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Abstract—Model transformations are used to automate model
manipulation in Model-Driven Engineering (MDE). In particular,
model-to-model transformations produce target models (confor-
mant to a target meta-model) from source ones (conformant to a
source meta-model). While transformation correctness is crucial
in MDE, developing transformations is error-prone due to the
difficulty in testing them. This problem is further aggravated
if the source and target meta-models contain OCL integrity
constraints, as every transformed source model should satisfy
the target integrity constraints.

In order to attack this problem, we present a novel method that
translates target OCL constraints to the source meta-model using
the transformation definition. This way, if a source model satisfies
the advanced constraint, the transformed model will satisfy the
target constraint. The method has been implemented for the ATL
transformation language and integrated with the anATLyzer tool.
We show its benefits in combination with model finders, and the
promising results of its validation using mutation techniques and
transformations developed by third parties.

Index Terms—Model-driven engineering; model transforma-
tions; integrity constraints; OCL; quality

I. INTRODUCTION

Model-Driven Engineering (MDE) is a software devel-
opment methodology where the central assets are models.
The structure of models is defined by a meta-model, which
describes the catalogue of modelling elements (e.g. using a
class diagram) and their well-formedness rules expressed as a
set of integrity constraints (e.g. using an assertion language
like OCL). It is critical to ensure that a model conforms
to its meta-model, because non-conformant models may go
unnoticed and produce errors when used at a later stage.

Many MDE activities require using model transforma-
tions [1], [2]. These receive source models and produce target
models, either in-place or out-place, and are typically de-
scribed using rule-based languages, like ATL [3] or QVT [4].
A major concern in MDE is the correctness of transformations,
as this directly impacts the outcome of the development
process. Unfortunately, transformations are error-prone [5] and
hard to test and debug [6], because their operation is divided
among several rules that may interact. Furthermore, integrity
constraints can have an effect on transformation rules. For
example, a rule may be impossible to apply in a source model
if the rule application conditions contradict a source integrity
constraint, while certain rule applications may produce ill-
formed models that violate the target meta-model constraints.

In this work, we focus on a specific kind of constraints:
those defined over the target meta-model of a model-to-

model transformation. In particular, we propose a method that
rewrites the OCL constraints in the target meta-model as con-
straints over the source meta-model, using the transformation
definition backwards. We call a source constraint obtained in
this way an advanced constraint. Advanced constraints can be
employed in a variety of ways. They can be used to analyse
transformation correctness, from a strong executability point
of view (i.e. given any valid source model, the produced
target model conforms to the target meta-model and satisfies
its integrity constraints). In this scenario, we can use model
finders (a constraint solver over models, like Alloy [7] or the
USE Validator [8]) to check if some source model leading to
an incorrect target model can possibly exist. If it can, then
the advanced constraints can be used as a transformation pre-
condition to rule out source models whose transformation will
be incorrect. Our method can also be used for testing (to gen-
erate interesting source models taking into account the target
constraints), and for iterative transformation development as
developers can specify expected target properties which are
advanced and used for generating (counter-)example models.

The applicability of our method is demonstrated with an
implementation for the ATL transformation language (one of
the most widely used nowadays) on top of the static analyzer
anATLyzer [5]. We report on several experiments which show
that: (a) the method is useful, as it can detect errors in real
transformations developed by third-parties; (b) the method
has almost perfect precision and recall, as demonstrated by
a preliminary evaluation using mutation testing; and (c) the
computation of pre-conditions has little computational effort.
Paper organization. Section II motivates our work and presents
a running example using ATL. Then, Section III introduces
our method, while Section IV discusses its applicability.
Section V describes tool support, and Section VI evaluates
its effectiveness. Finally, Section VII discusses related work
and Section VIII draws some conclusions.

II. BACKGROUND AND RUNNING EXAMPLE

In this section, we motivate the need for the method, pro-
vide some background information, and introduce a running
example that will be used throughout the paper.

Let us assume we are interested in analysing manufacturing
plants. To specify the layout of these factories, we have a
domain-specific language (DSL) with primitives for modelling
different types of machines, conveyors connecting them, and
parts transported by conveyors and processed by machines.



The left of Fig. 1 shows the meta-model of this DSL. It
considers three types of machines: generators that inject a
given amount of parts at a time into the factory up to max
times, assemblers that consume and process parts, and ter-
minators that remove parts from the factory. Moreover, class
Generator declares the OCL invariant posAmnt which demands
any generator object to have a non-negative amount.
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Fig. 1. Meta-models of factories (left) and Petri nets (right).

In order to analyse bottlenecks and plant optimizations, we
decide to transform factory models into Petri nets, a formalism
supported by powerful analysis methods [9]. Fig. 1 shows to
the right the meta-model for Petri nets. A Petri net is a bipartite
graph with two kinds of vertices: places and transitions. Places
can be connected to transitions via PTArcs, and transitions can
be connected to places using TPArcs. According to invariants
correctWeight and posTokens, arcs have a positive weight, and
places may contain zero or more tokens.

Roughly, the transformation from factories to Petri nets
should transform machines into transitions, conveyors into
places, and parts into tokens. Moreover, every valid factory
model should be transformed into a valid Petri net that satisfies
the target invariants boundedNet, boundedTok, posTokens and
correctWeight, and fulfils the cardinality bounds of references.
These latter constraints can be recasted as OCL invariants to
allow their uniform treatment with the rest of invariants [10].

In order to tackle this scenario (and others described in
Section IV), we propose a method that, given a model-to-
model transformation and a set of invariants of the target meta-
model, translates those invariants (using the transformation)
into the source meta-model context. In this way, the translated
invariant can be added to the source meta-model to constrain
the valid input models, can be converted into a transformation
pre-condition, or can be used with model finders [7] to analyse
whether some/all source models can be transformed into target
models with (un)desirable properties. A model finder is a
program – frequently based on SMT or SAT solving – which
takes a meta-model and a set of constraints and produces an
instance model satisfying all the constraints, if such a model
exists within the given search bounds.

