
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Inter-Modelling with Patterns

Esther Guerra1 ?, Juan de Lara1, Fernando Orejas2

1 Universidad Autónoma de Madrid (Spain), e-mail: {Esther.Guerra, Juan.deLara}@uam.es
2 Universitat Politècnica de Catalunya (Spain), e-mail: orejas@lsi.upc.edu

Received: date / Revised version: date

Abstract Inter-modelling is the activity of modelling
relations between two or more models. The result of this
activity is a model that describes the way in which differ-
ent models can be related. Many tasks in Model Driven
Development can be classified as inter-modelling, for ex-
ample designing model-to-model transformations, defin-
ing model matching and traceability relations, specifying
model merging and model weaving, as well as describ-
ing mechanisms for inter-model consistency management
and model synchronization.

This paper presents our approach to inter-modelling
in a declarative, relational, visual, and formal style.
The approach relies on declarative patterns describ-
ing allowed or forbidden relations between two models.
Such specification is then compiled into different oper-
ational mechanisms that are tailor-made for concrete
inter-modelling scenarios. Up to now, we have used the
approach to generate forward and backward transfor-
mations from a pattern specification. In this paper we
demonstrate that the same specification can be used
to derive mechanisms for other inter-modelling tasks,
such as model matching and model traceability. In these
scenarios the goals are generating the traces between
two existing models, checking whether two models are
correctly traced, and modifying the traces between two
models if they are incorrect.

Key words Inter-Modelling – Model-to-Model Trans-
formation – Model Matching – Traceability – Graph
Transformation – Graph Constraints

1 Introduction

Models are the heart and soul of Model Driven Engineer-
ing (MDE). They are used to specify, analyse, design,

Send offprint requests to:
? Present address: Universidad Autónoma de Madrid,

Campus Cantoblanco, 28049 Madrid, Spain

test, document, maintain and generate code for the ap-
plications to be built. Frequently, engineers use several
modelling languages and models during the development
process, which cannot remain oblivious of each other and
have to co-evolve together. Hence, many common man-
agement activities in MDE involve manipulating several
models at a time, like model-to-model transformation
(batch or incremental) [11,25,38,46], inter-model con-
sistency [22] and synchronization [21], model traceabil-
ity [14], model matching [29,30] and model merging [5,
7]. Unfortunately, the specifications used in each of these
activities are often built separately — even if they in-
volve the same kind of models — and use different lan-
guages and tools. This results in an increase of devel-
opment time and effort, and may lead to inconsistencies
between the specifications.

We define inter-modelling as the activity of modelling
relations between two or more models. The result of this
activity is a model that describes the way in which dif-
ferent models can be related. The term emphasizes the
fact that these relations are described by means of mod-
els, which as such are amenable to analysis. Many MDE
tasks can be interpreted in terms of inter-model mod-
els (or inter-models in short). For example, in a simple
model-to-model transformation scenario, a source model
is transformed into a target model. Equivalently, this sce-
nario can be formulated as finding a target model such
that, together with the source, conforms to a specific
inter-model and the relations it defines. Further use cases
of inter-models include specifications for model match-
ing, model merging, inter-model consistency and model
synchronization.

In previous works [11,25,38] we proposed a declara-
tive, relational and formal approach to Model-to-Model
(M2M) transformation based on triple patterns that ex-
press the relations between two models. Our patterns
are similar to graph constraints [16] but for triple graphs
made of two graphs plus their traceability relations. Pat-
terns can specify positive information (the relation they
declare must hold) or negative information (the relation

must not hold). In [25], we compiled such pattern speci-
fications into operational mechanisms implemented with
Triple Graph Grammar (TGG) operational rules [15,33,
43] to perform forward and backward transformations.

In this paper, we propose our patterns as a unify-
ing, formal framework for inter-modelling by their com-
pilation into different operational mechanisms that are
tailor-made for solving concrete MDE scenarios. In par-
ticular, in addition to M2M transformation, we demon-
strate the use of the specifications for the problems of
model matching and model traceability. For this pur-
pose, our patterns are used as a high-level specification
to check whether two models are correctly traced, and
generate low-level mechanisms to delete incorrect traces
and create those that are missing. The advantage of this
framework is that the same specification can be used for
M2M transformation, model matching and model trace-
ability. Moreover, its formal basis enables analysis at the
pattern and operational levels.

The paper also details how we handle attributes, as
this has been one of the main difficulties of declara-
tive bidirectional languages. Since attribute computa-
tions must be specified in a non-causal way in this kind
of languages, the generation of operational mechanisms
usually involves the algebraic manipulation of these non-
causal expressions to synthesize attribute pre-conditions
and computations, which may be difficult to automate.
We tackle this issue by the uniform integration of at-
tribute computations and conditions in patterns, and by
considering the manipulated models also as constraints,
hence avoiding algebraic manipulation. Thus, during the
transformation, attributes in models are specified by
variables and formulae constraining them. When the
transformation ends, one can resort to an equation solver
to obtain concrete attribute values.

Our proposal has the following benefits. First, it pro-
vides a relational language for inter-modelling which uni-
fies different inter-modelling scenarios in a single speci-
fication. This solves the problem of maintaining differ-
ent, heterogeneous, scattered specifications for different
scenarios that involve the same kind of models. Sep-
arating the operational mechanism from the declara-
tive specification allows generating specific operational
mechanisms for different purposes (transformation, up-
date, matching, etc.) as well as using different opera-
tional languages (graph grammar rules [25], Coloured
Petri nets [12], constraint solvers [8] or QVT-Core [40]).
Second, its relational style contrasts with declarative ap-
proaches such as TGGs, which are designed to be used
with grammar-based languages, and where a causality
between the existing elements in the models and the
ones to be created has to be given. Our language is
suitable for meta-model-based languages, and the inter-
pretation of patterns as constraints makes it possible to
check the consistency of models against the specification.
A third advantage of our proposal is that the order of
pattern enforcement is deduced, contrary to approaches

such as QVT-Relations, where it must be explicitly spec-
ified. Fourth, its formal foundation allows studying the
specification in both declarative (patterns) and opera-
tional (derived rules) formats. This contrasts with most
of the current approaches [3,30,32,40], where the high-
level languages are only semi-formally defined. In our
view, the MDE community would benefit from a clean,
formal semantics for their transformation languages en-
abling the analysis of transformations and serving as a
reference for tool builders. Finally, our patterns have a
compositional style, i.e. models satisfy two patterns in
conjunction if they satisfy the two patterns separately.
This makes specifications extensible.

As a side effect of our compilation into graph trans-
formation rules, we have introduced a new approach to
graph transformation where attribute computations are
expressed as constraints. This has value in itself, as it
allows for the loose specification of transformations and
the exploration of valid solutions.

This paper extends the conference paper [25] as
follows. It presents patterns as a language for inter-
modelling, and it considers other usage scenarios for
them, namely model matching and model traceability.
We extend patterns with constraints that can contain ar-
bitrary formulae and abstract objects, in order to write
more compact specifications. Finally, we consider the in-
terplay between patterns and meta-models, as the latter
induce extra constraints.
Paper organization. Section 2 overviews current inter-
modelling approaches, pointing out limitations and
needs in the area. Section 3 explains the scheme of our
proposal. Section 4 introduces the basic algebraic no-
tions to be used in the remaining sections. Then, Sec-
tion 5 presents our patterns for inter-modelling. Sec-
tion 6 shows the compilation of patterns into TGG
rules for M2M transformation, taking into account meta-
model integrity constraints, and sketching some heuris-
tics to improve their efficacy. Next, Section 7 shows the
use of patterns for model matching and model traceabil-
ity, presenting two notions of satisfaction, the generation
of relating rules, and the procedures for detecting and re-
moving incorrect traces. Section 8 presents a complete
case study, and Section 9 ends with the conclusions. An
appendix gives details of the main claims and proposi-
tions of the paper.

2 Related Inter-Modelling Approaches

We define inter-modelling as the activity of modelling
relations between models. Hence, we believe it is impor-
tant to produce models describing such relations, as op-
posed to hard-coding specific mechanisms for each con-
crete scenario. The use of models has the advantage of
being more flexible, understandable and maintainable
than lower-level programs. Inter-models can be seen as a
generalization of the term transformation-model [4], but

2

comprise additional inter-modelling scenarios other than
transformations.

As previously stated, inter-modelling spawns a large
variety of situations, like specifying M2M transfor-
mations, model merging, model weaving, model com-
position, model matching, model tracing, inter-model
consistency and model synchronization. In this sec-
tion we do not aim at being exhaustive, but we focus
on M2M transformation, model matching and model
traceability, as these are the scenarios to which we will
compile our patterns in this paper. In the following,
we introduce current approaches and some of their ad-
vantages and drawbacks. The observed needs will lead
to the challenge of a unifying inter-modelling framework.

Model-to-model transformation. M2M transforma-
tion is one of the most common activities in MDE. It is
used to migrate between language versions, to transform
into verification domains, to refine models (for imple-
mentation) or to abstract models (for re-engineering).

There are two main approaches to M2M transforma-
tion: operational and declarative. The former is based on
operations that explicitly state how and when to cre-
ate target elements from source elements [3,32,40,42,
45]. They often borrow imperative constructs from tradi-
tional programming languages, such as statements for it-
eration. This makes them low-level and difficult to anal-
yse, but at the same time they provide great flexibility,
even at the cost of verbosity. Most approaches [3,32,42]
provide rule-like built-in constructs that iterate on all
elements of a certain type on the source domain, leav-
ing the definition of application conditions to the user.
Moreover, different usage scenarios imply developing dif-
ferent transformations, whether or not they involve the
same modelling languages and relations.

On the contrary, declarative approaches usually de-
scribe mappings between source and target models in
a direction-neutral way, which can be naturally inter-
preted as a specification of the relations that must be
satisfied by two models to be considered consistent. They
often allow declaring patterns in the relations, instead of
single elements. From this high-level specification, op-
erational mechanisms are generated for different trans-
formation scenarios, e.g. to transform a source model
into a target one or vice versa (forward and backward
transformations), for incremental transformations [21],
or to synchronize two models [33]. Our patterns for inter-
modelling belong to this category.

Declarative languages can be categorized with atten-
tion to certain features. First, some languages can ex-
plicitly create and query traces, while others cannot. The
first kind of languages includes TGGs [43], Tefkat [34]
and our patterns [11], whereas QVT-Relations [40] falls
in the second category. Being able to query the traces
and check which elements are related across models can
be used as a pre-condition for other relations. This fea-
ture may be seen as low-level, but it is essential in model

traceability scenarios. Those languages that do not per-
mit an explicit handling of traces use parameter passing
and explicit relation invocation instead. Another inter-
esting feature is whether the specifications in a given lan-
guage impose a direction, or whether they are direction-
independent and can be interpreted both ways without
changing the specification. An additional feature that a
language can have or not is the possibility of express-
ing non-constructive constraints, e.g. forbidding the ex-
istence of certain structures or asserting that a certain
property does not have a particular value. We can also
look at the uses of the specifications. Here we can dif-
ferentiate between specifications that can only be used
to produce low-level mechanisms for specific activities
(like forward or backward transformation), and specifi-
cations that in addition can be used in a higher level
way to test whether two models are consistent (what we
call checkonly scenarios). Finally, if the semantics of the
language is formally defined, specifications are amenable
to analysis.

Among the declarative approaches, a prominent ex-
ample is QVT-Relations (QVT-R) [40], the highest-level
of abstraction language of the QVT OMG standard [40].
In this language, a M2M transformation is made of re-
lations with two or more domains. These are described
by patterns similar to object diagrams. When a domain
is marked as enforced, the models to which it is applied
may be modified in order to satisfy the relation; whereas
if it is marked as checkonly, they are just inspected to
check for disagreements. Unfortunately, such marking is
done at the specification level, which mixes specifications
with their intended operational usage. In any case, the
standard prescribes that such operational scenarios are
to be performed by the compilation of the QVT-R trans-
formation into QVT-Core. If the transformation is exe-
cuted in the direction of a check-only domain, the model
is not modified, but it is checked wether it is consistent
with the source model according to the transformation
specification. In QVT-R, traces are not explicitly han-
dled, but relations may contain when and where clauses
instead. The former express conditions under which the
relation needs to hold, and usually refer to other rela-
tions to which they pass parameters. Where clauses may
call other relations, similar to function calls in traditional
programming. QVT-R does not permit non-constructive
constraints as it does not define the notion of negative
relation. Although QVT-R could be used for additional
M2M transformation scenarios, the standard does not
describe that possibility. Finally, QVT-R lacks a for-
mal semantics, which hinders analysis of transformation
properties.

Tefkat [34] is another declarative M2M transforma-
tion language, based on logics. Its specifications are
made of parameterized rules that consist of two con-
straints – source and target – sharing variables. Each
rule matches and constrains a number of objects, either
from the source model or from the trace, and then cre-

3

ates (or ensures the existence of) a number of target el-
ements with a set of constraints. Rules can both invoke
other rules with parameters as well as handle explicitly
the trace. Tefkat specifications are directed, as they can
only create elements in the target model. They can only
be used operationally, not allowing the test for consis-
tency, and do not admit negative constraints. Tefkat has
a formal semantics based on logics, although no verifica-
tion support is provided by the authors.

In [1], the authors describe declarative transforma-
tions using the mathematical notion of relation, which
is used to explicitly represent the trace model. Generic
relations are encoded in a meta-model with OCL con-
straints, which serves as the basis for building inter-
models. Such inter-models express the relationships be-
tween the elements in two models using OCL invari-
ants, which must be provided by the engineer. Map-
ping correctness is evaluated using the Kent Modelling
Framework [28], but reconciliation of source/target mod-
els has to be encoded manually. Specifications are direc-
tion independent, but do not support negative patterns.
This approach is similar to the notion of transforma-
tion model [4], and hence our patterns could serve as a
higher-level model from which such transformation mod-
els could be derived, along the lines of [8].

BOTL [6] is a formal M2M transformation language
based on rules, each having source and target object pat-
terns with variables. Rules do not have an explicit notion
of trace, nor is there parameter passing between rules.
Instead, they are applied independently, and the objects
created with same identifier are merged. Transforma-
tions in BOTL are bidirectional. The considered opera-
tional scenarios are just forward and backward transfor-
mations, and there is no support for negative constraints.

TGGs [43] formalize the synchronized evolution of
two graphs through declarative rules from which TGG
operational rules are derived. These operational rules
solve different scenarios, like forward and backward
transformations or model matching. The approach is
suitable for languages defined through creation graph
grammars but not through meta-modelling. This is so
because the generated operational rules cannot be ap-
plied as long as possible, but need a control mecha-
nism to guide their execution. Frequently, the order in
which the creation rules were applied to create the source
model is used to apply the operational rules [15], which
may imply having to parse the source model before ap-
plying the transformation. Ad-hoc solutions like rule pri-
orities were also proposed in [33] as a control mecha-
nism. TGGs are based on graph transformation, thus
they are formally defined and allow verification [15].
They are direction independent but, although they have
been recently extended with Negative Application Con-
ditions [17,18,44], it is not possible to express forbidden
global conditions. Finally, being based on rules, specifi-
cations can be used for the checkonly scenario, but one
has to resort to parsing.

Several declarative languages have been defined
for bidirectional updating, many of them based on
lenses [20]. These are well-behaved bidirectional trans-
formations that operate on ad-hoc, textual data for-
mats. For example, in [36] the authors start from a for-
ward transformation and the corresponding backward
transformation is derived. Their transformations work
on trees (e.g. derived from parsing XML documents)
and only contain injective functions to ensure bidirec-
tionality. If an attribute can take several values, one
of them is chosen randomly. Other works borrow con-
cepts from formal languages and compilers. For example,
in [13] attribute grammars are used as a transformation
language, where the order of execution of rules is de-
rived from attribute dependencies. Finally, other works,
like [41] tackle the deficiencies of attribute computations
in standard graph transformations, but fail to be useful
for bidirectional transformations.

In short, after this overview of M2M transformation
languages, we observe a wealth of approaches, languages
and tools, but a lack of formally defined languages, us-
able on meta-modelled languages, allowing for direction
independent specifications, permitting specialized com-
pilations into different languages, and solving different
scenarios. In this paper we propose one such language.

