
Model Transformation Product Lines
Juan de Lara, Esther Guerra

Universidad Autónoma de Madrid (Spain)
Marsha Chechik, Rick Salay
University of Toronto (Canada)

ABSTRACT

Model transformations enable automation in Model-Driven Engi-
neering (MDE) and are key to its success. The emphasis of MDE
on using domain-specific languages has caused a proliferation of
meta-models, many of them capturing variants of base languages.
In this scenario, developing a transformation for a new meta-model
is usually performed manually with no reuse, even if comparable
transformations for similar meta-models exist. This is a suboptimal
process that precludes a wider adoption of MDE in industry.

To improve this situation, we propose applying ideas from soft-
ware product lines to transformation engineering. Our proposal
enables the definition of meta-model product lines to capture the
variability within a domain, on top of which transformations can be
defined in a modular way. We call this construction transformation
product line (TPL), and propose mechanisms for their construc-
tion, extension and analysis. TPLs are supported by a tool, Merlin,
which is agnostic to the transformation language and lifts analyses
based on model finding to the TPL. Finally, we report on an evalua-
tion showing the benefits of building and analysing TPLs compared
to building and analysing each individual transformation.

CCS CONCEPTS

• Software and its engineering→ Reusability; Domain specific
languages; Formal software verification;

KEYWORDS

Product Lines, Model Transformations, Reusability
ACM Reference Format:

Juan de Lara, Esther Guerra and Marsha Chechik, Rick Salay. 2018. Model
Transformation Product Lines. In ACM/IEEE 21th International Conference
on Model Driven Engineering Languages and Systems (MODELS ’18), October
14–19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3239372.3239377

1 INTRODUCTION

Model-Driven Engineering (MDE) uses models and transformations
to automate the software process [43]. The syntax of models is de-
fined by meta-models, capturing the relevant aspects of a domain.
Often, meta-models are variations of a base language (e.g., state ma-
chines) with alternative realizations of some aspect (e.g., transitions
represented as classes or references) or with primitives of differ-
ent expressive power (e.g., parallel regions or nested states) [39].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239377

Different communities have proposed variants of modelling lan-
guages tailored to a specific range of problems, like variants of Petri
nets [33], state machines [15] or meta-modelling notations [22].

This proliferation of meta-models entails the development of
specific transformations (e.g., simulators, optimizers, translators
between languages, or code generators) for each of them. How-
ever, developing transformations from scratch is costly and error-
prone [9]. Although transformation reuse techniques have been
proposed [8, 10–12, 26, 45, 50], cost-effective methods to systemati-
cally build transformations for language families are missing.

To improve this situation, we bring ideas from Software Product
Lines (SPLs) [35] to the construction of model transformations.
Specifically, we propose the notion of meta-model product line
(MMPL) [17] as a compact representation of a family of meta-model
variants, each of which can be produced via a feature configuration.
This way, a model transformation can be defined over an MMPL,
giving rise to a transformation product line (TPL).

TPLs enable a succinct description of the variants of a transfor-
mation for a family of meta-models. They build on two abstrac-
tions that facilitate their construction in an extensible manner:
concepts [11], and transformation specifications. Concepts are meta-
models capturing the essential elements of a meta-model set (an
MMPL). Transformation specifications are typed over a concept
and specify the structure (operations, rules) and contracts that each
implementation variant needs to fulfil. Hence, they ensure that all
variants have the same intent [42]. Scalability of TPLs is achieved
by composition techniques [2], so that adding a new meta-model
variant only requires adding localized transformation fragments. Fi-
nally, meta-model consistency and contract analysis is leveraged to
the TPL level, which improves the efficiency compared to analysing
each meta-model and transformation variant separately.

We have implemented these ideas in Merlin, a tool agnostic of
the transformation language. As illustration, we build TPLs for the
Epsilon Object Language (EOL) [23]. We also show experiments
indicating benefits of TPLs in terms of size reduction and analysis
performance w.r.t. working with individual transformations.

This paper makes the following contributions: (i) a novel notion
of TPL that supports the modular construction of transformation
variants for a family of meta-models; (ii) analysis techniques ap-
plicable to TPLs; (iii) a prototype tool that permits building and
analysing TPLs; (iv) experiments that evaluate the benefits of TPLs
in terms of succinctness and analysis performance.

Paper organization. Sects. 2 and 3 introduce a running example
and background on MMPLs. Next, Sect. 4 defines TPLs and Sect. 5
composition operators. Sect. 6 presents analysis techniques for TPLs
and Sect. 7 tool support. Sect. 8 reports on an evaluation. Sect. 9
discusses related research, and Sect. 10 concludes the paper.

2 RUNNING EXAMPLE

As a specific transformation example, assume we would like to
build a simulator for a set of Petri net variants [33]. A Petri net is a

https://doi.org/10.1145/3239372.3239377
https://doi.org/10.1145/3239372.3239377

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark J. de Lara et al.

mandatory optional

alternative or

PetriNets

Tokens

Feature diagram

Simple Object

Priority

FM = �{PetriNets, Tokens, Simple, Object, Arcs, Inhibitor, Read, Priority, Bounded},
PetriNets � Tokens � Arcs � ((Simple � ꞀObject) � (ꞀSimple � Object))�

Arcs

Inhibitor Read

Bounded

Legend

Figure 1: Feature model for variants of Petri nets.

bi-partite graph made of two kinds of nodes: transitions and places.
Transitions can have any number of input and output places, while
places may contain zero or more tokens. The simulation of a Petri
net consists of finding enabled transitions and firing them. In basic
Petri nets, a transition is enabled when every input place has at
least one token. Firing a transition subtracts one token from every
input place and adds one token to every output place.

Meta-models for Petri nets may represent tokens in different
ways (as attributes in places or as a class), and may include or
not some Petri nets extensions proposed in the literature [33]. In
this example, we consider inhibitor arcs disabling a transition if
the connecting place has tokens; read arcs whose connecting place
must have tokens for a transition to be enabled, but maintains the
tokens when the transition fires; transitions with priorities defining
a firing order when several transitions are enabled; and bounded
places that can hold up to a maximum number of tokens, preventing
a transition firing if that makes a place exceed the bound.

Combining these six features yields 32 different types of Petri
nets. Creating and maintaining meta-models and simulators for all
of them is costly and error-prone. Moreover, introducing a new
independent feature (e.g., reset arcs) causes an exponential growth
in the number of Petri net variants (64 when adding reset arcs)
and their associated simulators. Without proper support, building,
maintaining and selecting suitable variants among the set becomes
difficult. Hence, we propose TPLs to tackle this problem.

3 META-MODEL PRODUCT LINES

TPLs build on MMPLs. Hence, this section introduces the notions
of MMPL, configuration and product derivation, based on an anno-
tative approach from our previous work [17].

Def. 1 (Feature model) A feature model FM = (F ,ϕ) consists of a set
of features F and a propositional formula ϕ defining the allowable
feature configurations. A feature model FM ′ = (F ′,ϕ ′) is said to
extend FM (written FM ⊑ FM ′) if F ⊆ F ′ and ϕ ′ ⇒ ϕ.

Example. Fig. 1 shows a feature model representing the considered
types of Petri nets. The upper part uses the feature diagram no-
tation [20], and the bottom part uses Def. 1. The feature model
requires choosing between two alternative representations for to-
kens (Simple or Object), and selecting any combination of Inhibitor,
Read, Priority, and Bounded. An extension of the feature model may
add new features to F and conjoin additional clauses to ϕ.

MMPLs are defined on top of a standard notion ofmeta-model [32].

Def. 2 (Meta-model) A meta-model is a tupleMM = (C, FI , I ,WC)
where:
• C is a set of classes, some of which may be abstract;
• FI is a set of attributes and references called fieldswhere each field
is owned by exactly one class and has cardinality [min..max];

ins
Place

itokens: int
bound: int

PetriNet

Transition

outs

places

Simple

1
* trans *

1

Token ctokens
*

1

Object
Object

*
* priority: double

read* Read

Priority

*
inh Inhibitor

Bounded

boundedTokens1 inv:
itokens<=bound

Bounded � Simple

boundedTokens2 inv:
ctokens→size()<=bound

Bounded � Object

Figure 2: 150MM for the Petri net variants.

