
Active Domain-Specific Languages:
making every mobile user a modeller

Diego Vaquero-Melchor, Javier Palomares, Esther Guerra, Juan de Lara
Modelling & Software Engineering Research Group (http://miso.es)

Universidad Autónoma de Madrid, Spain

Abstract—Domain-specific languages (DSLs) are small lan-
guages tailored to a certain application area, like logistics, web
application testing or smart city planning. Traditionally, the use
of DSLs has been limited to a static setting in desktop or web
editors. However, in this paper, we claim that DSLs can be central
components of mobile collaborative applications. In our vision,
graphical DSLs can be extended to make use of mobility and
context, and integrate heterogeneous information gathered from
open APIs. We call this new generation languages “active DSLs”.

We foresee a range of scenarios where active DSLs can be
useful. On the one hand, they can be used more flexibly in
remote locations by enabling local collaboration of several mobile
devices using their short-range communication capabilities. On
the other hand, they can be extended with contextual features
like geolocation, allowing the integration of maps and geo-
services within the DSL, or the DSL rendering customization in
response to contextual information. Active DSLs can also retrieve
information from open APIs, in which case, models defined with
the DSL become aggregators of heterogeneous data.

In this paper, we explain our vision for active DSLs and the
first steps towards its realization in the DSL-comet tool. The
tool permits creating and using mobile graphical DSLs on iOS
devices, and their seamless use in desktop environments.

Index Terms—active DSL; graphical modelling language; flex-
ible modelling; mobile application; API integration

I. INTRODUCTION

Domain-specific languages (DSLs) are essential assets of

software development paradigms like model-driven engineer-

ing (MDE) [1], and their use is also frequent in end-user

development [2]. DSLs capture the main primitives within a

domain – like production plant design, game development or

logistics – and enable succinct and natural system descriptions

using a terminology close to the domain experts. DSLs can be

textual or graphical, but our focus is on graphical DSLs [1].

Modelling using DSLs has traditionally taken place in

“static” environments, which typically run on desktop com-

puters or laptops. In this vision paper, we claim that DSLs can

greatly benefit from mobility and context [3]. We call these

envisioned DSLs “active DSLs”, and their role is to become

central parts of collaborative, contextual mobile apps.

For example, imagine a DSL for smart city planning

where the position of sensors within a city must be precisely

determined; a DSL for tourism where tourist guides create

touristic routes while walking through the city, and tourists

can download the route models and rate their spots in-place

while visiting the city; or a DSL for healthy living, where

it is possible to create circuits for physical training, and

some exercises can be proposed at specific locations as the

circuit is created. Such DSLs would profit from their use

on mobile devices, probably on-site, and the possibility to

geolocate on a map the DSL elements (sensors, activities,

touristic spots). The models built with the DSL may interact

with external APIs upon user interaction or autonomously.

For example, in the tourism DSL, routes might show the

current temperature in the recommended spots, or display

the entrance prices in different currencies. This information

can be read from external services and can trigger model

reorganizations. Moreover, some scenarios may require on-site

collaboration, which should not rely solely on external WiFis

or centralized servers, as users may be in remote locations

with no connectivity.

We envision the rapid construction of interactive, collabora-

tive, geo-enabled mobile apps, where active DSLs are central

components. This approach has the potential to raise the

impact of DSLs and MDE technologies in society beyond

the current state, as nowadays the number of mobile users

has surpassed the number of desktop users [4], and more than

40% of the world population is estimated to own a smartphone

(peaking over 80% in some countries) [5]. Our proposal

may also impact the way in which mobile industry works in

the aforementioned scenarios, as mobile app builders would

become language engineers, and mobile app users would

become modellers. Hence, similar to the motto in [6], and

paraphrasing Andy Warhol, we claim that “(with active DSLs)
in the future, everyone will be a modeller for 15 minutes”.

This paper motivates the need for such a technology, and

provides a classification of restricted classes of active DSLs.

