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Abstract

Two crucial aspects for the trustworthy utilization of domain-

specific languages (DSLs) are their semantic correctness, and

proper testing support for their users. Testing is frequently

used to verify correctness, but is often done informally –

which may yield unreliable results – and requires substantial

effort for creating suitable test cases and oracles.

To alleviate this situation, we propose an automated tech-

nique for building metamorphic testing environments for

DSLs. Metamorphic testing identifies expected relationships

between the outputs of two consecutive tests, reducing the

effort in specifying oracles and creating test cases manually.

This new ideas paper presents the overarching concepts, the

architecture and a prototype implementation. We illustrate

our proposal using a DSL to model and simulate data centres.

CCS Concepts: • Software and its engineering → Soft-

ware verification and validation.

Keywords: Metamorphic Testing, Model-Driven Engineer-

ing, Sofware Language Engineering, DSLs
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1 Introduction

Model-driven engineering (MDE) promotes models as the

main artefacts of the software development process [4]. Mod-

els can be created with general-purpose modelling languages,

like UML [30], or using dedicated domain-specific languages

(DSLs) tailored for a domain [21, 37]. Modelling languages en-

compass abstract syntax, concrete syntax and semantics [16].

The latter is typically defined through code generators, sim-

ulators, or a combination of both [11].

Ensuring the correctness of DSLs – and the programs

developed with them – is crucial for the success of MDE so-

lutions. Testing can be used for this purpose. At the language

level, there are proposals for test-driven DSL development

processes [20] and automating the testing of DSL implemen-

tations [31]. At the DSL usage level, there are proposals for

(unit) testing [22, 40] and debugging [3, 27]. However, speci-

fying test oracles for some DSLs is challenging, and creating

test cases manually requires a high effort.

Metamorphic testing (MeT) [9, 34] is a technique for test-

ing systems in cases where there is no oracle or it is too

expensive to compute [38]. This kind of testing identifies

relations that describe expected variations in the output of

two subsequent test cases, when the input of the first test

case is changed according to some criteria. MeT has been

successfully applied to difficult-to-test systems in many disci-

plines, solving the oracle issue and facilitating the automated

generation of test cases [10, 32].

We claim that using MeT for both engineering and using

DSLs may help to increase the trustworthiness of MDE so-

lutions. However, building one MeT environment by hand,

for each employed DSL, is costly. This is so as it involves

developing tools for defining and executing MeT relations

based on features and processes that depend on each DSL.

Hence, in this new ideas paper, we propose to automate the

construction of MeT environments, based on the use of a

DSL for their specification. Our proposal is applicable both

at the DSL definition level (e.g., to test the DSL semantics)

and at the DSL usage level (e.g., to test DSL programs). We

illustrate its use on a DSL for data centres.

https://doi.org/10.1145/3486608.3486904
https://doi.org/10.1145/3486608.3486904
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2 Background and Running Example

This section provides background on MeT (Sec. 2.1) and

describes a DSL that we use as a running example (Sec. 2.2).

2.1 Metamorphic testing (MeT)

Testing complex systems entails two main challenges. The

first one is the oracle problem, which refers to the availability

of mechanisms to assess if a test case passes or fails. However,

some systems – like the cloud [28], scientific computation

software [25], or machine learning applications [41] – may

not have an oracle available, or it can be computationally

too expensive to apply. Additionally, since the amount of

potential test cases for a complex system may be computa-

tionally unaffordable, it is desirable to select just a subset

of them that determines the system correctness effectively.

Unfortunately, selecting an optimal subset is challenging in

most cases. This is known as the reliable test set problem.

MeT is a testing technique that aims at alleviating these

two problems. It has been used in very different domains,

such as web services [33], machine learning [41], compil-

ers [24] and cloud systems [8, 28]. MeT uses metamorphic

relations (MRs) to determine if the execution of the test cases

is correct. In contrast to conventional testing, where the re-

sult provided by each individual test case is compared to

the one provided by the oracle, MeT studies the relations

between different test inputs and the resulting outputs.

MRs model the behaviour of the system under test. AnMR
can be seen as a property of the system that involves multiple

inputs and their outputs. It can be represented as a logical

implicationMRi ⇒ MRo , whereMRi is a relation between

the inputs of two test cases, and MRo a relation between

their outputs. Hence, if the relation between the inputs is

satisfied, so must be the relation between the outputs.