• I ⊆ C ×C is the class inheritance relation;
• WC is a set of well-formedness constraints called invariants, each
of which is assigned to exactly one class.

In practice, we specify invariants using OCL [36]. Next, we define
criteria for meta-model well-formedness.

Def. 3 (Meta-model well-formedness) A meta-model has a well-
formed structure iff (1) every field is owned by a class, (2) every ref-
erence points to a class, (3) cardinality and inheritance are uniquely
determined, and (4) there are no inheritance cycles. A meta-model
is well-formed iff it has a well-formed structure and its invariants
are syntactically correct.

A meta-model product line (MMPL) allows representing meta-
model variants of a family of related languages.

Def. 4 (Meta-model product line [17]) A meta-model product line is a
tupleMMPL = (FM,MM,Φ), where1:

• FM = (F ,ϕMMPL) is a feature model;
• MM = (C, FI , I ,WC) is a meta-model with well-formed struc-
ture, called the 150% meta-model (150MM in short);
• Φ is a tuple of mappings (ΦC ,ΦFI ,ΦWC) from the feature model
to the 150MM. Each mapping ΦX , for X ∈ {C, FI ,WC}, consists
of pairs ⟨x,Φx ⟩ mapping an element (a class, a field, or an invari-
ant) x ∈ X to a propositional formula Φx over features, called
the presence condition (PC). We require that the PC of a field f
be stronger than that of its owning class Ci (i.e., we have an
implication Φf ⇒ ΦCi), and same for invariants.

The 150MM collects all elements in all meta-models of the MMPL.
Its elements are decorated with PCs over the features F in FM . An
element is present in a meta-model when its PC evaluates to true.

Example. Fig. 2 shows the 150MM for the running example. It is
decorated with PCs, depicted as blue boxes on top of classes, fields
and invariants. For example, the attribute Place.itokens is present
when the PC Simple is true, while invariant boundedTokens1 appears
if the formula Bounded∧Simple is satisfied.

Invariants over the 150MM must be aware of the structural vari-
ability of each variant. In our case, the two alternative represen-
tations for tokens requires duplicating invariant boundedTokens to
cover both. Sect. 4.1 introduces concepts to avoid this problem.

Def. 5 (Feature configuration [41]) A valid feature configuration ρ of
a product lineMMPL with a feature model FM = (F ,ϕMMPL) is a
subset of its features satisfyingϕMMPL, i.e.,ϕMMPL evaluates to true
when each variable f ∈ ϕMMPL is substituted by true when f ∈ ρ,

1We use MMPL (italics) to denote the tuple name, and MMPL for the acronym.

Model Transformation Product Lines MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Place
itokens: int
bound: int

Transition

places
1

* trans *
1

boundedTokens1 inv: itokens<=bound

ins

outs
*

*
inh*

PetriNet

(a) ⟨Simple, Inhibitor, Bounded⟩

ins
Place

PetriNet

Transition

outs

places 1
* trans *

1

Token
ctokens *

1

*
* priority: double

read*

(b) ⟨Object, Read, Priority⟩

Figure 3: Meta-models derived from two configurations.

Concept
transf.
impl.

«typed
on»

MM1 MMn

binding1 bindingn

…

…

Concept
«typed

on»

binding PL

MMPL

transf.
impl. PL

transf.
spec.

«implements»

«extends»

Reusable MT Transformation Product Line

(a) (b)

Figure 4: From (a) reusable transformations to (b) TPLs.

and false otherwise. We write ϕMMPL[ρ] to denote this evaluation,
and P = {ρi }i ∈I for the set of all valid configurations.

Example. The MMPL in Figs. 1 and 2 admits 32 configurations. Some
of them are: P = {⟨Simple⟩, ⟨Simple, Inhibitor, Bounded⟩, ⟨Object, Read,
Priority⟩, . . . } (where configurations only show leaf features).

Def. 6 (Meta-model derivation) A meta-modelMMρ is derived from
a product line MMPL using a configuration ρ ∈ P ifMMρ contains
exactly those elements from the 150MM whose PCs are satisfied
for the features in ρ. We write Prod(MMPL) for the set of all meta-
models derivable from MMPL.

Example. Fig. 3 shows two meta-models derived from the 150MM in
Fig. 2. They correspond to two feature configurations, and contain
the classes, fields and invariants of the 150MM whose PC is true for
the selected features, while the rest of the elements are deleted.

A well-formed 150MM may still produce meta-models which are
themselves not well-formed. We thus define an additional notion,
that of MMPL well-formedness, as follows:

Def. 7 (Well-formed MMPL) A product line MMPL is well-formed
iff every meta-modelMM ∈ Prod(MMPL) is well-formed.

MMPLs can be checked for well-formedness without checking
every derivable meta-model [17]. Here, we assume well-formed
MMPLs, as our focus is on TPLs.

4 TRANSFORMATION PRODUCT LINES

In previous work, we used concepts [11] as the reuse interface of
transformations (cf. Fig. 4(a)). A concept is a minimal meta-model
containing exactly the structural elements required by a transfor-
mation. Reuse is possible by binding the concept to specific meta-
models (MM1,..., MMn in the figure). A binding is made of a set of
expressions stating how each element in the concept is realized in
a specific meta-model.

Concept-based reuse is open, as the transformation can be reused
with new meta-models if a binding is provided. In this paper, we
aim at providing a systematic, cost-effective way to define reusable
transformations for a possibly large but closed set of language

ins
Place

tokens: int

PetriNet

Transition
outs

places * trans *

*
*

posTokens inv:
self.tokens >= 0

(a) Using explicit structure

PetriNet
+places(): Place[*]
+trans(): Transition[*]

Place
+tokens(): int

Transition
+ins(): Place[*]
+outs(): Place[*]

posTokens inv:
self.tokens() >= 0

(b) Using operations

Figure 5: Concept for Petri nets.

variants. We capture such a set by an MMPL, and provide a succinct
way to specify bindings from the concept to each meta-model in the
family via a binding product line (PL) (cf. Fig. 4(b)). A tuple made of
a concept, a binding PL, and an MMPL is called a conceptual MMPL
(CMMPL). This is introduced in Sect. 4.1.

We use concepts for two purposes. First, to express expectations
on any meta-model variant of an MMPL. For this purpose, we
extend concepts to include invariants. Second, to abstract away the
dissimilarities between the meta-model variants within an MMPL.
This simplifies the encoding of invariants and transformations.

Our reusable transformations are PLs themselves (TPLs). Thus,
they need to be aware of the variability of the modelling language
(the MMPL), and may introduce variants themselves (e.g., a simula-
tor that fires all non-conflicting enabled transitions concurrently vs.
a sequential simulator). This means that the feature model of the
TPL may extend that of the MMPL. Such a feature model becomes
the reuse interface of the TPL. This simplifies reuse as a transfor-
mation can become reused by just selecting a configuration, while
in Fig. 4(a), a binding to a meta-model is also required.

To facilitate TPL construction and extension, we split its defi-
nition into two parts: a transformation specification, and a PL of
transformation implementations. A specification is a template that
declares the transformation structure (rules in the case of rule-
based languages, or methods in the case of object-oriented model
management languages like EOL [23]). It may also specify OCL con-
tracts [31, 36] stating expectations on the possible implementation
variants of the template parts (rules, methods). An implementation
consists of rule or method bodies guarded by PCs. A TPL so defined
can be bound to a CMMPL (cf. Fig. 4(b)) resulting in a bounded TPL.
TPLs and bounded TPLs are presented in Sect. 4.2.

4.1 Conceptual MMPLs

Concepts capture the essential elements of a set of meta-models,
and express expectations on their instances. Just like when design-
ing a meta-model for a domain, a concept should include primitives
and invariants applicable to all language variants. Hence, it con-
tains all common elements of an MMPL, plus a primitive for each
alternative set of features. This facilitates writing invariants and
transformations for all meta-models in the MMPL, and ensures
common properties among their instances.

Example. Fig. 5(a) shows a concept for the example MMPL. It con-
tains the elements common to all meta-models, and a primitive
tokens unifying the way in which the different variants express
tokens. In addition, the concept adds an invariant stating that no
model, in any variant, can have places with negative tokens.