Moreover, we propose a supporting architecture, and show

our first steps towards its realization in DSL-comet, a tool for

mobile domain-specific modelling with incipient support for

the concept of active DSL. The tool permits the creation and

use of graphical DSLs on iOS mobile devices. It provides

local collaboration facilities including a token-based model

modification protocol, chats, informal drawings, and notes

that can be geolocated and include pictures likely made with

the device. The tool supports the usual mobile touch-based

interaction gestures (e.g., swipe, tap, pinch) and integrates

services like Dropbox, Google Drive or Twitter for model

sharing. It also supports DSLs with elements geolocated in

maps and information read from external APIs.

We presented an earlier version of DSL-comet in [3], [7],

while in this paper, we propose the notions of active, geo, open

and contextual DSLs; and introduce new features of the tool,

DSL features

Geolocated

Deployment Context
sensitive

External Internal

External
interaction

User
roles

Context
source

Collaboration

Serverless
(local)

Centralized Web Desktop App

Standard DSL= Deployment.Desktop v Deployment.Web, ConcreteSyntax.Graphical.Geolocated, External interaction, Context sensitive
Geo DSL= ConcreteSyntax.Graphical.Geolocated
Open DSL= External interaction
Contextual DSL= Context sensitive
Active DSL= Deployment.App + Geo DSL + Open DSL + Contextual DSL

Concrete
syntax

Textual Graphical

«i
m

pl
ie

s»

optional mandatory alternative or

Services Devices

User
representation

Extended
modelling

Drawings Annotations

Symbols Text Pictures Geolocation

Tabular …

Fig. 1. Feature space for DSLs, and minimal features that characterise different types of DSLs

like geolocation of model elements, collaboration support and

interaction with external systems.

In the rest of this paper, we first introduce some motivating

scenarios in Section II. Then, in Section III, we elaborate on

the concept of active DSL and its features. Section IV explains

our approach to define active DSLs. Section V presents our

tool and how it tackles the challenges posed by the scenarios.

We discuss related works in Section VI, and draw some

conclusions and lines of future work in Section VII.

II. MOTIVATION

Modelling in mobility provides flexibility of use in two

aspects. First, modelling can take place in locations where

using a computer would not be feasible. This permits being

physically closer to the system being modelled (e.g., a wind

turbine, a factory, the intelligent devices in a smart home)

and incorporate information of the surrounding context in the

models (e.g., geolocation or pictures taken with the mobile on

the spot). Second, it promotes a more flexible collaboration

among sets of users working or discussing on the same model,

as they can physically move and arrange in ways which would

be difficult to achieve with desktop computers or laptops.

As an example, consider a DSL to model home network

configurations. Telecommunication engineers could use this

DSL on their mobile devices to create configuration models

on-site, while walking through each particular house. By

adding suitable mechanisms, engineers could interact with the

physical gadgets (e.g., changing their operation configuration)

by manipulating the model elements, or show a partial view

of the model with the gadgets in the current room.

Modelling with mobile devices can take advantage of the

geolocation features of the device. For instance, in a DSL to

design open-air circuits for physical exercises, a sports coach

may be interested in inspecting the exercise locations. Hence,

a system that allows creating the circuit in-place, over a map,

would be helpful. In this setting, the placement of the objects

on the map implies their geolocation.

Any of these scenarios would benefit from DSLs that

facilitate the collaboration of nearby users. As the collabo-

ration may take place in remote places, it cannot assume the

availability of an Internet connection. Instead, it should rely

on the short-range communication capabilities of the mobile

devices, like Bluetooth or local WiFis. Other ways to enhance

the flexibility of the collaboration include the support of

informal drawings, markers, (geolocated) notes, and pictures

likely made on-site with the mobile device.

Finally, to make the most of the models built in mobility,

these should be processable by standard MDE tools like

transformations and generators, and should be compatible with

modelling editors on desktop computers.

III. CHARACTERIZING ACTIVE DSLS

In this section, we analyse the characteristics required to re-

alize the full potential of active DSLs. We base the discussions

on the feature model of Fig.1, which shows different features

that can be incorporated into DSLs design, deployment and

use. It also provides a classification of several types of DSLs

according to their minimal features: geo, open, contextual and

active. The latter type aggregates all features of the three

former, and in addition, its deployment is as a mobile app.

