
Testing chatbots with Charm

Sergio Bravo-Santos, Esther Guerra, and Juan de Lara

Modelling and Software Engineering Research Group
http://miso.es

Computer Science Department
Universidad Autónoma de Madrid (Spain)

{sergio.bravos, esther.guerra, juan.delara}@uam.es

Abstract. Chatbots are software programs with a conversational user
interface, typically embedded in webs or messaging systems like Slack,
Facebook Messenger or Telegram. Many companies are investing in chat-
bots to improve their customer support. This has led to a proliferation
of chatbot creation platforms (e.g., Dialogflow, Lex, Watson). However,
there is currently little support for testing chatbots, which may impact
in their final quality.
To alleviate this problem, we propose a methodology that automates the
generation of coherence, sturdiness and precision tests for chatbots, and
exploits the test results to improve the chatbot precision. The method-
ology is supported by a tool called Charm, which uses Botium as the
backend for automated test execution. Moreover, we report on experi-
ments aimed at improving Dialogflow chatbots built by third parties.

Keywords: Chatbots · Testing · Botium · Dialogflow.

1 Introduction

Chatbots – also called conversational agents – are software programs that inter-
act with users via conversation in natural language (NL) [9]. Many companies
are developing chatbots to provide access to their services or automate customer
support, and they are increasingly being used to automate software engineering
tasks [4, 6]. Their use is booming as they do not require installing dedicated apps
but can be embedded in social networks – like Slack, Telegram or Twitter – for
their use in mobile devices, as if talking with a colleague.

Because of this growing interest in chatbots, many tools for their develop-
ment have appeared, such as Google’s Dialogflow1, IBM’s Watson Assistant2,
Microsoft’s bot framework3 or Amazon’s Lex4. Some of them are cloud-based
low-code development environments that greatly facilitate the main chatbot con-
struction steps, from the application of NL processing (NLP) for identifying the

1 https://dialogflow.com/
2 https://www.ibm.com/cloud/watson-assistant/
3 https://dev.botframework.com/
4 https://aws.amazon.com/en/lex/

user intents, to the chatbot deployment in social networks. However, these tools
barely provide support for testing chatbots, even if testing is essential to ensure
the chatbot quality. At most, they offer a console where developers can manually
test if the chatbot reacts properly to the NL inputs. While this helps during the
development, a proper software process requires systematic, automatable testing
mechanisms.

To address this need, a few chatbot testing tools are starting to emerge,
most notably Botium5. This tool successfully automates the chatbot testing
process. Moreover, it permits synthesizing an initial set of test cases derived
from the training phrases of the chatbot. However, the generated test cases only
consider basic conversation flows, and need to be extended by hand. Our aim is
to automate this manual process as much as possible.

In this paper, we propose a methodology for chatbot testing that extends the
test case synthesizer of Botium to cover more complex cases, such as context-
dependent conversations. The generated test cases have two aims: testing the
robustness of the NLP engine, and the precision of the chatbot to identify the
user intents. For this purpose, our tests include variations of the chatbot train-
ing phrases, constructed via fuzzing/mutation functions [12]. Moreover, the test
results can be used to improve the chatbot precision. The method is supported
by a tool called Charm, and has been evaluated through some experiments on
chatbots developed by third parties.

In the remainder of the paper, Section 2 provides background on chatbots and
their testing with Botium; Section 3 presents our approach for test synthesis;
Section 4 describes our methodology and its tool support; Section 5 reports on an
initial evaluation; Section 6 compares with related work; and Section 7 presents
the conclusions and lines of future work.

2 Background on chatbots and their testing

This section overviews the working scheme of chatbots (Section 2.1) and how
they can be tested with Botium (Section 2.2).

2.1 What’s in a chatbot

Chatbots are programs with a conversational user interface. As Figure 1 illus-
trates, the interaction starts when the user writes a sentence or utterance (label
1). Then, the chatbot tries to match the utterance to the most appropriate in-
tent among a predefined set (label 2). For example, upon the receipt of the user
utterance “what types of pizza do you have?”, a chatbot for food delivery would
recognize that the user intent is obtaining information about the availability
of some kind of food, and would reply with a list of pizza types. To identify
the intent that corresponds to an utterance, intent definitions include sample
phrases (i.e., different ways to express the intent) which are used for training
the chatbot.
5 https://www.botium.ai/

user

NL
phrase

intent1

intentn

chatbot match
intent

…

intenti
…

chatbot
response

2

5
external
service

1

build
response

store
context

extract
params

6

4

3

<<
re

u
se

>>

Fig. 1: Chatbot working scheme.

