
Towards the generation of graphical modelling
environments aided by patterns

Antonio Garmendia, Ana Pescador, Esther Guerra, and Juan de Lara

Modelling and Software Engineering research group
http://miso.es

Computer Science Department
Universidad Autónoma de Madrid (Spain)

Abstract. Model-Driven Engineering (MDE) promotes the use of mod-
els to conduct all phases of software development in an automated way.
Such models are described using Domain Specific Modelling Languages
(DSMLs). While the definition of DSMLs and their supporting environ-
ments are recurring activities in MDE, they are mostly developed ad-hoc
from scratch. This paper proposes the use of patterns to describe the ab-
stract and concrete graphical syntax of DSMLs, and to automate the
generation of a graphical modelling environment for them.

Keywords: Model-Driven Engineering, Domain Specific Languages, Pat-
terns, Graphical Modelling Environments

1 Introduction

Model-Driven Engineering (MDE) promotes a model-centric approach for soft-
ware development, where models are used to specify, design, test, simulate and
generate code for applications. While models can be described using general-
purpose modelling languages, like UML, it is frequent the use of Domain Specific
Modelling Languages (DSMLs) focussed on the particularities of a domain [8].

Hence, the creation of DSMLs is recurrent in MDE, for which one needs to
describe their abstract and concrete syntax, their semantics, and developing a
suitable modelling environment for them. Although there are software frame-
works to ease the development of textual and graphical environments [8,10,12],
the creation of DSMLs is mostly an ad-hoc process lacking the ability to build
on existing knowledge coming from the construction of similar DSMLs.

To simplify the creation of DSMLs, we propose their assisted construction
by means of patterns. In particular, domain patterns describe recurring concepts
common to a domain, and concrete syntax patterns gather standard representa-
tion options for DSMLs and enable the synthesis of modelling environments. As
a proof of concept, we show a prototype implementation for Eclipse.

The remaining of the paper is organized as follows. First, Section 2 introduces
our approach. Then, Section 3 explains how to build graphical DSMLs with
patterns. Next, Section 4 reviews related works, and finally, Section 5 concludes.

NodeElement

GraphicElement

color: String

paletteName: String

paletteIcon: String

IconElement

filePath: String

radius: float width: float

height: float

width: float

height: float

Rhombus

@abstract elements

 0..*

target
source

0..*

0..*

link

*

0..*

ContainerElement
@abstract

0..*

0..*

Root

EdgeElement

0..*

Circle Rectangle 0..* 0..*

label: String
StateMachine

StateVertex

* states

name: String

Transition

name: String

*
source

target

outgoing

incoming

*
*

Simple

State

Final

State Event

trigger 0..1
Initial

State

transitions

0..1 0..1
0..1

state-machine domain pattern 0..1

contains

graph-based concrete syntax pattern

Fig. 1: Domain pattern (left). Graph-based concrete syntax pattern (right).

2 Overview

The design of a DSML encompasses several aspects, including abstract syntax,
concrete syntax, and semantics. In addition, editing DSML models is usually
performed using a dedicated environment providing services like model persis-
tence, conformance checking, and others more advanced. We propose the use of
patterns to address all these aspects, in order to facilitate and speed up their
definition. By lack of space, we focus on patterns dealing with the abstract and
concrete syntax, as well as the generation of modelling environments from them.

To deal with the abstract syntax, we propose domain patterns, gathering typ-
ical requirements of similar languages within a domain, and documenting their
variability. Here, there may be patterns for workflow languages, arithmetical or
logical expressions, variants of state machines, query languages, and component-
based architectural languages, among others. A DSML may use several domain
patterns, customized for a given need, and extended with other domain-specific
concepts. These patterns may help to build a DSML more quickly and trust-
worthily, in a constructive way. As an example, Fig. 1 (left) shows a simplified
domain pattern for state machines. Pattern elements have a cardinality, which
governs how many times they can be instantiated (1 if no cardinality is speci-
fied). For instance, any application of the state-machine pattern should have one
SimpleState, while it may lack InitialState and FinalState.

On the other side, concrete syntax patterns characterize families of similar
representations [2], like textual, graphical, tabular or form-based. In the case
of a graphical syntax, aspects like layouting or zooming may be configured.
Moreover, concrete syntax patterns can be used to automate the generation of
editors supporting the defined syntax (which otherwise should be implemented
by hand), and can be attached to domain patterns in order to define different
default visualization options for them. As an example, Fig. 1 (right) shows a
simplified pattern for graph-based representation. This pattern permits assigning
graphical elements (Circles, Rectangles, etc.) to elements in the DSMLmeta-model.