Our method is generally applicable to most rule-based
transformation languages, but requires the following features:

1 module factory2pn;
2 create OUT : PN from IN : FAC;
3

4 rule Factory2PN1 {
5 from f : FAC!Factory ( f.capacity > 0 )
6 to pn : PN!PetriNet (
7 elems← f.conveyors→union(f.machines),
8 bound← f.capacity
9 )

10 }
11

12 rule Factory2PN2 {
13 from f : FAC!Factory ( f.capacity <= 0 )
14 to pn : PN!PetriNet (
15 elems← f.conveyors→union(f.machines),
16 bound← 1
17 )
18 }
19

20 rule Input2TPArc {
21 from m : FAC!Machine, c : FAC!Conveyor (c.inputs→includes(m))
22 to a : PN!TPArc (
23 weight← if (m.oclIsKindOf(FAC!Generator)) then m.amount else 1 endif,
24 input← m,
25 output← c,
26 net← m.factory
27 )
28 }
29

30 −− similar rule for outputs omitted for brevity
31

32 rule Machine2Transition {
33 from m : FAC!Machine (m.oclIsKindOf(FAC!Assembler) or m.oclIsKindOf(

FAC!Terminator))
34 to t : PN!Transition ( name← m.name )
35 }
36

37 rule Gen2Transition {
38 from m : FAC!Generator
39 to t : PN!Transition ( name← ’tr’+m.name ),
40 p : PN!Place (
41 name← ’pl’+m.name,
42 tokens← m.max, −− possible error, as max can be negative
43 net← m.factory
44 ),
45 p2t : PN!PTArc (
46 weight← 1,
47 input← p,
48 output← t,
49 net← m.factory
50 )
51 }
52

53 rule Conv2Place {
54 from c : FAC!Conveyor
55 to plc : PN!Place (
56 name← c.name,
57 tokens← c.parts→size(),
58 net← c.factory
59 )
60 }

Listing 1. Excerpt of example transformation.

• The source model is read-only
• The target elements cannot be rewritten once created
• Declarative rules with no imperative constructs like loops
• Every rule is applied once per match of the input pattern

Many languages or relevant subsets of them fulfil these
criteria, like ATL [3], ETL [11], QVT [4] and TGGs [12].
To ground the discussion, we instantiate the method for ATL,
a widely used representative of rule-based languages.

Listing 1 shows part of the ATL transformation from facto-
ries to Petri nets. An ATL transformation typically transforms
a model conforming to a source meta-model into a model



conforming to a target meta-model (see line 2 of the listing).
For this purpose, it defines rules that state how to create target
objects given a pattern of source objects. Rules can also have
guards: OCL expressions that restrict the rule applicability to
the matched source objects that satisfy them. For example, rule
Factory2PN1 in line 4 creates a PetriNet object for each Factory
object in the source, and its guard f.capacity > 0 ensures this
rule is applied only to factories with positive capacity.

The value of the fields of the created objects is defined
using bindings of the form field← expression. Fields in bindings
can be of primitive type (like weight ← 1 in line 46), or
references to which it is possible to assign target objects
(like input ← p in line 47) or source objects (like elems ←
f.conveyors→union(f.machines) in line 7). In the latter case, a
binding resolution algorithm assigns to the field the target
objects created from the assigned source objects.

The rules in Listing 1 are matched rules, which are executed
once per match. A run-time error is raised if an object in the
source model is matched by more than one matched rule with
one element in its source pattern. In contrast, lazy rules must
be explicitly called with the objects to which apply the rule as
parameters. ATL also supports helpers, which are operations
defined globally or in the context of a meta-model class, and
return the result of evaluating an OCL expression.

Altogether, we would like to ensure that transformations
(like the one in Listing 1) do not produce incorrect target
models. For this purpose, we have developed a method which
is presented in the next section.

III. METHOD

Our method rewrites an integrity constraint defined over
the target meta-model (Ctgt) into an integrity constraint in the
source meta-model (Csrc). The new constraint is equivalent to
the original, in the sense that for any source model (s) and
the output model produced by the transformation (trafo(s))
the following equivalence holds: Csrc(s) ↔ Ctgt(trafo(s)).
Example. Consider the invariant posTokens inv: self.tokens>=0
defined in Place. Our aim is to verify whether any output
model of the transformation will satisfy the constraint. To this
end, our method derives the advanced constraint in Listing 2,
formulated in a global scope over the source meta-model.

1 Generator.allInstances()→forAll(p | p.max >= 0) and
2 Conveyor.allInstances()→forAll(p | p.parts→size() >= 0)

Listing 2. Generated advanced constraint for posTokens inv: self.tokens>=0

Intuitively, our method applies the transformation
backwards to the target constraint. As a preprocessing
step, the constraint is recasted to a global scope, i.e.,
Place.allInstances()→forAll(p | p.tokens >= 0). Then, we identify
the rules that create objects of the types used in the invariant.
In the example, two rules create objects of type Place,
which are Gen2Transition (line 37) and Conv2Place (line 53).
This means the transformation has two paths for which
the forAll quantifier in the invariant must be checked. Our
method rewrites the invariant for each path, and concatenates
the resulting expressions using a suitable operator, and in

this case. The rewriting of the first path corresponds to
the execution of rule Gen2Transition, and hence, it replaces
Place.allInstances() by Generator.allInstances(), and the attribute
access p.tokens by its source counterpart. Since the attribute
access is within a forAll over Place objects, it can be simply
replaced by the right-hand side of the binding tokens ←
m.max. The same strategy is applied for the second path
corresponding to rule Conv2Place.

Fig. 2 summarizes the main steps in our method, namely:
1) Convert into global scope: First, the method translates

the constraint into a global scope as follows:

context T inv : p(self) ⇒ (rewritten into)

T.allInstances() → forAll(x|p(x))

2) Compute constraint transformation tree: Next the method
computes an expression tree stating the path conditions
under which a source model will create and initialize the
target types and features used in the constraint. We call
this expression the constraint transformation tree (CTT).

3) Rewrite: Finally, the method replaces references to target
model elements with equivalent references to source
model elements, based on the transformation definition.