Model matching. Model matching or comparison is
the activity of comparing two models and matching the
elements considered similar, according to some spec-
ification [29]. The generated traces can be used in a
variety of ways, for example to merge the models or to
check if they are synchronized. The matching specifica-
tion can be seen as a model that describes inter-model
consistency conditions. Then, the trace-generating op-
erational mechanisms create traces between the model
elements so that they conform to the matching specifi-
cation. Some approaches exist for comparing two models
expressed in the same language, typically UML [37,48].
However, the customization of how comparisons are
made is usually limited and, in addition, the advent of
Domain-Specific Languages has made evident the need
for comparing heterogeneous models. Although some
rule-based, dedicated languages have been proposed for
comparison [30], specifications in these languages have
to be kept consistent with other specifications, perhaps
for M2M transformation between the same languages.
This produces redundancy and introduces the possibil-
ity of incongruities between the different specifications.
Moreover, no approach to model matching provides a
formal foundation enabling the analysis of specifications.
Even though TGGs can be used for model matching [33],
the compilation into operational mechanisms does not
produce application conditions, and hence extra control
mechanisms may have to be designed in an ad-hoc man-
ner for this particular scenario.

4

Model traceability. Similar to model matching, model
traceability [9,14,19,35] articulates the dependencies
between the different models created during software
development. Sometimes such trace information is auto-
matically generated, e.g. if one of the models is generated
from the others via a M2M transformation. Other times,
traceability links have to be established manually, e.g.
to trace requirements into further design models [2].
Traceability information can be seen as a model in its
own right [14], and current research is revolving around
semi-automatic methods to establish and maintain such
traceability relations [27,35]. Even though TGGs could
be used for creating traceability links, one still needs
to design a specific control mechanism to guide the
execution of the rules.

Conclusion. After this overview, we notice that many
inter-modelling languages exist, but few are able to solve
more than one inter-modelling scenario. Thus, a chal-
lenge in this area is to provide a unifying framework in
which a unique inter-model specification can be used to
solve several operational scenarios such as M2M trans-
formation, model matching, and model synchronization.
Moreover, defining such a framework formally would en-
able the analysis of the specifications, and perhaps of the
operational mechanisms too, for each particular scenario.
In the rest of the paper we provide a detailed account of
such a framework.

3 Our Inter-Modelling Architecture

Fig. 1 provides the general scheme of our approach. In
step 1, the designer builds the inter-model specification
using our pattern language. Our patterns have an un-
derlying formal foundation which makes them amenable
to analysis (step 2). For example, we can investigate:
(i) pattern conflicts, as a pattern may forbid a relation
which is required by other pattern; (ii) conflicts of pat-
terns with respect to the language meta-models, e.g. if
a pattern requires two links stemming from an object
but the meta-model cardinality constraints only allow
one; and (iii) meta-model coverage, by inspecting the
elements that patterns use and create, as well as the un-
used types. In this paper we will not go deeper in these
analysis techniques, but on the fundamentals of our ap-
proach.

In step 3, the designer chooses the usage scenario
for the specification: transformation, model matching or
model traceability. For each one of these scenarios we
have developed: (i) a formal notion of satisfaction which
detects whether two related models satisfy the specifi-
cation for the particular scenario; and (ii) operational
mechanisms, based on graph transformation rules, which
manipulate the input model(s) and their traces in order
to make them satisfy the specification. In the transfor-
mation scenario, the designer can decide whether the op-

models

Transformation
- forward
- backward

• pattern conflicts
• pattern-metamodel conflicts
• metamodel coverage

Static analysis
Inter-modelling
specification

33

Satisfaction

Model matching Model traceability

Satisfaction, detection
of incorrect traces

Creation and
deletion of traces

Satisfaction, detection
of incorrect traces

Select scenario
Inter-model

designer

11

Build
specification

en
fo

rc
e

en
fo

rc
e

en
fo

rc
e

ch
ec

k

ch
ec

k

ch
ec

k

Creation and
deletion of traces

44

S
el

ec
t

ac
ti

vi
ty

22

Creation of
S/T model

Fig. 1 Scheme of our inter-modelling approach.

erational mechanisms are for forward or backward trans-
formation, as our patterns are direction-independent and
can be interpreted both ways. In this case the syn-
thesized mechanisms will create a target model from a
source one from scratch (forwards) or vice-versa (back-
wards). For model matching and model traceability, the
generated operational mechanisms are able to create ap-
propriate traces between the compared models, as well
as to delete incorrect traces.

By construction our operational mechanisms are: (i)
complete (able to generate all possible target models
that together with the source satisfy the specification),
(ii) correct (the result satisfies the specification), and
(iii) terminating (the execution as long as possible of
the generated rules is finite no matter the specification
and initial model) [38].

Before explaining the details of our pattern language,
next section introduces some necessary concepts.

4 Preliminaries

This section introduces some technical preliminaries:
triple graphs, constraint triple graphs, and triple graph
transformation.

Triple graphs are the structures we use to store
the two models we want to relate, as well as a third
model which contains traces (similar to pointers) relat-
ing one element in each one of the other two models. For-
mally, this triple structure is made of three graphs, and
two mappings (technically, graph morphisms1) from the
trace graph to the other two graphs. Note that graphs
can be provided with a rich structure allowing for a pre-
cise mathematical representation of models. In partic-
ular, we use labelled graphs (called E-graphs in [16]),
which are graphs with data in nodes and edges. Map-
pings between E-graphs (morphisms) are tuples of set

1 A morphism corresponds to the mathematical notion of
function, but instead of plain sets, we consider graphs.

5

mappings – one for each set in the E-graph – such
that the structure of the E-graph is preserved [16]. For
the typing we use a type graph TG [16], similar to a
meta-model. In this way, typed graphs become tuples
(G, type : G → TG), where type is a typing morphism
from G to TG.

Altogether, triple graphs are made of three graphs:
source (S), target (T) and correspondence (C). Nodes in
the correspondence graph relate nodes in the source and
target graphs by means of two graph morphisms [15].
For technical reasons, we restrict nodes in the correspon-
dence graph to be unattributed. This is a side effect of
the current formulation, whose aim is simplicity, but we
could use a richer trace model as we did in [23]. The cor-
respondence graph, however, is a graph in its own right,
and hence it may include edges, too.

We use the notation 〈S,C, T 〉 for a triple graph made
of graphs S, C and T , leaving the mappings between S,
C, and T implicit. Given a triple graph TrG = 〈S,C, T 〉,
we write TrG|X for X ∈ {{S}, {T}, {S, T}} to refer to
a triple graph where only the graphs in X are present,
i.e. TrG|S = 〈S, ∅, ∅〉, TrG|T = 〈∅, ∅, T 〉, and TrG|ST =
〈S, ∅, T 〉 (where ∅ is the empty graph).
Example. The lower part of Fig. 2 shows a triple
graph relating a class diagram and a relational schema.
The graph nodes V S = {Class1, Class2, Attr1}, V C =
{C2T1, C2T2} and V T = {Table1} are depicted as rect-
angles, and the data nodes denoting the values of the at-
tributes as circles. The edges from the graph nodes to the
data nodes assign values to the attributes of the graph
nodes. For instance, Table1 has one attribute name with
value ‘c1’. The upper part of the figure shows the meta-
model triple used for typing. We have explicitly depicted
the typing morphism with dashed arrows, but through-
out the paper we will use the UML notation of object
diagrams.

parent

String

C2T Table
cS cT

String

Bool Attr

cS cT
Class1

Class2

Attr1

’c2’

’c1’

’__att’

’persi
stent’

Table1

false

’c1’

S C T

Class
name

kind

name

public

name

parent
kind
kind

C2T2

C2T1
name

name

name

public

S C T

name

triple graph

meta−model triple

Fig. 2 Triple graph and meta-model triple examples.

In order to describe the manipulation of triple graphs
by means of graph transformation rules, these rules may
need to include graphs storing variables that will typi-
cally be instantiated when applying the rule. Moreover,
we may need to express some properties about these
variables. We have formalized this kind of graph us-
ing the new notion of constraint triple graph. This is a
triple graph attributed over a finite set of variables, and
equipped with a formula on this set to constrain the pos-
sible attribute values of source and target elements. We
use the notation 〈TrG, α〉, where TrG is a triple graph
whose labels are variables and α is a formula over these
labels, to denote a constraint triple graph CTrG. More-
over, given CTrG we denote by αCTrG its associated
formula.
Example. Fig. 3 shows a constraint triple graph. We
take the convention of placing in the left compartment
the terms of the formula concerning only source graph
attributes; in the right compartment the terms con-
straining only attributes in the target; and the terms
constraining both in the middle. In all cases we omit
the conjunctions. Hence, in the example, the formula α
is y = x × 2 ∧ y > 0 ∧ z = 3. Note that “=” denotes
equality, not assignment. Hence, in our approach there
is no attribute computation, but only attribute condi-
tions. Finally, we omit unused attributes in the figures.

y = x * 2 z = 3

a = x

T1: A

b = y
c = z

T2: BT: C

y > 0

Fig. 3 Constraint triple graph example.

As an extension to [25], we allow for arbitrary first-
order formulae in constraints. For example, the previous
constraint could contain the following formula (assuming
all variables of sort N): ∀v@w[(v > 1 ∧ v < x ∧ w >
1 ∧ x/v = w) ⇒ (y = x× 2 ∧ z = 3)] ∨ (y = x× 3 ∧ z =
3), meaning that z should be 3, and y the triple of x;
moreover if x is prime then y is allowed to be its double.
In practice, we use OCL expressions in constraints.

Notice that whereas triple graphs store data in nodes
as labels (see Fig. 2), this is not so in constraint triple
graphs, where the labels are variables. Thus, if we want
to store a value V on a node of a constraint triple graph,
it is enough to label that node with some fresh variable x
and include the equality x = V in the associated formula.
This is illustrated in Fig. 3, where the term z = 3 makes
3 the unique possible value for T2’s attribute c.

Sometimes, we may need to restrict formulae over a
set of variables ν to a smaller set of variables ν′ ⊆ ν, for
example when restricting a constraint triple graph to the
source or target graph only. Thus, given a formula α over
ν, its restriction to ν′ ⊆ ν is given by α|ν′ = ∃(ν \ ν′)α,
where we have existentially quantified all variables in ν
which are not in ν′. This is done because if one thinks

6

of a formula as a set of constraints on variables, then
adding an existential quantifier on one variable relaxes
the constraints on that variable so that they are “ig-
nored”. In our case we relax the variables in ν \ ν′. For
example (x = 5∧ y = x+1)|{x} = ∃y[x = 5∧ y = x+1],
and (x = 5∧ y = x+1)|{y} = ∃x[x = 5∧ y = x+1]. The
first restriction obviates y, while the second obviates x.

Given a constraint triple graph CTrG consisting of
the triple graph TrG and the formula α, we write αS for
the formula α restricted to the source variables, and αT

for the restriction to the target variables.
In order to relate constraint triple graphs we use a no-

tion of embedding (technically, a constraint triple graph
morphism). In particular, CTrG = 〈TrG, α〉 is embed-
ded in CTrG′ = 〈TrG′, α′〉, denoted CTrG ↪→ CTrG′,
if TrG is a subgraph of TrG′ (up to variable renam-
ing), α′ implies α, and also the source and target re-
strictions of α′ imply the source and target restrictions
of α, respectively. Since CTrG may be embedded in
CTrG′ in several different ways (e.g. TrG may be a sub-
graph of TrG′ at several different locations) we will dis-
tinguish the different embeddings between CTrG and
CTrG′ by assigning them a name and using a func-
tional notation. This means that e : CTrG ↪→ CTrG′

and e′ : CTrG ↪→ CTrG′ may be two different embed-
dings of CTrG in CTrG′. In this sense, for an embedding
e : CTrG ↪→ CTrG′, sometimes we will say that CTrG
is embedded or included in CTrG′ at location e.
Example. Fig. 4 shows a constraint triple graph embed-
ding (i.e. a morphism). The embedding renames vari-
ables x and y as x0 and y0, respectively. We may see
that the triple graph on the left is a subgraph of the
triple graph on the right, up to the variable renam-
ing. Concerning the formula, we may see that the for-
mula on the right constraint implies the formula on the
left constraint, up to the given renaming, and that the
source and target restrictions of the left formula imply
the source and target restrictions of the right formula,
respectively. For instance, for the target restriction we
have that y0 >= 1 implies y0 > 0 (i.e. y > 0), and for the
whole formula, that (x0 = 4)∧(z > x0)∧(x0 > y0)∧(w >
x0) ∧ (y0 ≥ 1) implies (x0 > 0) ∧ (x0 <> y0) ∧ (y0 > 0).

b
: A : B

: C
a = x b = y

x > 0 y <> x y > 0

A

: D

d = z

: A

a = x0
: C

: F

: B

: E

x0 = 4
z > x0 w > x0

x0 > y0

b = y0

e = w

y0 >= 1

B

Fig. 4 Embedding of constraints.

As said above, sometimes we need to restrict a con-
straint triple graph to one of its components. For in-
stance, we may want to consider only the source or the
target graph of a constraint triple graph, or just to ignore

its correspondence graph. This can be done as follows.
Given a constraint triple graph CTrG consisting of the
triple graph TrG and its associated formula α:

– its source restriction is given by the triple graph
CTrG|S consisting of the triple graph TrG|S and
the formula αS .

– its target restriction is given by CTrG|T consisting
of the triple graph TrG|T and the formula αT .

– its source-target restriction is given by CTrG|ST

made of TrG|ST and the formula α.

Moreover, given an embedding e : CTrG ↪→ CTrG′,
we denote by e|S : CTrG|S ↪→ CTrG′|S , e|T :
CTrG|T ↪→ CTrG′|T , and e|ST : CTrG|ST ↪→
CTrG′|ST , the corresponding restrictions of e.

As we will show later, we need to manipulate con-
straint triple graphs through pushouts, since this is the
basis for graph transformation. A pushout is the result
from gluing two objects (triple graph constraints in our
case) B and C with respect to a common intersection
A, written B +A C. More precisely, a pushout can be
seen as the union of B and C when A is its intersection.
Pushouts between constraint triple graphs are built by
making the pushout of the corresponding triple graphs,
and taking the conjunction of their formulae.
Example. Fig. 5 shows the pushout of constraints B and
C through their intersection A, to yield constraint D. In
MDE terms, a pushout is similar to a model merging op-
eration of two models (B and C) through some identified
correspondences (model A).

c

: C
: B

b = y0

: A

a = x0

: D

d = z

x0 = 4
z > x0 y0 >= 1x0 > y0

B

: C
: B

b = y

: A

a = x

y > 0y <> xx > 0

A

: A

a = x1
: C

: B

b = y1

: E

e = w

x1 > 2

C

w > x1 y1 = 3

: C
: B

b = yd

: A

a = xd

: D

d = zd

: E

e = wd

xd = 4
yd >= 1
yd = 3

D

zd > xd
xd > 2

xd > yd
wd > xd

b

P.O.

c’ b’

Fig. 5 Pushout example.

4.1 Transformation Rules

A useful observation is that an attributed triple graph
can be seen as a constraint triple graph whose formula
is satisfied by a unique variable assignment. We call
such constraint triple graphs ground. We usually depict
ground constraints with the attribute values induced by

7

the formula in the attribute compartments and omit the
formula (e.g. see constraint CTrG in Fig. 11). The equiv-
alence between ground constraints and triple graphs is
very useful as, from now on, we just need to work with
constraint triple graphs. In particular, we are manip-
ulating triple graphs with TGG operational rules, but
interpreting triple graphs as ground constraints.

Most of the rules considered in this paper at the op-
erational level are non-deleting (i.e. when applied to a
graph they just add to it some new elements). These
rules consist of:

– Two constraint triple graphs L and R, where L is
embedded in R, which are called the left-hand side
(LHS) and the right-hand side (RHS) of the rule,
respectively.

– A set of negative pre-conditions, PRE, where each
negative pre-condition Npre in PRE is a constraint
triple graph that embeds L.

– A set of negative post-conditions, POST , where each
negative post-condition Npost in POST is a con-
straint triple graph that embeds R.

The application of a rule 〈L ↪→ R,PRE,POST 〉 to
a host triple graph (seen as a ground constraint triple
graph) CTrG can be explained as follows:

– The rule can be applied to CTrG if L can be em-
bedded in CTrG, this embedding satisfies the neg-
ative pre-conditions in PRE, and the corresponding
embedding of R in the result of applying the rule
satisfies the negative post-conditions in POST .

– The result of the rule application is the pushout
CTrG +L R or, equivalently, the union of R and
CTrG taking L as intersection. By construction, R
is embedded in the result of the rule application.