Altogether, in order to define DSMLs, we propose a reutilization-based,
pattern-centric approach, which we have implemented in our prototype tool DSL-
tao (http://jdelara.github.io/DSL-tao/). DSL-tao enables the construction
of meta-models, where some meta-model parts can be defined through the appli-
cation of existing patterns in a repository. Basic pattern application is performed
in three steps. First, a pattern is selected and a wizard guides the designer in
its application (see window 1 in Fig. 2 for the wizard of the state-machine pat-
tern). In this step, variants and attached patterns can also be selected (see next
section). Then, the designer can bind meta-model elements to pattern elements.
Finally, the unbound pattern elements are automatically created new in the
meta-model, annotated with their participant role in the pattern (window 2 in
Fig. 2).

The next section presents two ways to describe and generate graphical envi-
ronments for DSMLs using patterns.

3 Defining graphical DSMLs through patterns

We propose two ways to describe the graphical syntax of a DSML. In the first
one, domain patterns have attached a default visualization, which the DSML
designer just reuses. This option profits from commonly agreed means to rep-
resent domain patterns (e.g., state machines, or component-based systems). In
the second option, a dedicated wizard is used to apply a graphical pattern over
the elements of the DSML meta-model. This approach is to be used when the
DSML needs a non-predefined, or special syntax. Next, we present these two
possibilities, as well as the environments generated through their use.

3.1 Using the visual syntax attached to domain patterns

Domain patterns may have attached concrete syntaxes, accounting for typical
representations of the domain concepts. For instance, Fig. 2 shows the applica-
tion of the state-machine pattern. The pattern has three concrete syntax patterns
attached: one for the standard graph-based representation, another for its repre-
sentation as tables, and another using forms. Designers can select one of them.
In this way, when the domain pattern is applied, the concrete syntax pattern will
be automatically instantiated as well. Thus, this approach permits predefining a
set of concrete visualizations, which can be reused “as is” by DSML designers.

3.2 Using the dedicated custom wizard

Sometimes, the designer requires a fine grained control of the concrete syn-
tax for the DSML, or he has not used domain patterns with attached concrete
syntax. In such cases, the designer can still use a concrete syntax pattern to
automate the generation of a modelling environment, for which he needs to map
meta-model elements to concrete representations in the selected concrete syntax
pattern. Since the application of concrete syntax patterns has many specificities

1

2

application of

state-machine pattern

to meta-model

Fig. 2: The wizard for pattern application (1). Applied pattern (2).

(like selecting figures for nodes and decorations for edges), patterns may provide
dedicated wizards for their application. For instance, the graph-based concrete
syntax pattern has a customized wizard that implements heuristics to decide
which classes will be represented as nodes, which ones as edges, the attributes
to display, and the nodes that are containers of other nodes. Then, the designer
can refine the inferred concrete syntax and fine-tune the visual representation
for nodes and edges.

Fig. 3 shows the wizard to customize the following heuristics:

– Root strategies: These are alternatives to select the root class to be used in
diagrams. The root class is usually a class that contains all elements of the
model, directly or indirectly. The strategy Contains more classes counts how
many classes contain each class, and selects the one that contains more. The
strategy Class with no parents suggests classes that are not contained in other
classes. Both strategies are based on the tree of containment references defined
in the meta-model. The last strategy (Modularity pattern) selects as root the
meta-model classes annotated as Unit by a modularity pattern [5] (not shown
in this paper) that allows organizing models in a modular way.

– Label selection: These heuristics are used to decide the data that node-like
classes will display close to the node representation. The strategy First string
attribute displays the first string attribute of the class, and Identifier of the
class its identifier. The strategy Parameter string attribute receives several
input strings, and selects the attribute whose name contains some of them.

Fig. 3: Dedicated wizard for assigning a graph-based concrete syntax. Step 1:
selection of heuristics.

– Arc strategies: They are used to select edge-like classes. In this case, we select
the classes that define two non-containment references with lower bound 0 or
1, and upper bound 1. These two references will be mapped to the source and
target of the edge representation for the class. While the first strategy (Sim-
ple direction arc strategy) selects the source and target references randomly,
the second one (Parameter direction arc strategy) takes into account possible
naming conventions (e.g., source or src for the source reference).

– Link & compartment & affixed selection strategies: These strategies identify
the references that will be displayed graphically as edges, compartments or
affixes. If the strategy Containment references as links is selected, all con-
tainment references will be represented as links. If the selected strategy is
Containment references as compartments, they will be displayed as containers
for the objects conformant to the type of the reference. Finally, if the chosen
strategy is Containment references as affixed, the nodes will be placed on the
border of another element.

The wizard uses the heuristics to infer the optimal concrete representation
of meta-model elements, which are proposed to the designer in a second step
(see Fig. 4). The, the designer is allowed to modify the inferred syntax, as well
as fine-tune the concrete visualization for nodes and edges to customize the
decorations for the start and end of edges, the types of figures for nodes, their
size and colour. This last step is shown in Fig. 5.