A last phase for optimizing and simplifying the resulting
constraint can be added, but is left for future work. In the
remaining of the section, we detail steps 2 and 3 of the method.
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Fig. 2. Steps for advancing Ctgt into Csrc.

A. Computing the constraint transformation tree

Starting from the target constraint expressed in a global
scope, we build its CTT. This makes explicit all execution
paths leading to the creation and initialization of types and
features referenced in the constraint, and identifies the rules
and bindings executed in each path. The CTT is the basis to
perform the subsequent rewriting which actually produces the
advanced constraint.
Example. Consider the constraint boundedTok inv: self.tokens <=
self.net.bound in Fig. 1. It is slightly more complex than the
previously used posTokens, as it contains a reference navigation
(self.net.bound). Fig. 3 shows the constraint formulated in a
global scope (upper part) and the generated CTT (middle).

The CTT is an expression tree with two types of nodes: link
nodes and split nodes. Link nodes are abstract syntax nodes
similar to those of the OCL abstract syntax, but extended with
a context element 〈Rule,OutputPatternElement〉 that indicates
how the transformation translates the node in the original
constraint. For instance, the expression PN!Place.allInstances()
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Fig. 3. Generation of advanced constraint from invariant boundedTok.

is represented as a special kind of operation call node, called
AllInstances (label 1a), and defines the context 〈Gen2Transition,
p〉 because rule Gen2Transition creates Place objects using the
output pattern p : PN!Place (line 40). Split nodes represent a
fork in the control flow that occurs when evaluating some
other node (e.g., Split <Iterator>, see label 3).

The CTT is created by performing a depth-first traversal
of the original invariant. The key point is that the context
information is propagated bottom-up, starting from the nodes
corresponding to allInstances calls. The processing of each node
depends on its type (whether it is a specific operation call, a
navigation, an attribute access, etc.)

Next, we focus on how to handle the basic types of expres-
sions, using the running example to illustrate the technique.

1) allInstances operation: For each call T.allInstances() in
the invariant, we look for rule’s output pattern elements whose
type Tope is the same or a subtype of T . In the example,
these are the output pattern elements that generate Place objects
in rules Gen2Transition and Conv2Place (lines 40 and 55). For
each output pattern element, we create an AllInstances node ini-
tialized with the context 〈Rule,OutputPatternElement〉. Nodes
labelled 1a and 1b in Fig. 3 have contexts 〈Gen2Transition, p〉
and 〈Conv2Place, plc〉.

As we have just seen, the evaluation of an OCL element
may yield several link nodes. For example, the evaluation
of Place.allInstances returns nodes 1a and 1b. These nodes are

propagated to the parent node for their processing. When the
parent node receives several nodes, it applies their creation
rules once for each node, and then, it introduces a proper split
node intended to merge all the paths in the rewriting phase.

2) Iterator expression: An iterator expression has the form
〈sourceExp〉−>iteratorName(var|〈body〉). Following the depth-
first tree traversal, we first translate the source expression. In
the example, the source expression is Place.allInstances, which
is translated into the two AllInstances nodes 1a and 1b. Hence,
we need to generate two IteratorExp nodes (labels 2a and
2b), which are merged using a split iterator node (label 3).
The body of the iterator is also evaluated twice, passing the
corresponding context to each path, that is, 〈Gen2Transition, p〉
and 〈Conv2Place, plc〉.

This strategy allows representing the fact that any Place
object must fulfil the body of the forAll, and that there are two
rules that generate Place objects. In the rewriting phase, both
paths will be merged with an and connective to ensure that
whatever path is taken by the execution, the target constraint
will be satisfied.

3) Attribute navigation: This is a feature access of the form
〈sourceExp〉.feature with primitive type. It is translated to an
Attribute navigation node that refers to the binding that initializes
the feature. The binding is sought within the context obtained
from the evaluation of sourceExp. The same attribute naviga-
tion may be evaluated several times with different contexts,
depending on the path that is traversed during the execution.
This is the case of the translation of the expression p.tokens.
In the left branch of the example (label 5a), the context is
〈Gen2Transition, p〉, and therefore, the relevant binding is tokens
← m.max. In the right branch (label 5b), the relevant binding
is tokens← c.parts→size() with context 〈Conv2Place, plc〉.

4) Reference navigation: When the navigated feature is a
reference, we perform a static check to obtain the set of rules
that may resolve the binding. For instance, the resolving rules
for the binding net← m.factory are Factory2PN1 and Factory2PN2
(lines 4 and 12 in Listing 1). Then, we create a Reference
navigation node for each resolving rule. This node represents
a context change, since the existence of an object in the
given reference requires the execution of the resolved rule.
For instance, the target sub-expression p.net will always yield
a PetriNet object if either rules Factory2PN1 or Factory2PN2 are
executed. Therefore, the parent subexpression p.net.bound will
use these rules as its new context (e.g., nodes 7a1 and 8a1).

In a navigation expression like p.net.bound, the split node
is placed at the end of the call chain (i.e. when all sub-
expressions of the navigation have been processed). This is
needed to represent the different ways of obtaining this target
expression from the source paths (see nodes 6a and 6b).
Other ATL features. In addition to the basic ATL features
described above, our method also handles more advanced
constructs like lazy rules, helpers, and bindings assigning
target objects. Due to space limits, we just sketch them next.