In this explanation, we say that an embedding e :
L ↪→ CTrG satisfies the pre-condition Npre if it cannot
be extended to an embedding e′ : Npre ↪→ CTrG (i.e.
there is no e′ such that e is equal to the embedding

L ↪→ Npre
e′
↪→ CTrG). Satisfaction of post-conditions is

similar.
Example. Fig. 6 shows a derivation example. The rule
in the upper part contains two negative pre-conditions,
NAC1 and NAC2, the former equal to the RHS. The
LHS is embedded in CTrG at two different locations,
but we can apply the rule only in the location that is
marked with a coloured square, as the other does not
satisfy NAC2 (i.e. that embedding can be extended to
an embedding of NAC2). Then, the rule is applied in the
coloured embedding by performing a pushout: CTrG
and the rule’s RHS are glued through the rule’s LHS.
The resulting graph CTrH contains the new created el-
ements, as well as the conjunction of the formulae in
CTrG and the rule’s RHS. Please note that the rule is
no longer applicable in CTrH since we cannot find any
embedding of L that satisfies all negative pre-conditions.

name = nc
kind = k

c: Class

c1: Class

parent

k = ’persistent’

name = nt

t: Table

name = nc
kind = k

c: Class ct:C2T

name = nc
kind = k

c: Class

L

k = ’persistent’
P.O.

name = n2
kind = k2

Class2: Class

name = n2
kind = k2

Class2: Class

R = NAC1

nc = ntk = ’persistent’

parent

name = n1
kind = k1

Class1: Class

CTrG CTrH

parent

name = n1
kind = k1

Class1: Class

name = nt

Table1: Table

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’ n1 = nt

NAC2

ct:C2T

Fig. 6 Derivation example using constraints.

In Section 7.2 we also use deleting rules, which do
not create elements but only delete them. These rules
are formalized as an embedding L ←↩ R, where this time
the RHS is embedded in the LHS because the LHS is
“bigger”. The direct derivation works as before, but with
the morphism between CTrH and CTrG reversed, and
where the rule effect is the deletion of elements as we cal-
culate the pushout complement 2. See [16] for the details
and the formulation of rules that can add and delete in
one step. We use these simpler formulations because our
rules do not add and delete simultaneously.

Contrary to our approach based on constraint triple
graphs, the usual way [16,43] of dealing with triple
graphs instead poses some difficulties, most notably con-
cerning attribute handling. For instance, Fig. 7 shows an
example where a TGG operational rule is applied to a
triple graph G. The rule creates a column for each pri-
vate attribute starting by ‘ ’. Function LTRIM(p1,p2)
returns p2 after removing p1 from its beginning.

In practice, TGG operational rules like this one are
not specified by hand, but derived from declarative rules
modelling the synchronized evolution of two models [43],
as depicted in the upper part of Fig. 7. The declarative
rule is shown with its LHS and RHS together, and new
tags indicating the synchronously created elements. At-
tribute computations in the declarative rules must be
expressed in a declarative style. However, their compi-
lation into operational rules has to assign a causality
to attribute computations, which involves algebraic ma-
nipulation of formulae. Moreover, appropriate attribute
conditions must be synthesized, too. In the example, the
condition x=‘ ’+y has to be transformed into a com-
putation LTRIM(‘ ’,x) for the created column name,
and into the condition x[0:2]=‘ ’ as the attribute name
should start by ‘ ’. Unfortunately, this kind of manipu-
lation is difficult to automate, since it involves the syn-
thesis of both operations and conditions. As already seen
in Fig. 6, our approach proposes a more straightforward
solution. Fig. 16 shows the same example when dealing
with triple graphs as ground constraints, where there is

2 The pushout complement in Fig. 6 calculates CTrG given
CTrH, R and L, such that the square is a pushout.

8

{new} {new}
{new}

x = ’__’+y

{new}
co: Column

{new}

name = y name = x
public = false

a: Attribute

ct:C2Tc: Class t: Table

x[0:2] = ’__’
ATTRIBUTE CONDITION

LHS

name = x
public = false

a: Attribute ac:A2C

c: Class ct:C2T t: Table

name =
LTRIM(’__’,x)

co: Column

RHS = NAC

C2T1

: C2T

C2T2

: C2T

name = ’c1’
kind = ’persistent’

Class1: Class

name = ’c2’
kind = ’persistent’

Class2: Class

name = ’c1’

Table1: Table

Attr1: Attribute

name = ’__att’
public = false

G

parent

name = ’c2’
kind = ’persistent’

Class2: Class

C2T1

: C2T

C2T2

: C2T

name = ’c1’

Table1: Table

Attr1: Attribute

name = ’__att’
public = false

ac: A2C

name = ’att’

co: Column

H

name = ’c1’
kind = ’persistent’

Class1: Class

parent

compile

TGG operational rule:TGG declarative rule:

P.O.

ac:A2C

name = x
public = false

a: Attribute

ct:C2Tc: Class t: Table

Fig. 7 Direct derivation by a non-deleting TGG operational rule, using graphs instead of constraints.

no need to synthesize attribute computations. The re-
sult of a transformation is a pair of models where the
attributes are variables with values given by formulae. If
needed, a constraint solver can compute concrete values.
Moreover, this approach allows for the loose specification
of transformations and full exploration of solutions.

Similar to TGGs, our operational rules are also syn-
thesized from a higher-level direction-independent spec-
ification. However, we do not use declarative rules, but
a new notion of pattern built on top of constraint triple
graphs. We present such a notion in the next section.

5 Pattern-Based Inter-Model Specifications

Triple Patterns are similar to graph constraints [16], but
made of constraint triple graphs instead of graphs and
with a slightly different meaning. We use them to de-
scribe the allowed and forbidden relations between two
models. Thus, a pattern specification expresses the con-
ditions under which two models are to be considered
consistent. We define two kinds of patterns: positive and
negative. A positive pattern (P-pattern) describes rela-
tions between source and target elements that, under
some given circumstances, must be present in any triple
graph. A negative pattern (N-pattern) describes rela-
tions between source and target elements that should not
occur in any triple graph. As the remainder of the paper
will show, a pattern specification can be used in differ-
ent scenarios but, in all of them, we need: (i) to define a
suitable notion of satisfaction of a specification by mod-
els in the particular scenario, and (ii) to obtain low-level
operational mechanisms derived from the specification
that (re-)establish the consistency in the scenario.

Definition 1 (Triple pattern) A P-pattern CP , de-
noted

∧
i∈Pre N(Ci) ∧ C ⇒ Q, consists of:

– A constraint triple graph C called the positive pre-
condition of CP .

– A constraint triple graph Q embedding C.
– A set Npre(CP) of negative pre-conditions N(Ci),

where each Ci is a constraint triple graph embedding
Q.

An N-pattern CP , denoted N(Q), consists just of a
constraint triple graph Q.

Remark. The notation N(·) is just syntactic sugar to
indicate a constraint interpreted in a negative way. The
constraint C is also called parameter, while Q is the pat-
tern’s main constraint.

The simplest P-pattern is made of a main constraint
Q restricted by negative pre-conditions (Pre set) with C
empty. In the most common usage scenario for patterns,
Q has to be present in a triple graph (i.e. in a ground
constraint) whenever the context defined by any negative
pre-condition Ci is not found. In this sense, the negative
pre-conditions play a similar role as the negative pre-
conditions of a graph transformation rule: they denote
contexts that, if found, do not require fulfilling the main
constraint of the pattern. In this way, if a negative pre-
condition is found, it is not mandatory to find Q, but
still possible. P-patterns can also have a parameter or
positive pre-condition, specified with a non-empty C. In
such case, Q has to be found only if C is also found.
Finally, an N-pattern is made of a constraint Q which is
forbidden to occur.

For simplicity, we do not allow negative pre-
conditions restricting the source and the target at the
same time. In practice, each negative pre-condition can
be split into two pre-conditions: the first one restricting
only the source and the second one restricting only the
target. This condition has also been imposed by other
approaches like [17,18].
Example. Fig. 8 shows the theoretic notation of one
pattern, taken from the class to relational schema
transformation [40]. The main constraint (named
Class-Table) specifies that persistent classes should
be related to tables with same name. The pattern has

9

an empty positive pre-condition (named C), and a neg-
ative pre-condition (named N(Parent)) requiring the
class to have no parent. Hence, according to Defini-
tion 1, Class-Table embeds C, and N(Parent) embeds
Class-Table. Please note that we model the fact that
Class-Table has no positive pre-condition by means of
an empty parameter C. This is done in order to make
uniform the syntax and semantics of all kinds of posi-
tive patterns. As we will see later, pre-conditions are a
means to declare dependencies between patterns. The
semantics of a positive pre-condition will be interpreted
differently depending on the concrete inter-modelling
scenario, but in general, it expresses certain structure
that needs to be present in the models in order to
demand the occurrence of the pattern main constraint.

nc = nt

name = nc
kind = k

c: Class ct:C2T

name = nt

t: Table

C

name = nc
kind = k

c: Class

c1: Class

parent

ct:C2T

name = nt

t: Table

nc = nt

Class−Table

k = ’persistent’ k = ’persistent’

N(Parent)

Fig. 8 Theoretic notation for pattern Class-Table.

Fig. 9 shows the same pattern, and two additional
ones, using a compact, more intuitive notation that we
prefer to use. As a shortcut, the negative pre-condition
shows only the elements that do not belong to the main
constraint, and those connected to them. The two P-
patterns below define parameters. More precisely, C con-
sists of the nodes of Q that are labelled with 〈〈param〉〉,
using a notation similar to stereotypes. As we will see
later, positive pre-conditions are a way to encode pattern
dependencies. In this way pattern Parent Class-Table
requires as pre-condition a class and a related table,
and such relation will be created by the operational
mechanisms generated from both patterns Class-Table
and Parent Class-Table. At the specification level, the
P-pattern Parent Class-Table expresses that children
classes should be mapped to the same table as their par-
ents, whereas the P-pattern Attribute-Column maps
the attributes of a class with the columns of the table re-
lated to the class. In Section 6.3 we will show that, often,
it is not necessary to specify parameters, as appropriate
heuristics are able to suggest them.

Definition 2 (Inter-model specification) An inter-
model specification SP =

∧
i∈I CPi is a conjunction of

patterns, where each CPi can be positive or negative.

Next, we introduce the concept of pattern enabled-
ness, a basic concept used to build the notion of pat-
tern satisfaction in different scenarios. Three different
kinds of enabledness are defined depending on whether
we interpret P-patterns as source-to-target, target-to-
source, or source-and-target with respect to the trace. In
the first enabling notion, we are interested in checking

N(Parent)

ct:C2T

name = nt

t: Table

name = nc
kind = k

c: Class

name = nc
kind = k

c: Class

c1: Class

parent

nc = nt

Class−Table

k = ’persistent’k = ’persistent’

c1: Class ct1:C2T

t: Table

parent

k = ’persistent’

Parent Class−Table

kind = k

c: Class ct:C2T
<<param>> <<param>> <<param>>

ac:A2C

name = x
public = p

a: Attribute

c: Class

co: Column

name = y

ct:C2T

p = false x = ’__’+y

Attribute−Column

t: Table
<<param>> <<param>> <<param>>

Fig. 9 A pattern-based inter-model specification.

whether the pre-condition of the pattern together with
the source of the main constraint is present in the model,
without violating the negative pre-conditions of the pat-
tern, in which case we say the pattern is source-enabled.
The converse is checked when interpreting the pattern
target-to-source. This distinction is useful because, in
the forward model transformation scenario, we only de-
mand that whenever a pattern is source-enabled, an oc-
currence of the main constraint exists (see Section 6).
In model matching scenarios we are interested in trace-
enabledness, looking simultaneously at both the source
and target of the pattern. We do not consider enabled-
ness of N-patterns as their only interpretation is that
they are forbidden to occur.

We start by defining the positive and negative for-
ward, backward and trace pre-conditions of P-patterns.
Later, we will use these notions to define the three no-
tions of enabledness, and also in later sections to define
different notions of satisfaction, and as building blocks
for rules.

Definition 3 (Directed pre-conditions) Given a P-
pattern CP = [

∧
i∈Pre N(Ci)∧C ⇒ Q] and a constraint

triple graph CTrG:

– Its positive forward pre-condition is given by PS =
C +C|S Q|S, i.e. PS consists of the source part of
Q, the trace and target parts of C, and the formula
αS

Q ∧ αC . Its set of negative forward pre-conditions
is given by preS(CP) = {NS

i = C +C|S Ci|S | Ci ∈
NPre(CP), NS

i � PS}. This means that for each neg-
ative pre-condition Ci in CP , preS(CP) includes the
negative pre-condition consisting of the source part
of Ci, the trace and target parts of C, and the for-
mula αS

Ci
∧αC (unless the negative pre-condition co-

incides with PS, in which case it is not included in
preS(CP)).

– Its positive backward pre-condition is given by PT =
C +C|T Q|T , i.e. PT consists of the target part of
Q, the trace and source parts of C, and the formula
αT

Q ∧ αC . Its set of negative backward pre-conditions
is given by preT (CP) = {NT

i = C +C|T Ci|T | Ci ∈
NPre(CP), NT

i � PT }.

10

– Its positive trace pre-condition is given by PST =
C +C|ST

Q|ST , i.e. PST consists of the source and
target parts of Q, the trace part of C, and the for-
mula αQ. Its set of negative trace pre-conditions is
given by preST (CP) = {NST

i = C +C|ST
Ci|ST |Ci ∈

NPre(CP), NST
i � PST }. This means that for each

negative pre-condition Ci in CP , preST (CP) in-
cludes the negative pre-condition consisting of the
source and target parts of Ci, the trace part of C,
and the formula αCi

(unless it coincides with PST).

Remark. By construction, in the three cases Px is em-
bedded in Nx

i (for x ∈ {{S}, {T}, {ST}}).
Example. Fig. 10 shows the forward pre-conditions of
the P-pattern Class-Table (shown in Fig. 9). The posi-
tive one (PS) demands a persistent class, while the only
negative one (NS

i) asks such class to have no parent.
The way of calculating PS is as follows: we take the pre-
condition C (empty) and the source part of the main con-
straint (Q|S), and do the merging (the pushout) of both
through the source restriction C|S of C. To calculate
the negative forward pre-conditions, we take the source
restriction of each negative pre-condition in NPre(Ci)
and do the merging with C. The resulting forward pre-
conditions state the needed structure in source graphs in
order to demand an occurrence of the main constraint
Q. Although we do not show it, the positive backward
pre-condition is made of one table, and there are no neg-
ative backward pre-conditions because the obtained NT

i

coincides with the positive backward pre-condition PT .

k = ’persistent’

C

C S

Ni
s

c1: Class

s
ies

id

c1: Class

c: Class

c: Class

P
S

c: Class

c: Class

kind = k

Q S

Sc

s
ia

s
ib

Sq

Sp

SCi

P.O. P.O.

parent

parent

kind = k

kind = k

k = ’persistent’

kind = k

k = ’persistent’

k = ’persistent’

Fig. 10 Forward pre-conditions of pattern Class-Table.

Definition 4 (P-pattern enabledness) Given a P-
pattern CP = [

∧
i∈Pre N(Ci)∧C ⇒ Q] and a constraint

triple graph CTrG:

– CP is source-enabled in CTrG at a match mS :
PS ↪→ CTrG, written CTrG `mS ,F CP , if mS is an
embedding and for every negative pre-condition NS

i

in preS(CP) there is no embedding of NS
i in CTrG

extending mS.
– CP is target-enabled in CTrG at a match mT : PT ↪→

CTrG, written CTrG `mT ,B CP , if mT is an em-
bedding and for every negative pre-condition NT

i in

preT (CP) there is no embedding of NT
i in CTrG ex-

tending mT .
– CP is trace-enabled in CTrG at a match mST :

PST ↪→ CTrG, written CTrG `mST ,T CP , if mST

is an embedding and for every negative pre-condition
NST

i in preST (CP) there is no embedding of NST
i in

CTrG extending mST .

Example. Fig. 11 illustrates the notion of source-
enabledness with P-pattern Class-Table. There are two
embeddings of the pattern’s forward pre-condition PS in
CTrG. The first one identifies the class c in PS with the
class c in CTrG. Such embedding cannot be extended to
an embedding of the forward negative pre-condition NS

i

(i.e. c does not have a parent class) and hence the pattern
is source-enabled at such embedding. On the contrary,
the pattern is not source-enabled at the second match
which identifies the class c in PS with class c2 in CTrG.
The reason is that there is an embedding of the nega-
tive forward pre-condition that extends the embedding
of PS , i.e. c2 does have a parent.

CTrG

c: Class

name = ’Person’
kind = ’persistent’

c2: Class

name = ’Employee’
kind = ’persistent’

ct: C2T

ct1: C2T

t: Table

name = ’Person’

c: Class

kind = k

P
Sc1: Class

c: Class

parent

kind = k

s
ia

Ni
s

s
in

parent

k = ’persistent’
s

m

k = ’persistent’

Fig. 11 Source-enabledness of P-pattern Class-Table in a
constraint triple graph.

