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Abstract—The Data-as-a-Service (DaaS, or Data Services)
paradigm enables an on-demand, service-based access to data,
relying on similar principles to Software-as-a-Service (SaaS).
DaaS permits centralized data quality management, a uniform
view and access to heterogeneous data, and enables exposing a
richer, domain-specific data model to users.

Within this context, we are witnessing a trend in institutions to
make information public as open data. However, such information
is normally released “as-is”, in heterogeneous formats, requiring
costly, ad-hoc pre-processing steps for cleansing and analysis of
its underlying structure.

This paper proposes an adaptation of the DaaS paradigm for
the construction of open data applications. For this purpose, we
introduce an architecture based on Model-Driven Engineering
(MDE), consisting of (i) multi-level modelling for the description
of domains, based on generic meta-models, (ii) a library of injec-
tors to bring data on demand from heterogeneous sources into
the MDE technical space, and (iii) a REST-based infrastructure
to access the data services. This work presents the architecture
of such framework and the first steps in its realization.
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I. INTRODUCTION

The Data-as-a-Service (DaaS) approach is a variant of
the Service-Oriented Computing (SOC) paradigm that allows
suppliers to expose their internal data using a richer data model
than the one in which the data is originally stored [4]. At the
same time, there is a trend among governments, institutions
and even enterprises to make all sort of information public,
like budgets, expenses or economic data. Typically, such
data is released as open data that can be freely used and
distributed [12]. However, it is not enough to distribute the
data, but it has to be made available in a form that makes it
useful to consumers. Hence, providing services for data is an
appealing mechanism to increase its value.

The engineering of data services for open, heterogenous
data poses a series of challenges due to the large variety of data
formats, the lack of an underlying data model in many cases,
the heterogenity of the data and the data sources, their dynamic
nature in some cases, and a bigger probability of unavailability,
among other factors. This requires a different approach from
existing proposals, which normally focus on business scenarios
where data is kept in some internal, controlled storage.

Our proposal to tackle this problem is based on Model-
Driven Engineering (MDE) [19], a development paradigm

exploiting the use of domain models to raise the level of
abstraction and automation at which software is developed.
MDE is based on two key elements: meta-modelling and
model transformations. Meta-modelling defines the structure
and semantics of domain models, while transformations per-
mit the automatic model manipulation for different purposes,
like refactoring, model querying, code generation, language
mappings, and conversions between technological spaces [3].

In this position paper we describe the architecture of our
proposal, which is based on three main elements. Firstly,
we use multi-level modelling [2] to characterize the data
in different domains. We show how this approach to meta-
modelling allows a hierarchical classification of the different
data domains, relying on a top-level layer of reusable, generic
meta-models. We also discuss the challenges arising when
applying multi-level modelling in practice in this context.
Secondly, to cope with the inherent heterogenity regarding data
sources and formats we define the notion of domain injector,
which allows mapping data in some format into a semantically
rich model. Thus, we are defining a family of domain injectors
to deal with some common formats and data sources. Finally,
a data service is accessible through a generic REST API which
exposes the data model described by the domain models. In
this paper, we motivate this approach, describe the architecture,
and provide an overview of our ongoing implementation.

Paper Organization. Section II presents an overview of the
architecture. Its main elements are described in the subsequent
three sections: Section III introduces our multi-level modelling
organization, Section IV describes our approach to build
domain injectors. Section V describes our prototype imple-
mentation and discusses some applications of the framework.
Section VI compares our approach with related work and
Section VII presents the conclusions and lines for future work.

II. ODAAS: A DAAS ARCHITECTURE FOR OPEN-DATA

APPLICATIONS

A. Motivation and Requirements

The open data movement advocates the availability of
certain data, typically public data, coming from a range of
sources such as scientific institutions or governments. No-
tably, the possibility for citizens to oversee data related to
government behavior (national, regional or municipal) or to the
performance of public services will lead to the so-called open-
government. Examples of open data provided by governments



include transport information, criminality reports, accountabil-
ity and expenses [9].