To handle the direct assignment of target objects in bindings
(e.g. line 48 in Listing 1) we introduce a special kind of
Reference navigation node. This node does not resolve any rule,



TABLE I
TRANSLATION OF A SPLIT NODE WITH N PATHS

Id Iterator Advanced constraint
1 <split−expr>→forAll(x|p(x)) <path1>→forAll(x|p(x)) and ... and <pathN>→forAll(x|p(x))
2 <split−expr>→exists(x|p(x)) <path1>→exists(x|p(x)) or ... or <pathN>→exists(x|p(x))
3 <split−expr>→one(x|p(x)) <path1>→select(x|p(x))→union(....)→union(<pathN>→select(x|p(x)))→size()=1
4 <split−expr>→select(x|p(x)) <path1>→select(x|p(x))→union(....)→union(<pathN>→select(x|p(x)))
5 <split−expr>→reject(x|p(x)) <path1>→reject(x|p(x))→union(....)→union(<pathN>→reject(x|p(x)))
6 <split−expr>→collect(x|p(x)) <path1>→collect(x|p(x))→union(....)→union(<pathN>→collect(x|p(x)))

Id Operation Advanced constraint
7 <split−expr>→size() <path1>→size() + ... + <pathN>→size()
8 <split−expr>→includes(expr) <path1>→includes(expr) or ... or <pathN>→includes(expr)
9 <split−expr>→excludes(expr) <path1>→excludes(expr) and ... and <pathN>→excludes(expr)
10 <split−expr>→count(expr) <path1>→count(expr) + ... + <pathN>→count(expr)
11 <split−expr>→includesAll(expr) expr→forAll(x | <path1>→includes(x) or ... or <pathN>→includes(x))
12 <split−expr>→excludesAll(expr) expr→forAll(x | <path1>→excludes(x) and ... and <pathN>→excludes(x))
13 <split−expr>→isEmpty() <path1>→isEmpty() and ... and <pathN>→isEmpty()
14 <split−expr>→notEmpty() <path1>→notEmpty() or ... or <pathN>→notEmpty()
15 <split−expr>→min() {<path1>→min(), ..., <pathN>→min()}→min()
16 <split−expr>→max() {<path1>→max(), ..., <pathN>→max()}→max()
17 <split−expr>→union(expr) <path1>→union(...)→union(<pathN>)→union(expr)
18 <split−expr>→intersection(expr) <path1>→union(...)→union(<pathN>)→intersection(expr)
19 <split−expr> − expr (<path1>→union(...)→union(<pathN>)) − expr
20 <split−expr>→symmetricDifference(expr) (<path1>→union(...)→union(<pathN>))→symmetricDifference(expr)
21 <split−expr>→including(expr) (<path1>→union(...)→union(<pathN>))→including(expr)
22 <split−expr>→excluding(expr) (<path1>→union(...)→union(<pathN>))→excluding(expr)

Id References resolved by more than one rule Advanced constraint

23 <exp>.<mono−valued−reference> if <rule1−condition> then <path1> else ...
if <ruleN−condition> then <pathN> else <default−value> endif endif

24 <exp>.<multi−valued−reference> Sequence { <path1>, ..., <pathN>}→flatten()

but just points to the input pattern element from which the
assigned target element is created.

ATL supports explicit rule invocation via lazy rules. These
can be considered functions which receive a source object
as input and return a target object as output. If the output
pattern element required to translate an allInstances operation
belongs to a lazy rule, we introduce an AllInstancesLazy node
that represents all possible execution paths that may reach the
lazy rule. The strategy to compute this path is similar to [5],
but with translation rules adapted to our setting.

To handle helpers in target constraints, we identify the
helpers call locations and translate their body using the same
method as for regular constraints. For regular helpers defined
in the transformation, we identify which ones are used by the
generated advanced constraint, and attach them to it so that
they are available when required.

B. Rewriting the OCL constraint

After creating the CTT, we traverse it to generate the
advanced constraint. In each step of the traversal, we apply
translation rules specific to the visited kind of node. Each child
node generates an OCL expression (a fragment of the new
source constraint) that its parent node combines to produce
its own result. As an example, Fig. 4 shows the generation of
the source constraint starting from the root node of the CTT
(node 3), which is a split node.

A split node identifies a point in the target constraint where
a target value may be obtained from two or more paths of the
transformation execution. All these paths must be calculated
and their result must be combined using an operator, which
depends on the operation performed by the split node. Typical
operators are and/or for boolean operations, + for numeric
operations, or union for operators returning a collection.

In Fig. 4, split node 3 represents a forAll iterator with two
paths, which are combined with the and operator because this
part of the constraint must be fulfilled by any execution path.

Table I contains the combinations that we support for split
nodes. The rewriting of the split-expr in the split node combines
the result of rewriting each path (path1 to pathN) with some
operator kind. On the other hand, Table II shows the translation
rules for the link nodes of the example (we omit other node
types for brevity). For example, the rewriting rule for node
2a assembles a new iterator for the nodes generated from the
source and body parts of the original iterator.

In Fig. 4, node 1a is handled as shown in row #1 of Table II.
If the rule matches a single source object (i.e. the from section
of the rule has only one object), then it will create one target
object for each source object that satisfies the filter. However,
if the rule has several objects in the from section, it will create
one target object for each element in the cartesian product of
the source objects that satisfy the filter (row #2 in Table II).

The translation of attribute navigations (row #4 in Table II)



TABLE II
TRANSLATION OF LINK NODES

Node Invariant ATL Advanced constraint Description
AllInstances T.allInstances()

context = <r, t>
rule r {

from s : S ( filter )
to t : T }

S.allInstances()→
select(s | filter)

All objects of the source type are obtained
via allInstances, and a select expression
applies the original filter.

AllInstances T.allInstances()
context = <r, t>

rule r {
from s1 : S1, s2 : S2 ( filter )
to t : T }

S1.allInstances()→
product(S2.allInstances())→
select(s1, s2 | filter)

A rule with multiple input elements is
translated to a cartesian product operation.

Iterator <sourceExp>→iteratorName
(var | <body>)

context = <r, t>

− gen(<sourceExp>)→iteratorName
(var | gen(<body>))

Function gen generates the code of a node.
Nodes 〈sourceExp〉 and 〈body〉 are
assembled in a new iterator expression.

Feature
navigation
(attribute)

<sourceExp>.feature
context = <r, t>

rule r {
from s : S
to t : T (
feature← <value>

)

<value> The result is the source part of the binding,
〈value〉. If no binding is found, a default
value is returned according to the type of
the expression (e.g., 0 for integer, empty
string, etc.).

