
Noname manuscript No.
(will be inserted by the editor)

Modelling on mobile devices
A systematic mapping study

Léa Brunschwig · Esther Guerra · Juan de Lara

Received: date / Accepted: date

Abstract Modelling is central to many disciplines in

engineering and the natural and social sciences. A wide

variety of modelling languages and tools have been pro-

posed along the years, traditionally for static environ-

ments such as desktops and laptops. However, the avail-

ability of increasingly powerful mobile devices makes it

possible to profit from their embedded sensors and com-

ponents (e.g., camera, microphone, GPS, accelerome-

ter, gyroscope) for modelling. This has promoted a new

range of modelling tools specially designed for their use

in mobility. Such tools open the door to modelling in dy-

namic scenarios that go beyond the capabilities of tra-

ditional desktop tools. For example, modelling in mo-

bility can be useful to design smart factories on-site, or

to create models of hiking routes while walking along

the routes, among many other scenarios.

In this paper, we report on a systematic mapping

study to identify the state of the art and trends in mod-

elling on mobile devices. The study covers both research

papers and modelling apps from the Android and iOS

stores. From this analysis, we derive a classification for

mobile modelling tools along three orthogonal dimen-

sions, discuss current gaps, and propose avenues for fur-

ther research.

Keywords Model-driven engineering · Modelling

tools · Mobile devices · Systematic mapping study

1 Introduction

Modelling captures the essence of a system for a

given purpose, like simulation, understanding, discus-

L. Brunschwig, E. Guerra and J. de Lara
Computer Science Department
Universidad Autónoma de Madrid (Spain)
E-mail: (lea.brunschwig, esther.guerra, juan.delara)@uam.es

sion, analysis or testing [100]. For this reason, models

are used in many disciplines. For example, in engineer-

ing, models serve as design and blueprints of the arte-

facts to be built [7], while in the natural sciences, mod-

els are used to describe and analyse existing phenomena

– like the evolution of animal populations or the orbit

of planets – for purposes like prediction or understand-

ing [74].

Software engineering is no exception to the use of

models, as they are used for both project management

(e.g., planning) and technical tasks (e.g., requirements

and design) [41,58]. Actually, in some paradigms like

the model-driven engineering (MDE), models are the

main development artefacts [87] and serve not only as

documentation but also to describe, simulate, verify,

validate and generate code for the application under

development, among other activities [41]. By focussing

on the essential aspects of the system under construc-

tion, engineers deal with less accidental details (i.e.,

those that are unnecessary for the task at hand [18]),

and therefore, productivity and quality can get im-

proved [49].

In the context of software engineering, modelling

can be conducted using either general-purpose or

domain-specific languages (DSLs) [49,103]. The former

are languages – like the UML [98] – that permit de-

scribing any kind of application, while the latter target

a narrow domain, like tax calculation, logistics plan-

ning, or conversational adventure games [49]. DSLs are

sometimes oriented to domain experts, who may lack a

technical background, to empower them to accomplish

small development tasks [11].

Traditionally, computer-assisted modelling has

taken place in a static setting, using tools that run

on desktop computers or laptops. However, modelling

in mobility is becoming an attractive possibility since



2 Léa Brunschwig et al.

a large percentage of the world population owns a

smartphone1, and the capabilities of mobile devices are

rapidly increasing in terms of both computing power

and variety of embedded sensors and components (e.g.,

camera, GPS, microphone, accelerometer, gyroscope, li-

dar). Moreover, some researches have shown that mod-

elling can benefit from mobility and context [102], e.g.,

for designing domotic buildings on-site [88]; for smart

city planning, where the position of sensors within a city

must be precisely determined; or in the area of tourism,

where tourist guides create touristic routes while walk-

ing through the city, and tourists can download the

route models and rate their spots in-place while visit-

ing the city [20]. Thus, some approaches have recently

emerged to facilitate domain-specific modelling using

the capabilities of mobile devices. CEL [53], DSL-comet

[102], FlexiSketch [106], HoloFlow [90], Metaphore [88]

and NetSketcher [10] are some of the tools that tackle

this challenge.

The purpose of this paper is to provide an overview

of the state of the art regarding mobile modelling tools.

To this aim, we have performed a systematic review of

the literature in academic publication venues, and have

analysed existing tools found in digital app distribution

platforms, like App Store2 for iOS, or Google Play3 for

Android. Based on this review, we classify the existing

works and tools along three main orthogonal dimen-

sions, identify gaps, and propose research opportuni-

ties.

The rest of this paper is organized as follows. First,

Section 2 introduces related works. Then, Section 3 de-

scribes the methodology of our study and states re-

search questions. Next, Section 4 categorizes the iden-

tified relevant works according to the features a mobile

modelling tool may have. Section 5 answers the research

questions and discusses trends, gaps and research direc-

tions. Finally, Section 6 summarizes the main findings

and concludes the paper.