There is a growing interest in applications making use of
open data, as can be witnessed by the European Union initia-
tive1, the emergence of events like the Open Data Challenge2,
the Open Data Days3, and others sponsored by local councils
like the Ottawa Open Data App Contest4. Thus, data providers
require crowdsourcing ideas leading to useful applications
profiting from the large amount of delivered open data.

Nowadays, such applications need to be handcrafted by
skilled people with highly specialized technical background.
Our framework aims at facilitate the use of open data to both
developers and users, driven by the following requirements.

1) Dealing with heterogeneous data formats. Open
data are typically published in the most convenient
way for the publisher. This leads to heterogeneous
data formats which require a careful pre-processing
before their use in applications. Mechanisms to facil-
itate data processing and giving data a homogenous
structure are needed for data consumers to make the
most of open data possibilities.

2) Semantic data domains. Open data applications
need to interpret and combine heterogeneous data
from different sources. Often such sources do not
provide any semantic information, as the data is re-
leased as e.g., PDF or Excel documents. Semantically
rich data domains must be defined in formalisms that
facilitate mapping existing data to them, as well as
creating new data domains, possibly derived from the
existing ones.

3) User interaction. Applications with rich data analy-
sis and visualization means (e.g., geolocalization of
elements in interactive maps) need to be created for
people to be able to make use of open data. This task
should be as automated as possible, since new types
of data are released continously. In addition, users
should be given the possibility of interacting and
contributing new relevant data (e.g., use of mobile
devices to decorate existing data with opinions or
ratings, or to report local problems in cities like
potholes in roads, broken lights or graphities). For
this latter issue, it would be desirable to incorporate
connections with social networks, like Twitter, given
the wide use of such networks nowadays [15].

B. Architecture

In order to cope with the previous requirements, we pro-
pose the architecture shown in Fig. 1. We define our approach
Open-Data-as-a-Service (ODaaS), as it delivers open-data in
the form of services. The rationale is to make uniform different
data sources, by their representation in the form of models,
within the MDE technical space. For example, open data is
typically made available in heterogeneous documents (Excel,
XML, CSV, PDF), while many companies offer open APIs
to perform predefined queries. Other data may be located in

1http://open-data.europa.eu/
2http://opendatachallenge.org/
3http://opendataday.org/
4http://www.apps4ottawa.ca/
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Fig. 1: Architecture of our approach.

relational data bases, or be only available as streaming data
(Tweets, or sensor information).

In our proposal, we internally represent data as models,
conformant to a well defined, semantically rich domain meta-
model. Hence, as part of our methodology, we use meta-
models to represent different domains, like city transportation
or cultural events. Please note that representing the data in the
form of models goes beyond a simple change of format, but
it implies giving semantics to the data through these domain
meta-models. As we will see in Section III, our domain meta-
models are built by instantiating predefined generic meta-
models, useful to represent, e.g., temporal information, geopo-
sitions or personal information. The advantage is that we can
define generic operations over these meta-models (e.g., like
representing geopositions in maps, reasoning about temporal
information, etc.), so as to make them available to instances of
any domain meta-model. Additionally, more specific services
can be defined over the domain meta-models.

To import data into the MDE technical space, we use
domain injectors. These take data in a certain format (XML,
JSON), from some platform (file system, web service, data-
base) and produce a model conformant to some domain meta-
model (e.g., transportation). Hence, injectors are in charge of
giving semantics to externally acquired data. As we will see in
Section IV, domain injectors are made of two parts. The first
one is a data injector that reads data in a certain format from
some platform, and transform it into a “neutral” model. The
second is a mapping (a model-to-model transformation [5]),
translating such a neutral model into a model conformant
to some domain meta-model. To facilitate the construction
of domain injectors, reusable libraries of data injectors are
needed, which we have started to build.

Another key point is that data can be dynamically fetched
from data sources on demand. Hence, if the system receives a
request for some model elements that are not internally present
yet, a data retrieval component activates the corresponding
domain injector to retrieve the data from the external source.