Upon matching an intent, the chatbot may need to extract information from
the utterance (label 3). In the previous example, it may need to know the query
target, which is “types of pizza”. Each piece of information is called parameter,
and is typed by an entity which can be either predefined (e.g., date) or chatbot-
specific (e.g., food type). Entities define a list of possible values (e.g., pizza,
noodles) and synonyms, and some platforms like Dialogflow allow fuzzy matching
to overcome misspellings and mistakes. If a parameter is mandatory but the
utterance does not include it, the chatbot may ask for it in a follow-up intent.
Moreover, chatbots sometimes need to store information about a conversation
(e.g., desired type of pizza) to reuse it in subsequent intents. In Dialogflow, the
conversation state is stored in contexts (label 4).

Finally, the chatbot may need to invoke an external service (e.g., the infor-
mation system of a food delivery shop) to handle the user intent (label 5), and
ultimately responds to the user (label 6) with a text, media elements, or widgets
specific of the deployment platform (e.g., buttons in Telegram).

2.2 Testing chatbots with Botium

Botium is a suite of open-source components for automated chatbot testing. It
communicates with the chatbot under test via connectors. These are available
for many chatbot platforms (like Dialogflow, Watson or Lex), and new ones
can be added. Botium executes all test cases found in a given folder against
the chatbot. It follows a behaviour-driven development approach [10] similar
to Cucumber6, in which test cases consist of convo files that hold the global
structure of the test conversation, and utterance files that contain the phrases
used in the conversation.

As an example, Listing 1 shows a convo where the user (#me) provides any
utterance in order drink utterance (i.e., any phrase in Listing 2), and the chatbot
(#bot) is expected to match the intent order.drink. Overall, the convo would be

6 https://cucumber.io/

executed three times (once per utterance). As a result, Botium reports the
number of passed and failed tests, the reason for failure, and a confusion matrix
with the percentage of tests that matched the expected intent. The latter matrix
allows detecting loosely defined intents.

1 #me
2 order drink utterance
3
4 #bot
5 INTENT order.drink

Listing 1: Convo file.

1 order drink utterance
2
3 do you have iced latte?
4 can I get a small iced cappuccino with low−fat milk?
5 I want tea

Listing 2: Utterance file.

While test cases can be created by hand, Botium also supports their auto-
mated generation from the chatbot specification. Specifically, it generates one
convo and one utterance file per intent, the latter containing the intent training
phrases. The generated tests are simple, e.g., they do not consider conversa-
tions with context or chatbot responses. Hence, the developer needs to create
additional tests to tackle those scenarios. In the next section, we propose an
extension of these test synthesis capabilities.

3 Test synthesis

Charm extends the set of test cases generated by Botium in two ways. First, it
produces further convos to test behaviour uncovered in the synthesized test set.
This process is explained in Section 3.1. Second, Charm augments the utterance
files by means of mutation. This technique is introduced in Section 3.2.

3.1 Convo generation

Charm produces convos to test the following aspects:

– Chatbot response: Botium produces convos that specify the intent that
should be matched (see, for example, line 5 in Listing 1). Charm extends
these convos to include and assess the expected chatbot response as well.

– Required parameters: Intents may have required parameters, and the
chatbot response may depend on their value (or lack of value). Hence, Charm
extends the base convos to tackle different parameter values.

– Context: Charm generates new convos for testing the use of contexts (i.e.,
previously stored information). To this aim, for every intent that uses context
variables, it creates all possible convo combinations that fill those variables
and lead to the intent.

Example. Listing 3 shows a convo generated by Charm for an intent with con-
text and two required parameters: type of drink and delivery method. The convo
emulates an interaction where the user utterance omits the delivery method (line
2). This triggers a follow-up question of the chatbot asking for it (line 6), to
which the user replies delivery (line 9). Then, the chatbot recaps the order details

and asks for confirmation (line 13), which requires retrieving the ordered drink
and delivery method from the previous context. Thus, to generate this convo,
Charm needs to statically build a conversation flow that feeds the context with
the necessary information, as done in lines 1–9.