Feature
navigation
(reference)

<sourceExp>.feature
context = <r, t>

rule r {
from s : S
to t : T (
feature← <value>

)

−− resolving rule
rule r2 {

from s2 : S2 ( filter ) ... }

−− multi−valued
<value>→selectByType(S2)→

select(s2 | <filter>)

−− mono−valued
if <value>.oclIsKindOf(S2)
then if <filter> then <value>
else defaultValue endif
else defaultValue endif

The type comparison (i.e., selectByKind,
oclIsKindOf) is not required if the type of
〈value〉 equals S2.

All Instances 
rule: Gen2Transition 
<Gen2Transition, p> 

1a 

Attribute nav. 
expr: p.tokens 

b: tokens <- m.max 
<Gen2Transition, p> 

5a 

Split <nav> 
p.net.bound 

6a 

p.max 

Operator 
name : “<=” 

<Gen2Transition, p> 

4a 

<5a>  <=  <6a> 

left 

right 

Iterator exp. 
name: forAll 

<Gen2Transition, p> 

2a 

body 

source 

Attribute nav. 
expr: p.net.bound 

b: bound <- f.capacity 
<Factory2PN1, p> 

Attribute nav. 
expr: p.net.bound 

b: bound <- 1 
<Factory2PN2, p> 

7a1 
7a2 

Reference nav. 
expr: p.net 

b: net <-  m.factory 
<Factory2PN1, p> 

8a1 

path #1 path #2 

if  p.factory.capacity > 0  
then p.factory + [call]  
else [next] endif 

source 

<7a1> with: 
  [next] in 7a1 = 0 
  [next] in 7a2 = <7a2> 

. . . 

Split <Iterator> 
forAll 

3 

path #1 
... 

path #2 

Generator.allInstances() 

<1a>->forAll(p| <4a>) 

< 8a1 > with: 
  [call] = f.capacity 

<2a> and  <2b> 

Fig. 4. Rewriting example.

requires copying the value of the corresponding binding,
taking care of the variable names. In the example (node 5a),
the input variable m of the rule is bound to the iterator variable
p of node 2a, and hence, m.max is translated into the correct
expression p.max.

The translation of references is more challenging, as it
requires encoding all possible combinations of resolving rules.
When there is only one resolving rule, a single Reference
navigation node suffices, and the translation is as shown in row
#5 of Table II. However, if there are two or more resolving
rules, the translation of the corresponding split node must
encode all possible paths in OCL (rows 23 and 24 in Table I).

For mono-valued references, our strategy is to generate

nested ifs, each one checking the application conditions of
one resolving rule. Fig. 4 illustrates this scheme for node 6a.
The navigation p.net.bound involves two paths, as p.net can be
resolved by two rules. For the first path, node 8a1 generates a
piece of code (an if) with two holes: [call] and [next]. The [call]
hole represents an expression (provided by node 7a1) that will
be concatenated to the translation of p.net (i.e. the binding
value stored in the reference navigation node is combined
with the value provided for [call]). In this way, the expression
p.net.bound gets translated into p.factory.capacity. The [next] hole
is filled by node 6a. For the first path, [next] is bound to a
default value. The expression generated for the first path is
used to fill [next] in the second path. This strategy generates
the following expression, which checks the rules’ filters to
determine the path to follow at runtime.

if p.factory.capacity <= 0 then 1 −− Rule Factory2PN2
else −− Rule Factory2PN1

if p.factory.capacity > 0 then p.factory.capacity else 0 endif
endif

The translation of multi-valued references is simpler, as it only
requires translating each path and concatenating the results
using the template Sequence {〈path1〉, ..., 〈pathn〉 } → flatten().
This reflects the semantics of ATL multi-valued bindings.

Altogether, the advanced constraint that results from the
example is shown (slightly simplified) at the bottom of Fig. 3.

IV. APPLICATIONS

In this section, we analyse some scenarios where our
method is useful, and provide additional examples.
Ensure transformation strong executability. Our method au-
tomatically translates target meta-model invariants (like bound-
edTok) in terms of the source meta-model. Then, a model finder
can check if there is some source model satisfying the source
meta-model invariants but not the translated ones. If there is
some, the advanced constraint can be used as a transformation



pre-condition to forbid the problematic source models and
ensure strong executability of the transformation [13].

As an example, Fig. 3 shows the translation of boundedTok to
the source. As two of the rules produce places (Gen2Transition
and Conv2Place), the constraint has two conjoined parts. As the
Petri net bound can be calculated in two ways (given by rules
Factory2PN1 and Factory2PN2), each part has a conditional. We
can use a model finder to search for factory models satisfying
the original source meta-model invariants but not the advanced
constraint. Fig. 5(a) shows an example: the conveyor has two
parts, which leads to a Petri net that violates boundedTok (see
bottom of the figure). Another source of errors are source
models (like the one in Fig. 6) where some Generator has a max
value bigger than the factory capacity. To solve the problem, we
can add the advanced constraint as an invariant of the source
meta-model, or as a transformation pre-condition.

f: Factory 

c: Conveyor 

conveyors 
capacity=-1 

:Part :Part 

a: Assembler 

machines 

inputs 

outputs 

parts parts 

f: Factory 

capacity=2 

c0: Conveyor 

g: Generator 
name=“gen” 
amount=2 
max=2 

machines 

a: Assembler 

outputs 

1 

1 

as1 

name=“as1” name=“c1” 

c1 

boundedTok 

(bound=1) 

name=“as1” 

name=“c0” 

machines 

convs 

1 

trgen plgen 

2 

c0 as1 

isStateMachine 
(a)           (b) 

inputs 

1 

1 

(bound=2) 

Fig. 5. (a) Witness model showing that boundedTok can be violated. (b)
Model transformed into a state machine Petri net. Petri nets are shown
using their usual representation: places as white circles, tokens as black dots,
transitions as rectangles and arcs as arrows labelled with their weight.

Characterize classes of target models. Another usage sce-
nario is being able to identify which source models yield a
certain class of target models of interest. To this aim, the
developer provides an OCL expression characterizing the class
of target models, and this is translated into the source by our
method. Any source model satisfying the advanced constraint
corresponds to the class of target models.