As we will see in the following two sections, different
scenarios will provide different notions of pattern sat-
isfaction based on the enabledness of patterns (among
other conditions). The satisfaction and usage of pat-
terns for specifying M2M transformations is presented
next, where forward transformations demand that all
source-enabled matches can be extended to the pattern’s
main constraint. We will show the application of patterns
to the rather different scenario of model matching and
model traceability in Section 7.

6 Model-to-Model Transformation

In this section we describe the usage of patterns to de-
scribe M2M transformations. For this purpose we first
define an appropriate notion of pattern satisfaction,
namely whether a source and a target models are syn-
chronized according to a pattern specification. Then we

11

describe how to generate operational rules able to build
a target model starting from a source one, or vice versa.

Pattern satisfaction in M2M transformation scenar-
ios can be decomposed in forward and backward satis-
faction. The former demands the existence of the main
constraint in all places where a pattern is source-enabled.
Backward satisfaction demands the same but in all
places where a pattern is target-enabled. The separa-
tion between forward and backward satisfaction is use-
ful because if we transform forwards (assuming an initial
empty target graph) we just need to check forward satis-
faction. Full satisfaction – which we call synchronization
– implies both forward and backward satisfaction and is
only needed to check if two models are actually synchro-
nized.

The next definition formalizes the previous ideas,
where we check satisfiability of patterns by constraint
triple graphs, which need not be necessarily ground. This
is so because, during a transformation, the source and
target models do not need to be ground (i.e. they may
contain variables that can take several values satisfying
the constraints). When the transformation finishes we
can use a solver in order to find an attribute assignment
satisfying the formulae.

Definition 5 (Synchronization) A constraint triple
graph CTrG is synchronized with respect to a P-pattern
CP = [

∧
i∈Pre N(Ci) ∧ C ⇒ Q], written CTrG |= CP ,

if:

– CP is satisfied forwards, denoted CTrG |=F CP .
This means that whenever CP is source-enabled in
CTrG at a match mS, then there is an embedding
m : Q ↪→ CTrG extending mS, and

– CP is satisfied backwards, denoted CTrG |=B CP .
This means that whenever CP is target-enabled in
CTrG at a match mT , then there is an embedding
m : Q ↪→ CTrG extending mT .

CTrG is synchronized with respect to an N-pattern
CP = [N(Q)], written CTrG |= CP , if there is no em-
bedding of Q into CTrG.

The forward satisfaction of a P-pattern demands
that, for each occurrence of its forward pre-condition PS ,
an occurrence of Q must be found containing the pre-
condition occurrence. A constraint triple graph CTrG
satisfies a P-pattern either because no mS is found (triv-
ial satisfaction), or because mS and m are found (pos-
itive satisfaction). Backward satisfaction demands simi-
lar conditions. For N-patterns we just demand their ab-
sence.
Example. Fig. 12 depicts the forward satisfaction of
pattern Class-Table by the ground constraint CTrG.
We have CTrG |=F Class− Table because the pattern
is source-enabled at just one match, shown by equality of
identifiers, and this match can be extended to the main
constraint Q. The figure also shows the negative pre-
condition, to recall that c2 does not enable the pattern

forwards. Although not shown in the figure, we also have
CTrG |=B Class− Table because the pattern is target-
enabled at just one match that identifies the table in the
pattern with the table in CTrG, and such a match can
be extended to Q. Hence, CTrG |= Class− Table.

c: Class

name = ’Person’
kind = ’persistent’

c2: Class

name = ’Employee’
kind = ’persistent’

ct: C2T

ct1: C2T

t: Table

name = ’Person’

parent

CTrG

P
S

c: Class

kind = k

k = ’persistent’
c: Class

kind = k

k = ’persistent’

parent

c1: Class

Ni
s

c: Class

name = nc
kind = k

t: Table

name = nt

Q

k = ’persistent’ nc = nt

ct: C2T

Fig. 12 Forward satisfaction of pattern Class-Table.

Given a specification SP =
∧

i∈I CPi and a con-
straint triple graph CTrG, we write CTrG |= SP to
denote that CTrG satisfies all patterns in SP. The M2M
transformation semantics of a pattern specification is the
language of all triple graph constraints (not necessarily
ground) that satisfy the specification. This is convenient
as, in case of non-ground constraints, a solver can ob-
tain one that is ground and satisfies the specification, if
it exists.

Definition 6 (M2M transformation semantics)
Given a specification SP , its M2M transformation se-
mantics SEM(SP) is given by the class of all constraint
triple graphs CTrG such that CTrG |= SP .

A constraint CTrG satisfies a specification SP if it
satisfies all its patterns (we sometimes say that CTrG
is a model of the specification). Hence, any constraint
satisfying the specification must belong to the lan-
guage generated by each pattern CPi in the specifi-
cation. Formally, SEM(SP) =

⋂
CPi∈SP SEM(CPi).

This fact makes compositional the semantics of pattern-
based M2M transformations, as adding a new pattern to
a specification amounts to intersecting the languages of
both. This is useful when extending or reusing specifica-
tions.

Proposition 1 (Composition of specifications)
Given specifications SP1 and SP2, SEM(SP1 ∧ SP2) =
SEM(SP1) ∩ SEM(SP2). (Proof in Appendix).

6.1 Enriching Specifications with Meta-Model
Information

M2M transformation specifications cannot be oblivious
to the integrity constraints imposed by the meta-models
of the source and target languages. The simplest ones

12

are the maximum cardinality constraints in association
ends. They induce N-patterns that we automatically de-
rive and include in the specifications. This is useful to
restrict the number of models that satisfy a specification
by ruling out those which are syntactically incorrect.

The generation procedure is simple: if a class A is
restricted to be connected to a maximum of j objects of
class B, then we build one N-pattern made of an A object
connected to j+1 B objects.
Example. Fig. 13 shows the meta-model triple for the
class-to-relational example. As class Attribute has to
be connected to exactly one Class, we generate one N-
pattern made of an Attribute object connected with
two Class objects. Similarly, we generate another N-
pattern due to the parent association in the source lan-
guage and the association between Column and Table in
the target.

A2C

C2T

1

* attrs

+ name: String

Attribute

+ public: bool

+ name: String

Class

+ kind: String

UML

1

* 1

1 0..1

0..1

0..1

*

RDBMS

1

cols

+ name: String

Column

+ name: String

Table

1

1

parent

*

Fig. 13 Simple meta-model triple for UML and RDBMS.

As noted in the meta-model triple, we decorate the
correspondence functions with cardinality constraints.
These always have to be equal to 1 on the side of the
source and target elements, but may vary on the side of
the mappings. For instance, classes can receive zero or
one mappings, while tables can receive zero or more. The
maximum cardinality constraints on the correspondence
functions also produce N-patterns, which are shown in
Fig. 14. Note that no N-pattern is generated from the
cardinalities on the side of the source and target ele-
ments as the very formalism takes care of that.

N(maxAttributeA2C)

: Table

: Table:C2T

:C2T

: Class

N(maxClassC2T)

: Attribute

: Attribute

: Column:A2C

:A2C

N(maxColumnA2C)

: Column

: Column: Attribute :A2C

:A2C

Fig. 14 N-patterns generated from the maximum cardinal-
ity constraints in the correspondence functions.

Apart from the maximum cardinality constraints,
other restricted forms of OCL (coming from the meta-
model) can also be encoded as patterns. For this purpose
we can benefit from previous works on translating OCL

into graph constraints [47]. Interestingly, once the meta-
model constraints are expressed in the form of patterns,
we can analyse their consistency regarding the specifica-
tion. For example, if there is a morphism from some of
the generated N-patterns to a P-pattern in the specifica-
tion, then we can conclude that either the P-pattern is
useless as it is subsumed by the N-pattern, or the trans-
formation is incorrect as it could try to create models
violating the cardinality constraints.

Inheritance relationships and abstract types in meta-
models can also be exploited to define more compact
patterns. In particular, objects with abstract typing can
appear in patterns, which intuitively is equivalent to the
disjunction of the n patterns that result from substitut-
ing the abstract objects by all its n concrete subtypes.
Example. Just for the sake of illustration, let’s sup-
pose that the UML meta-model of our example defines
an additional class named Interface, and that both
Class and Interface inherit from an abstract class
Container. In this case, the P-pattern shown in Fig. 15
specifies that both persistent Classes and Interfaces
have to be mapped to Tables, and that Tables have to
be mapped to either a Class or an Interface, hence the
disjunction. Note that in addition to making specifica-
tions more compact, the fact that using abstract types
produces a disjunction of patterns is a way to design
loose specifications, to be refined at later stages.

k = ’persistent’

ct:C2T

name = nt

t: Table

nc = nt

c: Container

name = nc
kind = k

Container−Table

Fig. 15 P-pattern with abstract object.

6.2 Deriving Forward/Backward Transformation Rules

Next we describe the synthesis of TGG operational rules
implementing forward and backward transformations
from pattern-based specifications. In forward transfor-
mation, we start with a constraint triple graph where
only the source is present, and the rules build the ap-
propriate correspondence and target models according
to the patterns. In backward transformation it is the
other way round, we start with just a target and build
the source and correspondence. We assume that the ini-
tial models do not violate any N-pattern of the speci-
fication. As some of these N-patterns are derived from
the maximum cardinality constraints of association ends
in meta-models, it is reasonable to assume syntactically
correct starting models.

The synthesis process derives one rule from each P-
pattern, made of triple graph constraints in its LHS
and RHS. In particular, the forward pre-condition PS is

13

taken as the LHS for the forward rule, and the main con-
straint Q as the RHS. For simplicity, we neglect abstract
typing in this first step. The negative pre-conditions
of a P-pattern are used as negative pre-conditions of
the synthesized rules. All N-patterns in the specifica-
tion are converted into negative post-conditions of the
rules, using the well-known procedure to convert graph
constraints into a rule’s post-conditions [16]. Finally, ad-
ditional NACs are added to ensure termination (see the
proof in [38]). For simplicity we only show the genera-
tion of forward rules, as backward rules are generated
analogously [25].

Before stating this definition, let us explain an over-
lapping construction that we need below. In particular,
we say that a constraint triple graph CTrG is the over-
lapping of CTrG1 and CTrG2 if CTrG embeds CTrG1

and CTrG2 via e1 and e2 (i.e. e1 : CTrG1 ↪→ CTrG and
e2 : CTrG2 ↪→ CTrG) and e1 and e2 are jointly surjec-
tive, which means that every element (node or edge) in
CTrG comes from CTrG1 or CTrG2. That is, we can
consider that CTrG is a kind of union of CTrG1 and
CTrG2. Moreover, we say that CTrG is the overlapping
of CTrG1 and CTrG2 with respect to CTrG0 if, addi-
tionally, CTrG0 is embedded in the intersection of e1

and e2). Notice that this is different from a pushout: if
CTrG = CTrG1 +CTrG0 CTrG2, then CTrG can be
seen as the union of CTrG1 and CTrG2, where CTrG0

coincides with the intersection; however, in an overlap-
ping, we only require that CTrG0 is embedded in the
intersection.

Definition 7 (Derived forward rule) Given a speci-
fication SP and a P-pattern CP = [

∧
i∈Pre N(Ci)∧C ⇒

Q] ∈ SP , the following forward rule is generated:

−−→rCP = (PS
r→ Q, pre(CP), post(CP))

where:

– PS
r→ Q is the main part of the rule, where PS is the

LHS and Q the RHS.
– The set pre(CP) of negative pre-conditions is de-

fined as pre(CP) = preS(CP) ∪ TNAC(CP),
where preS(CP) is the set of negative forward pre-
conditions (see Definition 3), and TNAC(CP) is a
set of NACs ensuring termination, consisting of all
constraint triple graphs T which are an overlapping
of Q and PS with respect to Q|S.

– The set post(CP) consists of all constraint triple
graphs D which are an overlapping of Q and Q′,
for some N-pattern N(Q′) in SP , and such that
(Q \ PS) ∩Q′ is not empty.

The set post(CP) contains the rule’s negative post-
conditions derived from the N-patterns of the specifica-
tion. This is done by overlapping each N-pattern with
the rule’s RHS in all possible ways. Moreover, the re-
quirement that (Q \ PS) ∩ Q′ 6= ∅ reduces the size of

post(CP) because we only need to consider possible vi-
olations of the N-pattern due to elements created by the
RHS.
Example. The upper row of Fig. 16 shows the
operational forward rule generated from pattern
Attribute-Column. The set preS is empty as the pat-
tern has no negative pre-conditions. There are two NACs
for termination, TNAC1 and TNAC2, the former equal to
R. They are the two different ways of overlapping L and
R with respect to R|S . While TNAC1 identifies the C2T
and the Table from L and R, TNAC2 does not identify
them3. As a difference from Fig. 7, we do not need to
do algebraic manipulation of formulae to generate the
rule, demonstrating the advantage of our way of directly
handling attribute conditions. The figure also shows
a direct derivation where both G and H are ground
constraints. Note that we do not check in L that x
starts with “ ”, but if it does not, we would obtain an
unsatisfiable constraint.

If a rule creates objects having a type with defined
subtypes, we generate a set of rules resulting from sub-
stituting the type by all its concrete subtypes. This sub-
stitution is not necessary in the elements of the LHS as
they are not created, and it is not done in the NACs in
order to obtain the expected behaviour of disjunction.
Using an optimization similar to [10] one could work di-
rectly with abstract rules, but we would have to modify
the notion of embedding, which is left for future work.
Example. Fig. 17 shows the backward rules generated
from the pattern with abstract object Container-Table,
shown in Fig. 15. As the backward rules create the
Container, and this has two concrete children classes,
two rules are generated that create either a Class or an
Interface. Each rule has a termination NAC, where the
Container object has not been substituted by an object
with concrete type. This ensures that the Table is con-
nected to either a Class or an Interface. Note that only
one forward rule is generated from the pattern because
the Container is not created in forward transformation.
Hence, given an initial Table, these rules will generate
two admissible solutions according to the specification.

According to [38], the generated rules are terminat-
ing and, in absence of N-patterns, correct: they produce
only valid models of the specification. However, the rules
are not complete: not all models satisfying the specifi-
cation can be produced by the rules. The next subsec-
tion describes a method, called parameterization, which
in addition ensures completeness of the rules generated
from a specification without N-patterns.

If a specification contains N-patterns, these are added
as negative post-conditions to the rules generated from
the P-patterns, preventing the occurrence of N-patterns

3 There is a third way of overlapping, where the Tables in
L and R are identified together but not the C2T. We have
simplified this case, as it is subsumed by TNAC1 (if TNAC1 is
found in a graph, so will be this third overlapping, which
becomes useless).

14

t: Tablect:C2T

: A2C

name = x
public = p

a: Attribute

name = y

: Column

: Table: C2T

x = ’__’+yp = false

TNAC2

Attr1: Attribute

name = na
public = pa

name = y

: ColumnAttr1: Attribute

name = na
public = pa

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false

: A2C

na = ’__’+y
n1 = nt

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false n1 = nt

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Class1: Class

G

parent

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Class1: Class

H

parent

name = x
public = p

a: Attribute : A2C

name = y

: Column

c: Class t: Table

p = false x = ’__’+y

R = TNAC1

ct:C2T

P.O.

name = x
public = p

a: Attribute

c: Class t: Table

p = false

L

ct:C2T

c: Class

Fig. 16 Forward rule generated from pattern Attribute-Column, and direct derivation.

: Container

TNAC1

k = ’persistent’

: C2T

nc = nt

t: Table

L

name = nt

t: Table

name = nc
kind = k

: Class : C2T

R

k = ’persistent’ nc = nt

Container−Table.1

name = nt

t: Table

name = nc
kind = k

: Container

TNAC1

k = ’persistent’

: C2T

nc = nt

t: Table

L

name = nt

t: Table

name = nc
kind = k

: Interface

R

k = ’persistent’

: C2T

nc = nt

Container−Table.2

name = nt

t: Table

name = nc
kind = k

Fig. 17 Backward rules for pattern Container-Table.

in the model. However, they may forbid applying some
rules before a valid model is found, thus producing
graphs that may not satisfy all P-patterns (because
the transformation stopped too soon). In this situation
the operational mechanism would not be able to find a
model, even if it exists. The next subsection presents one
heuristic that ensures finding models, and hence correct-
ness, for mechanisms derived from specifications with
only certain classes of N-patterns.

6.3 Parameterization and Heuristics in Rule Derivation

Applying the parameterization operation to each P-
pattern in the specification ensures completeness of the
operational mechanism: the rules are able to generate
all possible models of the specification [38]. The oper-
ation takes a P-pattern and generates additional ones,
with all possible positive pre-conditions “bigger” than
the original pre-condition, and “smaller” than the main
constraint Q. This allows the rules generated from the
patterns to reuse already created elements.