1 #me
2 order drink nodeliv utt
3
4 #bot
5 INTENT order.drink
6 order drink nodeliv response
7
8 #me
9 delivery

10
11 #bot
12 INTENT order.drink
13 order drink confirmation
14
15 #me
16 order drink nodeliv yes utt
17
18 #bot
19 INTENT order.drink.yes
20 order drink confirmation yes

Listing 3: Convo for testing intent with context.

1 me:
2 Two medium cappuccinos
3
4 bot:
5 Would you like delivery or pickup?
6
7
8 me:
9 delivery

10
11 bot:
12 You want two medium cappuccinos
13 for delivery, is that right?
14
15 me:
16 Yes
17
18 bot:
19 Have a nice day!
20

Listing 4: Conversation.

As an example, Listing 4 shows an instance of the execution of the convo with
concrete utterances. We use the same line numbers as in Listing 3 to facilitate
traceability.

3.2 Utterance generation

Starting from the utterance set generated by Botium, Charm creates new ut-
terance variants by applying the mutation operators shown in Table 1. We dis-
tinguish the following four kinds of mutation operators, which are applied with
a customizable probability:

– Character operators emulate typing errors according to a given probability.
Specifically, swap-char swaps a character with another one, swap-char-close

swaps one character to another one which is close in the keyboard, and
delete-char deletes one character.

– Language operators translate an utterance between a list of user-defined or
random languages, and the result is translated back to the initial language.
The goal is creating utterances with equivalent meaning but different form.

– Word operators change a word (adjectives, nouns or adverbs) by synonyms
or antonyms. The aim is creating utterances accepted by the same intents
as the original utterance.

– Number operators substitute numbers by equivalent words and vice versa.

Table 1: Mutation operators for utterances.

Mutation Description Example
Character

swap-char swaps a character to any other character hello → hkllo
swap-char-close swaps a character to another one close in the keyboard hello → hwllo
delete-char deletes a character hello → hllo

Language
translation-chain translates between a list of languages hello → hola → hi

Word
word-to-synonym changes an adjective, adverb or noun to a synonym 2 pants → 2 trousers
word-to-antonym changes an adjective or adverb to an antonym hot tea → cold tea

Number
number-to-word changes a number into an equivalent word 2 pants → two pants
word-to-number changes a word to a number two pants → 2 pants

4 Testing methodology and tool support

In this section, we first introduce our proposed methodology for testing chatbots
(Section 4.1), and then we overview our supporting tool Charm (Section 4.2).

4.1 Testing process

Figure 2 shows the chatbot testing process in our tool Charm. It supports three
kinds of tests: coherence, sturdiness and precision.

chatbot
CHARM

mutation mutation train

coherence
test

precision
test utterances

of failed tests

extended convo
and utterance files

mutated
utterances

mutated
utterances

character &
number mutations

language & word
mutations

BOTIUM

sturdiness
test

BOTIUM

convo and
utterance files

Fig. 2: Charm’s testing process.

First, Charm invokes Botium to create the base convo and utterance files,
and extends the convo files as explained in Section 3.1. Then, depending on the

kind of test, Charm creates new utterances by applying a subset of the mutation
operators detailed in Section 3.2. This stage may require the intervention of
the tester to confirm that the new utterances preserve the original utterance
semantics. Finally, the test cases are executed atop Botium, and the results are
interpreted according to the test kind:

– Coherence test: This is the simplest test. It executes the extended convo
files but does not perform any utterance mutation. This test is typically per-
formed first, to detect coarse-grained defects like duplicated training phrases
in different intents, or too similar intents and entities.

– Sturdiness test: This test assesses how good the chatbot is at dealing
with typing mistakes or different writing styles. For this purpose, Charm
applies the character mutations to emulate typing mistakes, and the number
mutations to have a same utterance written in different ways (numbers vs
words). This type of test actually evaluates the robustness of the NLP engine
of the underlying chatbot platform. If the results are deemed bad, some
platforms allow fine-tuning the intent matching process, e.g., by enabling
fuzzy matching.