We make the system accessible as a REST service. We
foresee both generic applications, like a console to discover
and use the different data services, and domain-specific ap-
plications (e.g., a mobile application for a traffic information
system aggregating multiple sources). By relying on MDE,
appropriate meta-models and code generators can be built to
synthesize the final application.

Altogether, MDE is appropriate in this context because it
allows characterizing the data in a specific domain by means
of meta-models, its validation and cleansing by checking its



conformance to integrity constraints, and using transformation
technology for data mappings. Thus, data sets from different
sources, but within the same domain, will be mapped to the
same meta-model, making them compatible and homogeneous.
Moreover, different services, like visualization, interaction
and reasoning services can be defined generically, based on
the concepts the domain meta-models are built with (e.g.,
temporal, geographical, personal). By selecting and combining
different domain injectors, domains and services, applications
using such data services can be generated using MDE.

Next, we detail the different elements of this architecture.

III. DOMAIN MODELLING

In order to obtain a uniform view of heterogeneous data, we
convert such data into a model, conformant to a meta-model.
Meta-models make explicit the structure of the data, its static
semantics (integrity constraints), and allow their automated
manipulation and reasoning. In the following we describe our
meta-modelling architecture, and the challenges imposed by its
use in a DaaS based approach to address open data challenges.

A. Multi-level modelling

We propose the use of multi-level modelling [2] to allow a
stratified classification of concepts and their successive refine-
ment. Differently from standard meta-modelling approaches,
like those based on the Meta-Object Facility (MOF) [11],
multi-level modelling allows multiple classification levels (i.e.,
modelling at an arbitrary number of meta-levels). The left
of Fig. 2 shows the multi-level organization we propose for
ODaaS. At the top meta-level, generic meta-models describe
general concepts, like geopositions, temporal relations or per-
sonal information. Such meta-models are used to describe
particular domain meta-models, which in turn are instantiated
with particular domain data. This organization is not limited to
three meta-levels, as some domain meta-models may require
refinemenent at subsequent meta-levels.
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Fig. 2: Multi-level organization (left). Multi-level modelling
for the transportation domain (right).

The right of Fig. 2 shows an excerpt of a multi-level model
for the transportation domain. At the top, there is a simplified
model (Geoposition) with concepts like Place or Coordinates
to represent elements in the space. Such generic model can be
instantiated to build a description of a transportation system.
Some of the elements of this model are instances of the model
above, like Stop, which is an instance of Place. However,

in multi-level modelling [6] we allow linguistic extensions,
elements that do not have a type in the meta-model above.
Technically this is possible by the use of a dual linguistic/on-
tological typing [2]. All elements have linguistic typing, while
some of them (like TranspService) may lack an ontological
type. Similarly, attribute types with no ontological type are
allowed, like name and lineId in Stop and Line. Finally, we can
instantiate this model, to describe the particular configuration
of the Madrid bus lines, at the bottom of the figure.

Some elements in the middle model (like Line) are in-
stances of elements at the level above (Line is an instance of
Region), and types with respect to the model at the level below
(Line is a type for N13). Hence, as in multi-level modelling,
elements may have both a type (class) and an instance (object)
facet at the same time, they are called clabjects [2].

The advantage of this approach is that operations defined
over the top-most meta-models become applicable any number
of meta-levels below. For example, operations over the Geopo-
sition meta-model may include representing a model in a map
(by means of code generation), finding the Places close to a
given one, or converting between different coordinates systems
(for simplicity the figure assumes just the latitude/longitude
system). Hence, by using Geoposition to describe the trans-
port domain meta-model, operations defined over Geoposition
become applicable to instances of Transport. In practice,
the transport meta-model is also built with a generic meta-
model for describing temporal information, enabling e.g., the
representation and reasoning about time points and intervals,
but we do not show these details for the sake of simplicity.

Next, we analyse the challenges of using multi-level mod-
elling for ODaaS.