Regarding our example, the strength of the Petri net analysis
methods depends on the net structure. Simpler classes of Petri
nets can be analysed with more powerful methods than nets
with more intricate structure [9]. For example, a state machine
is a kind of Petri net where every transition has one input place
and one output place. Hence, if the result of a transformation
is a Petri net with state machine characteristics, we can apply
a particular set of analysis methods. In this scenario, it is
interesting to characterize the source models (factories) that
get transformed into state machine nets. Listing 3 shows the
characterization of state machines, and the resulting constraint
(simplified). Fig. 5(b) shows a factory model leading to a state
machine net. One could also negate the advanced constraint
to obtain factories leading to nets that violate the property.

1 Transition.allInstances()→forAll(t |
2 TPArc.allInstances()→one(arc | arc.input = t) and
3 PTArc.allInstances()→one(arc | arc.output = t))

4

5 Machine.allInstances()→select(m |
6 m.oclIsKindOf(Assembler) or m.oclIsKindOf(Terminator))→
7 forAll(t |
8 −− TPArc.allInstances()→one(...)
9 Machine.allInstances()→product(Conveyor.allInstances())→

10 select(m, c | c.inputs→includes(m))→
11 one(m, c |
12 (m.oclIsKindOf(Assembler) or m.oclIsKindOf(Terminator)) and m = t)
13 and
14 −− PTArc.allInstances()→one(...)
15 −− PTArc creation in Output2PTArc
16 Machine.allInstances()→product(Conveyor.allInstances())→
17 select(m, c | c.outputs→includes(m))→
18 select(m, c |
19 −− arc.output => mapped to binding output <− m
20 −− which is resolved by rules Machine2Transition and Gen2Transition
21 (m.oclIsKindOf(Assembler) or m.oclIsKindOf(Terminator)) and m = t)→
22 −− PTArc creation in Gen2Transition
23 union(Generator.allInstances()→select(g | g = t))→size() = 1)
24 and ... (similar path for rule Gen2Transition)

Listing 3. Characterizing state machine nets (lines 1-3), and equivalent source
constraint (lines 5-23).

In the same way, if the target constraint characterizes a
single target model, it is possible to use this method to execute
the model transformation backwards, i.e. use a model finder to
compute source models that produce a specific target model.
Property-based testing and development. During transfor-
mation development, it is useful to be able to specify target
model properties that the transformation ought to obey. Our
method can transform such properties to the source, and then
a model finder can check if the transformation preserves them
and provide (counter-)examples. These can be used as test
cases to test the transformation and its pre-conditions.

In our example, we might want to express that any resulting
Petri net should not contain isolated places or transitions.
For places, the obtained advanced constraint is unsatisfiable
(conveyors cannot be isolated due to the cardinality constraints
of their references). For isolated transitions, the advanced
constraint is satisfiable by lone assemblers and terminators (but
not by lone generators, which are transformed differently).
Contract-based transformation development. Similar to the
previous scenario, our method can translate transformation
contracts to the source context, which then can be checked
using model finders. However, as a difference from the pre-
vious scenario, contracts can specify relations between source
and target meta-models elements, instead of properties of the
target models alone. Nowadays, transformation contracts need
to be checked by exhaustive testing, while our method permits
checking them using model finding [14], [15].

In our example, we might have a contract stating that the
number of transitions in a Petri net should be the same as the
number of conveyors in the source factory model. Listing 4
shows the contract and its translation. We can negate the
resulting source constraint and invoke the solver. In this case,
no witness model is output, indicating that the assumption of
the contract is correct.
1 Transition.allInstances()→size() = Conveyor.allInstances()→size()
2

3 Machine.allInstances()→
4 select(m | m.oclIsKindOf(FAC!Assembler) or m.oclIsKindOf(Terminator))→
5 size() + Generator.allInstances()→size()
6 = Conveyor.allInstances()→size()

Listing 4. Contract (line 1), and equivalent source constraint (lines 3-6).



V. TOOL SUPPORT

The presented method has been implemented for ATL and
is available as part of anATLyzer [5]. The source code, update
site for Eclipse, usage instructions and screencasts can be
found at http://www.miso.es/tools/anATLyzer.html.

Fig. 6 shows a screenshot of the tool. It is fully integrated
in the ATL editor. Transformation pre-conditions, source and
target meta-model constraints, and contracts are written as
regular ATL helpers with additional anATLyzer annotations
(label 1). The Analysis View provides an option to start the
analysis of target constraints and contracts (label 2). They are
converted into advanced constraints which are fed to the USE
validator to search counter-examples. If a counter example is
found, the constraint is violated and a witness model can be
visualized or saved as an XMI file for its debugging (label 3;
advanced constraint and witness for the boundedTok constraint).

1 

2 

3 

Fig. 6. Screenshot of anATLyzer checking target constraints

Finally, we have specific translators to adapt the advanced
constraint output by the method to specific OCL technologies
like ATL and USE (e.g., in ATL the product operation is
not supported and we rewrite the expression to emulate the
behaviour via nested collects and tuples).

VI. EXPERIMENTS

We have evaluated three aspects of our method. First, we
assess whether advancing target constraints and using model
finders (first scenario in Section IV) is useful to find errors

in transformations developed by third parties. Second, as the
method uses model finding, we check whether it leads to
acceptable error finding times. Both aspects are analysed in
Section VI-A. Finally, in Section VI-B, we assess the accuracy
of our method by checking if source models satisfying the
advanced constraint lead to correct target models, and con-
versely, if source models not satisfying it lead to incorrect
target ones. The complete experimental data is available at
http://miso.es/adv models.html

A. Usefulness and performance

First, we evaluate the usefulness of our approach to advance
target constraints from transformations developed by third-
parties. We use the case studies put forward by Büttner and
Cheng in [16], [17]: hsm2fsm, which flattens hierarchical state
machines, and er2rel, which transforms ER diagrams into rela-
tional schemas. Our method has been able to advance all target
meta-model invariants in these transformations. Moreover, we
have fed the advanced constraints into the USE Validator, and
we have successfully verified them obtaining the same results
as the original case studies.