– Precision test: The precision test evaluates the ability of the chatbot to
predict the correct intent when utterances have a different formulation from
the intent training phrases. To do so, Charm produces new utterances using
the language and word mutations. If a test with a mutated utterance fails,
then the utterance can be used as a training phrase to improve the chatbot
precision. This testing-improvement cycle can be repeated until the chatbot
precision is deemed adequate.

4.2 Tool support

Charm is implemented in Python and uses Botium as a backend. The tool is
freely available at https://charmtool.github.io/Charm/. It permits generat-
ing convo files and parameterizing the distribution probabilities of the mutation
operators programmatically.

In addition, we provide a web application, implemented in Django and React,
that enables the use of Charm from a web-based user interface. Figure 3 shows
this web application, which can be accessed from the webpage of Charm. Its
main page, with label 1, shows on the left top the chatbot that is currently active.
If no chatbot has been selected, as in the figure, the user can select one from
the list of available chatbots, or upload a new one. The latter is done using the
page with label 2, where the user can also delete existing chatbots. We currently
support Dialogflow chatbot definitions, but we plan to support further formats
in the future. The user can upload hand-made convos, and generate convos using
Botium, from the page with label 3. Finally, the main page contains buttons to
execute the presented coherence, sturdiness and precision tests. As an example,
the page with label 4 shows the results of the sturdiness test. The displayed
report is generated by Botium.

3

4
1

2

Fig. 3: Web-based user interface of Charm: (1) Main window. (2) Chatbot management
page. (3) Page for uploading and generating convos. (4) Results of sturdiness test
(report obtained from Botium).

5 Evaluation

In this section, we report on the results of an experiment aimed at answering
the following two research questions (RQs):

RQ1 Can Charm uncover problems in chatbots that the default test cases gen-
erated by Botium do not detect?

RQ2 Can the iterative testing process of Charm improve the chatbot quality?

5.1 Experiment set-up

The experiment considers the three Dialogflow chatbots shown in Table 2. The
first one was built by us, and the other two are third-party chatbots found on
github. The Baseline7 chatbot has neither contexts nor entities, and so, the chat-
bot responses do not depend on parameter values or previous conversation states.
The Nutrition8 chatbot has 7 entities, some of them with more than 100 entries,

7 https://github.com/CharmTool/Charm/blob/master/chatbots/Miso-Test.zip
8 https://github.com/Viber/apiai-nutrition-sample

and it defines several intents with required parameters, so conversations can be-
come complex. The RoomService9 chatbot has 5 intents, 1 of them dependant on
another via a context, and it uses 4 predefined entities and 1 chatbot-specific
entity.

Table 2: Chatbots under test.

Chatbot #Intents #Entities #Contexts

Baseline 4 0 0

Nutrition 4 7 0

RoomService 5 5 1

In the experiment, we set a maximum of 10 utterances per utterance file.
Moreover, the mutation operators were applied to each utterance with a certain
probability: in the sturdiness tests, the application probability was 30% for swap-

char-close and delete-char, 20% for number-to-word and word-to-number, and 0% for
swap-char; while in the precision tests, we gave probability 30-45% to translation-

chain, and 5% to the word mutation operators. These values were decided after
calibration, based on the quality of the resulting tests.

5.2 Experiment execution

We run each type of test on every chatbot, and next, we extended the chatbot
training set with the utterances of the failing cases of the precision tests, per-
forming two improvement cycles. Table 3 summarizes the results. All chatbots
obtained perfect score in the coherence test (2nd column). This means that the
chatbots have no evident errors in their specification, and the default Botium
tests detect no faults.

Table 3: Results of the experiment.

Coherence, Sturdiness, Sturdiness, Precision, Precision, Precision, Precision,
1st cycle 1st cycle fuzzy 1st cycle 1st cycle 2nd cycle 2nd cycle

matching new training new training
Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail

Baseline 32 0 31 1 31 1 29 1 30 0 30 1 31 0
Nutrition 48 0 43 5 46 2 45 2 47 0 48 1 49 0

RoomService 32 0 29 3 28 4 29 2 31 0 33 2 35 0

To test sturdiness, the character and number mutation operators produced
32, 48 and 32 additional test utterances. All chatbots failed some test case (3rd

column). If we activate fuzzy matching on the problematic entities (4th column),
then the results of Baseline do not change because it has no entities, the results

9 https://github.com/dialogflow/dialogflow-java-client-v2

of Nutrition improve, but RoomService worsens. The latter is because the chatbot
defines an entity “room name” with entries A, B and C, and Charm generated
an utterance with a different room name, which the chatbot (incorrectly) took
as valid. This shows that fuzzy matching is not appropriate for this intent.