The reliable test set problem is faced by generating so called

follow-up test cases using the MRs and a small set of initial

test cases, generally created by the tester. A follow-up test

case t ′ can be generated from a test case t and an MR by per-

forming a modification on t ’s input so thatMRi is satisfied.
Then, the MeT process checks whetherMRo is also satisfied,

for t and each synthesized follow-up test case. This way, by

using the MRs, the oracle problem is alleviated as well.

2.2 Running example: MeT for data centres

To illustrate our MeT proposal, we will use a DSL to describe

data centres. Our goal is to simulate the data centre models

against workloads (i.e., applications to be executed) to obtain

expected processing times. Fig. 1 shows a highly simplified

meta-model for the DSL, where a DataCentre is made of a

Network and any number of Racks. Each Rack contains Boards,
which are connected via Switches and have computing nodes

with characteristics described by NodeTypes.
To test if a simulator S for this DSL performs as expected, it

is difficult to establish an oracle, but we can use MeT instead.

switches

racks

Network
bandwith: int
latency: int

Switch

Board
nodesPerBoard: int

Rack
numBoards: int

NodeType
CPUCores: int
CPUSpeed: int

DataCentre

switch

 *

net

 nodeType
  board

*

Figure 1. Meta-model excerpt of a DSL for data centres.

Hence, we can define a test case as a pair (m1,ω), where
m1 is a data centre model, ω is a workload (also a model,

whose meta-model is omitted due to space constraints), and

St (m1,ω) is the simulation time of the data centrem1 when

processing the workload ω using simulator S .
Then, we can exploit expert knowledge about data centres

to define MRs. For example, as a rule of thumb, decreasing

the number of computing nodes (leaving the other com-

ponents the same) may increase the processing time of a

workload. This can be expressed as the MR: NNodes(m1) >
NNodes(m2) ⇒ St (m1,ω) ≤ St (m2,ω), where NNodes is a
function counting the number of nodes of a data centre. The

function NNodes in the MR pre-condition is to be evaluated

on the test cases, while St in the post-condition is to be eval-

uated on the simulation results. We call the functions over

test cases (like NNodes) input features, while those on the

outputs (like St ) are called output features.

Overall, the MR can be used as an oracle (to check that

decreasing nodes increases the simulation time) and to gen-

erate follow-up test cases (e.g., by reducing the nodes of

an initial test modelm1 decreasing the values of nodesPer-
Board). Instead of one, a thorough MeT process would have

a catalogue of MRs, modelling different aspects of the DSL

semantics (e.g., network, bandwidth, memory, energy).

3 Overview of the Approach

We propose a method to synthesize MeT environments for

DSLs, which can be used to test the DSL definition, or to

provide testing support to DSL users. Fig. 2 overviews the

approach, assuming the former scenario. It involves three

phases and three roles (MeT expert, DSL semantics expert

and tester) who may (or may not) be the same person.

Customized MeT 
Environment 

generates 

MeT  
expert 

GOTTEN MM 

Define  
input/output  

features 

Define  
MRs 

Domain MMs 

Describe  
execution 

environments 

DSL semantics  
    expert 

1. Describe the MeT environment 

 
Tester 

test  
cases 

MET ENVIRONMENT CONFIGURATION MET ENVIRONMENT USAGE 

Map execution 
results to  

output features 

Link  
model to  
execution 

2. Link to DSL semantics 

Define  
new MRs 

MeT 

3. MeT process 

Generate 
follow-up 
test cases 

Domain models 

Figure 2. Overview of our approach.
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In the first phase, the MeT expert describes the MeT envi-

ronment. For this purpose, we provide a DSL called Gotten

(for Generic MDE framework fOr meTamorphic TEstiNg),

which facilitates the definition of MRs, input features that

the MRs can use (e.g., NNodes), output features (e.g., St ), and
meta-data of the DSL execution or simulation environments.

The value of the input features is extracted from the test

models using OCL [29]. Sec. 4 will detail this DSL.