Given a concept, each meta-model in the MMPL needs to declare
how it realizes the concept elements. This is called a binding. The

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark J. de Lara et al.

binding for the common parts is the identity and can be generated
automatically. The binding for the extra elements (e.g., tokens) de-
pends on the variant, and hence, it consists of a set of expressions
with PCs stating how the element is realized in each variant.

Although some DSLs have been designed to express bindings [8],
we follow a pragmatic approach for their specification: we abstract
the fields in the concept as operations (cf. Fig. 5(b)), so that the
binding consists of OCL expressions implementing each operation.
Example. Listing 1 shows the binding PL for the running example.
Binding the common parts to all meta-models is done through
identity expressions (lines 1–6). For the additional element tokens(),
we provide two binding variants corresponding to features Simple
and Object (lines 8–9). By defining a binding PL, we avoid creating a
separate binding for each one of the 32 meta-models of the MMPL.

1 context PetriNet
2 def: places() : Place[∗] = self.places
3 def: trans() : Transition[∗] = self.trans
4 context Transition
5 def: ins() : Place[∗] = self.ins
6 def: outs() : Place[∗] = self.outs
7 context Place
8 [Simple] def: tokens() : Integer = self.itokens
9 [Object] def: tokens() : Integer = self.ctokens→size()

Listing 1: Binding PL for the Petri net MMPL.

Def. 8 (Conceptual MMPL) A conceptual MMPL, called CMMPL, is a
tuple CMMPL = ⟨MMPL, SC, β⟩, where:
• MMPL is a meta-model product line;
• SC = ⟨CSC , FISC , ISC ,WCSC ⟩ is ameta-model, called the concept,
where CSC ⊆ C (with C the set of classes of the 150MM);
• β = {⟨c . fi ,bi ,Φbi ⟩}i ∈I is a set of tuples (called binding PL) where
c is a class in CSC , fi is a field owned by c , bi is an expression
(called binding) which returns a result compatible with fi , and
Φbi is the PC of the binding bi .

We require that each binding from a field fi returns a value
compatible with fi . That means that if fi has a primitive type, the
binding returns a value of that type, and if fi is a reference, the
binding returns an object of the class pointed to by the reference, or
a subclass. Additionally, the cardinality of fi needs to be respected.
We do not deal here with techniques to check the validity of the
binding expressions, analysed in detail in [8].

The concept abstracts different realizations of the same element
in the MMPL. For example, tokens() unifies the realization of to-
kens for features Simple and Object. This simplifies the encoding of
invariants and transformations.
Example. By using the concept, the two invariants in Figure 2 can
be replaced by the one in Listing 2, which uses tokens(). The PC is
also simplified as the new invariant is applicable whenever Bounded
is selected, regardless of the selection of Simple or Object.

1 context Place
2 [Bounded] inv boundedTokens: self.tokens()<=bound

Listing 2: Simplified boundedTok invariant.

There are two aspects to check on a CMMPL: if the binding PL
provides exactly one binding for each field of the concept (well-
formedness), and if all instances of all meta-models of the MMPL
satisfy the invariants introduced by the concept (consistency).

Def. 9 (Well-formed, consistent CMMPL) CMMPL = ⟨MMPL, SC =
⟨CSC , FISC , ISC ,WCSC ⟩, β⟩ iswell-formed ifMMPL is well-formed,
and each field in SC is bound exactly once in each configuration:

∀ρ ∈ P ∀f ∈ FISC • ∃!⟨f ,b,Φb ⟩ ∈ β s .t . Φb [ρ] = true

A well-formed CMMPL is consistent if every instance M of every
MM ∈ Prod(MMPL) satisfies all invariants inWCSC .

Well-formedness requires each derivable meta-model to have
a correct binding to the concept. In Sect. 6.1, we show how to
analyse this without generating every meta-model of the MMPL,
as this may be computationally expensive. Regarding consistency,
concepts may introduce invariants applicable to all meta-models in
the MMPL. For example, the invariant in Fig. 5 disallows negative
tokens in every meta-model. This invariant fails in meta-models
derived from configurations that select feature Simple, as attribute
itokens may be negative, but it is satisfied in meta-models with
feature Object, as the size of collection ctokens cannot be negative.
Sect. 6.2 introduces a technique for checking this property without
analysing every meta-model in the MMPL.

4.2 Transformation product lines

Transformation behaviour may vary between language variants.
For example, the enablement of transitions differs in the considered
Petri net variants (all combinations of Read, Bounded and Inhibitor),
and their firing depends on whether they have priorities. Moreover,
a transformation may define its own variants (e.g., a concurrent
simulator, or a sequential one). To cope with this complexity, we
define transformations atop transformation specifications (specs)
specifying their structure (methods, rules) and contracts for their
implementation. Individual variants contribute implementations
for the spec, resulting in a TPL.

Def. 10 (Transformation definition) A transformation definition is a
tuple TD = ⟨MM,R,BO,CN ⟩, where:

• MM is a meta-model;
• R is a set of rule signatures typed byMM ;
• BO is a set of rule bodies typed by MM , each one owned by
exactly a rule signature;
• CN is a set of contracts typed byMM , each one owned by exactly
a rule signature.

⟨R,CN ⟩ is called a transformation specification. If each rule signature
has (at least) a body, TD is called an implementation.

Def. 10 deliberately abstracts awaymany elements of transforma-
tion languages to focus on the essentials required for TPLs. Under
this abstraction, R may contain methods, helpers, or rules. The set
CN of contracts may be empty; however, contracts for TPLs are use-
ful for two reasons. First, they provide guidelines that developers
implementing rules for a variant should follow. Second, they allow
using analysis methods for contract proving [7, 16, 27]. These may
be unavailable for some transformation languages (e.g., ATL, ETL),
but for query helpers where both contract and implementation are
in OCL, one can resort to model finding, as Sect. 6.2 shows.

As a correctness condition for transformation definitions, we
require each rule signature to have exactly one body, which must
satisfy the rule contract.

Model Transformation Product Lines MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Place

Transition

+modify(t : int):
 post: self@pre.tokens()+t = self.tokens()

+enabled(): boolean {query}
 post: enabled() implies ins()→forAll(p | p.tokens()>0) and
 not enabled() implies ins()→exists(p | p.tokens()=0)
+fire():
 post: ins()→excludingAll(outs())→forAll(p|p@pre.tokens()<p.tokens()) and
 outs()→excludingAll(ins())→forAll(p|p@pre.tokens()>p.tokens())

PetriNet

+simulate(): boolean
 post: trans()→select(t|t.enabled())→isEmpty()
+step(): boolean
 post: step() implies self@pre.trans()→exists(t|t.enabled())
+pick(s : Set(Transition)): Transition {query}
 pre: s→size()>0 and s→forAll(t|t.enabled())
 post: s→includes(result)

Figure 6: Specification of a simulator for Petri nets.

Def. 11 (Well-formed and consistent transformation definition) A
transformation definition is well-formed if each rule signature has
exactly one body. It is consistent if it is well-formed and each body
satisfies the contract of the owner rule.

Example. Fig. 6 shows the simulator spec. The simulator is written
in EOL. EOL uses an object-oriented approach, where rules (set R)
are class methods, and bodies (set BO) are written in an extension
of OCL with imperative constructs. Thus, the spec has the form
of a set of method signatures defined in the context of concept
classes, plus pre/postconditions expressed in OCL (set CN). For
rule-based languages, like ATL [19] or ETL [24], a spec is comprised
of helper signatures and rules. Some of these languages support
OCL contracts [24], but others would require a different treatment,
like embedding OCL into special comments.

The simulator is made of six methods, with simulate as the entry
point. As its postcondition specifies, no transition should be enabled
after the simulation finishes. Method step performs a simulation
step, picking an enabled transition and firing it. It returns true if
some transition was enabled. Method pick selects the transition to
be fired from a set of enabled transitions. Class Place defines the
methodmodifywhich changes the number of tokens. Class Transition
has two methods: enabled and fire. The former is a query checking
if all its input places have tokens. Method fire deletes tokens from
the input places and adds tokens to the output places. The exact
number of tokens is open, as some variants (e.g., weighted arcs) may
add or delete several tokens. Note that contracts can use operations
defined in the transformation or the concept (like tokens()), which
makes them applicable to all meta-models in the MMPL.

While the body of some methods is common to all variants, oth-
ers are different. Hence, a TPL is a transformation implementation
where rule bodies have PCs over a feature model.