The performance of our method for these cases is shown
in Table III. The solving time includes (i) the overhead of
translating EMF meta-models into USE meta-models, and (ii)
the time of invoking the solver with increasing upper bounds,
from 2 to 5 objects per class. Compared to [16] and [17], our
method is faster (sometimes an order of magnitude) as the
model finder only needs to explore a fragment of the source
meta-model [5], instead of the whole transformation model.
Moreover, our approach is completely automated and produces
a witness model if found. Finally, the time to compute the
advanced constraint (difference between total and solving
time) is negligible.

TABLE III
PERFORMANCE ANALYSIS (TIME IN SECONDS). THE TARGET INVARIANTS

MARKED WITH * ARE NOT ENSURED BY THE TRANSFORMATION.

hsm2fsm Solving time Total time
unique fsm sm names 0.24 0.26
unique fsm state names 0.40 0.38
fsm state multi lower 0.35 0.36
fsm state multi upper 0.44 0.46
fsm transition multi lower 0.39 0.41
fsm transition multi upper 0.42 0.44
fsm transition src multi lower * 0.11 0.13
fsm transition src multi upper 1.35 1.43
fsm transition trg multi lower 0.63 0.67
vfsm transition trg multi upper 0.95 1.03
er2rel Solving time Total time
unique rel schema names 0.15 0.16
unique rel relation names 0.23 0.24
unique rel attribute names * 0.18 0.22
exist rel relation iskey 0.13 0.15

B. Accuracy

Next, we present the results of an evaluation aimed to assess
the accuracy of our method, for which we rely on the precision
and recall metrics. The precision gives a measure of correct-
ness, and in our case, it answers the following question: how

http://www.miso.es/tools/anATLyzer.html
http://miso.es/adv_models.html


many of the input models that satisfy the advanced constraint
generated by our method, actually yield a well-formed target
model? The recall gives a measure of completeness, and in our
case, it answers the following question: how many of the input
models that yield a well-formed target model actually satisfy
the advanced constraint generated by our method? We also
measure the true negative rate, which answers the question:
how many of the input models that yield an incorrect target
model actually do not satisfy the advanced constraint?

In the evaluation, we have considered the transformations
er2rel and hsm2fsm used in Section VI-A, the running example
(fact2pn), and a variant which uses lazy rules (fact2pnlz).
Table IV shows their characteristics.

TABLE IV
SEED TRANSFORMATIONS IN THE EVALUATION.

er2rel hsm2fsm fact2pn fact2pnlz
No. classifiers (src/tar) 5/3 6/6 8/7 8/7
No. attributes (src/tar) 6/4 3/3 4/5 4/5
No. associations (src/tar) 6/2 5/5 5/6 5/6
No. ATL rules (matched/lazy) 6/0 7/0 7/0 5/2
No. ATL rule filters 3 5 5 3
No. invariants (source/target) 7/4 14/10 1/5 1/5
Invariant complexity (total/avg) 88/8 194/8 27/4,5 27/4,5

Since this is a small sample to obtain meaningful results
that can be generalised, we have automatically created new
test cases by mutation of the OCL invariants in the target
meta-models. We have considered the set of OCL mutations
presented in [18], extended with operators that mutate the
name of operations and attributes appearing in the constraints
by others that are compatible. In this way, starting from a
transformation and its meta-models, we have generated new
test cases, each one of them obtained by applying a single
mutation operator to some target meta-model constraint.

Then, for each test case, the evaluation proceeds as shown
in Fig. 7. First, we advance the target constraint to the source.
Next, we use constraint solving to generate two sets of input
models: the first one contains models that satisfy the advanced
constraint, and the second one contains models that violate it.
In both cases, we generate models ensuring coverage of all
classes in the input meta-model [19]. Finally, we execute the
transformation with each input model and check whether the
resulting output model satisfies the original constraints of the
target meta-model. There are four possible outcomes for each
execution: true positive (TP), if the input model satisfies the
advanced constraint and the output model satisfies the target
constraint; false positive (FP), if the input model satisfies the
advanced constraint but the output model does not satisfy
the target constraint; true negative (TN), if the input model
does not satisfy the advanced constraint and the output model
does not satisfy the target constraint; and false negative (FN),
if the input model does not satisfy the advanced constraint,
but the output model satisfies the target constraint. Then, we
calculate precision as #TP

#TP+#FP , recall as #TP
#TP+#FN , and

true negative rate as #TN
#TN+#FP .

Table V shows the results of the evaluation for each seed

      transformation input MM target MM 

c’ 

c 

mutation 

2 
advance(c’) 

model model input test 
model 

model model input test 
model 

TP 
FP 
FN 
TN 

sat 

c’? 

output 
model 

not  

sat ad(c’) sat ad(c’) 

5 

transform 

4 
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3 

Fig. 7. Main steps in the evaluation process.

transformation and its mutants (first four rows) as well as
the aggregated results (last row). The first columns display
the number of mutants generated from the target meta-model
constraints, and the number of input test models that satisfy
(or not) the advanced constraint. Altogether, we have evaluated
our method with 232 target invariants over more than 52.500
input models, and our method has only failed 13 times giving
a single type of FP. In average, each target invariant was tested
with 227 input models, 99 satisfying the source meta-model
invariants and the advanced constraint, and 128 satisfying the
source meta-model invariants but not the advanced constraint.
In all cases, the obtained value for the recall is 1, though the
overall precision and recall is 0,99 due to the FPs in cases
fact2pn and fact2pnlz . This means we obtained almost perfect
accuracy, providing a high level of confidence in our method.