Finally, although we have presented the wizard for the graph-based concrete
syntax pattern, the same idea could be used to implement further strategies

Fig. 4: Dedicated wizard for assigning a graph-based concrete syntax. Step 2:
customization of inferred concrete syntax.

Fig. 5: Dedicated wizard for assigning a graph-based concrete syntax. Step 3:
customization of appearance of nodes and edges.

for this or other concrete syntax patterns. Currently, we support tabular and
form-based representations, in addition to graph-based ones.

3.3 The generated graphical environment

The modelling environment for a DSML can be synthesized from its meta-model.
For this purpose, DSL-tao invokes the code generators of the services associated

Fig. 6: Generated graphical modelling environment.

to the applied patterns. For graphical concrete syntax patterns, the generator
creates an Eclipse plugin that uses the Sirius graphical framework [10] as back-
end. Thus, once the meta-model is annotated with the concrete syntax pattern, a
Sirius .odesignmodel is generated. This model describes the shapes for nodes, the
style for edges, the mappings of graphical elements to meta-model elements, the
elements in the palette, and the actions to be performed when palette elements
are invoked. Technically, this model is created using a model transformation.
Then, the Sirius model is packaged in a plugin, which is contributed to the
modelling environment of the DSML.

Fig. 6 shows the generated graphical environment for the meta-model shown
at the bottom of Fig. 2, which was created by instantiating the default concrete
syntax pattern attached to the domain pattern for state machines.

4 Related work

There are many tools to develop graphical modelling environments for different
applications, like meta-CASE tools [8], diagram sketching [3] or multi-formalism
modelling and simulation [4]. The advent of Eclipse has promoted frameworks
to construct visual editors as plugins, like Tiger [1], GMF [6], Eugenia [9],
Spray [11], Graphiti [7], or Sirius [10]. All these tools are model-based, except
Graphiti which provides a Java API for coding. Some generate artefacts for other
lower-level approaches, like Eugenia which is built atop GMF, and Spray atop
Graphiti. In our case, DSL-tao produces graphical editors based on Sirius. All

frameworks use code generation except Sirius, which is interpreted. The way
of specifying the concrete syntax varies: Eugenia requires annotating the meta-
model elements, Spray uses a textual DSL, GMF and Sirius require building
models that describe the concrete syntax, and Graphiti requires programming.
Our approach is closer to Eugenia, as our pattern applications result in meta-
model annotations. However, our domain patterns can attach concrete syntax
styles, which speeds up the generation of graphical environments. This feature
is unique among the mentioned tools.

5 Conclusions and future work

We have presented a pattern-based approach to the development of graphical
DSMLs. The approach is supported by a tool that permits applying patterns
from a repository and the automatic generation of a modelling environment. We
are currently working on defining new patterns, and developing further services
for graphical environments like support for layers and abstractions.
Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity (TIN2011-24139 and TIN2014-52129-R), the R&D programme of
the Madrid Region (S2013/ICE-3006), and the EU commission (FP7-ICT-2013-
10, #611125).

References

1. E. Biermann, K. Ehrig, C. Ermel, and G. Taentzer. Generating Eclipse editor
plug-ins using Tiger. In AGTIVE, volume 5088 of LNCS, pages 583–584. Springer,
2007.

2. P. Bottoni and A. Grau. A suite of metamodels as a basis for a classification of
visual languages. In VL/HCC, pages 83–90, 2004.

3. F. Brieler and M. Minas. A model-based recognition engine for sketched diagrams.
J. Vis. Lang. Comput., 21(2):81–97, 2010.

4. J. de Lara and H. Vangheluwe. Atom3: A tool for multi-formalism and meta-
modelling. In FASE, volume 2306 of LNCS, pages 174–188. Springer, 2002.

5. A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara. EMF splitter: A struc-
tured approach to EMF modularity. In XM@MoDELS, volume 1239 of CEUR,
pages 22–31. CEUR-WS.org, 2014.

6. GMF. https://wiki.eclipse.org/Graphical_Modeling_Framework.
7. Graphiti. http://eclipse.org/graphiti/.
8. S. Kelly and J. Tolvanen. Domain-specific modeling - enabling full code generation.

Wiley, 2008.
9. D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige, F. A. C. Polack, and G. Botter-

weck. Taming EMF and GMF using model transformation. In MODELS, volume
6394 of LNCS, pages 211–225. Springer, 2010.

10. Sirius. https://eclipse.org/sirius/.
11. Spray. https://code.google.com/a/eclipselabs.org/p/spray/.
12. Xtext. http://www.eclipse.org/Xtext/.