Def. 12 (Transformation product line and derivation) A TPL is a tuple
TPL = ⟨TD, FMI ,ΦBO ⟩ where:
• TD = ⟨MM,R,BO,CN ⟩ is a transformation implementation;
• FMI = ⟨FI ,ϕI ⟩ is a feature model;
• ΦBO = {Φbo |bo ∈ BO} is a set of PCs of the rule bodies, mapping
elements of BO to propositional formulas over features FI .

Given configuration ρ of FMI , implementationTDρ is derived from
TPL if TDρ contains exactly those bodies whose PC is true for the
features in ρ. Prod(TPL) is the set of all derivable implementations.

Example. In the example, methods pick and enabled are queries which
we express in OCL for better analysability, while the rest of the
methods change the net state and are expressed in EOL. Listing 3
shows the EOL operationmodify. It has two versions that correspond
to the PCs Simple and Object. Listing 4 shows some variants of the
OCL queries pick and enabled. The former has two variants which
depend on whether Priority is selected. Method enabled has a variant
for every combination of features Inhibitor, Read and Bounded. This is
not satisfying for two reasons: (1) building all these variants by hand
is error-prone and (2) in the case of pick, defining the variant for
Priority (lines 3–4 in Listing 4) requires changing the PC of existing
variants (in this case to not Priority, see line 2), which means that
adding new variants is not modular. Sect. 5 solves both problems
with the addition of merging semantics (to solve the problem with
enabled) and overriding policies (to solve the problem with pick).
1 [Simple] operation Place modify(t : Integer) { self.itokens += t; }
2 [Object] operation Place modify(t : Integer) {
3 if (t>0) for (i in Sequence{1..t}) self.ctokens.add(new Token);
4 ... }
5 ...

Listing 3: TPL: EOL methods (excerpt).

1 context PetriNet
2 [not Priority] def: pick(s: Set(Transition)): Transition= s→any(true)
3 [Priority] def: pick(s: Set(Transition)): Transition=
4 s→select(t | not s→exists(t1 | t1.priority>t.priority))→any(true)
5
6 context Transition
7 [not (Inhibitor or Read or Bounded)]
8 def: enabled() : Boolean = self.ins()→forAll(tokens()>0)
9 [Inhibitor and not (Read or Bounded)]
10 def: enabled() : Boolean = self.ins()→forAll(tokens()>0) and
11 self.inh→forAll(tokens()=0)
12 [Inhibitor and Read and not Bounded]
13 def: enabled() : Boolean = self.ins()→forAll(tokens()>0) and
14 self.inh→forAll(tokens()=0) and
15 self.read→forAll(p.tokens()>0)
16 ...

Listing 4: TPL: OCL queries (excerpt).

Next, we define well-formedness and consistency of TPLs.

Def. 13 (Well-formed and consistent TPL) TPL is well-formed (resp.
consistent) if ∀TD ∈ Prod(TPL),TD is well-formed (resp. consistent).

While a TPL adds variability to a transformation using a feature
model, our goal is to define reusable transformations for a family
of languages. Hence, we couple the TPL with CMMPLs, requiring
that the feature model of the TPL extends that of the CMMPL. We
call this construct bounded TPL.

Def. 14 (Bounded TPL and derivation) A bounded TPL is a tuple
BTPL = ⟨CMMPL, TPL⟩ where:
• CMMPL = ⟨MMPL = (FM,MM,Φ), SC, β⟩ is a conceptualMMPL;
• TPL = ⟨TD = ⟨SC,R,BO,CN ⟩, FMI ,ΦBO ⟩ is a TPL typed by the
concept SC in CMMPL, where FM ⊑ FMI .

Given a configuration ρ of FMI , an implementation TDρ is derived
from TPL if TDρ contains exactly those bodies whose PC is true
for the features in ρ, and in addition, operations for exactly those
binding expressions whose PC evaluates to true.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark J. de Lara et al.

Example. Listing 5 shows an excerpt of the implementation derived
for configuration ⟨Simple⟩. It contains the version of modify for
Simple (line 2, in EOL), the version of pick for ¬Priority (line 5, in
OCL) and the version of enabled applicable when none of Inhibitor,
Read or Bound are selected (line 7, in OCL). It also contains the
version of binding tokens() for Simple (line 9), and the bindings in
lines 1–6 of Listing 1 (not shown in Listing 5).
1 −− EOL:
2 operation Place modify(t : Integer) { self.itokens += t; }
3 −− OCL:
4 context PetriNet
5 def: pick(s: Set(Transition)): Transition= s→any(true)
6 context Transition
7 def: enabled() : Boolean = self.ins()→forAll(tokens()>0)
8 context Place
9 def: tokens() : Integer = self.itokens −− from binding

Listing 5: A derived implementation (excerpt).

A bounded TPL BTPL is well-formed (resp. consistent) if CMMPL
and TPL are well-formed (resp. consistent). BTPL is semi-consistent
if CMMPL is consistent and TPL is well-formed. We show how to
check semi-consistency in Sect. 6.1.

5 COMPOSING RULE BODIES

To avoid the combinatorial explosion of feature combinations, we
introduce two composition operators for combining rule bodies in
a modular way: override (Sect. 5.1) and merge (Sect. 5.2).

5.1 Override

We propose a mechanism to define precedence between rule vari-
ants whose PC is true in a certain configuration ρ. We took inspira-
tion from overriding mechanisms in object orientation, but in our
case, the selected rule body is given by the relationship between
their PCs. Our default overriding mechanism is as follows: a body
bo1 for rule r with PC Φbo1 can override a body bo2 for r with PC
Φbo2 , if Φbo1 ⇒ Φbo2 . This means that bo1 is more specific than bo2.
Hence, bo1 is selected in configurations where Φbo1 is true regard-
less of whether Φbo2 is true or not, while bo2 is selected when Φbo2
is true and Φbo1 is false. We call this mechanism “override super”.
Example. Listing 6 shows an implementation of pick that makes
use of the proposed override mechanism. The Priority variant (lines
4–5) overrides the variant with PC true (line 2). This is possible
because Priority⇒true. In OCL, we indicate overriding using spe-
cial annotations in comments (see line 3). Overriding makes the
approach more modular because adding a new variant does not
require changing the PC of more general variants.
1 context PetriNet
2 def: pick(s : Set(Transition)): Transition = s→any(true)
3 −−@Override super
4 [Priority] def: pick(s : Set(Transition)): Transition =
5 s→select(t | not s→exists(t1 | t1.priority> t.priority))→any(true)

Listing 6: Variants of pick defined using overriding.

Conversely to “override super”, “override subs” permits giving
precedence to more general bodies over more specific ones. Finally,
if there are several bodies, none of which is more general or specific
than the others, “override all” can be used to designate one of them
as overriding the rest. In any of the three cases, wewriteboi

ovr
−→ boj

to indicate that body boi overrides boj .

5.2 Merge

If the PC of several rule variants is true for a given configuration,
another option is composing their bodies. For this purpose, we
provide merge operators which depend on the signature of the rule:
• for boolean queries: operators and, or;
• for queries returning a collection: union, intersection;
• for queries returning an integer: arithmetical operations;
• for operations changing state: sequential composition of actions.

We write boi
mrд op
←→ boj to indicate that bodies boi and boj are

to be merged using operator op (and omit op if not needed). To have
deterministic results, we restrict to commutative and associative
operators. To be independent of composition order, we require each
body to be tagged with the same operator across configurations.
Example. Listing 7 illustrates the use of merge operators to simplify
the definition of query enabled. Without them, we need to define
a rule variant for all possible combinations of Inhibitor, Read and
Bounded (Listing 4 shows three of such combinations). Instead, we
can specify a most general variant with PC true (line 2), and then
more specific variants for each feature, which are conjoined with
the rest (merge and). This way, only four body variants instead of
eight are needed to obtain all behaviours. Moreover, the approach
becomes modular, as adding a new feature (e.g., reset arcs) amounts
to adding a new body and a merge annotation.
1 context Transition
2 def: enabled(): Boolean = ins()→forAll(tokens()>0)
3 −−@Merge and
4 [Inhibitor] def: enabled(): Boolean = inh→forAll(tokens()=0)
5 −−@Merge and
6 [Read] def: enabled(): Boolean = read→forAll(tokens()>0)
7 −−@Merge and
8 [Bounded] def: enabled(): Boolean=outs()→forAll(tokens()<bound)

Listing 7: Variants of enabled defined using merge.

