, “Partial loading of XMI models,” in ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems
(MoDELS). ACM, 2016, pp. 329–339.

[17] Q. Ma, P. Kelsen, and C. Glodt, “A generic model decomposition
technique and its application to the eclipse modeling framework,” Softw.
Syst. Model., vol. 14, no. 2, pp. 921–952, 2015.

[18] K. Barmpis and D. S. Kolovos, “Hawk: towards a scalable model
indexing architecture,” in Workshop on Scalability in Model Driven
Engineering. ACM, 2013, p. 6.

[19] G. Daniel, “Efficient persistence and query techniques for very large
models,” in ACM Student Research Competition at MoDELS, ser. CEUR
Workshop Proceedings, vol. 1775. CEUR-WS.org, 2016.

[20] G. Daniel, G. Sunyé, and J. Cabot, “Advanced prefetching and caching
of models with PrefetchML,” Softw. Syst. Model., vol. 18, no. 3, pp.
1773–1794, 2019.

[21] Y. Hu and L. Shi, “Visualizing large graphs,” WIREs Computational
Statistics, vol. 7, no. 2, pp. 115–136, 2015.

[22] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. Fekete, and D. W. Fellner, “Visual analysis of large graphs:

State-of-the-art and future research challenges,” Comput. Graph. Forum,
vol. 30, no. 6, pp. 1719–1749, 2011.

[23] J. J. Thomas and K. A. Cook, “A visual analytics agenda,” IEEE
Computer Graphics and Applications, vol. 26, no. 1, pp. 10–13, 2006.

[24] N. Tovanich, A. Pister, G. Richer, P. Valdivia, C. Prieur, J. Fekete, and
P. Isenberg, “VAST 2020 contest challenge: Graphmatchmaker - visual
analytics for graph comparison and matching,” IEEE Computer Graphics
and Applications, vol. 42, no. 4, pp. 89–102, 2022.

[25] C. Vehlow, F. Beck, and D. Weiskopf, “Visualizing group structures in
graphs: A survey,” Comput. Graph. Forum, vol. 36, no. 6, pp. 201–225,
2017.

[26] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “A taxonomy and survey
of dynamic graph visualization,” Computer Graphics Forum, vol. 36,
no. 1, pp. 133–159, 2017.

[27] R. S. Pienta, M. Kahng, Z. Lin, J. Vreeken, P. P. Talukdar, J. Abello,
G. Parameswaran, and D. H. Chau, FACETS: Adaptive Local Exploration
of Large Graphs. SIAM, 2017, pp. 597–605.

[28] S. Dueñas, V. Cosentino, J. M. González-Barahona, A. del Castillo
San Felix, D. Izquierdo-Cortazar, L. Cañas-Dı́az, and A. P. Garcı́a-
Plaza, “Grimoirelab: A toolset for software development analytics,”
PeerJ Comput. Sci., vol. 7, p. e601, 2021.

[29] F. D. Luca, M. I. Hossain, S. G. Kobourov, and K. Börner, “Multi-level
tree based approach for interactive graph visualization with semantic
zoom,” CoRR, vol. abs/1906.05996, 2019.

[30] B. Musial and T. Jacobs, “Application of focus + context to UML,”
in Australasian Symposium on Information Visualisation (InVis.au), ser.
CRPIT, vol. 24. Australian Computer Society, 2003, pp. 75–80.

[31] M. Frisch, R. Dachselt, and T. Brückmann, “Towards seamless semantic
zooming techniques for UML diagrams,” in ACM Symposium on Soft-
ware Visualization. ACM, 2008, pp. 207–208.

[32] J. F. G. Navarro, R. Therón, and F. J. Garcı́a-Fernández, “Semantic
zoom: A details on demand visualisation technique for modelling OWL
ontologies,” in 9th International Conference on Practical Applications
of Agents and Multiagent Systems (PAAMS), ser. Advances in Intelligent
and Soft Computing, vol. 89. Springer, 2011, pp. 85–92.

[33] Y. E. Ahmar, S. Gerard, C. Dumoulin, and X. L. Pallec, “Enhancing
the communication value of UML models with graphical layers,” in
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MoDELS). IEEE Computer Society, 2015,
pp. 64–69.

[34] C. D. Schulze, G. Hoops, and R. von Hanxleden, “Automatic layout
and label management for compact UML sequence diagrams,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2018. IEEE Computer Society, 2018, pp. 187–191.

[35] C. D. Schulze, Y. Lasch, and R. von Hanxleden, “Label management:
Keeping complex diagrams usable,” in IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE Computer
Society, 2016, pp. 3–11.

[36] J. de Lara, E. Guerra, and J. Sánchez Cuadrado, “Reusable abstractions
for modeling languages,” Inf. Syst., vol. 38, no. 8, pp. 1128–1149, 2013.

[37] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer, “A feature-based
survey of model view approaches,” Softw. Syst. Model., vol. 18, no. 3,
p. 1931–1952, 2019.

[38] G. D. Carlo, P. Langer, and D. Bork, “Rethinking model representation
- A taxonomy of advanced information visualization in conceptual
modeling,” in International Conference on Conceptual Modeling (ER),
ser. Lecture Notes in Computer Science, vol. 13607. Springer, 2022,
pp. 35–51.

[39] D. D. Vincenzo, J. D. Rocco, D. D. Ruscio, and A. Pierantonio,
“Enhancing syntax expressiveness in domain-specific modelling,” in
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MoDELS). IEEE, 2021, pp. 586–
594.