The concrete syntax of DSLs can typically be graphical or

textual, although other formats like tabular or form-based are

also possible. Some DSLs may even define several concrete

syntaxes of the same or different kind, which are used in

combination. Active DSLs can have any kind of concrete

syntax, but many scenarios we foresee require a graphical one

to facilitate their use by end-users, and include the geolocation

of some model elements in a map. Moreover, some scenarios

may require representing the (possibly multiple) DSL users in

the model, e.g., to identify their current location in a map,

or to specify properties that can be attributed to them (e.g.,

nickname, energy or lives for DSLs in the active gaming

domain). We call geo DSLs to DSLs that render their elements

on an interactive map.

DSL editors can be deployed as desktop applications on

computers, as web applications, or as mobile apps. Active

DSLs require deployment as mobile apps to enable their use

in mobility. Another required feature of active DSLs is the

capability to interact with external systems. This can be done

via services (e.g., web services) or with devices like smart

watches, smart bands or IoT devices. We call open DSLs to

DSLs that communicate with external systems.

DSLs can be context-aware, in which case we call them

contextual DSLs. Models built with this kind of languages can

react to triggers caused by context elements taken either from

the mobile device (like the remaining battery or current time)

or from external sources (like web APIs). The latter implies

interaction with external services, e.g., to obtain information

about weather, traffic or pollution, among many others.

In some scenarios, the rendering, interaction and other

features of a DSL may depend on the roles and permissions

assigned to the DSL user. For example, a touristic DSL should

let touristic guides create routes with spots of interest, while

tourists should only be allowed to display route models and

annotate their spots with evaluations or pictures (but not

modify the route itself).

For flexibility, DSLs may enable extended modelling in the

sense that they may accept the use of additional elements

beyond those specified in the meta-model or grammar. These

include text annotations, predefined symbols (e.g., indicating

warnings, errors, the need to revise an item, etc.), pictures,

geolocation information, or hand-made drawings.

Finally, collaboration support may be useful in many sce-

narios as well. We distinguish two kinds of collaboration: local

and centralized. The former uses the short-range communica-

tion capabilities of the mobile device, does not require from

connectivity, and can be used in remote locations (e.g., wind

turbines, farms, the country side) or in the streets. The latter

relies on a centralized server, and hence, it may coordinate

collaborations from distant users.

Altogether, traditional DSLs are typically deployed as desk-

top or web applications, they do not have into account context

or geolocation information, they generally lack external in-

teraction, and only a few exceptions support user roles [8]

or collaboration [9]. Instead, active DSLs are to be used in

mobility and hence they are deployed as native apps on mobile

devices. In order to unfold their full potential, they can use

geolocation information, interact with external systems, be

context-aware, support roles and enable collaboration.

After introducing the features required from active DSLs,

the next sections describe our first steps towards its realization.

First, Section IV presents our approach to define active DSLs,

and then, Section V describes their usage on our tool.

IV. SPECIFYING AN ACTIVE DSL

Fig. 2 shows our approach to define geo, open, contextual

and active DSLs. In all cases, the abstract syntax of the DSL

is described through a standard domain meta-model. We use

EMF in order to keep the compatibility with its extensive

ecosystem. Then, this meta-model can be enriched with dif-

ferent annotation models to describe graphical representation,

external interaction, geolocation and context rules (currently

under development). The next subsections explain the annota-

tion models we currently support and the deployment phase.

Mobile
app

Desktop
environment

domain
MM

graphic.
repr.

geo
positioning

external
interaction

Graphical
Representation

MM

«conforms to»

«annotates» «annotates»

«annotates»

Geo
Positioning

MM

«conforms to»

external
interaction

MM

«conforms to»

deploy

contextual
rules

context
MM

«conforms to»

«annotates»

Fig. 2. The elements to describe and deploy active DSLs

A. Defining external interaction

We allow the value of attributes in a domain model to be

retrieved from external sources via API calls. For this purpose,

we have created the meta-model of Fig. 3, which permits

describing how to perform calls to services and extract the

data of interest from their result. We keep a repository of API

call descriptions. Currently, we support web API calls with and

without authentication, which return the data in JSON format.

This can be easily extended in the future.