The precision tests produced the same number of utterances as the sturdiness
tests, though using the language and word operators. Moreover, we manually
filtered 4 of the generated test utterances out, as they were meaningless. From
the remaining test cases, all chatbots failed some (5th column), so we trained the
chatbots with the utterances of the failed cases, after which all tests succeeded
(6th column). Next, we applied the precision test with new mutated utterances,
obtaining fewer errors than in the first cycle (7th and 8th columns).

5.3 Discussion

Overall, we can answer RQ1 and RQ2 positively: Charm produced tests that
revealed faults, and also helped in improving the quality of the chatbots. How-
ever, we need to perform further experiments with more complex chatbots to
strengthen this assessment. We observed that Charm synthesized convo files to
test the context in chatbot RoomService. While Charm can generate tests that
detect chatbot defects, there is still a manual step to filter meaningless utterances
in precision tests. For instance, in our experiment, we had to remove around 3%
of the automatically generated utterances.

To get an intuition of the synthesized tests, Table 4 shows some of the utter-
ances generated by Charm, together with the mutation operator that produced
them. The last column of the table indicates whether the generated utterance
was manually discarded or not. For example, we removed the last utterance
shown for chatbot Nutrition, as the translation chain produced a sentence with
almost opposite meaning to the original.

Table 4: Sample of generated utterances.

Chatbot Utterance Mutated utterance Operator
Disca
rded?

Baseline just going to say hi just come to say hello translation-chain no
Baseline when are the meetings? When is the meetings? translation-chain no
Baseline good luck good muck swap-char-close no
Nutrition nutrition analysis food analysis word-to-synonym no
Nutrition calories in 4 oz of steak calories in four oz of steak number-to-word no

Nutrition
how many calories in one
big mac

how many calories in 1
big mac

word-to-number no

Nutrition
does a kiwi contain vitamin
A

Not one kiwi fruit contains
vitamin a

translation-chain yes

RoomService
is there any room free
tomorrow?

Any rooms free translation-chain no

RoomService
Do you have rooms for
this monday?

Do you have rooms for
thismonday?

delete-char no

6 Related work

While there are many tools for chatbot development, their support for testing
is scarce. Most development platforms (like Dialogflow, Lex or Watson) provide
a web chat console that permits informal, manual testing of the chatbots. Ap-
proaches based on programming languages – like Rasa10, which is built atop
Python – can rely on the debugging and testing support offered by the pro-
gramming language itself. Only a few platforms, like Dialogflow, offer debugging
facilities to inspect the matched intent and related information. In addition, Di-
alogflow includes checks of the chatbot quality, like detecting intents with similar
training phrases.

Some companies have developed their own chatbot testing tools. For example,
haptik.ai provides a testing tool11 that automates the interaction with the chatbot
via simple scripts, and can be integrated with automation servers such as Jenkins.
Botium can also be integrated in testing flows using Jenkins. However, these
tools require manual building or extension of the test suites, which our work
aims to automate.

Regarding academic proposals, in [1], the authors use AI planning techniques
to generate tests traversing the conversation flow. More similar to us, the meta-
morphic chatbot testing approach in [3] applies mutation operators (e.g., replac-
ing a word by a synonym, or a number by another one) to a set of utterances
to produce follow-up test cases, which should match the same intent. In a sim-
ilar vein, BoTest [8] creates divergent inputs (word order errors, incorrect verb
tense, synonyms) from an initial utterance set. We also rely on mutation, but in
addition, we classify our mutation operators to obtain different types of tests (to
test either the robustness of the NLP engine or the precision of the intent defi-
nitions), provide automation on top of Botium, and a methodology for chatbot
improvement.