2 Related Works

To the best of our knowledge, there is no previous sys-

tematic mapping study on approaches to modelling us-

ing mobile devices. Hence, this section positions our

work with respect to systematic reviews and surveys

on other topics related to both mobiles and modelling.

1 According to https://www.bankmycell.com/blog/

how-many-phones-are-in-the-world, 45,04% of the pop-
ulation is estimated to own a smartphone in 2020 (around
3.500.000.000 of smartphone users).
2 https://www.apple.com/app-store/
3 https://play.google.com

MDE has been widely used to automate the devel-

opment of mobile applications, and several surveys on

the proposed approaches have been published [33,83].

However, our focus is not on the use of MDE for mo-

bile app development, but on using mobile devices for

modelling. Similarly, there are mapping studies on dif-

ferent aspects of mobile development (like testing [111])

and types of mobile apps (like those based on machine

learning [82]). However, our interest is on mobile apps

supporting modelling. To the best of our knowledge,

ours is the first mapping study on this topic.

There is a recent trend for making modelling envi-

ronments available through the web. Tools like AToM-

PM [24] or WebGME [63] support modelling via web

browsers, and the so-called low-code development tools

allow the creation of software applications using visual

diagrams and forms via cloud-based environments [86].

Certainly, it is possible to use a web browser from a

mobile device, but our focus is on native mobile apps

that profit from the distinguishing features of mobile

devices for modelling.

Once modelling is done in mobility, the smart de-

vices can exploit the data provided by their sensors

to enrich the modelling experience (e.g., to adapt the

model depending on the user location). There are sur-

veys on modelling context-awareness [15] and context-

aware systems [9]. However, context adaptation and

context awareness are just one aspect of mobile mod-

elling. Moreover, we are only interested in adaptation

if it occurs in the context of mobile apps for modelling.

Beyond model construction, mobile modelling may

use models at run-time [16]. For example, a touristic

app can offer a DSL to create and use models of touris-

tic itineraries. There are surveys on models at run-time,

like [13]. However, we only want to look at approaches

using models at run-time that also support mobile mod-

elling.

Collaboration may also be important in mobile

modelling [101]. There are surveys on collaborative

modelling [32] proposing classification criteria. Again,

our focus is on collaboration in conjunction with mobil-

ity, and so we discard works on collaborative modelling

that do not occur on mobile devices.

Domain-specific modelling and DSLs have been used

for end-user development (see, e.g., the mapping study

in [11]). As in the previous cases, our study shall only

include end-user development methods if they target

modelling activities within mobile devices.

Finally, note that the use of touch-enabled devices

does not mandatorily imply the mobility aspect. For ex-

ample, [28] and [76] propose systems based on tabletops

that support collaboration to model simultaneously on

the same screen. We exclude this kind of works from



Modelling on mobile devices 3

our study, as we only consider touch-enabled modelling

tools for mobile devices (tablets or smartphones).

3 Research Method

The goal of this study is to understand the current state

of modelling using mobile devices, the rationale of the

approaches, and the features of these tools. Specifically,

we pose the following four research questions:

RQ1: What are the domains where mobile mod-

elling has been applied?

RQ2: What are the motivations argued for mobile

modelling?

RQ3: What are the characteristic features of exist-

ing mobile modelling approaches?

RQ4: What are the gaps in current approaches,

and the research opportunities in mobile mod-

elling?

To answer these questions, we have conducted a sys-

tematic mapping study (SMS) [79] in the published

literature to identify and classify the relevant works.

Moreover, we have enriched the obtained results with

the analysis of existing tools in app distribution plat-

forms like Apple’s App Store (for iOS devices) or

Google Play (for Android devices).

In the following, we describe how we identified the

relevant papers and apps. First, Section 3.1 presents

the used search query. Then, Section 3.2 details the

databases sought and the search protocol. Finally, Sec-

tion 3.3 reports on the paper and app selection proce-

dure.

3.1 Search string selection

According to the SMS method [79], the first step is to

identify search strings and relevant keywords for our

topic. Since our research involves MDE and mobile de-

velopment, we decided to build a search string using

these two lexical fields, obtaining the query of Table 1.

Mobile development MDE
mobile

AND

model-driven engineering
OR mobile development OR domain-specific language
OR mobile programming OR domain-specific modeling language
OR mobile app* OR domain-specific modelling language
OR android OR MDE
OR iOS OR DSL

OR DSML

Table 1: Keywords used for the first search string.

The query on Scopus and Web of Science (WoS)

retrieved 11.032 and 6.158 results, respectively. These

large numbers can be explained because the acronyms

MDE, DSL and DSML are frequently used in topics un-

related to our SMS, and the term mobile is too generic.