B. Challenges of multi-level modelling for ODaaS

In multi-level modelling, clabjects are decorated with a
potency [2], indicating the number of meta-levels they can be
instantiated for. It is a natural number that decreases at each
meta-level the clabject is instantiated. In this way, if a clabject
has potency 2, its instances will have potency 1, and instances
of these will have potency 0. A clabject with potency 0 cannot
be instantiated further. Potency also applies to attributes, and
is a way to characterize the structure of indirect instances of
an element, several elements below. In the example, we may
want to indicate that instances of Coordinates two levels below
(like CibelesLoc) should have slots lat and long, and so we
would need to assign such attributes potency 2. If an element
does not receive a potency, it takes the one of its container
(attributes take the potency of their owner clabjects if they do
not declare one), and ultimately from their container models.
Standard meta-modelling frameworks like MOF can be seen as
a particular case of this approach, where meta-model elements
have potency 1, and model elements potency 0.

Multi-level modelling based on potency needs to anticipate
an arbitrary, but fixed number of meta-levels for each mod-
elling problem, to assign a concrete potency to the elements in
the top-level meta-model. However, this would be a limitation
in the ODaaS domain, because at the top-level we have generic
models (for Geoposition, Temporal and Personal information,
etc.), which could be instantiated a different number of times
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Fig. 3: Scheme of a domain injector.

depending on the domain. For example, we might have Cul-
tural events as domain meta-model, to be refined into Classical
Music Festivals one level below, and then a bottom level with
information of the different festivals.

Hence, as also proposed by [1] in a different context, we
allow the potency to be unbounded, written “*”. Instantiating
a clabject with unbounded potency may lead to an element
with unbounded potency, or with a potency equal to a natural
number. This is the approach followed in Fig. 2, where both the
Geoposition and the Transport meta-models have unbounded
potency. This enables refining Transport, should one wish to
make explicit specific structures for some transportation system
(e.g., a domain meta-model of a multi-mode transportation
system may refine the Transport meta-model with the trans-
portation type, prices, crossings, line operators and so on).

In addition, it may be needed to allow clabjects to have
an arbitrary number of (ontological) types, and not just one.
This would allow a Stop to be an instance of Place but also of
TemporalInterval, to account for the bus timetable. In standard
approaches, like MOF, this could be emulated by creating
an intermediate class inheriting from the different classes to
be instantiated (Place and TemporalInterval), and instantiating
such intermediate class. However, this workaround does not
scale, as intermediate classes would be needed for all possible
combination of classes in the meta-models. Interestingly, the
OMG has proposed an extension of the MOF with such
feature in the so called MOF support for Semantic Structures
(SMOF) [10], driven by needs in Ontology languages. How-
ever, still SMOF falls short in this line, as it needs to statically
indicate the classes that can be combined together.

IV. DOMAIN INJECTORS

Our architecture needs to transform external data into the
MDE technical space, as an instance of a particular domain
meta-model. For this purpose we propose the construction of
domain injectors, whose structure is shown in Fig. 3.

A domain injector is made of two parts. First a data injec-
tor that brings data from a particular platform (a web service,
a file) and format (XML, JSON). The data injector already
creates a model, conformant to a domain-neutral meta-model
(a marking meta-model, enabling a uniform representation
of data in different formats). Data injectors are generic, and
independent of the domain. In this way, we make available a
library of reusable parsers for different formats (CSV, XML,
JSON, Excel, etc) and platforms.

Secondly, a domain injector also includes a mapping into
a particular domain (e.g., Transportation), which is currently
realized as a model-to-model transformation from the marking

Fig. 4: The data service console.

meta-model into the domain meta-model. While data injectors
are generic, this mapping is dependent on the particular
domain meta-model. In our current implementation the model-
to-model transformation needs to be written by hand, but our
goal is to generate such transformation in a user-friendly way,
using “by example” techniques [18].

V. PROTOTYPE IMPLEMENTATION

We have built a prototype implementation of the described
architecture, based on METADEPTH [6] as a supporting tool
for multi-level modelling. METADEPTH is integrated with the
Epsilon model management languages5 so that model-to-model
transformations, in-place transformations, queries and code
generators can be defined. Data services are exposed using
a REST API, and we use Jersey6 for that purpose. We have
implemented some domain injectors for the Transportation,
Concerts and Historic Places domains.