ExternalAccess
EAttribute

1
attrib Trigger when

1..*

APICall

APIDescription

name: String
protocol: String
url: String

Interaction
Trigger

TimeTrigger

time: double

OnCreate OnMove

OnChange

Parameter
name: String
type: DataType

ParamValue

Constant
Object
Data

inPars
*

ObjectSlot

1 attrib

CSData

Long Lat

pars
*

call

api param

«from Ecore»

OutParameter

path: String

outputs
*

APIAuth
name: String
key: String

0..1
auth

User
Input val: String

Fig. 3. Meta-model to describe external interaction (excerpt)

In order to configure an API call, it is necessary to specify

how the values for the input parameters will be provided, how

the value of the output parameters will be extracted from the

returned data, and when to perform the API call. We currently

consider four ways to set the value of input parameters:

constant value, user input, another attribute of the object, or its

geolocation. The latter is only possible for geo DSLs, as we

will explain in Section IV-C. Regarding the output parameters,

DSL users

Eclipse modelling
environment

iOS modelling
environment

mongoDB
(meta-)model

storage

DSL-comet
backend

…

External
services

API
broker

API
descriptions

API call

retrieve external values

API

geo location
queries, map

Geo-
services

Fig. 4. DSL-comet’s architecture

they include an XPath-like expression [10] (attribute path) that

indicates how to extract the parameter value from the returned

JSON data. For example, the expression main.temp indicates

that the value of the parameter is to be extracted from the

temp field of the main dictionary. Finally, API calls can be

triggered either in response to some user interaction (e.g., the

object is created, moved or edited), or periodically.

B. Defining graphical representation

We also use annotation models to describe the graphical

concrete syntax of the DSL. The goal is to have a concrete

syntax compatible with EMF-based editors and deployable

on mobiles. For this purpose, we have created a neutral

meta-model called GraphicalRepresentation (presented in [7]) to

describe the graphical visualization of each element of the

DSL. The GraphicalRepresentation meta-model permits selecting

and configuring the visualization of each class as a node or

as an edge. In case of nodes, it is possible to attach them a

geometrical shape or an icon, while for edges, it is possible

to select the decorators for the start and end of the arrow.

Classes can also be tagged as Expandable. If so, their

instances are not graphically represented in the model, but

they are edited through a separate form that is presented when

the container object is edited. If the container object is the

canvas, then they can be edited through a special button.

Expandable classes are useful in the reduced editing space

of mobile devices to keep the model as simple as possible.

C. Defining geolocation

A last annotation model allows configuring whether the

DSL will be geolocated, and whether the current position of

the user is to be represented in the model. In such a case, the

canvas will display an interactive map, and all visible model

elements will be placed geolocated in the map. Internally,

this is handled by extending the meta-model classes with two

attributes lat and lon to store the latitude and longitude of each

node in the map. The value of these attributes is automatically

updated when the object is created or moved.

D. Deploying the DSL

The DSL definition (meta-model of its abstract syntax and

annotation models) can be deployed in mobile devices using

our tool DSL-comet, or they can be compiled to generate a

desktop Eclipse editor based on the Sirius graphical modelling

workbench [7]. However, technically, the features of geo and

open DSLs are only available on mobile devices, and their

inclusion in the generated Eclipse editor is future work.

In the following section, we describe how to use the defined

DSLs in our DSL-comet tool.

V. DSL-COMET

This section presents our DSL-comet tool, aimed at support-

ing active DSLs with collaboration and extended modelling

features. The tool runs on iOS devices, and can be installed

from Apple’s app store. Its home page is http://www.miso.

es/tools/DSL-comet.html, and a video illustrating some of its

features is available at https://youtu.be/rzhl9yMFSxI.

Next, we describe its architecture (Section V-A), basic

features (Section V-B), collaboration facilities (Section V-C),

and support for geo and open DSLs (Section V-D).

A. Architecture

Fig. 4 shows the scheme of DSL-comet’s architecture. In

the front-end, the DSLs can be used both with Eclipse and

iOS-based clients (iPhones and iPads). The meta-models, an-

notation models, and instance models are stored in a backend

server. We use a mongoDB database for better scalability,

whereby we have built services to convert between EMF and

JSON. While the Eclipse client consumes models and meta-

models in XMI format, the iOS client uses JSON.

Users can download DSL definitions from their mobile

devices, or from an Eclipse client that is able to synthesize an

Eclipse graphical editor based on Sirius [7], [11]. Then, users

can use the DSL to build models, and store them either locally

or in the server. The constructed models remain compatible

with both the mobile and Eclipse-based editors.