The detected FPs are actually caused by the same mutation
and refer to a limitation of our method to handle 1-to-n
rules. It happens when syntactically correct target invariants
test for impossible reachabilities between target objects (like
the one created by mutation), which however are satisfiable
in the source. Details about this kind of FP are available at
http://miso.es/adv models.html. While this is a rare case, it
can be detected statically, and we will improve our method
accordingly.
Threats to validity. The experiment has considered a low num-
ber of original target invariants (24), though they were mutated
to generate variants, so the final number of evaluated invariants
is higher (232). The problem is that finding transformations
between meta-models with invariants is difficult, and this is the
reason why we used mutation. Moreover, by using mutation,
we have ensured a higher coverage of the OCL language. On
the other hand, the generated input models ensure coverage
of the meta-model, but not of the transformation (which is
interesting because our method uses the transformation to
advance the target constraint, so it makes sense to generate
models that exercise all parts of the transformation); this is up
to future work. Finally, the transformations in the evaluation
cover the most typical ATL features, including matched rules
with several elements in the input pattern and lazy rules;
however, some less frequent ATL features have not been tested
(e.g., rule inheritance and the resolveTemp operation).

http://miso.es/adv_models.html


TABLE V
EVALUATION RESULTS.

mutants input (sat/nosat) TP TN FP FN Precision Recall Tr. neg. rate
er2rel 46 555 (331/224) 331 (59,64%) 224 (40,36%) 0 (0%) 0 (0%) 1 1 1
hsm2fsm 98 11.376 (6.117/5.259) 6.117 (53,77%) 5.259 (46,23%) 0 (0%) 0 (0%) 1 1 1
fact2pn 44 13.182 (5.439/7.743) 5.438 (41,25%) 7.743 (58,74%) 1 (0,01%) 0 (0%) 0,99 1 0,99
fact2pnlz 44 27.569 (11.055/16.514) 11.043 (40,06%) 16.514 (59,90%) 12 (0,04%) 0 (0%) 0,99 1 0,99
total 232 52.682 (22.942/29.740) 22.929 (43,52%) 29.740 (56,45%) 13 (0,0002%) 0 (0%) 0,99 1 0,99

VII. RELATED WORK

The MDE community has devoted many efforts in trans-
formation verification [20], [21], [22], proposing methods
based on model checking [23], transformation into formal
frameworks [24], [25], graph transformation theory [26], de-
duction rules and logic [27], and model finders [13], [28], [29],
among others. Next we compare with the closest verification
approaches, as well as with approaches manipulating OCL
conditions in the context of model transformations.

The expected outcome of a transformation can be expressed
as a contract that may include a pre-condition, a post-condition
and other elements [30]. Guerra et al. [31] derive both input
test models and oracle functions from transformation contracts.
Gogolla et al. [32] propose the notion of tract, a contract that
includes the information needed to test the transformation (i.e.
an input test-suite and a procedure to generate the correspond-
ing outputs). Tracts were originally intended for testing. Our
approach can complement them to automatically draw pre-
conditions from post-conditions, as seen in Listing 4.

To check transformation contracts, some approaches trans-
late model transformations into transformation models [33]
that contain the source and target meta-models, plus OCL
conditions derived from the transformation rules. Then, a
model finder can give completions of partial transformations,
or find source models satisfying or violating some property.
However, the scalability of model finders is very sensitive to
the meta-model size, and big meta-models enlarge the search
space prohibitively [5]. Our method can also be combined
with model finders to synthesize source models that violate
some target constraint when transformed. However, it has
the advantage of a reduced search space, as it only needs
to consider the source meta-model. Moreover, our generated
source constraints can be used in further scenarios, e.g. as
transformation pre-conditions. VeriATL verifies ATL trans-
formations w.r.t. target invariants [28] using a translation to
Boogie. The system includes a proof strategy based on natural
deduction to localize the faulty rules [27]. Our method can be
used for the same purposes with improved performance (see
Section VI-A) and covering a wider range of ATL features.
To help localizing the fault, we output a witness model.

A few works have targeted the synthesis of pre-conditions
for model transformations. For example, Mottu et al. generate
input tests models based on input domain partitioning, and
then, designers must provide a pre-condition for each failed
input [34]. While these pre-conditions are specified by hand,
our approach generate them automatically. Also, even though
its focus is not the synthesis of pre-conditions, model trans-
formation by example [35] aims to infer transformation rules

from examples of source and target models. As a part of this
process, they infer application conditions for the transforma-
tion rules from the set of examples. However, given that target
models are described via examples, the kind of pre-conditions
that can be inferred is very limited.

Our previous work [36] pursues a similar goal but focusing
on endogenous graph transformations. As such, the backwards
reasoning strategy is completely different from the one pre-
sented herein and based on analysing the modification actions
that the rule performs. Instead, in this paper, we analyse the
possible source objects creating the context of objects of a
target constraint, and then use the transformation to translate
the constraint into the source context. In the area of graph
transformation, the advancement of graph constraints has been
studied for in-place transformation [26], [37]. As an exception,
Ehrig et al. [38] propagate constraints from source to target
along transformations specified with triple graph grammars.
However the supported constraints can express only properties
of the form “if P then C”, where P and C are graphs.

Overall, our method has the following advantages: (i) it
can produce pre-conditions/source invariants that ensure tar-
get model correctness, (ii) it can produce source invariants
characterizing source models that get transformed into a given
class of target models, (iii) model finding can be used to ensure
transformation properties with a reduced state space compared
to a more direct approach based on transformation models.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an automated technique to translate
target constraints into the source meta-model of a declarative
model transformation. Hence, any source model satisfying
the advanced constraints will be transformed into a target
model respecting the target constraints. Our method can be
used for several quality tasks around transformations including
bounded verification, property-based testing, and contract-
based development. We have evaluated our method obtaining
very good performance, precision and recall values.

In the future, we will work in the simplification of the
advanced constraints to make them more readable [39], [40].
We will investigate heuristics to convert the derived source
constraints into rule filters, and analyse the possibility of
translating source constraints into the target meta-model.
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[12] A. Schürr, “Specification of graph translators with triple graph gram-
mars,” in Proc WG’94, ser. LNCS, vol. 903. Springer, 1994, pp. 151–
163.

[13] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara, “Verification and valida-
tion of declarative model-to-model transformations through invariants,”
Journal of Systems and Software, vol. 83, no. 2, pp. 283–302, 2010.

[14] A. Vallecillo, M. Gogolla, L. Burgueño, M. Wimmer, and L. Hamann,
“Formal specification and testing of model transformations,” in Formal
Methods for Model-Driven Engineering SFM, ser. LNCS, vol. 7320.
Springer, 2012, pp. 399–437.

[15] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzeg-
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