6 ANALYSING TPLs

This section proposesmethods to analysewell-formedness (Sect. 6.1)
and consistency (Sect. 6.2). In both cases, we perform the analysis
at the TPL level to gain efficiency, avoiding the separate analyses
of each meta-model and transformation.

6.1 Analysing well-formedness

First, we deal with CMMPL well-formedness, which demands ex-
actly one binding for each field in the concept, for each possible
configuration. Thm. 1 shows how to perform this analysis without
enumerating all configurations. We assume well-formedness of the
MMPL, an analysis that we lifted to the PL level in [17].

Thm. 1 (CMMPL well-formedness) Given a well-formed meta-model
PLMMPL,CMMPL = ⟨MMPL, SC, β⟩ is well-formed iff ∀f ∈ FISC :
(1) There are no binding collisions (no two different binding expres-

sions for the same field are selected by a configuration):
∀⟨f ,bi ,Φbi ⟩,∀⟨f ,bj ,Φbj ⟩ ∈ β • (bi , bj) ⇒

UNSAT (Φbi ∧ Φbj ∧ ϕMMPL)
(1)

(2) There is full coverage of all configurations:

UNSAT (ϕMMPL ∧
∧

⟨f ,bi ,Φbi ⟩∈β

¬Φbi) (2)

Model Transformation Product Lines MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

withUNSAT (Φ) a predicate that holds if Φ is unsatisfiable.

Proof. By Def. 9, to show thatCMMPL is well-formed we must
show there is a unique binding for each field in each configuration:

∀ρ ∈ P ∀f ∈ FISC • ∃!⟨f ,b,Φb ⟩ ∈ β s .t . Φb [ρ] = true

By Defs. 4 and 8, any valid configuration must satisfy ϕMMPL .
Choose some field f ∈ FISC . If Equation (2) holds, then there must
exist a binding for f in some valid configuration since not all the
binding PCs can be false. If Equation (1) holds, then the binding
for f must be unique since for any two distinct bindings bi and bj ,
their PCs Φbi and Φbj cannot be mutually satisfiable for any valid
configuration. Thus, Equations (1) and (2) hold for f iff there exists
a unique binding in each valid configuration. �

Additionally, we check for well-formedness of TPLs (see Def. 13).
This amounts to ensuring that all rules in the TPL have exactly one
body in each possible configuration.

Thm. 2 (TPLwell-formedness) A transformation PLTPL = ⟨TD, FMI =

⟨FI ,ϕI ⟩,ΦBO ⟩ is well-formed iff:
(1) There are no body collisions:
∀Φboi ,Φboj ∈ΦBO • (boi , boj) ⇒

(UNSAT (Φboi ∧ Φboj ∧ ϕI)∨

boi
ovr
−→ boj ∨ boj

ovr
−→ boi ∨ boi

mrд
←→ boj)

(3)

(2) There is full coverage of all configurations:

UNSAT (ϕI ∧
∧

Φboi ∈ΦBO

¬Φboi) (4)

The proof of Thm. 2 follows the same pattern as the one of
Thm. 1. Equation (3) requires either a unique body, or, if two bodies
overlap, one overrides the other or both are merged. Equation (4)
requires coverability of all configurations.

6.2 Analysing consistency

If contracts are specified in OCL, it is possible to verify them over
each product meta-model with existing techniques [7, 16, 27]. How-
ever, the number of meta-models in a TPL may grow exponentially,
and so we do not analyse consistency and contracts over each meta-
model, but we lift the analyses to the TPL level. This way, we build
an extended version of the 150MM which embeds all meta-model
variants, the OCL queries and contracts of all transformation vari-
ants, and the configurations of the MMPL. Then, we use a model
finder to search for an instance of this extended meta-model that
exemplifies (or falsifies, if no model is found) an inconsistency or a
contract violation. Our analysis consists of the following steps:
(1) Embedding feature model and PCs. First, we build an extended
version of the 150MM that contains the meta-model elements intro-
duced by every variant, invariants emulating the semantics of the
PCs, and an additional class FMC with a boolean field for each fea-
ture in the feature model and an invariant controlling the allowed
configurations. We call it feature-explicit meta-model (FEMM) [17].
Example. Fig. 7 shows an excerpt of the FEMM derived from the
feature model and the 150MM in Figs. 1 and 2. In the FEMM, all
meta-model classes inherit from an abstract class BC which holds a
reference to class FMC. This way, every class has access to the field

ins Place

itokens: int[0..1]

bound: int[0..1]

PetriNet

Transition

outs

places
1

* trans *

1

Token
ctokens

* 1
*

* priority: double[0..1]

read
*

*
inh

FMC

PetriNets: boolean

Tokens: boolean

Simple: boolean

Object: boolean

Arcs: boolean

Inhibitor: boolean

Read: boolean

Priority: boolean

Bounded: boolean

BC
fm

1

ΦMMPL inv:

 PetriNets and Tokens and Arcs

 and ((Simple and not Object) or

 (not Simple and Object))

wc-Token inv:

 not Object implies

 Token.allInstances()→size() = 0

wc-priority inv:…

wc-inh inv:…

wc-read inv:…

wc-ctokens inv:

 not fm.Object implies ctokens→size()=0

wc-itokens inv:

 if not fm.Simple

 then itokens.oclIsUndefined()

 else not itokens.oclIsUndefined()

 endif

wc-bound inv: …

boundedTokens inv:

 fm.Bounded implies tokens()<=bound

Figure 7: Feature explicit meta-model (excerpt).

values in FMC, i.e., to the feature configuration. PCs over classes are
converted into invariants of FMC that disallow any instance of the
class when its PC is false (see wc-Token). Similarly, PCs over fields
are converted into invariants of the owner class requiring that the
field is empty when its PC is false (see invariants wc-tokens and
wc-itokens). In addition, the lower bound of fields having a PC is set
to 0 (e.g., field itokens). Finally, invariants with a PC are rewritten
to be enforced only when their PC holds (see boundedTokens, which
assumes the simplification in Listing 2 was applied).
(2) Embedding implementations.Next, we extend the FEMM with
the OCL methods of the binding and the TPL. The FEMM needs to
emulate the PCs, the merging and the overriding semantics. Hence,
if a method has overriding implementations, its body is built as
a nested if-then-else that selects the appropriate implementation
(then) when its PC is satisfied (if). This way, the first PC (if) that
evaluates to true determines which implementation to apply, and
the order in which the conditionals are placed is given according
to the overriding variant (super, subs, all). To emulate merging, if n
implementations are merged together, we create 2n if statements
that consider all combinations of the satisfaction of their PCs and
compose the bodies corresponding to these PCs.
Example. Listing 8 shows the encoding of method tokens and part of
method enabled. The former is defined in the binding PL of Listing 1,
and has two different implementations for the disjoined PCs Simple
and Object. The latter method belongs to the TPL, and has one
default implementation and three variants (shown in Listing 7)
that should be merged using the and operator. Hence, the body of
the method considers eight possible implementations, though the
listing only shows three of them due to space constraints.
(3) Analysing consistency of CMMPL.Analysing CMMPL consistency
(i.e., whether the instances of all derivable meta-models satisfy the
invariants in the concept, see Def. 9) is done using the FEMM,
instead of checking each meta-model separately. Thus, for each
invariant inv in the concept, we try to find an instance of the FEMM
that violates it. For this purpose, in the FEMM, we encode the
invariant as a boolean method of the invariant’s owner class, and
add the following invariant to class FMC:

<owner-class(inv)>.allInstances()→ exists(not inv())

Then, we use a model finder to search for an instance of the FEMM
having one FMC object. If an instance is found, it embeds both

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark J. de Lara et al.

1 context Place
2 def: tokens() : Integer =
3 if fm.Simple then self.itokens
4 else if fm.Object then self.ctokens→size()
5 else null endif
6 endif
7 context Transition
8 def: enabled() : Boolean =
9 if (not fm.Read and not fm.Bounded and not fm.Inhibitor)
10 then ins()→forAll(tokens()>0)
11 else
12 if (fm.Bounded and not fm.Inhibitor and not fm.Read)
13 then ins()→forAll(tokens()>0) and
14 outs()→forAll(tokens()<bound)
15 else
16 if (fm.Bounded and fm.Inhibitor and not fm.Read)
17 then ins()→forAll(tokens()>0) and
18 outs()→forAll(tokens()<bound) and
19 inh→forAll(tokens()=0)
20 else
21 ...
22 endif
23 endif
24 endif

Listing 8: Embedding of method implementations.