For open DSLs, we have developed an API broker service

in charge of two tasks. First, it holds API descriptions (con-

formant to the meta-model shown in Fig. 3) on a mongoDB

database. Second, it is a mediator of API calls between the

client and the service. Hence, when a mobile client needs to

retrieve some data from an external service, it does so through

the API broker. This results in a lighter client, a more flexible

management of APIs, and facilitates the interaction with APIs

requiring a registration key, as this is done in the server instead

of in each client. Currently, the broker service can only be used

from the iOS client. Similarly, geo DSLs are only supported

from the iOS client. They require internet connectivity for

retrieving the map details and performing geolocation queries.

Next, we describe the main features of the iOS client.

B. Basic features

Fig. 5 shows the mobile client being used to create a model,

using a DSL for describing home network configurations. First

(label 1), the user can select DSLs stored either locally in the

device or remotely in the server. Upon selecting one DSL (la-

bel 2), a retractable tool palette with the object types permitted

by the DSL is loaded in the lower part of the tool (label 3).

Objects are created by drag and drop of elements in the palette

into the canvas (label 4), connections are built by long-pressing

source and target objects, and object attributes are edited on

a dialog box available after pressing over the object. The tool

keeps the created model conformant to the meta-model by

signalling connections with incompatible source/target objects,

cardinality violations, and ill-typed attribute values.

Fig. 5. Using DSL-comet to model home networks on an iPhone 7

Since mobile devices can have a reduced screen size (from

4.0 inches in an iPhone 5s, to 12.9 inches in an iPad Air), to

save space, objects can be either created and displayed on the

canvas, or be editable through dialogs but omitted from the

canvas. This can be configured when defining the DSL, being

the former the default behaviour, and annotating the classes

whose objects will not be displayed as “Expandable”.

On top of the screen, DSL-comet has buttons to create a

new blank model (label 5), save the model locally or in the

server (label 6), search model objects fulfilling certain criteria

(label 7), look for collaboration peers (label 8, explained in

Section V-C), select another DSL (label 9), share the model

via external services (label 10), or take a snapshot of the model

so that it can be shared via e-mail or Twitter (label 11). Label

12 shows the search facility, which supports filtering based on

class types (in the figure) or attribute values.

Figs. 6 (a) and 6 (b) show the dialog boxes for editing

node and edge attributes, which are presented upon tapping

on a node or edge. They include appropriate controls to edit

string, numeric, boolean or enumerate data types. The dialog

for nodes (Fig. 6 (a)) also shows the incoming and outgoing

edges. The dialog for edges (Fig. 6 (b)) shows the source and

target classes, as well as the edge attributes, if any.

(a)

(b)

(b)

(c) (d)

Fig. 6. Editing nodes (a) and edge details (b). Sharing models through Twitter
(c), Dropbox, Telegram, Drive and others (d).

Figs. 6 (c) and 6 (d) show some model sharing options via

Twitter, Air Drop and other applications installed in the mobile

device, like Dropbox, Telegram, iCloud and Google Drive. In

the case of Twitter, it is possible to share an image of the

model, while in the other cases, the model source is shared.

C. Collaboration features

The tool supports collaborative modelling. For this purpose,

first one of the devices must initiate the collaboration (the so-

called “server”). This device sets up a local WiFi to which

nearby devices can connect. The collaboration is token-based,

where only the user holding the token is the “master” and can

modify the model (i.e., create, delete, modify or move objects

in the canvas). Any user can request the modification token,

which the server can grant or deny, whereas the server can

get the token at any moment. Model changes are distributed

at once to the rest of devices in the collaborative session. As

an example, Fig. 7 shows a moment in a collaboration session

between two devices: an iPad mini (at the back) and an iPhone

SE (at the top). The iPhone started the collaboration and has

the capacity to expel or promote users into masters.