Definition 8 (Parameterization) Given a P-pattern
CP = [

∧
i∈Pre N(Ci) ∧ C ⇒ Q], its parameterization is

Par(CP) = {∧i∈Pre N(Ci) ∧ C ′ ⇒ Q | C
i1
↪→ C ′

i2
↪→

Q,C � C ′, C ′ � Q}.
Remark. The formula αC′ can be taken as the conjunc-
tion of αC for the variables already present in νC , and αQ

for the variables not in νC (i.e. in ν′C \ i1(νC)). Formally,
αC′ = αC ∧ αQ|i2(νC′\i1(νC)) (assuming no renaming of
variables).
Example. Fig. 18 shows some of the parameters
generated by parameterization for a pattern like
Attribute-Column in Fig. 9 but without parameters.
Parameterization generates 45 patterns in total. The
new pattern with parameter 1 is enforced when the
class is already mapped to a table, and in forward trans-
formation avoids generating a rule that creates a table
with arbitrary name. Parameter 3 reuses a column with
the same name as the attribute (but starting by ‘ ’),
possibly created by a parent class. However, parameter 2
is potentially harmful as it may lead to reusing a column
connected to a different table, and thus to an incorrect
model. Nevertheless, in this case, the N-patterns gener-
ated from the maximum cardinality constraints in the
meta-models would not allow a column to be connected
to more than one table (see Section 6.1).

As the example shows, parameterization generates an
exponential number of patterns with increasingly bigger
parameters, and therefore an exponential number of de-
rived rules. However, one does not need to generate these
rules beforehand, but they can be synthesized “on the
fly”. That is, we can generate the rule with smallest LHS,
and a matching mechanism could try to extend matches
of such LHS to bigger subgraphs, but smaller than the
RHS. Also note that some of the generated rules will
be equal, namely those generated from parameters with
the same target and correspondence graph in the case of

15

parameter 1

ct:C2T

paramet
erization

c: Class t: Table

co: Column

parameter 2

ct:C2T

ac:A2C

name = x
public = p

a: Attribute

c: Class t: Table

Attribute−Column.withoutParams

co: Column

name = y

ct:C2T

p = false x = ’__’+y
c: Class t: Table

name = x
public = p

a: Attribute co: Column

name = y

p = false

parameter 3

ct:C2T

x = ’__’+y

c: Class t: Table

Fig. 18 Parameterization example.

forward rules. Although parameterization ensures com-
pleteness [38], we hardly use it in practice but prefer
using heuristics to generate just the strictly necessary
parameters. However, as previously stated, generating
fewer patterns can make the rules unable to find certain
models of the specifications (those “too small”).

In order to reduce the number of patterns (and conse-
quently of rules) we propose two heuristics. The first one
is used to derive only those parameters that avoid the
creation of elements with unconstrained attribute values.
The objective is to avoid – whenever possible – synthe-
sizing rules creating elements whose attributes can take
several values. Thus, we prefer that these elements are
generated by some other rule that assigns them a value,
if it exists.

Heuristic 1 Given a P-pattern CP , replace it by a new
pattern that has as parameters all elements with some
attribute not constrained by the formula in CP but con-
strained by some other pattern, as well as the mappings
and edges between these elements. We do not apply the
heuristic if the obtained parameter is equal to Q.

Example. In Fig. 18, the heuristic generates just one
pattern with parameter 1, which replaces the original
pattern. Thus, the generated forward rule avoids creat-
ing a table with arbitrary name, whereas the backward
one prevents the creation of classes with arbitrary name.

The next heuristic generates only those parameters
that avoid duplicating a graph S1 whenever there is some
N-pattern of the form N(S1 +U S1) forbidding the du-
plication of S1. This ensures the generation of rules pro-
ducing valid models for the class of specifications with
N-patterns of this form (called FIP in [11]).

Heuristic 2 Given a P-pattern CP = [
∧

i∈Pre N(Ci) ∧
C ⇒ Q] ∈ SP , if there is an N-pattern [N(S)] ∈ SP
with S ∼= S1 +U S1, and such that U is embedded in C,
and S1 is embedded in Q but not in C, then we generate
additional patterns having as parameters all C ′j such that
C ′j is the overlapping of Q and S1 with respect to U .

The rationale of this heuristic is that if a P-pattern
has a parameter C that contains U but not S1, and its

main constraint Q contains S1, then applying the pat-
tern creates a new structure S1 glued to an existing oc-
currence of U . This heuristic enlarges the parameter to
include S1 and thus avoids its duplication as occurrences
of S1 will be reused whenever they exist. The way to pro-
ceed is to apply the heuristic for each P- and N-pattern
of the form N(S1 +U S1), and repeat the procedure with
the resulting patterns until no more different patterns
are generated.
Example. Fig. 19 shows the application of heuristic 2 to
N(maxParent) and a variation of the P-pattern Parent
Class-Table. The former was generated from the max-
imum cardinality constraint in the association end par-
ent. The variation of the P-pattern has as parameter the
child class instead of the parent one, just for the sake
of illustration. The N-pattern can be decomposed in two
isomorphic graphs S1 with intersection U , and there are
embeddings from U to the P-pattern parameter C, and
from S1 to the P-pattern main constraint Q (but not
to C). Hence the patterns are suitable for the heuristic,
which adds the new pattern C ′ → Q to the specification,
maintaining also the original one. The parameter C ′ is
the glueing of C and S1 through U , and it forbids gen-
erating a new parent class in backward transformation
if it already exists.

ct1:C2T

C

k = ’persistent’
kind = k

c1: Class

: Class : Class

c1: Class: Class

S1

c1: Class

: Class

c1: Class

S1

c1: Class

U

ct1:C2T

c: Class

k = ’persistent’

ct:C2T t: Table

parent

kind = k

c1: Class

Q

c: Class

ct1:C2T t: Table

kind = k

c1: Class

k = ’persistent’

C’ (parameter of new pattern)

parent

u1

u1

N(maxParent)

u

s

t: Table

Fig. 19 Heuristic 2 example.

To sum up, next we enumerate the different pat-
tern usage procedures depending on the operations and
heuristics presented so far. In particular, when using a
pattern-based specification on a M2M transformation
scenario, we have the following three options:

– do not apply parameterization or heuristics. In such
a case parameters in patterns have to be manually
specified, which is more time consuming but allows

16

for a more refined control of the transformation be-
haviour. Also, without parameterization, we do not
have completeness, although this can be unimportant
for specific kinds of transformations.

– apply parameterization and no heuristic. We gain
completeness of the operational mechanism, and in
some occasions we can save from manually specify-
ing all or some parameters in our patterns. The disad-
vantage is the exponential number of generated rules,
which requires combining this approach with the use
of heuristics.

– apply heuristics. The number of generated rules is
drastically reduced, as many meaningless parameters
are not generated. After applying heuristics it is pos-
sible to decide whether we are interested in complete-
ness of the new optimized specification, and then ap-
plying parameterization to those patterns.

None of the previous usage procedures is better than
the other, as different types of transformations may re-
quire a different strategy. A practical example of the use
of patterns is shown in Section 8.

7 Model Matching and Model Traceability

In this section we show the usage of patterns for model
matching and traceability. The purpose of both activ-
ities is generating appropriate traces between the ele-
ments of two models, as well as checking whether two
models are correctly traced according to a specification.
However they differ in the notion of “correct trace”. In
model matching [29] one pursues the generation of traces
between all elements considered similar by the specifica-
tion. This can be a previous step for further activities
like model merging. In model traceability [27] the con-
cern is to establish, maintain and check the correctness
of traceability relations between models.

Fig. 20 illustrates the difference between both activ-
ities in the context of our running example. The initial
models to be traced are shown above. The left one con-
tains two classes and the right one two tables, all with
the same name. The model matching scenario generates
four traces making explicit the fact that each class is
considered similar to any of the two tables, since they
have the same name (for illustrative purposes we are ne-
glecting the N-pattern that forbids connecting a class
with two tables). On the contrary, the traceability sce-
nario matches exactly one class with one table, obtaining
the two solutions shown to the right of the figure. One
can interpret each solution as a possible result of either
a forward or a backward transformation, but in which
the source and target models are not modified and only
their traces are established. Thus, a forward transforma-
tion would generate a table and a trace from each class,
but it would not generate the four traces due to the ter-
mination conditions of our rules. Whereas the solutions
obtained by model traceability can be generated either

by forward or backward transformation, in general, the
model matching result can not. Interestingly, the traces
generated by model matching are the union of all the
traces generated in the different solutions computed by
model traceability.

model matching yields 1 solution

name = ’A’

: Table

name = ’A’

: Tablename = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

:C2T

:C2T

:C2T

:C2T

name = ’A’

: Table

name = ’A’

: Table

name = ’A’

: Table

name = ’A’

: Table

:C2T

:C2T

:C2T

:C2T
name = ’A’

: Table

name = ’A’

: Tablename = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

initial UML and RDBMS models

model traceability yields 2 solutions

Fig. 20 Model matching and model traceability scenarios.

Next we introduce two notions of pattern satisfac-
tion for model matching and traceability, which tell us
whether two models are matched or traced correctly ac-
cording to a pattern. Unlike the synchronization notion
for M2M transformation in Definition 5, these two no-
tions are symmetric in the sense that they look at the
source and target elements at the same time and then
check for the existence of traces, instead of looking at
patterns source-to-target or target-to-source. The notion
of satisfaction for N-patterns remains unaltered as they
are not interpreted forwards or backwards.

We start with the notion of satisfaction for model
matching. This demands that, for each combination of
the source and target model elements where a pattern is
trace-enabled (recall Definition 4), there is an occurrence
of the pattern’s main constraint.

Definition 9 (Matching) A constraint triple graph
CTrG is matched with respect to a P-pattern CP =
[
∧

i∈Pre N(Ci) ∧ C ⇒ Q], written CTrG |=M CP , if
whenever CP is trace-enabled at a match mST (i.e.
CTrG `mST ,T CP) there exists an embedding m : Q →
CTrG extending mST .

A constraint triple graph CTrG is matched with re-
spect to an N-pattern CP = [N(Q)], written CTrG |=M

CP , if Q is not embedded in CTrG.

Example. Fig. 21 shows a constraint CTrG that is cor-
rectly matched with respect to the pattern Class-Table.
The notion of matching demands that for each occur-
rence of PST containing the source and target of the

17

pattern (i.e. for each persistent class and table with the
same name) a trace exists. There are four such occur-
rences in the constraint, and hence four traces are de-
manded. The constraint is also correctly matched with
respect to the pattern Attribute-Column as this pat-
tern is not trace-enabled in the constraint (i.e. the ta-
ble t1 in the constraint should have defined a column
with name ’Age’ for the pattern to be trace-enabled).
Indeed, the fact that a constraint is correctly matched
does not mean that the models it contains are synchro-
nized in the sense of M2M transformation. Our use of
patterns for model matching (and traceability) is flexi-
ble enough to build trace models on partial models. An
example of non-matched constraint with respect to pat-
tern Class-Table is CTrG in Fig. 22, as two traces are
missing.

CTrG

name = nc
kind = k

c: Class

P
ST

name = nt

t: Table

k = ’persistent’ nc = nt

ct:C2T

name = nt

t: Table

name = nc
kind = k

c: Class

nc = nt

Q

k = ’persistent’

a: Attribute

name = ’Age’
public = false

name = ’Person’
kind = ’persistent’

c2: Class ct4:C2T
name = ’Person’

t2: Table

ct2:C2T

ct3:C2T

name = ’Person’
kind = ’persistent’

c1: Class

name = ’Person’

t1: Table
ct1:C2T

=

Fig. 21 Constraint matched according to pattern
Class-Table.

The notion of pattern satisfaction in model traceabil-
ity is weaker than the one for matching. While the latter
demands a universal existence of traces (i.e. for all pos-
sible combinations of source and target elements), trace-
ability demands them existentially (i.e. for at least one of
such occurrences). Thus, satisfaction in model traceabil-
ity requires that, for each combination of the source and
target model elements where a pattern is trace-enabled,
there is an occurrence of the pattern’s main constraint
that includes the source or the target elements. If there
is no trace between a certain occurrence of the source
and a certain occurrence of the target, it is because one
of them is traced with a different occurrence.

There is an additional detail though: we demand a
“uniform” distribution of traces, so that it is not allowed
having one occurrence of the source to be traced twice,
whereas another occurrence that could have been related
with the same target elements as the first one is not
traced at all (and similarly for the target). Otherwise,
this would mean that the first occurrence has a “redun-
dant trace” that could have been used to connect the
second occurrence. Hence, the source part of the trace-

enabled occurrences must be traced unless there are not
enough target elements (and vice versa). This agrees
with forward/backward transformation, which does not
enforce a pattern twice in the same set of source/target
elements. Put in other words, one can think that our
notion of traceability demands traces between the max-
imal subsets of source and target elements that are syn-
chronized. As a source and a target graphs can be syn-
chronized in different ways, traceability yields a different
solution for each one of these ways. Traceability is there-
fore an important first step towards synchronizing to ini-
tially unrelated models: first, traces are established be-
tween elements that are already synchronized, and then
repairing actions can be performed over elements that
are not traced.

Altogether, the definition of pattern satisfaction in
model traceability is a bit involved. To make it easier to
understand let us first define some terminology. Let us
assume that Q is a constraint triple graph. If e : Q|S ↪→
CTrG (resp. e : Q|T ↪→ CTrG) is an embedding, then
we say that e is traced by Q if there is an embedding
m : Q ↪→ CTrG such that e = mS (resp. e = mT).
Similarly, we say that e is not traced by Q if the converse
property holds. We also say that e is doubly traced by
Q if there are two different embeddings m : Q ↪→ CTrG
and m′ : Q ↪→ CTrG such that mS = e = m′S (resp.
mT = e = m′T). Finally, given an embedding mST from
PST into CTrG, we write mS for the embedding of the
source part of PST (i.e. PS) in CTrG, and similarly for
mT .

Definition 10 (Traceability) A constraint triple
graph CTrG is traced with respect to a P-pattern
CP = [

∧
i∈Pre N(Ci)∧C ⇒ Q], written CTrG |=T CP ,

if whenever CP is trace-enabled at a match mST , i.e.
CTrG `mST ,T CP , the following two conditions are
satisfied:

1. If mS is not traced by Q then mT is traced, but if
there is a different embedding of PS then this is not
doubly traced by Q.

2. If mT is not traced by Q then mS is traced, but if
there is a different embedding of PT then this is not
doubly traced by Q.

A constraint triple graph CTrG is traced with respect
to an N-pattern CP = [N(Q)], written CTrG |=T CP ,
if Q is not embedded in CTrG.

Remark. Condition 1 states that, for each combination
of source and target elements that could be matched (i.e.
for each occurrence of PST), if the source part PS is not
traced, then the target part must be traced. Moreover,
if PS is not traced, we forbid any other occurrence of
the source to be traced with two occurrences of the tar-
get that could have been matched with PS . Condition 2
demands the reverse situation.
Example. Fig. 22 shows a constraint CTrG that is cor-
rectly traced with respect to the pattern Class-Table.

18

The traceability conditions demand that, for each oc-
currence of PST , we find an occurrence of the pattern’s
main constraint Q commuting with the source or target
parts of PST . That is to say, for each persistent class and
table with the same name, the class must be related to
a table with equal name, or the table must be related to
a persistent class with equal name, or the class and the
table must be actually related. The figure depicts such
occurrences by using inscriptions in the embedding ar-
rows. For example, the occurrence of PST that contains
c1 and t1 satisfies the traceability conditions as there is
a trace relating both elements. The occurrence of PST

that contains c1 and t2 also satisfies the traceability con-
ditions as c1 and t2 belong to different occurrences of Q.
In fact, finding just one of such occurrences is enough to
satisfy the traceability conditions.

{ (c:c1, t:t1, ct:ct1),

a: Attribute

name = ’Age’
public = false

name = ’Person’
kind = ’persistent’

c2: Class

ct1:C2T
name = ’Person’
kind = ’persistent’

c1: Class

name = ’Person’

t2: Table

name = ’Person’

t1: Table

CTrG

ct2:C2T

 (c:c1, t:t2),
 (c:c2, t:t1),
 (c:c2, t:t2) }

{ (c:c1, t:t1),

ct:C2T

name = nt

t: Table

name = nc
kind = k

c: Class

nc = nt

Q

k = ’persistent’

name = nc
kind = k

c: Class

name = nt

t: Table

k = ’persistent’ nc = nt

PST

 (c:c2) }
{ (c:c1),

 (t:t2) }
{ (t:t1),

kind = k

c: Class

PS

k = ’persistent’

t: Table

PT

 (c:c2, t:t2, ct:ct2) }

Fig. 22 Constraint traced according to pattern
Class-Table.