In the second phase, the expert in the DSL semantics de-

fines how to invoke the DSL execution, and how to extract

the value of the output features used by the MRs from the

execution results. For example, for the data centre DSL, the

expert would map the DSL models into the input of the

CloudSim simulator [7], and would specify how to extract

the simulation time from the simulator results. Sec. 5 will

explain this phase.

Next, our approach generates the MeT environment out

of the previous specifications. In this environment, the tester

can provide manually created test models, and the environ-

ment performs the following tasks:

• MeT. Every pair of test models is checked against the pre-

condition of each MR. If a pair of models satisfies the pre-

condition of an MR, then, the post-condition of the MR is

evaluated to determine the success or failure of the test

case. At the end of the process, the environment reports

the set of passed/failed test cases.

• Define new MRs. To complement the MRs defined in phase

1, the tester can define new ones by means of Gotten.

• Generate follow-up test cases. Since the MRs use input

features specified in OCL, it is possible to use a model

finder to obtain follow-up test cases of a given test case,

which together satisfy the pre-condition of anMR. Amodel

finder is a constraint solver over models. It receives a meta-

model and a set of OCL constraints, and outputs a model

that conforms to the meta-model and satisfies the con-

straints [18, 23]. Our current prototype does not support

this feature yet, but it is on our future work agenda.

As mentioned above, the MeT environment can be used

to test both the DSL semantics (as in our example, to test a

simulator for data centres) and the utilization of the DSL by

its users (e.g., a MeT environment to test ATL model trans-

formations [36], to be used by transformation developers).

4 The Gotten DSL

Gotten supports the configuration of the MeT environment

for a given DSL. Fig. 3 shows an excerpt of its meta-model.

A Gotten program (represented by class GottenEnvironment)
comprises five parts:

(i) A declaration of the (Ecore) meta-models of the target

DSLs (class Domain), and the folder containing the

input test models – instances of the given meta-models

– for the MeT process (class TestModelsRepository).

refsTo

*

type

definition

domains

**

0..1
«from Ecore»

EClass

«enum»
DataType

Boolean
Int
Long
Double
String

Binary
Operation

InputFeature
Definition

body: String

FeatureDefinition
name: String
dataType: DataType

...
Feature

Expression
MetamorphicRule
name: String[0..1]

Attribute
name: String

Processor

TestModelsRepository
path: String

Domain
name: String[0..1]
metamodel: String

Gotten
Environment

    context

domain

features
*

rhs

lhs

rules

processors

repository
0..1

*

Figure 3. Excerpt of the Gotten DSL meta-model.

(ii, iii) A definition of the input and output features that the

MRs can use (reference features). Output features (class
FeatureDefinition) have a name and a type (integer, long,

double, boolean, string). Input features (class InputFea-
tureDefinition), in addition, declare an OCL expression

to calculate their value from the input test models, and

may be defined in the context of a class (an EClass,
since we assume Ecore domain meta-models).

(iv) Meta-data (classes Processor and Attribute) to be in-

formed by each DSL execution environment, or pro-

cessor, that the MeT process will use.

(v) The declaration of MRs (class MetamorphicRule).

Listing 1 shows a simple Gotten program. Lines 1–2

declare the datacentre meta-model and the folder containing

the test models. Here, one could declare additional meta-

models, e.g., for the workload. Next, lines 4–7 define the

input feature NNodes of this meta-model, its type Int and the

OCL expression to compute its value. The context of an input

feature may be empty, meaning that the OCL expression has

a global scope. Otherwise, the expression is evaluated on any

object of the given type. Since DataCentre is the root class
of the datacentre meta-model, we can assume that datacentre
models only have one object of this type.

1 metamodel datacentre "/sample.gotten/model/datac.ecore"
2 models "/sample.gotten/model/dcmodels"
3

4 datacentre input Features {
5 context DataCentre def : NNodes: Int =
6 "racks→collect(numBoards∗board.nodesPerBoard)→sum()"
7 }
8 output Features {
9 Time: Long
10 }
11 Processor {
12 Name: String
13 Version: String
14 }
15 MetamorphicRelations {
16 MR1 = [ (NNodes(m1) > NNodes(m2)) => (Time(m1) <= Time(m2)) ]
17 }

Listing 1. Gotten program for the running example.