current
master

token
request

markers,
notes and
drawings note

with a
picture

chat

session
mgmnt

informal
drawing

Fig. 7. A collaboration session with two devices

To provide agility to the collaboration, the tool supports

extended modelling by providing some useful elements that

can be used independently of having the modification token

or not: temporal markers, notes, freehand drawings and a

chat. Temporal markers (‘?’ and ‘!’) permit directing the

collaborators’ attention to some part of the model, and after

a few seconds, the marker disappears. Notes are permanent

and can be attached to objects or be placed anywhere in

the canvas. A note can have text, be geolocated in a map,

and include a picture made on the spot or selected from the

camera roll. Users can also draft freehand drawings and delete

them once they are not needed anymore. As an example, the

model in Fig. 7 has a note and a freehand drawing. The note

attaches a picture of a router, which in this context is useful

to document the real device the model object refers to. The

informal drawing has been sketched by one of the users in

order to highlight some object in the model, similarly to what

one would have done using pen and paper.

D. Open and geo DSLs

DSL-comet supports geo DSLs where model elements are

displayed on a map and become geolocated. For this pur-

pose, the meta-model of the DSL must be annotated as

“Geolocated”, in which case, all its visible elements are

implicitly added attributes to store their geolocation. It is

also possible to specify API calls from which attributes will

receive their values. Although open and geo DSLs can be

used for modelling both in mobile and Eclipse-based desktop

editors, only the former devices are able to fully exploit

the geolocation services, perform API calls and automatically

assign a geolocation to objects based on their location in maps.

Fig. 8 shows an open, geo DSL for tourism. Tourism

agencies can use it to create models of touristic routes that

include monuments, museums and restaurants. Tourists can

download the models to follow the routes, comment or rate the

different spots, and attach and share pictures taken in-place.

geolocated
model
elements 2

1

3
current user
position, with
attached picture
and marker

4

Fig. 8. Open, geo DSL for touristic routes

The model in the figure corresponds to a route through the

city of Madrid, whose map is displayed in the canvas (label

1). The nodes represent tourist attractions and are geolocated

(label 2). The displayed map is configurable (satellite, hybrid,

etc.). The tool supports Google-like queries using natural

language (label 3), and when they return an existing place

(e.g., “Museo del Prado”), the map gets centred on that place.

The current location of the user is shown in the map (label

4), who can attach pictures to the different model elements.

Moreover, the local collaboration facilities of the tool permit

groups of tourists to share the attached pictures on the model,

add temporal markers (like the exclamation mark in the figure)

to signal interesting attractions, and use the chat. Each touristic

spot has an attribute temperature that is read from a call to

openweathermap’s API. The value is refreshed when the object

is created, edited or moved.

Overall, we believe this new kind of DSLs can be the basis

for highly interactive, collaborative and geo-enabled apps.

VI. RELATED WORK

There are several applications in the market, and a few

academic ones, to create drawings, diagrams or models in

mobile devices. Table I shows a summary of them.

Lucidchart [12] is a commercial diagramming web-based

tool, which also has a mobile version. It features several

palettes which can be used in combination, as the tool does not

TABLE I
COMPARISON OF MOBILE DIAGRAMMING TOOLS

Tool Type Palette Collab. Geo-serv. Extra
Commercial tools
Lucidchart [12] diagr. yes server no

web

DrawExpress [13] sketch yes no no pictures

SyncSpace [14] drawing no local map pics. pictures

Ideament [15] diagr. graphs no no pictures

Academic tools
CEL [16] UML class diag no no

FlexiSketch [17] reqs no yes no

Pounamu [18] DSLs yes no no

DSL-comet DSLs yes local maps pictures
search drawings
geoloc. protocol

API access

rely on meta-models or performs semantic checks. It supports

collaboration between mobile and web users, but there is

no collaboration protocol, which may cause collisions, and

communication is done through a central server, which may

cause delays. DrawExpress [13] features both a palette and

sketch recognition of simple shapes like circles or rectangles.

SyncSpace [14] is a drawing tool (i.e., there are no diagrams,

just lines) which supports local collaboration, similar to our

approach. Drawings can be done on a map, though this map

is first converted to an image, so no geolocation services like

searches are possible. Ideament [15] can create graphs, but

does not offer palettes (just some shapes) or collaboration.