Example. Fig. 23 shows a constraint that is not cor-
rectly traced. Although for each combination of class
and table (PST) at least one of them satisfies the pat-
tern, the lower class is not traced at all whereas the
upper class (another embedding of PS) is doubly traced
hence “stealing” the trace from the lower class.

:C2T

:C2T

name = ’A’

: Table

name = ’A’

: Tablename = ’A’
kind = ’persistent’

: Class

name = ’A’
kind = ’persistent’

: Class

Fig. 23 Invalid traced constraint.

Altogether, a constraint that is matched with respect
to a pattern is also traced with respect to the same pat-
tern. However the converse does not necessarily hold.
Similarly, two models synchronized as in Definition 5
are correctly traced as well, but not necessarily matched.
Finally, two matched models may not be synchronized
since we can match non-synchronized models (e.g. a class
diagram with an attribute for which there is no column).
The relations between the three notions of satisfaction
presented so far are summarized in the following propo-
sition.

Proposition 2 (Satisfaction relationships) Given
a specification SP and a constraint triple graph CTrG,
the following relationships hold: CTrG |= SP ⇒
CTrG |=T SP and CTrG |=M SP ⇒ CTrG |=T SP .
(Proof in Appendix)

7.1 Deriving Relating Rules

Next we provide the generation mechanism for the oper-
ational rules that create the traces between two models
in the model matching and traceability scenarios (we
call them relating rules). In both cases the mechanism
derives one rule from each P-pattern; the difference is
the generated set of NACs for termination: in matching
it is just the RHS, whereas in tracing it is the union of
the forward and backward termination NACs built as in
Definition 7.

Definition 11 (Derived relating rules) Given a
specification SP and a P-pattern CP = [

∧
i∈Pre N(Ci)∧

C ⇒ Q] ∈ SP , we derive the following relating rule:

rrCP : (PST
r→ Q, pre(CP), post(CP))

where:

– PST → Q is the main part of the rule, where the
positive trace pre-condition PST is the LHS.

– The set pre(CP) of negative pre-conditions is de-
fined as pre(CP) = preST (CP) ∪ TNAC(CP),
where preST (CP) is the set of negative trace pre-
conditions (see Definition 3), and TNAC(CP) is
the set of NACs ensuring termination. For the case
of matching rules, it contains just one NAC equal
to the rule’s RHS. For the case of traceability rules,
TNAC(CP) = TNACS(CP)∪ TNACT (CP) is the
union of the sets of forward and backward termina-
tion NACs as described in Definition 7.

– The set post(CP) is built as in Definition 7.

Remark. The sets TNACS(CP), TNACT (CP) and
post(CP) are built as in Definition 7, but the LHS and
preST (CP) consider the source and target of patterns
instead of only one of them. Besides, we do not con-
cretize abstract types because the rules do not create
elements with those types but just traces. In the trace-
ability rules, the set TNACS(CP) forbids tracing twice

19

the same set of source elements. This agrees with the
generated forward transformation rules of Definition 7,
which do not enforce a pattern twice in the same set
of source elements, and also with the conditions for not
duplicating traces of Definition 10.
Example. Fig. 24 shows above the model matching rule
derived from pattern Class-Table. The rule creates a
trace between a class and a table whenever the class is
persistent, it has the same name as the table, and it has
no parents (as specified by the NAC1 that comes from
the negative pre-condition of the pattern). The rule has
one termination NAC, equal to the RHS, preventing its
application more than once in the same location. Below,
the figure shows the traceability rule generated from the
same pattern, which is equal to the matching rule ex-
cept that it contains two additional termination NACs:
TNAC2S forbids applying the rule if the class is already
connected to a table, and TNAC2T forbids it if the table
is connected to a class. Note that, differently from for-
ward and backward rules, applying a relating rule does
not add new formulae to the host model.

name = nc
kind = k

c: Class

name = nt

t: Table

k = ’persistent’ nc = nt

NAC1

parent

name = nc
kind = k

c: Class

name = nt

t: Table

L

k = ’persistent’ nc = nt

name = nc
kind = k

c: Class

name = nt

t: Table:C2T

R = TNAC1

k = ’persistent’ nc = nt

Class−Table−matching

: Class

name = nt

t: Table

L

k = ’persistent’ nc = nt

: Class

name = nc
kind = k

c: Class

name = nt

t: Table

k = ’persistent’ nc = nt

NAC1

parent

name = nc
kind = k

c: Class

name = nt

t: Table

name = nt1

: Table
:C2T

TNAC2 S

k = ’persistent’
nc = nt
nc = nt1

name = nc
kind = k

c: Class

:C2T
name = nt

t: Table

name = nc1
kind = k1

: Class

TNAC2 T

k = ’persistent’
k1 = ’persistent’

nc = nt
nc1 = nt

name = nc
kind = k

c: Class

name = nt

t: Table:C2T

S

k = ’persistent’ nc = nt

R = TNAC1 = TNAC1 T

Class−Table−tracing

name = nc
kind = k

c: Class

Fig. 24 Relating rules derived from pattern Class-Table.

As in the case of M2M transformation, we can apply
parameterization and heuristics prior to rule generation
with the same trade-offs. Nonetheless, relating rules have
the source and target of patterns as their LHS, there-
fore the number of possible parameters that give rise

to different rules is considerably lower. In particular, a
pattern whose main constraint has n traces produces at
most 2n − 1 different rules, but it should be taken into
account that patterns rarely contain more than two or
three traces. In this sense, we can optimize parameter-
ization by generating only those parameters that differ
in their traces.

Also, as in the M2M transformation scenario, we
can enrich specifications with N-patterns derived from
the meta-model and, in particular, from the cardinality
annotations in the correspondence functions (see Sec-
tion 6.1 and Fig 14). However, we do not consider such
N-patterns for model matching as here the aim is to re-
late source and target elements in all possible ways.

We are aware that in general scenarios like require-
ments traceability [35] it is difficult to create automati-
cally the traces between analysis and design models from
scratch. In practice these traces are manually created
by engineers. However, one still may have a specifica-
tion describing inter-model consistency conditions and
use the operational mechanisms to keep the traces con-
sistent when the models change (see the next section).
For other scenarios that are amenable to complete au-
tomation, like relating a class diagram to a relational
model, the operational rules for traceability create the
correct traces and return all possible solutions. Further-
more, these rules are useful as a first step towards es-
tablishing synchronization starting from two unrelated
models.

7.2 Handling Incorrect Traces

The notions of correctly related models presented so far
make sure that the needed traces exist, but do not guar-
antee the absence of incorrect traces. This is so because
all presented notions of satisfaction iterate on occur-
rences of the source and target elements and check the
existence of an appropriate trace, but do not iterate on
the occurrences of traces checking their validity. Hence,
even two models synchronized with respect to a specifica-
tion may have incorrect traces (in addition to the correct
ones) if somebody manually added an incorrect trace re-
lating them, or if the models evolved so that some traces
became incorrect. In this case we make a closed world
assumption: only those traces that are correct according
to the specification should exist.

This section shows how to generate rules able to de-
tect and delete incorrect traces. We assume that the
trace model is a discrete graph (i.e. it contains no edges
connecting traces with each other). The generated rules
must check that, whenever there is a trace, it is be-
cause some P-pattern demands its presence and it does
not belong to an occurrence of any N-pattern. However,
the rules deleting such incorrect trace cannot have just
one trace node in its LHS as our formalization requires
each trace to relate source and target elements. Hence,

20

their LHS contains so-called trace triples which are made
of a trace node connecting source and target elements.
Given a meta-model triple we derive a set Trc of trace
triples consisting of all different triple graph constraints
typed by the meta-model triple, with one object in the
source, target and correspondence graphs (and the for-
mula equal to true).
Example. Fig. 25 shows the set of trace triples de-
rived from the meta-model in Fig. 13. The set con-
tains two traces, which correspond to the mappings be-
tween Classes and Tables and between Attributes and
Columns. As the attributes of the source and target ele-
ments are not constrained by the formula, we omit them.

: Attribute: Class : C2T : Table : A2C : Column

Fig. 25 Trace triples for the meta-model triple in Fig. 13.

Next we identify the set of enabling P-patterns that
demand the existence of a certain trace triple, and the
set of disabling N-patterns that contain a certain trace
type.

Definition 12 (Enabling and disabling patterns)
Given a specification SP =

∧
k∈K CP k and a trace triple

ti ∈ Trc:

– The set of enabling patterns of ti, Patt+(ti), is the
set of all embeddings qk

i : ti ↪→ Qk such that qk
i is

not the extension of an embedding of ti in Ck, where
Ck and Qk are the positive pre-condition and main
constraint of the P-pattern CP k.

– The set of disabling patterns of ti, Patt−(ti), is the
set of all embeddings qk

i : ti ↪→ Qk such that CP k is
the N-pattern N(Qk).

Example. Fig. 26 shows the trace triple ti for the
mappings between classes and tables. It has two en-
abling patterns: Class-Table with main constraint Q1,
and Parent Class-Table with main constraint Q2. The
class in ti is related to c in Q2 but not to c1 because c1 is
in the pattern’s parameter. Fig. 27 shows the disabling
patterns for the same trace triple in a traceability sce-
nario where N(maxClassC2T) is part of the specification
(recall that this N-pattern was generated from the cardi-
nality annotations of the correspondence function, and
that it is not generated for model matching). There are
two elements in the set of disabling patterns because
there are two ways of embedding the triple in the pat-
tern, and the set Patt−(ti) contains embeddings.

We can check trace correctness at two levels. At the
relaxed level, we check that any trace triple ti relating
two models actually connects model fragments accord-
ing to some ti’s enabling pattern. This notion of cor-
rectness does not take into account the negative pre-
conditions of patterns, since a pattern with negative pre-
conditions specifies what should happen if the negative

t: Tablect:C2T

t
i

c: Class

c1: Class ct1:C2T t: Table

C
2

c1: Class

Q
2

ct1:C2T t: Table

ct:C2T

parent

c: Class

kind = k

k = ’persistent’

name = nc
kind = k

c: Class

name = nt

t: Tablect:C2T

k = ’persistent’ nc = nt

Q
1

Fig. 26 Enabling patterns set for trace triple.

t1: Table

2t: Tablect:C2T

t
i

c: Class

Q
1

t: Table

ct2:C2T

c: Class ct:C2T

t1: Table

ct:C2T

c: Class ct2:C2T

t: Table

Q

Fig. 27 Disabling patterns set for trace triple.

pre-conditions are not found, but not if they are found.
Note however that our (forward, backward, matching
and traceability) operational rules include NACs that
forbid enforcing a pattern if the negative pre-conditions
are found. Therefore, at the strict level, we check that
only those traces that our operational rules are able to
create actually exist. Thus, if there is an occurrence of
a trace triple between two related models, then such oc-
currence should belong to an occurrence of some ti’s en-
abling pattern for which its negative pre-conditions are
not found. These two notions are formalized next.

Definition 13 (No incorrect traces) Given a speci-
fication SP =

∧
k∈K CP k, we say that a constraint

triple graph CTrG has no incorrect traces at relaxed
level with respect to SP if for every trace t in Trc, if
m : t ↪→ CTrG is an embedding then the following two
conditions must be satisfied:

1. t is enabled by some positive pattern CP =
[
∧

i∈Pre N(Ci) ∧ C ⇒ Q] (i.e. m′ : t ↪→ Q is in
Patt+(t)) and there exists an embedding m′′ of Q in
CTrG extending m.

2. If t is disabled by a negative pattern N(Q) (i.e. m′ :
t ↪→ Q is in Patt−(t)) then there is no embedding of
Q in CTrG extending m.

CTrG has no incorrect traces at strict level if, in
addition, in condition 1 it is required that m′′ can not be
extended to an embedding of any negative pre-condition
Ci in CTrG.

Remark. One could try to express condition 2 (for dis-
abling patterns) in a more compact way by just demand-

21

ing that there is no embedding m : Qk → CTrG (with
Qk being the main constraint of an N-pattern). However,
if Qk does not contain any trace triple, traces may still
be correct in CTrG.
Example. Fig. 28 shows a constraint CTrG with one
occurrence of the trace triple ti. The trace is correct
with respect to pattern Class-Table at the relaxed level
because it is contained in one occurrence of the main
constraint Q. However, the trace is incorrect at the strict
level because such occurrence of the main constraint does
not satisfy the pattern’s negative pre-condition C1 (i.e.
there is an embedding of C1 in CTrG extending the
embedding of ti).

=

t: Tablect:C2T

t
i

c: Class

name = nc
kind = k

c: Class ct:C2T

name = nt

t: Table

k = ’persistent’ nc = nt

Q

name = nc
kind = k

c: Class ct:C2T

name = nt

t: Tablec1: Class

C1

k = ’persistent’ nc = nt

parent

ct:C2T t: Table

name = ’Employee’name = ’Employee’
kind = ’persistent’

c: Class

name = ’Person’
kind = ’persistent’

c1: Class

CTrG
=

Fig. 28 Detection of incorrect trace at the strict level.

Next we show how to generate operational rules that
delete the incorrect traces. In the relaxed case we gen-
erate two kinds of rules. The first type is derived from
Patt+, and has each ti ∈ Trc as LHS and ti|ST as RHS,
so that the trace is deleted. These rules are added each
tri → Qk ∈ Patt+(ti) as NAC, so that the trace is not
deleted if it occurs in the main constraint of a P-pattern
that demands its presence. The second kind of rules is
derived from Patt−, and deletes one trace contained in
the occurrence of an N-pattern. In the strict case we
generate an additional set of rules that delete a trace if
all occurrences of its enabling patterns where it is in-
cluded violate some negative pre-condition, since these
traces cannot be generated by our M2M transformation
operational mechanisms.

Definition 14 (Deleting rules for incorrect traces)
Given a specification SP =

∧
k∈K CP k, we generate the

following rules for deleting incorrect traces at the relaxed
level, for each trace t ∈ Trc:

1. del+(t) is the rule with t as LHS, t|ST as RHS (i.e.
t without the trace part), and whose NACs are all
embeddings t ↪→ Q in Patt+(t).

2. del−(t) is the set consisting of all rules with Q as
LHS, and Q′ as RHS, where N(Q) is an N-pattern

in SP , m : t ↪→ Q is an embedding of t in Q, and
Q′ is the triple constraint obtained by deleting from
Q the trace part of t at location m.

At the strict level, we also generate the following rules
for each trace t ∈ Trc and each enabling pattern CP ∈
Patt+(t) with Npre(CP) 6= ∅:
3. del+(t, CP) is the rule with t as LHS, t|ST as RHS,

and which in addition includes a set PAC of pos-
itive application conditions and a set AC of appli-
cation conditions. More precisely, PAC consists of
all embeddings t ↪→ Cj, where Cj is a negative pre-
condition in CP , and AC consists of all the pairs
(t ↪→ Q′, Npre(CP ′)) formed by an embedding of t in
Q′ and the set of negative pre-conditions of CP ′, for
all enabling patterns CP ′ ∈ Patt+(t) different from
CP .

Remark. The strict rules have two kinds of application
conditions that we have not encountered so far. The first
one is called PAC (Positive Application Condition) [16]
and demands the existence of an additional context C
(where L ↪→ C) in order to apply the rule. Contrary to
NACs, applying a rule requires finding an occurrence of
some PAC in the set of PACs. In this way, the set PAC in
the rule definition requires that the trace to be deleted is
included in some negative pre-condition of the enabling
pattern Ck. The second kind of Application Condition
(AC) is made of an embedding L ↪→ C (the premise)
and a set of consequences Ci embedding C. An AC is
satisfied if for any occurrence of its premise we find an
occurrence of some of its consequences. Actually, a NAC
is just an AC without consequences, and hence finding
the premise disables the rule application. The set AC
in the definition checks that any trace embedded in the
occurrence of other enabling pattern CP ′, is embedded
in a negative pre-condition occurrence of such pattern
as well, so that the trace can be safely deleted.
Example. Fig. 29 shows the first type of relaxed deleting
rule generated for the trace triple relating classes and
tables. Thus, a C2T trace between a table and a class
will be deleted unless the class is persistent and has same
name as the matched table (NAC1), and it has no parent
connected to the table (NAC2). The two NACs come from
the enabling patterns of the trace triple shown in Fig. 26.

ct:C2T t: Table

L

name = nc
kind = k

c: Class

name = nt

t: Tablect:C2T

NAC1

k = ’persistent’ nc = nt

c: Class t: Table

R

: Class :C2T

ct:C2T

t: Table

NAC2

kind = k

k = ’persistent’

parent

c: Class

C2T−relaxed deletion 1

c: Class

Fig. 29 First type of relaxed deleting rule for C2T traces.