Hence, we refined the search query as shown in Ta-

ble 2. Specifically, we removed the acronyms and the

terms that returned many false positives, and replaced

mobile by mobile device*, tablet* and smartphone*. The

keyword iOS was removed from the query because it re-

turned many papers from the IOS press editorial unre-

lated to our topic. This new query returned 205 papers

on Scopus and 263 on WoS. Despite these numbers are

more reasonable, while screening the retrieved papers,

we realised that many were either out of scope or re-

lated to code generation for mobile apps and not for

modelling on mobile devices.

Mobile development MDE
mobile device*

AND

model-driven engineering
OR tablet* OR domain-specific language
OR smartphone* OR domain-specific modeling language
OR mobile development OR domain-specific modelling language
OR mobile programming
OR mobile app*
OR android

Table 2: Keywords used for the second search string.

After analysing the abstract of some relevant pa-

pers, we decided to specialize the MDE lexical field to

focus on modelling editors and hence narrow the search.

Regarding the lexical field of mobile development, we
deleted the term mobile programming because it intro-

duced too much noise, and added the term social net-

work* to catch modelling approaches based on conver-

sation within social networks [78] (cf. Figure 9) since

social networks are heavily used as native tools within

mobile devices. Table 3 shows the final search string

selected for the SMS.

Mobile development MDE
mobile device*

AND

visual environment*
OR tablet* OR graphical editor*
OR smartphone* OR graphical environment*
OR mobile development OR visual method*
OR mobile app* OR visual editor*
OR android OR model* tool*
OR social network* OR model* editor*

OR graphical model* language*
OR gesture-based model*
OR software design notation*

Table 3: Keywords used for the final search string.



4 Léa Brunschwig et al.

In addition, to select the relevant non-academic

tools available in the app stores, we had to define an

adequate protocol. Since these stores have no advanced

search mechanisms, we looked for recommended tools

similar to relevant tools we had already identified, like

DrawExpress [29] and Lucidchart [57], and we also used

search keywords like diagram, UML, model, modelling,

DSL and domain-specific model.

3.2 Databases and search protocol

Smart mobile devices are now part of our daily life, but

they are a new technology within computer science his-

tory. Thus, it is logical not to consider papers published

prior to 2000. Our temporal landmark is the iPhone first

generation, launched in 2007, which is the first contem-

porary smartphone. To make sure not to miss relevant

papers, we set our search range from January 2005 to

November 2020 (the date we performed the query).

We applied the selected search string on Scopus,

Web of Science, the ACM Digital Library, IEEE Xplore

and SpringerLink. Each database has its own query syn-

tax and search fields. Table 4 shows the search fields

that we used in each case. In all databases but Springer-

Link, we sought for articles whose title, abstract or key-

words contain at least one term related to mobile de-

velopment, and at least one term related to MDE, as

specified in Table 3. SpringerLink does not allow choos-

ing the fields the query is applied on, hence we looked

for the terms in the entire document.

Database Search fields
Scopus Title OR Abstract OR Keywords
Web of Science Title OR Abstract OR Keywords
ACM Digital Library Title OR Abstract OR Keywords
IEEE Xplore Title OR Abstract OR Keywords
SpringerLink Entire document

Table 4: Search fields in the considered databases.

After the paper retrieval, we merged the results and

removed duplicates. The inclusion criteria to select the

pertinent publications were the following:

• The paper is written in English;

• The approach is related to modelling;

• The approach is available on, or designed for, mobile

devices.

Conversely, we excluded the papers that did not

meet any of the inclusion criteria, that propose an MDE

approach to generate mobile apps from a desktop tool,

or that present drawing (but not modelling) tools.

In addition to papers, we sought for existing tools

(apps) within distribution stores to obtain a panorama

of the current practice. We did our search in December

2020 on App Store and Google Play. We did not con-

sider the Huawei AppGallery4 and the Microsoft Store5

because we did not have the devices to run the tools. We

selected the tools according to the following inclusion

criteria:

• The tool is rated 3 stars or above;

• The tool has been downloaded at least 50.000 times

(only relevant on Google Play);

• The tool supports modelling;

• The tool has a free version.

The first two criteria ensure a minimum quality and

usage for the apps. To capture further relevant tools, we

also considered other apps recommended by the store

(“You might also like” in App Store and “Similar apps”

in Google Play).

3.3 Paper and tool selection

Figure 1 shows the followed paper selection process.