Some apps have been created for a particular modelling

language. CEL [16] is a mobile app to create UML class

diagrams with no support for collaboration or model sharing,

and Puzzle [19] permits creating mobile apps using graphical

modelling in the device. In these approaches, the languages are

fixed, and the apps were created ad-hoc for them. Instead, we

enable the use of arbitrary DSLs, and the app is configured

with the DSL descriptions. Hence, our approach could help

creating this kind of applications.

FlexiSketch [17] is a sketching mobile modelling tool

tailored for software requirements modelling. Diagram nodes

can be either images or user sketches which get converted into

entities that can be manipulated and assigned a type. The tool

supports collaboration, but no protocols or geo-services.

Although MDE has been used to produce mobile applica-

tions [20], few works report on using DSLs on mobiles. One of

the few is Pounamu/mobile [18], an extension of the Pounamu

meta-tool to generate mobile user interfaces to interact with a

DSL. However, every interaction goes through a server, with

the consequent delay. Taking into account that the work is

from 2006, the tool offered no collaboration or geo-services.

Some tools allow graphical modelling in the web [21],

[22], [23]. They can be used from a mobile device using

a web browser, but this poses some drawbacks. First, web

applications are not tailored to the particularities of mobile

devices, while apps are optimized for them, enabling forms of

visualization and interaction designed for the reduced screen

size. Second, web applications require connectivity, which

might not be available in remote locations. Finally, relying

on a web application for collaborative modelling might involve

greater delays than the local form of collaboration we support.

Some researchers have proposed modelling the user experi-

ence (UX) of modelling tools [24], and much work exists on

context modelling and reasoning techniques [25], [26]. For the

full realization of active DSLs, we will adapt these techniques

to work with DSLs.

Altogether, our proposal is new as none of the previous tools

permits modelling (in contrast to drawing) using geolocated

DSLs, permits defining access to external APIs, or enables

short-range collaboration for modelling. Moreover, the very

concept of active DSL is novel as well.

VII. CONCLUSIONS AND RESEARCH ROADMAP

In this paper we have introduced the notions of geo, open,

contextual and active DSLs. Open DSLs can interact with

external systems. Geo DSLs render the models over a map

profiting from geo-services. Contextual DSLs are context-

aware and can reorganize a model upon context triggers. The

features of these kinds of DSLs can be combined into an

active DSL, which in addition is deployed in a mobile. We

have presented the first steps towards realizing active DSLs

in the DSL-comet tool. Its architecture permits creating DSLs

for both Eclipse and iOS mobile devices. The mobile client

supports local collaboration, the use of geolocation services

within DSLs, and the interaction with external services.

Active DSLs open the use of MDE to a new range of

applications, including smart interfaces for IoT applications,

and we urge the community to explore this topic. A research

roadmap to move from tools for standard DSLs towards a

full realization of active DSLs implies the support for open

and geo DSLs first, and then for contextual capabilities as

described in Section III. Modelling in mobile devices is central

to this vision, and implies diverse challenges such as a smart

use of the reduced screen size and lighter model persistence

formats than standard ones based on EMF. While we have

devised light persistence mechanisms based on JSON, stan-

dardization of this aspect would be useful. Similarly, we have

developed our own API description mechanisms (cf. Fig. 3),

though standardization would facilitate the construction of

open DSLs [27]. Further challenges include the exploitation

of crowd modelling, and the combination of local and global

synchronization mechanisms.

Regarding DSL-comet, our immediate plans include the

exploration of context rules for model adaptation. We will also

exploit the possibilities of geo DSLs by permitting several

users to share their location and appear on the same map,

enable the definition of user roles, and explore the creation of

domain-specific mobile apps based on active DSLs.

ACKNOWLEDGMENT

Work funded by the Spanish MINECO (TIN2014-52129-R)

and the R&D programme of Madrid (S2013/ICE-3006).

REFERENCES

[1] S. Kelly and J. Tolvanen, Domain-Specific Modeling - Enabling Full
Code Generation. Wiley, 2008.

[2] A. J. Ko, R. Abraham, L. Beckwith, A. F. Blackwell, M. M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. A. Myers, M. B.
Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the
art in end-user software engineering,” ACM Comput. Surv., vol. 43, no. 3,
pp. 21:1–21:44, 2011.

[3] D. Vaquero-Melchor, A. Garmendia, E. Guerra, and J. de Lara, “Towards
enabling mobile domain-specific modelling,” in ICSOFT. SciTePress,
2016, pp. 117–122.