22

Fig. 30 shows the strict deleting rule derived for the
same trace triple and the pattern Class-Table. The rule
is generated because the pattern contains the trace triple
and has a negative pre-condition. The rule’s PAC comes
from the pattern negative pre-condition and allows exe-
cuting the rule only if the class has a parent. The rule
also contains an AC derived from the other enabling pat-
tern of the trace triple, which is Parent Class-Table.
As Parent Class-Table has no negative pre-conditions,
the AC becomes a NAC. This avoids deleting the trace
if the class is persistent and has a parent traced to the
same table.

t: Table

L

ct:C2T

name = nt

t: Table

name = nc
kind = k

c: Class

PAC1

parent

: Class

k = ’persistent’ nc = nt

c: Class ct:C2T

:C2T

t: Table

NAC1

parent

: Class

kind = k

k = ’persistent’

c: Class t: Table

R

C2T−strict deletion−Class−Table

c: Class ct:C2T

Fig. 30 Strict deleting rule for C2T traces and pattern
Class-Table.

Fig. 31 shows one scenario where initially the first
type of relaxed rule and then the strict rule are applied.
The top-most model is the starting point, where a class
and its child are related to the same table. Applying the
first rule deletes the trace between the parent class and
the table as they have different names. Note that in the
initial scenario the strict rule is not applicable because,
even though class c2 does have a parent, this is con-
nected to the same table as c2. In the second step, the
relaxed rule is no longer applicable, and it is possible to
apply the strict rule. This deletes the trace between the
child class and the table as the child class has a parent,
which is not connected to the table. Even if both the
intermediate and the final models are correctly traced,
we prefer the last one as the intermediate one is not gen-
erated by our operational mechanism (M2M, matching
or traceability).

The generated relating (matching or traceability)
and deleting rules are incremental. Thus, given a source
and a target models connected through an arbitrary
trace model, we apply the rules as long as possible: the
deleting rules will delete the incorrect traces, and the
creating rules will reestablish trace correctness. We be-
lieve the notions presented in this section are a first step
towards incremental synchronization, as we are able to
identify the places where two related models are not cor-
rectly traced. Here we took the solution of deleting the
trace, but other operational mechanisms could modify
the source or the target to make the models consistent
again. Moreover, the traceability rules generate all pos-
sible traceability solutions, which can be the basis to

parent

c: Class

name = ’Person’
kind = ’persistent’

c2: Class

name = ’Employee’
kind = ’persistent’

t: Table

ct1: C2T

c: Class

name = ’Person’
kind = ’persistent’

c2: Class

name = ’Employee’
kind = ’persistent’

t: Table

ct: C2T

ct1: C2T

c: Class

name = ’Person’
kind = ’persistent’

c2: Class

name = ’Employee’
kind = ’persistent’

t: Table

C2T−strict deletion−Class−Table

C2T−relaxed deletion 1

name = ’Employee’

parent

name = ’Employee’

parent

name = ’Employee’

Fig. 31 Applying a relaxed and then a strict rules.

reach all possible models synchronized with respect to
the specification.

8 Example

In this section we illustrate our approach with an inter-
model specification between relational database schemas
(RDBMS) and XML documents. The meta-model triple
is shown in Fig. 32. Schemas contain books and subjects.
A book has zero or more subjects, and those books with
the same subject description are related to the same ob-
ject Subject. On the contrary, the XML meta-model al-
lows nested relationships, and even if two books have the
same subject description, they are assigned two different
objects Subject.

− ISBN: String
− title: String

Book

− desc: String

Subject

− name: String

Publisher

− desc: String

Subject

− ISBN: String

− publisher: String
− title: String

Book

S

B

XML

1
subject* pub1

*

RDBMS

subject

*

*

* * 11

* * 11

Fig. 32 Meta-model triple for RDBMS and XML.

Fig. 33 shows the inter-model specification made of
four patterns. The P-pattern Book states how books in
both meta-models must relate, and adds an “.ed” suffix
to the publishers in the XML model. P-pattern Subject
maps subjects in both models. Note that we need these
two patterns as it is possible to have books with zero
or more subjects. Should books always have exactly one
subject, then only one pattern would have been enough.

23

In addition, as the RDBMS format does not allow two
subjects with the same description, we forbid such situa-
tion by defining the N-pattern N(NotDupRDBMSSubject).
Similarly, N-pattern N(NotDupXMLPublisher) forbids
repeating publishers in XML.

p1 = p2

ISBN = i2
title = t2

: Book

name = p2

: Publisher

ISBN = i1

: Book

publisher = p1
title = t1

: B

p1+’ ed.’ = p2
t1 = t2
i1 = i2

Book
: Book: B

: S

desc = d1

: Subject

desc = d2

: Subject

: Book

Subject

d1 = d2

desc = d2

: Subject

desc = d1

: Subject

N(NotDupRDBMSSubject)

d1 = d2

name = p1

: Publisher

name = p2

: Publisher

N(NotDupXMLPublisher)

Fig. 33 Initial model-to-model transformation specification.

The specification is automatically enriched with ad-
ditional N-patterns derived from the maximum cardi-
nality constraints in the meta-model triple. In particu-
lar, the N-patterns shown in Fig. 34 are generated and
added to the specification. The left one forbids a subject
to belong to two books, as the association end with car-
dinality 1 between subjects and books indicates, whereas
the right one forbids a book to have two publishers.

N(MaxCardinalityBookPublisher)

: Book

: Book
: Subject

N(MaxCardinalitySubjectBook)

: Publisher

: Publisher
: Book

Fig. 34 Additional N-patterns from the meta-model.

In this example we do not use parameterization but
use the heuristics instead. The heuristics generate the
patterns shown in Figs. 35 and 36. In particular, the
heuristic 1 generates pattern Subject.h1 from pattern
Subject by adding the elements with unconstrained at-
tributes as parameters. The new pattern replaces the old
one and ensures that, when a subject is translated, the
book associated to it has been translated first.

: Book: B

: S

desc = d1

: Subject

desc = d2

: Subject

: Book

d1 = d2

Subject.h1

<<param>> <<param>> <<param>>

Fig. 35 New pattern generated by heuristic 1.

The heuristic 2 is applied to patterns Subject.h1
and Book and produces the patterns Subject.h1.h2 and
Book.h2 shown in Fig. 36. The first one reuses RDBMS
subjects so that they are not duplicated in backward
transformations. The second reuses publishers avoiding
its duplication in forward transformations. Note that the
heuristic is not applicable to the N-patterns of Fig. 34
because, although they forbid repetition of books and

publishers, no P-pattern demands a book in the main
constraint given a subject in its parameter, and similarly,
no pattern demands a publisher in the main constraint
given a book in its parameter.

ISBN = i2
title = t2

: Book

ISBN = i1

: Book

publisher = p1
title = t1

: B

p1+’ ed.’ = p2
t1 = t2

name = p2

: Publisher

Book.h2
: Book: B

: S

desc = d1

: Subject

desc = d2

: Subject

: Book

i1 = i2

d1 = d2

Subject.h1.h2

<<param>>

<<param>>
<<param>><<param>> <<param>>

Fig. 36 New patterns generated by heuristic 2.

8.1 Forward Transformation Scenario

In the forward M2M transformation scenario, we
use the final specification, made of P-patterns Book,
Subject.h1, Subject.h1.h2 and Book.h2, as well as
all N-patterns, to generate the operational forward
rules shown in Fig. 37. Rule Book contains a termina-
tion NAC equal to R, and a negative post-condition
(generated from N(NotDupXMLPublisher)) avoiding
two publishers with same name. Rule Book.h2 cre-
ates books that reuse publishers once they have been
created. Its negative post-condition is generated from
N(MaxCardinalityBookPublisher). Finally, patterns
Subject.h1 and Subject.h1.h2 produce equivalent
rules with two termination NACs. Note that we do not
need to perform algebraic manipulation of expressions
for rule synthesis, as the LHS and the RHS in the
rules contain constraint triple graphs. Recall that the
attributes not used in formulae are omitted, like e.g. in
the LHS of rule Book.

The forward operational rules generated in this ex-
ample are terminating, confluent4, correct and complete
even using heuristics. However, in general, the rules we
generate cannot guarantee confluence if we do not have
a means to prefer one resulting model or another.

As an example, Fig. 38 presents all possible execution
flows to transform the RDBMS model shown to the left.
Starting from this model we can apply rule Book to two
different locations, one for each book, obtaining two dif-
ferent models. Starting from them, in both cases we can
apply either rule Subject.h1 or rule Book.h2, leading
to different models (which we not show for space limita-
tions but represent them as squares instead), to which
again we can apply different rules yielding different mod-
els. In any case, as we said before, this transformation
is confluent and we obtain the final model shown to the
right independently of the followed execution flow (up
to renaming of variable names).

4 The analysis of confluence was done using the AGG tool,
see http://tfs.cs.tu-berlin.de/agg.

24

name = p2

p: Publisher

name = p3

: Publisher

TNAC2

p1+’ ed.’ = p3
p1+’ ed.’ = p2

t1 = t2
i1 = i2

ISBN = i1

b: Book

publisher = p1
title = t1

: B
ISBN = i2
title = t2

: Book

name = p2

p: Publisher

R = TNAC1

i1 = i2
t1 = t2

p1+’ ed.’ = p2

publisher = p1

b: Book

name = p2

p: Publisher

L

p1+’ ed.’ = p2

ISBN = i1

b: Book

publisher = p1
title = t1

: B
ISBN = i2
title = t2

: Book

name = p2

p: Publisher

: Book

: Publisher

post1

p1+’ ed.’ = p2
t1 = t2
i1 = i2

Book.h2

b: Book

L

ISBN = i1

b: Book

publisher = p1
title = t1

: B
ISBN = i2
title = t2

: Book

name = p2

: Publisher

R = TNAC1

i1 = i2
t1 = t2

p1+’ ed.’ = p2

ISBN = i1

b: Book

publisher = p1
title = t1

: B
ISBN = i2
title = t2

: Book

name = p2

: Publisher

name = p3

: Publisher

post1

i1 = i2
t1 = t2

p1+’ ed.’ = p2 p2 = p3

Book

b1: Book c: B b2: Book

s: Subject

desc = d1

: S

: Book: B

TNAC2

desc = d2

: Subject

d1 = d2

b1: Book c: B b2: Book

s: Subject

L

b1: Book c: B b2: Book

s: Subject

desc = d1

: S

R = TNAC1

desc = d2

: Subject

d1 = d2

Subject.h1 Subject.h1.h2

ISBN = i1

b: Book

publisher = p1
title = t1

: B
ISBN = i2
title = t2

: Book

Fig. 37 Generated forward rules.

Subjec
t.h

1

ISBN = i2
title = t2
publisher = p2

:Book

ISBN = i1
title = t1
publisher = p1

:Book

desc = d1

:Subject

i2 = ’0002’
t2 = ’Peter Pan’
p2 = ’Pockets’

i1 = ’0001’
t1 = ’Momo’
p1 = ’Pockets’
d1 = ’Children’

ISBN = i2
title = t2
publisher = p2

:Book

ISBN = i1
title = t1
publisher = p1

:Book

desc = d1

:Subject

i2 = ’0002’
t2 = ’Peter Pan’
p2 = ’Pockets’

i1 = ’0001’
t1 = ’Momo’
p1 = ’Pockets’
d1 = ’Children’

i1 = i4
t1 = t4
p1+’ ed.’ = p4

:B

ISBN = i4
title = t4

: Book

name = p4

: Publisher

ISBN = i2
title = t2
publisher = p2

:Book

ISBN = i1
title = t1
publisher = p1

:Book

desc = d1

:Subject

i2 = ’0002’
t2 = ’Peter Pan’
p2 = ’Pockets’

i1 = ’0001’
t1 = ’Momo’
p1 = ’Pockets’
d1 = ’Children’

i1 = i3
t1 = t3
p1+’ ed.’ = p3

:B

ISBN = i3
title = t3

: Book

name = p3

: Publisher

:B

:B

desc = d3

:Subject

desc = d2

:Subject

ISBN = i3
title = t3

: Book

name = p3

: Publisher

ISBN = i4
title = t4

: Book

:S

:S

i2 = ’0002’
t2 = ’Peter Pan’
p2 = ’Pockets’

i1 = ’0001’
t1 = ’Momo’
p1 = ’Pockets’
d1 = ’Children’

ISBN = i1
title = t1
publisher = p1

:Book

desc = d1

:Subject

ISBN = i2
title = t2
publisher = p2

:Book

t1 = t3
i2 = i4
t2 = t4

i1 = i3

d1 = d2
d1 = d3
p1+’ ed.’ = p3

Book

Book

Subject.h1

Subject.h1

Book.h
2

Book.h2

. . .

. . .

. . .

Subjec
t.h

1

Subject.h1

Book.h
2

Book.h2

. . .

. . .

Subject.h1

Fig. 38 Model-to-model transformation.

8.2 Traceability Scenario

The set of patterns obtained after using heuristics gen-
erates two traceability rules. The upper row of Fig. 39
shows one of them, which creates the traces between
books and is derived from patterns Book and Book.h2.
The second rule (not shown) creates traces between
subjects and is derived from patterns Subject.h1 and
Subject.h1.h2.

The figure shows below the relaxed deleting rule
that deletes incorrect traces between subjects. The
two enabling patterns of the trace (Subject.h1 and
Subject.h1.h2) generate the same and unique NAC.
As these patterns have no negative pre-conditions, there
is no need to derive strict deletion rules from them. An-
other deleting rule (not shown) is generated to delete
incorrect traces between books.

Now, assume that the resulting models in Fig. 38 are
changed by the user: he attaches a new subject Teen to
the RDBMS book Momo, and modifies the subject of
the XML book Momo from Children to Teen. The upper
model in Fig. 40 depicts this situation, where it can be
seen how the trace model is no longer correct. Hence,
we apply the generated tracing and deleting rules to ob-

title = t2

name = p2

p: Publisher

L

p1+’ ed.’ = p2
t1 = t2
i1 = i2

b1: Book

ISBN = i1
title = t1
publisher = p1

b2: Book

ISBN = i2
title = t2

name = p2

p: Publisher

: B

R = TNAC1 = TNAC1

p1+’ ed.’ = p2
t1 = t2
i1 = i2

S T

b1: Book

ISBN = i1
title = t1
publisher = p1

: Book

: B

name = p2

p: Publisher

b2: Book

ISBN = i2
title = t2

TNAC2T

ISBN = i3

publisher = p3
title = t3

p3+’ ed.’ = p2
p1+’ ed.’ = p2
t3 = t2
t1 = t2
i3 = i2
i1 = i2

b1: Book

ISBN = i1
title = t1
publisher = p1

: B : Book

ISBN = i3
title = t3

b2: Book

ISBN = i2
title = t2

name = p2

p: Publisher

TNAC2

p1+’ ed.’ = p2

S

i1 = i2

t1 = t3

i1 = i3
t1 = t2

s1: Subject

description = d1

s2: Subject

description = d2

s: S

: Book : Book: B

NAC1

d1 = d2

s1: Subject s: S s2: Subject

L

s1: Subject s2: Subject

R

S − relaxed deletion 1

Book − tracing Book.h2 − tracing

b1: Book

ISBN = i1
title = t1
publisher = p1

b2: Book

ISBN = i2

Fig. 39 Some traceability and relaxed deleting rules.

tain trace consistency. The deleting rules delete the in-
correct trace between subject Children to the left and

25

subject Teen to the right as they have different descrip-
tions. Then, the traceability rules create a trace between
the subjects Teen to the left and to the right. The result
is shown in the same figure below, where the trace model
is again correct.

:B

desc = d3

:Subject

desc = d2

:Subject

ISBN = i3
title = t3

: Book

name = p3

: Publisher

ISBN = i4
title = t4

: Book

:S

:Sdesc = d4

:Subject

desc = d1

:Subject

ISBN = i1
title = t1
publisher = p1

:Book

ISBN = i2
title = t2
publisher = p2

:Book

:S

:B

:B

desc = d3

:Subject

desc = d2

:Subject

ISBN = i3
title = t3

: Book

name = p3

: Publisher

ISBN = i4
title = t4

: Book

:Sdesc = d4

:Subject

desc = d1

:Subject

ISBN = i1
title = t1
publisher = p1

:Book

ISBN = i2
title = t2
publisher = p2

:Book

d2 = ’Teen’

S − relaxed deletion 1
Subject.h1 − tracing

d1 = d3
p1+’ ed.’ = p3

t2 = t4
i2 = i4
t1 = t3
i1 = i3

i2 = ’0002’
t2 = ’Peter Pan’
p2 = ’Pockets’

i1 = ’0001’
t1 = ’Momo’
p1 = ’Pockets’
d1 = ’Children’ d2 = ’Teen’d4 = ’Teen’

d1 = d3
p1+’ ed.’ = p3

i2 = ’0002’
t2 = ’Peter Pan’
p2 = ’Pockets’

i1 = ’0001’
t1 = ’Momo’
p1 = ’Pockets’
d1 = ’Children’ d4 = ’Teen’

t2 = t4
i2 = i4
t1 = t3
i1 = i3

:B

Fig. 40 Trace model repair.