Lines 8–9 declare the output feature Time with type Long.
The values of output features need to be retrieved from the



SLE ’21, October 17–18, 2021, Chicago, IL, USA Pablo C. Cañizares, Pablo Gómez-Abajo, Alberto Núñez, Esther Guerra, and Juan de Lara

 
 

     PROCESSOR-N      PROCESSOR-2 

GOTTEN engine 

domain 
model-1 

domain 
MM 

GOTTEN 
program 

results 

generate(...) 
execute(...) 
getFeatures(…) 

     PROCESSOR-1 

«provides» 

«requires» 

 
Processor 
«interface» 

MeT 
executor 

config usage 
(initial test cases) 

GOTTEN
editor 

tester 

MeT 
expert 

DSL semantics  
expert 

tester 

Figure 4. Architecture of the Gotten engine.

execution output. To specify how to retrieve these values,

we provide an extension point, which is explained in Sec. 5.1.

Lines 11–14 detail the processor meta-data, in this case,Name
and Version. At run-time, the Gotten engine supports in-

stantiating multiple processors to enable the comparison of

alternative execution semantics of a DSL. In our running

example, this is useful to compare the accuracy of different

cloud simulators w.r.t. the aspects modelled by each MR. Fi-

nally, line 16 defines the MR explained in Sec. 2.2, which uses

the previously defined input and output features.

5 Architecture and Tool Support

In this section, we overview the architecture of our solution

(Sec. 5.1) and describe our prototype tool support (Sec. 5.2).

5.1 Architecture

Fig. 4 shows the architecture of the Gotten engine, which is

designed as an Eclipse plugin. It provides an editor where the

MeT experts can specify the MRs and their features using the

Gotten DSL. In order to register execution and simulation

engines for the DSL, and map their results to output features

of the MRs, the DSL semantics expert needs to instantiate an

extension point. This requires implementing a Java interface

called Processor for each considered execution/simulation

engine. The interface demands the implementation of three

methods: generate, to transform the DSL models into the

input format of the processor; execute, to run the processor

over the given input test models; and getFeatures, to extract

the value of the output features from the execution results.

At this point, the MeT environment for the DSL is ready,

and the tester can use it by providing the set of domain test

models, and optionally adding MRs. Then, the MeT execu-
tor takes care of executing the MeT process, displaying the

results in an interactive view and storing them as a CSV file.

5.2 Tool support

TheGotten environment is an Eclipse plugin
1
, developed us-

ing EMF [35] for handling the (meta-)models, and Xtext [42]

for creating the editor. Fig. 5 shows it in action.

1https://g0tten.github.io/gotten/

The environment provides an editor for Gotten (label 1),

featuring code completion, syntax highlighting, and valida-

tion of the features within each MR. Gotten programs are

stored within Gotten projects (label 2), which typically also

host the meta-models and the test models. After defining a

Gotten program, it is possible to invoke a wizard to gen-

erate a plugin project template instantiating the Processor
extension point. Label 3 shows a project example that imple-

ments the methods of the Processor interface (cf. Fig. 4) for
the execution of datacentre models using CloudSim [7].

The environment has several views for the MeT process.

The model view (label 4) classifies the test models by each

active processor. This view allows to double-click on each

model to launch the generate method of the instantiated

Processor interface. The processors view (label 5) enables

executing the MeT process for the selected processors by

double-clicking on each of them, and shows the values of

the output features. A wizard (not shown) permits launch-

ing the MeT process and selecting the MRs to apply. The

results view (label 6) displays the evaluation of the MRs for

each pair of models, distinguishing between those whose pre-

condition (MRi ) is not satisfied (displayed in brown), those

whose pre-condition and post-condition (MRo ) are satisfied
(i.e., passing tests, in green), and those whose pre-condition

holds but not the post-condition (i.e., failed tests, in red). In

addition, this view supports filtering the results by each one

of these three kinds. Just for illustration, the figure shows

the MR MR2 with the reverse post-condition as MR1, which
is reflected in reversed pass/fail tests in the results view.

6 Related Work

Next, we review works on MeT frameworks, on the use of

MeT to verify MDE artefacts, on testing DSL specifications,

and providing test facilities to their users.