:PetriNet

:Place

:Transition

:FMC

PetriNets=true
Tokens=true
Simple=true
Object=false
Arcs=true
Inhibitor=true
Read=true
Priority=false
Bounded=false

feature-explicit model

itokens = -6

:ins

:trans

:places

model configuration

+
:PetriNet

:Place

:Transition

itokens = -6

:ins

:trans

:places

extract

Figure 8: Configuration andmodel exemplifying a violation

of invariant posTokens.

a model showing an invariant violation, and an object of type
FMC holding the feature configuration producing the model’s meta-
model. A CMMPL is consistent (up to the search bound) if no
instance violating the concept’s invariants is found.
Example. To analyse invariant posTokens in the concept of Fig. 5(b),
our technique adds method posTokens(): Boolean = tokens()>=0 to
class Place in the FEMM, and invariant Place.allInstances()->exists(not
posTokens()) to class FMC. The model finder finds the FEMM in-
stance shown in the left side of Fig. 8, from which the model and
configuration to the right can be extracted. The model does not
satisfy invariant posTokens because attribute itokens is negative. In
fact, any configuration selecting Simple produces meta-models with
instances violating the invariant. This can be solved by adding an
invariant tokens>=0 with PC Simple to class Place in the 150MM.
(4) Analysing contracts.Analysing contracts is similar to analysing
consistency, but it is the contract associated with each method that
becomes converted into an operation and subsequently analysed.
Our method is currently limited to the analysis of preconditions
and invariants that do not use parameters of the owner method,
and to postconditions of queries that do not contain @pre.
Example.Our analysis reports that configuration ⟨Simple, Read⟩ does
not satisfy the postcondition of enabled (shown in Fig. 6), and re-
turns a model that exemplifies it. This model violates the second

implication of the postcondition as it contains a transition that is
disabled because it has an empty read place, but it has no input
place in relation ins with 0 tokens. This time the contract is overly
restrictive as it requires a transition is disabled when some input
place has zero tokens, but this does not hold for read arcs.

7 TOOL SUPPORT

OCL

MERLIN

EOL

transfo. language

ETL
EGL

USE
Validator

Sat4J

OCL
Project

EMF
N

composer

FeatureIDE

Figure 9: Tool architecture.

We have implemented the pre-
sented ideas in a tool called
Merlin, freely available at http:
//miso.es/tools/merlin-tpl.

Merlin is an Eclipse plu-
gin that extends FeatureIDE (a
framework to build SPLs) [30]
to allow the creation, analysis
and usage of MMPLs and TPLs.
Fig. 9 shows its architecture. The tool uses EMF to handle MMPLs,
the Eclipse OCL project to parse OCL invariants and contracts,
and Sat4J [5] and the USE Validator [25] for the analyses. Sat4J is
a SAT solver used for the satisfiability checks over propositional
formulas needed by the well-formedness analyses of Sect. 6.1. The
USE Validator is a model finder (a constraint solver over models)
that we use for the consistency analyses of Sect. 6.2.

Merlin is agnostic w.r.t. the transformation language used, as it
offers an extension point that is to be implemented for integrating
each new language. Merlin provides support for OCL, and inte-
grates some of the languages of the Epsilon family [37] to define
PLs of in-place transformations (EOL), model-to-model transforma-
tions (ETL) and code generators (EGL). Integrating a new language
requires handling the merge and override annotations and imple-
menting their semantics. Moreover, for languages that do not have
direct access to OCL operations written as .ecore or .ocl files (e.g.,
ATL [19], EOL [23]), we require an exporter from OCL to the trans-
formation language (EOL operations, ATL helpers).

Fig. 10 shows a screenshot of Merlin for the running example.
Label 1 shows the feature model, and label 2 a fragment of the trans-
formation written in OCL. For OCL, composition annotations are
embedded as comments, and PCs are expressed as external config-
uration files (label 3 corresponds to the PC Read). Merlin handles
PCs transparently to the transformation language. The 150MM is a
standard ecore meta-model with PCs given as annotations.

The package explorer to the left of the figure displays the struc-
ture of a Merlin project. It contains a folder (label 4) used to store
the bindings (.ocl files), concepts (.ecore files) and transformations
(files using the chosen transformation language). From them, Mer-
lin can generate all possible meta-model and transformation vari-
ants (folder productswith label 5) or the variant for a specific config-
uration.Merlin supports the analyses described in Sect. 6, triggered
by a wizard (label 6). The results are displayed in a dialog box (label
7) and in the problem’s view.

8 VALIDATION

Next, we assess the benefits of TPLs compared with building a fam-
ily of separate meta-models and transformations. Our evaluation is
guided by two research questions: RQ1: howmuch specification effort

http://miso.es/tools/merlin-tpl
http://miso.es/tools/merlin-tpl

Model Transformation Product Lines MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

1

23

4

5

6

7

Figure 10: Merlin in action.

Name

CMMPL size
Cs/PCs/LOC

TPL size
CTs/PCs/LOC

#mm/
#diff. tran.

size in LOC
(avg/total)

avg diffs
in LOC

Running example 4/8/14 8/6/91 32/32 61/1952 7.9
PN reduction [49] 4/8/14 5/3/110 32/25 118.5/3792 19.1
Graph alg-num [28] 5/11/67 0/5/93 192/189 90.3/17344 10.5
Graph alg-ccs [28] 5/11/67 0/3/89 192/177 86.7/16640 3.6

Table 1: Metrics for TPLs and their products.

do TPLs save, addressed in Sect. 8.1, and RQ2: how much analysis
effort do TPLs save, answered in Sect. 8.2.

8.1 Specification effort

To answer RQ1, we have written four TPLs and compared their
specification size w.r.t. the size of all variants of the transformations.
We have used two TPLs over Petri Nets (the running example,
and a reduction transformation which simplifies a net by merging
sequential places and transitions [49]), and two over a PL of graphs
typically used as a benchmark for SPL approaches [28]. The TPLs for
graphs permit configuring the type of graph (directed, undirected,
weighted, etc.) and the search method (depth-first, breadth-first).
The first graph TPL assigns a unique number to each node, and the
second calculates the connected components. All TPLs are available
at http://miso.es/tools/merlin-tpl.

Table 1 summarizes the results. The first two columns show the
CMMPL size (number of classes and PCs, lines of OCL code of the
binding) and the TPL size (number of contracts and PCs, LOC). The
next three columns give an intuition of the size and diversity of
the transformation variants. Column 3 shows the number of prod-
uct meta-models and different transformation variants. Column 4
shows the average size of each transformation variant (in LOC), and
the total size of all transformations. The last column measures the
difference between transformation variants. We use Myers’ algo-
rithm [34] – used by version control systems like Git – to calculate
the average different LOC between any two transformation variants
(including lines changed, inserted or deleted).

Two conclusions can be obtained. First, most transformations
generated from each TPL are different. In the running example,
every generated transformation is different, with about an 8 LOC

difference between them. Second, the size of the TPL specification
is much smaller than the total size of the generated transformations.
For instance, in the running example, the TPL size is 91 LOC (with
8 contracts and 6 PCs), while without a TPL, we need to write
32 different transformations of about 61 LOC each, amounting to
more than 1900 LOC altogether. This gain of at least one order
of magnitude in size is also apparent in the other cases. Hence,
these results suggest considerable effort gains by using TPLs w.r.t.
encoding each transformation in isolation. The exponential increase
in the number of variants that new features may introduce suggests
even bigger gains for larger feature models.

Threats to validity.We have used LOC and the number of contracts
and PCs as an indication of TPL size. An additional experiment with
developers may help to assess the correlation between such size
and the actual effort to build the transformations. We have used
only 4 TPLs over 2 different CMMPLs. More extensive experiments
would be needed for extra confidence in our claims.