[40] R. Morgan, G. Grossmann, M. Schrefl, M. Stumptner, and T. Payne,
“VizDSL: A visual DSL for interactive information visualization,” in
Advanced Information Systems Engineering, J. Krogstie and H. A.
Reijers, Eds. Cham: Springer International Publishing, 2018, pp. 440–
455.

[41] N. Moha, V. Mahé, O. Barais, and J. Jézéquel, “Generic model refac-
torings,” in Model Driven Engineering Languages and Systems, 12th
International Conference, MODELS, ser. Lecture Notes in Computer
Science, vol. 5795. Springer, 2009, pp. 628–643.

[42] A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara, “EMF splitter:
A structured approach to EMF modularity,” in Proceedings of the

https://miso.es/tools/Dandelion.html
https://patents.google.com/patent/US9760345B2/en

3rd Workshop on Extreme Modeling co-located with ACM/IEEE 17th
International Conference on Model Driven Engineering Languages &
Systems, XM@MoDELS, ser. CEUR Workshop Proceedings, vol. 1239.
CEUR-WS.org, 2014, pp. 22–31.

[43] J. Sánchez Cuadrado, E. Guerra, and J. de Lara, “A component model
for model transformations,” IEEE Trans. Software Eng., vol. 40, no. 11,
pp. 1042–1060, 2014.

[44] J. Bruel, B. Combemale, E. Guerra, J. Jézéquel, J. Kienzle, J. de Lara,
G. Mussbacher, E. Syriani, and H. Vangheluwe, “Comparing and classi-
fying model transformation reuse approaches across metamodels,” Softw.
Syst. Model., vol. 19, no. 2, pp. 441–465, 2020.

[45] C. Guy, B. Combemale, S. Derrien, J. Steel, and J. Jézéquel, “On model
subtyping,” in Modelling Foundations and Applications - 8th European
Conference, ECMFA, ser. Lecture Notes in Computer Science, vol. 7349.
Springer, 2012, pp. 400–415.

[46] J. de Lara and E. Guerra, “From types to type requirements: genericity
for model-driven engineering,” Softw. Syst. Model., vol. 12, no. 3, pp.
453–474, 2013.

[47] H. Ergin, E. Syriani, and J. Gray, “Design pattern oriented development
of model transformations,” Comput. Lang. Syst. Struct., vol. 46, pp. 106–
139, 2016.

[48] A. Pescador, A. Garmendia, E. Guerra, J. Sánchez Cuadrado, and
J. de Lara, “Pattern-based development of domain-specific modelling
languages,” in ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MoDELS). IEEE Computer
Society, 2015, pp. 166–175.

[49] B. Hamid, S. Gürgens, and A. Fuchs, “Security patterns modeling
and formalization for pattern-based development of secure software
systems,” Innov. Syst. Softw. Eng., vol. 12, no. 2, pp. 109–140, 2016.

[50] B. Hamid and J. Pérez, “Supporting pattern-based dependability en-
gineering via model-driven development: Approach, tool-support and

empirical validation,” J. Syst. Softw., vol. 122, pp. 239–273, 2016.
[51] D. P. Gregor, J. Järvi, J. G. Siek, B. Stroustrup, G. D. Reis, and

A. Lumsdaine, “Concepts: Linguistic support for generic programming
in C++,” in Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA). ACM,
2006, pp. 291–310.

[52] J. Sánchez Cuadrado, E. Guerra, and J. de Lara, “Flexible model-to-
model transformation templates: An application to ATL,” J. Object
Technol., vol. 11, no. 2, pp. 4: 1–28, 2012.

[53] S. MacLane, Categories for the Working Mathematician. New York:
Springer-Verlag, 1971.

[54] J. de Lara and E. Guerra, “Towards the flexible reuse of model
transformations: A formal approach based on graph transformation,” J.
Log. Algebraic Methods Program., vol. 83, no. 5-6, pp. 427–458, 2014.

[55] C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling
foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41, 2003.

[56] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1st edition, 1994.

[57] Elasticsearch, https://www.elastic.co/elasticsearch, 2023.
[58] L. Almonte, E. Guerra, I. Cantador, and J. de Lara, “Building recom-

menders for modelling languages with Droid,” in ASE. ACM, 2022,
pp. 155:1–155:4.

[59] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of
the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[60] Data Driven Documents, https://d3js.org/, 2023.
[61] Apache ECharts, https://echarts.apache.org/en/index.html, 2023.
[62] C. Atkinson, B. Kennel, and B. Goß, “The level-agnostic modeling

language,” in Software Language Engineering - Third International
Conference, SLE, ser. Lecture Notes in Computer Science, vol. 6563.
Springer, 2010, pp. 266–275.

https://www.elastic.co/elasticsearch
https://d3js.org/
https://echarts.apache.org/en/index.html

	Introduction
	Related Work
	Handling large models
	Visualising and comprehending large graphs and models
	Genericity and pattern-based reuse

	Overview
	Applying Sensemaking Strategies
	The context meta-model
	The binding
	The target meta-model
	Strategy properties

	Catalogue of Sensemaking Strategies
	Categorical
	Weighted hierarchy

	Architecture and Tool Support
	Architecture
	Tool support

	Evaluation
	RQ1: understanding a complex meta-model
	RQ2: understanding a modelling ecosystem
	RQ3: understanding specific models
	Conclusions, lessons learnt, and threats to validity

	Conclusions and Future Work
	References