[4] D. Chaffey, “Mobile marketing statistics compilation,” http://www.
smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/, SmartInsights, Tech. Rep., 2017.

[5] Y. Wu, “Global smartphone user penetration forecast by 88 countries:
2007 - 2022,” Strategy Analytics, Tech. Rep., 2016.

[6] F. Hermans, J. Siegmund, T. Fritz, G. Bavota, M. Nagappan, A. Hindle,
Y. Kamei, A. Mesbah, and B. Adams, “Leaders of tomorrow on the
future of software engineering: A roundtable,” IEEE Software, vol. 33,
no. 2, pp. 99–104, 2016.

[7] D. Vaquero-Melchor, A. Garmendia, E. Guerra, and J. de Lara, “Domain-
specific modelling using mobile devices,” in Selected papers from
ICSOFT 2016. CCIS 713. Springer, 2017, pp. 221–238.

[8] G. Bergmann, C. Debreceni, I. Ráth, and D. Varró, “Query-based
access control for secure collaborative modeling using bidirectional
transformations,” in Proc. MODELS. ACM, 2016, pp. 351–361.

[9] J. Gallardo, C. Bravo, and M. A. Redondo, “A model-driven
development method for collaborative modeling tools,” J. Network and
Computer Applications, vol. 35, no. 3, pp. 1086–1105, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.jnca.2011.12.009

[10] W3C, “XML Path Language (XPath) 3.1,” https://www.w3.org/TR/
xpath-31/, 2016.

[11] Sirius, 2016. [Online]. Available: https://eclipse.org/sirius
[12] Lucidchart, 2016. [Online]. Available: https://www.lucidchart.com
[13] DrawExpress, 2016. [Online]. Available: http://www.drawexpress.com

[14] SyncSpace, 2016. [Online]. Available: https://infinitekind.com/syncspace
[15] Ideament, 2016. [Online]. Available: http://www.nosleep.net
[16] R. Lemma, M. Lanza, and F. Olivero, “CEL: modeling everywhere,” in

ICSE. IEEE / ACM, 2013, pp. 1323–1326.
[17] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch: A mobile sketching tool

for software modeling,” in MobiCASE, ser. LNICST, vol. 110. Springer,
2013, pp. 225–244.

[18] D. Zhao, J. C. Grundy, and J. G. Hosking, “Generating mobile device
user interfaces for diagram-based modelling tools,” in AUIC, ser. CRPIT,
vol. 50. Australian Computer Society, 2006, pp. 101–108.

[19] J. Danado and F. Paternò, “Puzzle: A mobile application development
environment using a jigsaw metaphor,” J. Vis. Lang. Comput., vol. 25,
no. 4, pp. 297–315, 2014.

[20] E. Umuhoza and M. Brambilla, “Model driven development approaches
for mobile applications: A survey,” in MobiWIS, ser. LNCS, vol. 9847.
Springer, 2016, pp. 93–107.

[21] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo, and
H. Ergin, “AToMPM: A web-based modeling environment,” in Demos
@ MoDELS, vol. 1115. CEUR, 2013, pp. 21–25.

[22] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendovszky, and Á. Lédeczi, “Next generation (meta)modeling:
Web- and cloud-based collaborative tool infrastructure,” in MPM @
MoDELS, vol. 1237. CEUR, 2014, pp. 41–60.

[23] L. M. Rose, D. S. Kolovos, and R. F. Paige, “EuGENia live: A flexible
graphical modelling tool,” in XM @ MoDELS. ACM, 2012, pp. 15–20.

[24] V. Sousa and E. Syriani, “An expeditious approach to modeling IDE
interaction design,” in Proc. GEMOC+MPM@MoDELS, ser. CEUR
Workshop Proceedings, vol. 1511. CEUR-WS.org, 2015, pp. 52–61.

[25] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–
180, 2010.

[26] S. Ceri, F. Daniel, F. M. Facca, and M. Matera, “Model-driven engi-
neering of active context-awareness,” World Wide Web, vol. 10, no. 4,
pp. 387–413, 2007.

[27] OpenAPI, “Open API initiative,” https://www.openapis.org, 2017.