8.2 Analysis effort

To answer RQ2, we compare the performance of the lifted consis-
tency analysis described in Sect. 6.2, w.r.t. analysing every meta-
model of a CMMPL one by one. The latter requires generating every
meta-model and checking whether its instances satisfy the invari-
ants in the CMMPL, which is done through model finding. The
analysis finishes when a meta-model with problematic instances is
found, or when all meta-models have been successfully analysed.

The experiment was conducted on aWindows 10 computer, with
i7-6500U processor and 16Gb of RAM. We used an extension of
the running example with three additional features (weighted arcs,
reset arcs and hierarchical nets) which resulted in 256 meta-models.
Moreover, we added the invariant tokens()>0 (a variation of invariant
posTokens in the running example) to the concept. While all meta-
models in this CMMPL have instances that violate the invariant
(e.g., Petri nets with empty places), we manually built 20 versions
of the CMMPL where the number of meta-models violating the
invariant was different (i.e., one version had one meta-model that
violated the invariant, another had 2, and so on). This was done to
emulate CMMPLs with different ratios of incorrect meta-models.
Then we used both approaches (lifted and enumerative) to analyse
CMMPL consistency of each version, 40 times each, computing the
average time. In the enumerative approach, the traversal of the
meta-models was randomized in each analysis.

Fig. 11 shows the average analysis time of each approach in
milliseconds (vertical axis) w.r.t. the ratio of meta-models that vi-
olate the invariant (horizontal axis). It also shows the best and
worst times for the enumerative approach, but not for the lifted
one because it is similar to the average.

On average, the lifted analysis is faster than the enumerative one
when less than 42% meta-models violate the invariant, becoming
10x-120x faster if less than 3% meta-models violate it. When no
meta-model violates the invariant, the lifted analysis takes less
than 1s, and the enumerative one takes 20s. If more than 42% meta-
models are incorrect, the lifted approach is only slightly slower
but still reasonable (of the order of 200ms vs 100ms). In any case,
one may expect invariant violations to be sparse in the meta-model
distribution (where our lifted approach performs much better), or

http://miso.es/tools/merlin-tpl

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark J. de Lara et al.

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

m
s)

% meta-models that violate the invariant in CMMPL

Lifted avg

Enum. avg

Enum. best

Enum. worst

Figure 11: Lifted and enumerative consistency analyses.

otherwise be trivial to detect. The best case of the enumerative
approach corresponds to detecting an invariant violation for the
first analysed meta-model, in which case it is up to 2x faster than
the lifted analysis because the constraint solving problem is easier.
Overall, the lifted analysis is only slightly slower than the best case
of the enumerative one (and always below 230 ms), but it is several
orders of magnitude faster than the corresponding worst case.

Threats to validity. This experiment shows very promising results,
but their generality should be strengthened by expanding the eval-
uation to further CMMPLs, like those in Table 1 and [17]. Hence,
although our study considers 20 CMMPLs, they are variations of the
same example. While we have not evaluated the contract checking
performance, the results should be similar to the consistency ones,
as both analyses rely on the same techniques.

9 RELATEDWORK

Featured Model Types (FMT) [38] is the closest idea to TPLs. An FMT
contains a PL of relatedmeta-models and transformations that apply
to different meta-model variants. A configuration identifies both the
meta-model and the applicable transformations. Yet so far FMTs are
a preliminary idea, without details or an available implementation,
making them difficult to assess. Our approach separates the MMPL
from the transformations, and each TPL focuses on variants of
a single transformation. This improves modularity, and adding
concepts to an MMPL makes the approach practical. In addition,
we provide concrete details on all aspects of the transformation
adaptation process, concrete analyses and a supporting tool.

A few approaches propose adding variability to transformation
languages, like QVT-R [21] and ATL [44]. The former assigns trans-
formation fragments (containing either rules or statements) to fea-
tures, while the latter can define variants for a base rule. None
of them can handle variability of the meta-model. Our TPLs are
language-independent and the variability granularity is the rule
body, which can have arbitrary PCs (instead of single features).
Neither [21] nor [44] provide an explicit notion of specification or
guarantee correctness. Both approaches [21, 44] focus on model-to-
model transformations. We have presented PLs of in-place transfor-
mations, but our approach is applicable to model-to-model trans-
formations as well (Merlin supports ETL). However, exploring
variability of both source and target meta-models is future work.

Variability rules [47] were proposed to express similar graph
transformation rules, in a compact way. Hence, they are a structur-
ing mechanism for transformations. To achieve modularity, other
approaches inject variability in transformation rules through aspect
orientation [29]. Instead, TPLs express variants of a transformation
for a language family.

Other works focus on transforming model PLs (i.e., models an-
notated with PCs) [46, 48]. This is different from our proposal, as
we define TPLs whose products (transformations) are applicable
on “regular” models, and not on product lines.

Other transformation reuse approaches have been proposed [6],
like model subtyping [18, 45], concepts [8, 11], a-posteriori typ-
ing [12], multi-level modelling [13] or transformation patterns [14].
They allow reusing a transformation for a different meta-model it
was defined for, by providing some kind of mapping (a subtyping re-
lation, a binding, a retyping specification, an instantiation relation,
a mapping) between the original and the target meta-models. In
all these cases, a reusable transformation has one behaviour, which
adapts to the structure of the target meta-model. Instead, TPLs
also permit specializing the behaviour of the transformation to the
specific language variant. Those other approaches focus on syn-
tactic aspects of reuse. Thus, there is no guarantee that the reused
transformation behaves in the intended way for the target meta-
model [42]. As TPLs address reuse only within an explicit family of
meta-models, they enable a better semantic alignment of the reused
transformation due to the transformation specification.

Our approach also builds on ideas of Feature Oriented Program-
ming (FOP) [1]. Our override and merge operators can be seen as a
special case of superimposition [2]. Composition approaches have
proposed ways to access one method body from another, e.g., using
special calls like original() [4], keywords like super [3], or defining
lifters [40]. In comparison, our operators are non-intrusive, inde-
pendent on the merge order, and permit analysis (cf. Sect. 6.2).

In summary, our proposal is novel by considering variability
of both the language (MMPL) and the transformation (TPL). The
use of concepts and composition operators makes the approach
practical, and we have also proposed novel analyses for TPLs.

10 CONCLUSIONS AND FUTUREWORK

Wehave presented a newnotion, transformation product lines (TPLs),
which admits both transformation variability and meta-model vari-
ability. The approach facilitates systematic creation of transforma-
tions for language families. We have proposed analysis mechanisms
at the PL level and presented a tool (Merlin) and an evaluation
showing its benefits in terms of size and analysis performance w.r.t.
explicitly building and analysing each transformation separately.

Our notion of TPLs opens the door to applying SPL technology
to a whole range of MDE artefacts, like model-to-model transfor-
mations or code generators. We are investigating methods for cost-
effective testing of TPLs, and mechanisms to factor out common
code between TPLs defined over the same concept.

ACKNOWLEDGMENT

Work funded by NSERC, the Spanish MINECO (TIN2014-52129-R)
and the R&D programme of Madrid (S2013/ICE-3006).

Model Transformation Product Lines MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES

[1] Sven Apel and Christian Kästner. 2009. An Overview of Feature-Oriented Soft-
ware Development. Journal of Object Technology 8, 5 (2009), 49–84.

[2] Sven Apel and Christian Lengauer. 2008. Superimposition: A Language-
Independent Approach to Software Composition. In Proc. ICSC’08 (LNCS),
Vol. 4954. Springer, 20–35.

[3] Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise
Refinement. IEEE Trans. Software Eng. 30, 6 (2004), 355–371.

[4] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. 2005. Classbox/J:
Controlling the Scope of Change in Java. In Proc. of OOPSLA’05. ACM, 177–189.

[5] Daniel Le Berre and Anne Parrain. 2010. The Sat4j library, release 2.2. JSAT 7,
2-3 (2010), 59–6.

[6] Jean-Michel Bruel, Benoit Combemale, Esther Guerra, Jean-Marc Jézéquel, Jörg
Kienzle, Juan de Lara, Gunter Mussbacher, Eugene Syriani, and Hans Vangheluwe.
2018. Model Transformation Reuse across Metamodels: A Classification and
Comparison of Approaches. In Proc. of ICMT’18 (LNCS), Vol. 10888. Springer,
92–109.