To reduce the human cost of chatbot testing, Bottester [11] simulates users
who interact with chatbots, and collects some interaction metrics like the answer
frequency, the response time or the precision of the intent recognition. While
Bottester targets chatbots created with in-house technology, Charm is based
on Botium and so can test chatbots for the major chatbot creation platforms.
Moreover, our testing process covers different chatbot aspects and provides a
cycle of chatbot improvement.

Charm is focused on testing the NL aspect of the chatbot, but other (non-
functional) aspects need to be tested as well, like the communication with exter-
nal services or the chatbot security [2]. For example, Alma12 is a chatbot that
helps in evaluating Messenger and Telegram bots across seven categories: per-
sonality, onboarding, understanding, navigation, error management, intelligence
and response time. While Alma is based on questions to the chatbot users, we
support automated testing. One of the decisive aspects for chatbot acceptance is

10 https://rasa.com/
11 https://haptik.ai/tech/automating-bot-testing/
12 http://chatbottest.com

their usability. Some heuristics for bot usability have been proposed13, but more
actionable usability patterns – possibly integrated within chatbot development
tools – and automated means for usability evaluation are needed [7].

7 Conclusions and future work

The increasing use of chatbots for varying activities makes necessary techniques
to ensure their quality. This paper contributes to solve this need by proposing a
set of techniques for automated chatbot test synthesis, a methodology supporting
three different types of tests, and a supporting tool that uses Botium for test
automation.

In the future, we would like to extend our set of mutation operators (for
example, to enable adversarial text generation [5]), support new types of tests,
improve the functionality of the Charm service, and enable the integration of
Charm with continuous testing and integration workflows.

Acknowledgments. We would like to thank the anonymous reviewers for their
comments. This work has been partially funded by the Spanish Ministry of
Science (project MASSIVE, RTI2018-095255-B-I00) and the R&D programme
of Madrid (project FORTE, P2018/TCS-4314).

References

1. Bozic, J., Tazl, O.A., Wotawa, F.: Chatbot testing using AI planning. In: AITest.
pp. 37–44. IEEE (2019)

2. Bozic, J., Wotawa, F.: Security testing for chatbots. In: ICTSS. LNCS, vol. 11146,
pp. 33–38. Springer (2018)

3. Bozic, J., Wotawa, F.: Testing chatbots using metamorphic relations. In: ICTSS.
LNCS, vol. 11812, pp. 41–55. Springer (2019)

4. Erlenhov, L., de Oliveira Neto, F.G., Scandariato, R., Leitner, P.: Current and
future bots in software development. In: Proc. the 1st International Workshop on
Bots in Software Engineering, BotSE@ICSE. pp. 7–11. IEEE / ACM (2019)

5. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P.: Is BERT really robust? A strong baseline
for natural language attack on text classification and entailment. In: AAAI (2020)

6. Pérez-Soler, S., Guerra, E., de Lara, J.: Collaborative modeling and group decision
making using chatbots in social networks. IEEE Softw. 35(6), 48–54 (2018)

7. Ren, R., Castro, J.W., Acuña, S.T., de Lara, J.: Evaluation techniques for chatbot
usability: A systematic mapping study. International Journal of Software Engi-
neering and Knowledge Engineering 29(11&12), 1673–1702 (2019)

8. Ruane, E., Faure, T., Smith, R., Bean, D., Carson-Berndsen, J., Ventresque, A.:
Botest: A framework to test the quality of conversational agents using divergent
input examples. In: IUI Companion. ACM (2018)

9. Shevat, A.: Designing bots: Creating conversational experiences. O’Reilly (2017)
10. Soĺıs, C., Wang, X.: A study of the characteristics of behaviour driven develop-

ment. In: 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, SEAA. pp. 383–387. IEEE Computer Society (2011)

13 https://haptik.ai/blog/usability-heuristics-chatbots/

11. Vasconcelos, M., Candello, H., Pinhanez, C., dos Santos, T.: Bottester: Testing
conversational systems with simulated users. In: IHC. pp. 73:1–73:4. ACM (2017)

12. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: Mutation-based fuzzing.
In: The Fuzzing Book. Saarland University (2019), https://www.fuzzingbook.

org/html/MutationFuzzer.html, retrieved June 2020