8.3 Matching Scenario

As a scenario for matching, consider one RDBMS and
one XML model built by different companies. We would
like to match these two models identifying similar books
and subjects, with the purpose of merging the two mod-
els into an integrated one. The task of matching can be
performed again using the same specification.

In scenarios like this one, a common necessity is ap-
proximate matching of string names for certain features,
e.g. match equivalent descriptions of subjects such as
Children and Kids. We can use the loose specification
capabilities of our approach to provide an “approximate
pattern”. For instance, in Fig. 41 there is a more flexible
version of pattern Subject, which allows matching sub-
jects with equal description, but also with descriptions
that conceptually refer to the same subject matter, as
specified in its attribute condition. Hence, the matching
rule generated from this pattern will be able to match,
e.g., two subjects with descriptions Teen and Youth.

This new pattern is also usable for M2M transforma-
tion, and results in a loose specification where a source
model admits several target models as solution. That is,
the generated forward rule will make two solutions avail-
able for the description of the target subject when the
source one is Kids.

Collection{’Teen’, ’Teenagers’, ’Youth’}.exists(x,y | x = d1 and y = d2)

: Book

desc = d1

: Subject

desc = d2

: Subject

: Book: B

: S

FlexibleSubject

(d1 = d2) or
Collection{’Children’, ’Kids’}.exists(x,y | x = d1 and y = d2) or

Fig. 41 Additional pattern for model matching, considering
a complex attribute condition.

9 Conclusions and Future Work

In this paper we have presented our pattern-based ap-
proach, which is able to handle three inter-modelling sce-
narios: forward and backward batch M2M transforma-
tion of models, model matching and model traceability.
Our inter-modelling language allows expressing relations
between models in a declarative way, using both struc-
tural object patterns and declarative attribute condi-
tions. The advantage of our approach is that it provides
a formal, high-level language to express inter-model re-
lations, which can be used to solve several scenarios. Our
language is concise, as its heuristics allow omitting the
parameters in the relations. Moreover, at the operational
level, we have proposed a new way of triple graph rewrit-
ing based on constraints. This idea, which can be used in
other transformation approaches, avoids manipulation of
attribute conditions, one of the main difficulties of rela-
tional approaches.

In the three considered inter-modelling scenarios we
have provided: (i) a formal notion of satisfaction of spec-
ifications by models, and (ii) operational mechanisms
able to re-establish consistency in the scenarios. The no-
tion of satisfaction is given with a high-level, algebraic
semantics that is independent of the operational mech-
anism. This contrasts with most approaches, where the
specification and the operational mechanisms are highly
tied, e.g. based on parsing with rules as in TGGs, or in
terms of QVT-Core as QVT-Relations.

We believe our language is appropriate to serve
as a unifying, formal and visual framework for inter-
modelling. This is so because a unique specification
can be used in a flexible way to solve different scenar-
ios. There is a trade-off between operational and re-
lational languages for inter-modelling, though. Opera-
tional languages include low-level, operational primitives
that make them more expressive, at the cost of being
close to a general purpose programming language. In
contrast, relational approaches are restricted in expres-
sivity, but are higher level as they do provide a model
of the allowed relations, rather than a program to per-
form each considered scenario. Instead, such programs
are derived from the specification, depending on the sce-
nario to be solved. Relational approaches thus are more
suitable for inter-modelling, as they produce high-level
models.

26

9.1 Tool Support

We are currently implementing tool support for the
presented framework. In particular, we have de-
veloped an Eclipse tool to build pattern specifica-
tions using a textual syntax. The tool is available at
http://astreo.ii.uam.es/∼eguerra/tools/pamomo/main.htm,
together with the example of Section 8. Patterns can
be compiled into operational rules for certain scenarios.
The generated rules are implemented with EOL [31],
which is an extension of OCL. We chose this target
language because OCL is an OMG standard and can be
integrated in transformation languages of widespread
use, such as ATL, ETL or QVT.

For the time being, the tool is able to check the
satisfaction of specifications by models in all scenarios
(M2M transformation, matching and traceability). It is
also possible to populate the traces of two models in the
model matching and traceability scenarios, as well as to
delete incorrect traces.

In the short term, we plan to extend the tool to han-
dle forward/backward transformations. However this is
the most complex scenario since the resolution of at-
tribute values requires the combined use of transforma-
tion rules and constraint solvers, possibly at run-time to
enhance efficiency.

9.2 Lines of Future Work

The work presented here opens many lines for further re-
search. For example, we are interested in integrating our
pattern specifications with approaches enabling richer
trace models for model traceability [14]. We are also
considering other inter-modelling scenarios like model
synchronization and model merging. Note that for the
latter we will need a third model, and hence to extend
our formalization. We are also thinking of compiling our
patterns into other operational languages, like Coloured
Petri nets as in [12], as well as devising more analysis
methods like those in [39]. Finally, it is worth investi-
gating the relations of our pattern language with that of
QVT-R. Even though in [24] we adapted the semantics
of our patterns for the QVT-R checkonly scenario, fur-
ther work to handle other inter-modelling scenarios with
QVT-R is needed.
Acknowledgements. This work has been sponsored
by the Spanish Ministry of Science and Innovation with
projects METEORIC (TIN2008-02081) and FORMAL-
ISM (TIN2007-66523), and by the R&D program of
the Community of Madrid (S2009/TIC-1650, project “e-
Madrid”). This work was done during the research stays
of the first two authors at the University of York, with
financial support from the Spanish Ministry of Science
and Innovation (grant refs. JC2009-00015, PR2009-0019
and PR2008-0185). We would like to thank the referees
for their useful and detailed comments, as well as the

SOSYM group at the University of York for the discus-
sions on this topic.

References

1. D. H. Akehurst and S. Kent. A relational approach to
defining transformations in a metamodel. In UML’02,
volume 2460 of LNCS, pages 243–258. Springer, 2002.

2. M. Aleksy, T. Hildenbrand, C. Obergfell, and
M. Schwind. A pragmatic approach to traceability
in model-driven development. In PRIMIUM’08, volume
328 of CEUR. CEUR-WS.org, 2008.

3. ATL. http://www.sciences.univ-nantes.fr/lina/atl/.
4. J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev,

and A. Lindow. Model transformations? Transformation
models! In MoDELS’06, volume 4199 of LNCS, pages
440–453. Springer, 2006.

5. A. Boronat, J. A. Carśı, and I. Ramos. Exogenous model
merging by means of model management operators. In
SeTra’06, volume 3. ECEASST, 2006.

6. P. Braun and F. Marschall. Transforming object oriented
models with BOTL. ENTCS, 72(3):103–117, 2003.

7. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu,
and M. Sabetzadeh. A manifesto for model merging. In
GaMMa’06, pages 5–12. ACM Press, 2006.

8. J. Cabot, R. Clariso, E. Guerra, and J. de Lara. Verifica-
tion and validation of declarative model-to-model trans-
formations through invariants. JSS, 83:283–302, 2010.

9. J. Cleland-Huang, J. H. Hayes, and J. M. Domel. Model-
based traceability. In TEFSE’09, 2009.

10. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange,
and G. Taentzer. Attributed graph transformation with
node type inheritance. TCS, 376(3):139–163, 2007.

11. J. de Lara and E. Guerra. Pattern-based model-to-model
transformation. In ICGT’08, volume 5214 of LNCS,
pages 426–441. Springer, 2008.

12. J. de Lara and E. Guerra. Formal support for QVT-
relations with coloured petri nets. In MoDELS’09, vol-
ume 5795 of LNCS, pages 256–270. Springer, 2009.

13. M. Dehayni and L. Féraud. An approach of model trans-
formation based on attribute grammars. In OOIS, vol-
ume 2817 of LNCS, pages 412–424. Springer, 2003.

14. N. Drivalos, D. Kolovos, R. Paige, and K. Fernandes.
Engineering a DSL for software traceability. In SLE’08,
volume 5452 of LNCS, pages 151–167. Springer, 2008.

15. H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and
G. Taentzer. Information preserving bidirectional model
transformations. In FASE’07, volume 4422 of LNCS,
pages 72–86. Springer, 2007.

16. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-
damentals of algebraic graph transformation. Springer-
Verlag, 2006.

17. H. Ehrig, C. Ermel, F. Hermann, and U. Prange. On-
the-fly construction, correctness and completeness of
model transformations based on triple graph grammars.
In MoDELS’09, volume 5795 of LNCS, pages 241–255.
Springer, 2009.

18. H. Ehrig, F. Hermann, and C. Sartorius. Completeness
and correctness of model transformations based on triple
graph grammars with negative application conditions. In
GT-VMT’09, volume 18. ECEASST, 2009.

27

19. A. Espinoza, P. P. Alarcón, and J. Garbajosa. Analyz-
ing and systematizing current traceability schemas. In
SEW’06, pages 21–32. IEEE CS, 2006.

20. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt. Combinators for bidirectional tree trans-
formations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst., 29(3), 2007.

21. H. Giese and R. Wagner. From model transforma-
tion to incremental bidirectional model synchronization.
SoSyM, 8(1):21–43, 2009.

22. M. Goedicke, B. Enders, T. Meyer, and G. Taentzer. To-
wards integration of multiple perspectives by distributed
graph transformation. In AGTIVE’99, volume 1779 of
LNCS, pages 369–377. Springer, 1999.

23. E. Guerra and J. de Lara. Event-driven grammars: Re-
lating abstract and concrete levels of visual languages.
SoSyM, 6(3):317–347, 2007.

24. E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige. A
visual specification language for model-to-model trans-
formations. In Proc. IEEE VL/HCC’10, pages 119–126,
2010.

25. E. Guerra, J. de Lara, and F. Orejas. Pattern-based
model-to-model transformation: Handling attribute con-
ditions. In ICMT’09, volume 5563 of LNCS, pages 83–99.
Springer, 2009.

26. E. Guerra, J. de Lara, and F. Orejas. Controlling reuse
in pattern-based model-to-model transformations. In
Festschrift for Manfred Nagl (65th birthday), volume
5765 of LNCS, pages 178–204. Springer, 2010.

27. I. Ivkovic and K. Kontogiannis. Tracing evolution
changes of software artifacts through model synchroniza-
tion. In ICSM’04, pages 252–261. IEEE CS, 2004.

28. KMF. http://www.cs.kent.ac.uk/projects/kmf/.
29. D. Kolovos, D. Di Ruscio, A. Pierantonio, and R. Paige.

Different models for model matching: An analysis of ap-
proaches to support model differencing. In CVSM’09,
pages 1–6, 2009.

30. D. S. Kolovos. Establishing correspondences between
models with the Epsilon Comparison Language. In
ECMDA-FA’09, volume 5562 of LNCS, pages 146–157.
Springer, 2009.

31. D. S. Kolovos, R. F. Paige, and F. Polack. The Ep-
silon Object Language (EOL). In ECMDA-FA’06, vol-
ume 4066 of LNCS, pages 128–142. Springer, 2006.

32. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon
Transformation Language. In ICMT’08, volume 5063 of
LNCS, pages 46–60. Springer, 2008.

33. A. Königs and A. Schürr. Tool integration with triple
graph grammars - a survey. ENTCS, 148(1):113–150,
2006.

34. M. Lawley and J. Steel. Practical declarative model
transformation with Tefkat. In MoDELS Satellite
Events, volume 3844 of LNCS, pages 139–150. Springer,
2005.

35. P. Mäder, O. Gotel, and I. Philippow. Rule-based main-
tenance of post-requirements traceability relations. In
RE’08, pages 23–32. IEEE CS, 2008.

36. S.-C. Mu, Z. Hu, and M. Takeichi. Bidirectionalizing tree
transformation languages: A case study. JSSST Com-
puter Software, 23(2):129–141, 2006.

37. S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave. Matching and merging of statecharts spec-
ifications. In ICSE’07, pages 54–64. IEEE CS, 2007.

38. F. Orejas, E. Guerra, J. de Lara, and H. Ehrig. Cor-
rectness, completeness and termination of pattern-based
model-to-model transformation. In CALCO’09, volume
5728 of LNCS, pages 383–397. Springer, 2009.

39. F. Orejas and M. Wirsing. On the specification and ver-
ification of model transformations. In Semantics and Al-
gebraic Specification, volume 5700 of LNCS, pages 140–
161, 2009.

40. QVT. http://www.omg.org/docs/ptc/05-11-01.pdf.
41. M. Rebout, L. Féraud, and S. Soloviev. A unified cat-

egorical approach for attributed graph rewriting. In
CSR’08, volume 5010 of LNCS, pages 398–409. Springer,
2008.

42. J. Sánchez, J. Garćıa, and M. Menárguez. RubyTL:
A practical, extensible transformation language. In
ECMDA-FA’06, volume 4066 of LNCS, pages 158–172.
Springer, 2006.

43. A. Schürr. Specification of graph translators with triple
graph grammars. In WG’94, volume 903 of LNCS, pages
151–163. Springer, 1994.

44. A. Schürr and F. Klar. 15 years of triple graph gram-
mars. In ICGT’08, volume 5214 of LNCS, pages 411–425.
Springer, 2008.

45. SmartQVT. http://smartqvt.elibel.tm.fr/.
46. P. Stevens. Bidirectional model transformations in QVT:

Semantic issues and open questions. In MoDELS’07, vol-
ume 4735 of LNCS, pages 1–15. Springer, 2007.

47. J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. Küster.
Translation of restricted OCL constraints into graph con-
straints for generating meta model instances by graph
grammars. ENTCS, 211:159–170, 2008.

48. Z. Xing and E. Stroulia. UMLDiff: an algorithm for ob-
ject oriented design differencing. In ASE’05, pages 54–65.
ACM, 2005.

A Appendix

This appendix provides the proofs of the claims and
propositions in the paper. The details of the construc-
tion of pushouts in the category of constraint triple
graphs can be found in the appendix of [26].

Proof of Proposition 1.

Proof We have to prove that SEM(SP1 ∧ SP2) =
SEM(SP1) ∩ SEM(SP2), which easily follows as
SEM(SP1 ∧ SP2) = {G|G |= SP1 ∧ G |= SP2}, and
SEM(SP1) ∩ SEM(SP2) = {G|G |= SP1} ∩ {G′|G′ |=
SP2} = {G|G |= SP1 ∧G |= SP2} = SEM(SP1 ∧ SP2).

Proof of Proposition 2.

Proof The first part of the proposition states that
a model of the specification in the transformation
scenario is also a model of the specification in the
traceability scenario. In other words, if two graphs
are synchronized, then they are correctly traced:
CTrG |= SP ⇒ CTrG |=T SP . Synchronization de-
mands each pattern CP ∈ SP that in each occurrence
when it is source or target enabled it is actually satis-
fied. That is, ∀mS : PS → CTrG s.t. CTrG `mS ,F CP

28

then CTrG |=mS ,F CP , and ∀mT : PT → CTrG s.t.
CTrG `mT ,B CP then CTrG |=mT ,B CP (where
PS and PT are CP’s forward and backward pre-
conditions). But in every occurrence of the trace
pre-condition mST : PST → CTrG that is trace-
enabled CTrG `mST ,T CP , there are restrictions
mS : PS → CTrG and mT : PT → CTrG that are
forward and backward enabled respectively. Trace sat-
isfaction demands that in each occurrence mST either
mS or mT are satisfied (it is traced by Q). However, by
the definition of synchronization, both will be satisfied.
The implication does not hold in the other direction
though, as we allow untraced elements in the source
(resp. target), if there are not enough untraced elements
in the target (resp. source).

The second part of the proposition states that a
model of the specification in the matching scenario is also
a model of the specification in the traceability scenario.
In other words, if two graphs are matched, then they are
traced: CTrG |=M SP ⇒ CTrG |=T SP . This easily
follows as the matching satisfaction condition demands
that each trace pre-condition mST : PST → CTrG that
is trace-enabled CTrG `mST ,T CP has to be satisfied
(hence both mS and mT are satisfied in an occurrence
of Q that embeds mST). The traceability satisfaction
condition is weaker, as it states that in each trace pre-
condition mST : PST → CTrG that is trace-enabled
CTrG `mST ,T CP , either mS or mT are satisfied. There-
fore, if a constraint CTrG is matched, it is traced.

29