[7] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. 2005. Beyond
Assertions: Advanced Specification and Verification with JML and ESC/Java2. In
Proc. of FMCO’05 (LNCS), Vol. 4111. Springer, 342–363.

[8] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2014. A Component
Model for Model Transformations. IEEE Trans. Software Eng. 40, 11 (2014), 1042–
1060.

[9] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2017. Static Analysis
of Model Transformations. IEEE Trans. Software Eng. 43, 9 (2017), 868–897.

[10] Juan de Lara, Juri di Rocco, Davide di Ruscio, Esther Guerra, Ludovico Iovino,
Alfonso Pierantonio, and Jesús Sánchez Cuadrado. 2017. Reusing Model Trans-
formations Through Typing Requirements Models. In Proc. of FASE’17 (LNCS),
Vol. 10202. Springer, 264–282.

[11] Juan de Lara and Esther Guerra. 2013. From Types to Type Requirements: Gener-
icity for Model-Driven Engineering. J. Software and System Modeling 12, 3 (2013),
453–474.

[12] Juan de Lara and Esther Guerra. 2017. A Posteriori Typing for Model-Driven
Engineering: Concepts, Analysis, and Applications. ACM TOSEM 25, 4 (2017),
31:1–31:60.

[13] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2015. Model-Driven
Engineering with Domain-Specific Meta-Modelling Languages. J. Software and
System Modeling 14, 1 (2015), 429–459.

[14] Hüseyin Ergin, Eugene Syriani, and Jeff Gray. 2016. Design Pattern Oriented De-
velopment of Model Transformations. Computer Languages, Systems & Structures
46 (2016), 106–139.

[15] Rik Eshuis. 2009. Reconciling Statechart Semantics. Sci. Comput. Program. 74, 3
(2009), 65–99.

[16] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 – Where Programs
Meet Provers. In Proc. of ESOP’13 (LNCS), Vol. 7792. Springer, 125–128.

[17] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. 2018. Analysing
Meta-Model Product Lines. Submitted. Available at http://miso.es/pubs/merlin.
pdf.

[18] Clément Guy, Benoît Combemale, Steven Derrien, Jim R.H. Steel, and Jean-Marc
Jézéquel. 2012. On Model Subtyping. In Proc. of ECMFA’12. 400–415.

[19] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A
Model Transformation Tool. Sci. Comput. Program. 72, 1-2 (2008), 31–39.

[20] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

[21] Lucia Kapová and Thomas Goldschmidt. 2009. Automated Feature Model-Based
Generation of Refinement Transformations. In Proc. of 35th Euromicro SEAA.
IEEE Computer Society, 141–148.

[22] Heiko Kern, Axel Hummel, and Stefan Kühne. 2011. Towards a Comparative
Analysis of Meta-metamodels. In Proc. of SPLASH ’11 Workshops. ACM, New York,
NY, USA, 7–12.

[23] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2006. The Epsilon Object
Language (EOL). In Proc. of ECMDA-FA’06 (LNCS), Vol. 4066. Springer, 128–142.

[24] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2008. The Epsilon
Transformation Language. In Proc. of ICMT’08 (LNCS), Vol. 5063. Springer, 46–60.

[25] Mirco Kuhlmann and Martin Gogolla. 2012. From UML and OCL to Relational
Logic and Back. In Proc. of MODELS’12 (LNCS), Vol. 7590. Springer, Berlin, Hei-
delberg, 415–431.

[26] Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Gerti Kappel, Werner
Retschitzegger, and Wieland Schwinger. 2015. Reuse in Model-to-Model Trans-
formation Languages: Are We There Yet? J. Software and Systems Modeling 14, 2
(2015), 537–572.

[27] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In LPAR-16 (LNCS), Vol. 6355. Springer, 348–370.

[28] Roberto E. Lopez-Herrejon and Don Batory. 2001. A Standard Problem for
Evaluating Product-Line Methodologies. In Proc. of GCBSE’01, Jan Bosch (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 10–24.

[29] Rodrigo Machado, Luciana Foss, and Leila Ribeiro. 2009. Aspects for Graph
Grammars. ECEASST 18 (2009).

[30] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[31] Bertrand Meyer. 1992. Applying “Design by Contract”. IEEE Computer 25, 10
(1992), 40–51.

[32] MOF. 2016. http://www.omg.org/spec/MOF.
[33] T. Murata. 1989. Petri Nets: Properties, Analysis and Applications. Proc. IEEE 77,

4 (1989), 541–580.
[34] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its Variations.

Algorithmica 1, 2 (1986), 251–266.
[35] L. Northrop and P. Clements. 2002. Software Product Lines: Practices and Patterns.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[36] OCL. 2014. http://www.omg.org/spec/OCL/.
[37] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, and

Fiona A. C. Polack. 2009. The Design of a Conceptual Framework and Tech-
nical Infrastructure for Model Management Language Engineering. In Proc. of
ICCECCS’09. IEEE Computer Society, Washington, DC, USA, 162–171.

[38] Gilles Perrouin, Moussa Amrani, Mathieu Acher, Benoît Combemale, Axel Legay,
and Pierre-Yves Schobbens. 2016. Featured Model Types: Towards Systematic
Reuse in Modelling Language Engineering. In Proc. of MiSE@ICSE’16. ACM, New
York, NY, USA, 1–7.

[39] Ana Pescador, Antonio Garmendia, Esther Guerra, Jesús Sánchez Cuadrado, and
Juan de Lara. 2015. Pattern-Based Development of Domain-Specific Modelling
Languages. In Proc. of MoDELS’15. IEEE Computer Society, 166–175.

[40] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In Proc. of ECOOP’97 (LNCS), Vol. 1241. Springer, 419–443.

[41] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha Chechik.
2014. Lifting Model Transformations to Product Lines. In Proc. of ICSE’14. ACM,
New York, NY, USA, 117–128.

[42] Rick Salay, Steffen Zschaler, and Marsha Chechik. 2016. Correct Reuse of Trans-
formations is Hard to Guarantee. In Proc. of ICMT’16 (LNCS), Vol. 9765. Springer,
107–122.

[43] D. C. Schmidt. 2006. Guest Editor’s Introduction: Model-Driven Engineering.
Computer 39, 2 (Feb. 2006), 25–31.

[44] Marten Sijtema. 2010. Introducing Variability Rules in ATL for Managing Vari-
ability in MDE-Based Product Lines. Proc. of MtATL’10 (2010), 39–49.

[45] Jim Steel and Jean-Marc Jézéquel. 2007. OnModel Typing. J. Software and Systems
Modeling 6, 4 (2007), 401–414.

[46] Daniel Strüber, Sven Peldzsus, and Jan Jürjens. 2018. Taming Multi-Variability of
Software Product Line Transformations. In Proc. of FASE’18. Springer, 337–355.

[47] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer,
and Jennifer Plöger. 2018. Variability-Based Model Transformation: Formal
Foundation and Application. Formal Asp. Comput. 30, 1 (2018), 133–162.

[48] Gabriele Taentzer, Rick Salay, Daniel Strüber, and Marsha Chechik. 2017. Trans-
formations of Software Product Lines: A Generalizing Framework based on
Category Theory. In Proc. of MODELS’17. IEEE, 101–111.

[49] H. M. W. Verbeek, Moe Thandar Wynn, Wil M. P. van der Aalst, and Arthur H. M.
ter Hofstede. 2010. Reduction Rules for Reset/Inhibitor Nets. J. Comput. Syst. Sci.
76, 2 (2010), 125–143.

[50] Steffen Zschaler. 2014. Towards Constraint-Based Model Types: A Generalised
Formal Foundation for Model Genericity. In Proc. VAO@STAF’14. ACM, 11–18.

http://miso.es/pubs/merlin.pdf
http://miso.es/pubs/merlin.pdf
http://www.omg.org/spec/MOF
http://www.omg.org/spec/OCL/

	Abstract
	1 Introduction
	2 Running example
	3 Meta-model product lines
	4 Transformation product lines
	4.1 Conceptual MMPLs
	4.2 Transformation product lines

	5 Composing rule bodies
	5.1 Override
	5.2 Merge

	6 Analysing TPLs
	6.1 Analysing well-formedness
	6.2 Analysing consistency

	7 Tool support
	8 Validation
	8.1 Specification effort
	8.2 Analysis effort

	9 Related work
	10 Conclusions and future work
	References