MeT frameworks. Existing MeT frameworks have been built

ad-hoc for specific domains. Sun et al. [5, 6] proposed a

MeT framework for testing web services. Hadiwijaya and

Liem [15] proposed a language for defining MRs and gener-

ating test cases for program competition environments in

Java. DeepRoad [43] is a framework for testing DNN-based

autonomous driving systems, able to synthesize realistic

driving scenes for detecting inconsistent driving behaviours.

AMT [14] is a MeT framework for checking MRs, built atop

Inka for generating test cases bymeans of constraint program-

ming. The scope of AMT is limited to programs supported

by Inka (a limited subset of C and C++).

These works evince the interest of using MeT for hard-to-

test programs, but they are limited to a field of application.

Only [6, 15] provide dedicated languages to define MRs, but

they are heavily oriented to the application domain, handling

simple data types and targeting a specific programming lan-

guage. Hence, none of them provide mechanisms to design

MRs independently of the domain; execute different systems

https://g0tten.github.io/gotten/
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Figure 5. Gotten development environment in action.

and applications; and evaluate the MRs on the results. For

this purpose, our DSL Gotten permits defining input/out-

put features for their use in MRs; and our solution defines

extension points to link with the execution environments.

Use of MeT within MDE. Some researchers have proposed

using MeT to verify transformations and code generators.

Boussaa et al. [1] detect inconsistencies in code generators

using non-functional MRs for resource usage and perfor-

mance. MeT has also been applied to test model transfor-

mations [12, 17, 19]. Troya et al. [36] propose an approach

for the automatic inference of MRs in ATL transformations

based on the execution traces. They define a catalogue of

24 domain-independent MRs, which are used as a basis for

instantiating new MRs for transformation programs.

Similar to the previous case, these MeT approaches are

specific to one domain. A framework like ours could facilitate

building MeT environments for all sorts of MDE artefacts.

Systematic testing of DSLs. There are proposals to automate

the testing of DSLs. Kats et al. [20] define a language para-

metric testing language within Spoofax, which can be used

to test different aspects of a DSL definition and implemen-

tation, including its syntax and semantic services. Ratiu et

al. [31] present some features of the MPS workbench to help

systematic testing of DSLs, which they employed to develop

mbedder, a DSL for embedded systems. The testing helpers

include a language to test the type system, a model checker,

and generators of input test programs. Interestingly, one of

their biggest challenges was finding good oracles. Our MeT

framework is directed to help in this aspect.

Testing facilities for DSLs. Wu et al. [40] present a testing

framework that can be customized for specific DSLs by a

mapping into JUnit. Khorram et al. [22] leverage on the Test

Description Language [26] to create test cases for executable

DSLs [2]. Wodel-test [13] can generate mutation testing

environments for DSLs. It provides a DSL to specify mutation

operators, and extension points to connect the test engine

with the DSL execution engine. Finally, several approaches

support debugging for DSLs [3, 27, 39].

Overall, our approach is useful for both DSL designers and

users. In our running example, we tested DSL semantics, but

we could use our approach to, e.g., generate aMeT framework

for ATL model transformations (useful for the users of ATL).

Gotten is complementary to the works in this category,

providing an additional testing technique that facilitates the

creation of oracles and test cases.

7 Conclusions and Future Work

In this new ideas paper, we have presented the initial steps

towards a model-driven solution to automate the construc-

tion of MeT environments for DSLs. We have illustrated its

feasibility using a DSL for data centres. Our proposal aims

at facilitating a more systematic verification of the different

artefacts of MDE solutions.

In the future, our first objective is to improve the expres-

sion language for MRs, to make the specification of recurring

patterns easier. For example, with a predefined predicate to

specify the parts of the models that can differ. This would

be useful in our running example to specify in MR1’s pre-
condition that, in addition to the condition on NNodes, ev-
erything else should be equal in m1 and m2, except for the
attribute nodesPerBoard in Board objects. We also plan to

work on the generation of follow-up test cases using model

finding, as well as to improve the presentation of results of

the MeT process. Since our approach permits working with

several processors (e.g., several cloud simulators) we will add

facilities for comparing them w.r.t. the MeT results. Finally,

we would like to apply our framework to different domains.
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