On top of such prototype, we have built a generic web
application, which can be used as a console to explore the
different data services, invoking its querys and browsing
the resulting models. A screenshot is shown in Fig. 4. The
figure shows an excerpt of the Geoposition meta-model, in
METADEPTH format.

VI. RELATED WORK

The interest in profiting from data of a different nature
(business data, open data, social data) can be witnessed from
the emergence of marketplaces of different kinds of data [14].
However, describing data services is still a challenging issue,
since SOC related standards, such as WSDL [21], are not rich
enough to describe the underlying data model of a service [4].

The Open Data Procotol [17] (OData) is a data access pro-
tocol which uses an object-oriented entity-relationship model,
and defines a mapping between CRUD operations and a REST
service to access the data model. It also provides means to
query the service metadata (i.e., the data model structure). We

5http://www.eclipse.org/epsilon/
6https://jersey.java.net/



are studying a possible alignment of our query service with
OData’s REST service.

In [20] a proposal, called DEMODS, to describe a DaaS
is presented. In DEMODS the data service API is decoupled
from the data asset description. In our case, we propose a
mapping from the data model to the API. DEMODS relies on
external information models to describe the data assets (e.g.,
OData, OpenAnnotation), but it does not provide any special
support for them, beyond links to the description documents.
We use multi-level modeling as a pervasive element of our
approach. However, exportation facilities to other formalisms
are possible. The authors identify the challenge of “a common
agreement in the definition of data domains and data cate-
gories”, and we have shown how multi-level modeling allows
us to naturally address it.

Ontologies could be used as an alternative to multi-level
modelling. However, by remaining in the MDE technical
space, we can use languages and tools for model manipulation,
like transformations, code generation, and in-place transforma-
tions. In any case, we are currently working on an integration
of METADEPTH and ontologies.

With respect to using a DaaS approach to expose open
data, some of the challenges involved are commented in [7].
In this line, some efforts for the systematic use of open data
are starting to emerge. Some tools, like Any237, inject data
from different sources (CSV and HTML micro-formats) into
RDF triples. However, these tools are not meant to discover
the underlying structure of the data, validate it, or synthesize
a full interactive application. Even though not specifically for
open-data, the database community (specially in data ware-
houses) has proposed specialized Extraction-Transformation-
Loading (ETL) tools to access and integrate data from dif-
ferent sources [16]. These tools deal with the problems of
data cleaning [13] and data mapping to specific schemas.
While some existing commercial tools offer advanced generic
mapping tools8, our proposal in this respect is the construction
of domain-specific injectors equipped with heuristics to suggest
relations between the data and automate cleansing through in-
tegrity constraints, which otherwise would need costly, expert
guidance. In this line schema discovery approaches, like the
one proposed in [8] for JSON documents, are of interest to
facilitate the construction of injectors.

Other proposals [7] aim at documenting open data with
metadata to describe its structure and ease the construction of
applications for them. Our approach is compatible with those
based on linked data, since transformations can convert the
injected data into publishable RDF triples.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel architecture for the engineering
of Data Service applications, specially tailored for open-data
applications, termed Open-Data-as-a-Service (ODaaS). The
approach is based on multi-level modelling to represent do-
main knowledge. It supports on demand data loading through
domain injectors, which are described through semantic-rich
query descriptions. The data services are made available

7http://any23.apache.org/
8http://www.mulesoft.org/

through a REST API, and we have shown a prototype imple-
mentation, including a generic web data exploration console.
We believe an MDE-based approach for ODaaS applications is
pertinent, as it makes it possible to assign semantics to data by
promoting data as semantically rich models. Moreover, MDE
also enables the generation of domain-specific applications for
different platforms, like the web or mobile devices.

We are currently working on different aspects of the
implementation. We plan to complete the framework for gener-
ating domain-specific applications on top of the Data Services
using MDE. We are also interested in a deeper study of the
integration of dynamic and static data sources [15]. Finally,
we are also working on the interoperability of our frameworks
with OWL ontologies, and RDF triplestores.
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