First, the initial search on the five databases retrieved

1.127 papers. After removing duplicates, 888 unique

papers remained. Then, we conducted two screening

phases. In the first phase, each one of the three authors

of this paper (one PhD student, two professors) anal-

ysed the title and abstract of the papers to classify them

as irrelevant or (potentially) relevant. A paper was se-

lected if at least one author marked it as relevant. This

resulted in the selection of around 13% of the retrieved
papers. The resulting set is named “selected papers”

in Figure 1. In a second screening phase, each selected

paper was read carefully to assess its relevance. Around

26% of the papers were deemed relevant. We call this

set of filtered papers “relevant papers”. Finally, we per-

formed a snowballing process [104], looking in the list

of references of the relevant papers others that might

fit in our study. This process resulted in 5 additional

papers. Altogether, the 36 final papers account for 25

different approaches. In the study, when there are sev-

eral papers covering the same approach, we take all of

them into account but cite just the most recent one.

With respect to tools, we followed the process de-

picted in Figure 2. First, we applied the search protocol

on the two app stores. In this case, the figure does not

show the number of retrieved apps, since the stores do

not provide this information. Then, we conducted two

4 https://appgallery.huawei.com/
5 https://www.microsoft.com/en-us/store/apps/

windows-phone



Modelling on mobile devices 5

   888 

278 

184 

64 

78 

523 

Scopus 

Web of 
Science 

IEEE Xplore 

Springer Link 

ACM Digital 
Library 

Initial 
search 

117 31 

Merge and 
duplicates 
removal 

Screening 
phase I 

Screening 
phase II 

retrieved 
papers 

selected 
papers 

relevant 
papers 

36 
relevant 
papers 

(extended) 

Snowballing 

Fig. 1: Paper selection process.

screening phases. In the first one, we read the tool de-

scription to discard any tool clearly out of the scope

of our study. After this first screening, we obtained 63

tools in total. Several tools were available for both iOS

and Android, so after removing duplicates, we ended

up with a set of 29 unique “selected tools”. In the sec-

ond phase, we installed and tested each app, obtaining

a filtered set of 22 “relevant tools”.

   29 

35 

28 

Google Play 
(Android) 

App Store 
(iOS) 

22 

Merge and 
duplicates 
removal 

Screening 
phase II 

retrieved 
tools 

selected 
tools 

relevant 
tools 

Screening 
phase I 

Fig. 2: Process of tool selection.

Figure 3 breaks down the number of relevant papers

by type of venue and year, and the number of relevant

tools by the year of their last release. The graphic shows

that most papers were published at conferences, which

might be indicative of being an area in evolution, not

mature yet. Regarding tools, most of them are actively

maintained and released their last version during the

year 2020. Only a few tools have their last version from

2018. This shows that there is interest and practical

value on apps for modelling in mobile devices.

4 Analysis and Classification of Approaches to

Modelling on Mobile Devices

Building on [102], we classify the approaches to mod-

elling on mobile devices along three main dimensions,

summarized in the feature diagram [47] of Figure 4:

0

2

4

6

8

10

12

14

16

18

20

22

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Conference Journal Book Tool

Fig. 3: Temporal and venue distributions of the relevant
papers and tools.

– Modelling language deals with aspects related to

the language(s) supported by the approach, like the

style of its syntax, its semantics, or the support for

fine-grained access control to language elements de-

pending on the user.

– Language definition classifies the approaches de-

pending on whether they support a fixed set of lan-

guages (e.g., UML, BPMN), or if they allow defining

new languages for domain-specific modelling.

– Tooling comprises features of the modelling tool it-

self, such as its deployment architecture, the col-

laboration support, the interoperability with other

tools, and the way users can interact with the tool

for modelling.

ModellingOn 
MobileDevices 

Collaboration 

User 
interaction 

Legend: 
          Mandatory 
          Optional 

Modelling 
language Tooling Language 

definition 

Interoperability 

Concrete 
syntax 

Extended 
modelling 

Semantics Fine-grained 
access control Deployment Syntax 

Fig. 4: Dimensions of modelling tools for mobile devices.

In the next subsections, we describe and refine these

dimensions, and classify the relevant works along them.

4.1 Modelling language

In this section, we classify the approaches based on the

modelling languages they support. This includes the

language concrete syntax (Section 4.1.1), the extended



6 Léa Brunschwig et al.

modelling capabilities to capture informal model infor-

mation (Section 4.1.2), the language semantics (Sec-

tion 4.1.3), and the ability to define fine-grained access

control policies for different user types (Section 4.1.4).

4.1.1 Concrete syntax

Modelling languages comprise an abstract syntax, which

defines the language primitives, properties, relation-

ships and constraints regarding the use of the syn-

tax [17]. Besides, languages have a concrete syntax,

which describes how the models of the language are

to be visualized. Traditionally, in desktop computers,

the concrete syntax of most modelling languages is ei-

ther graphical (e.g., UML sequence diagrams) or tex-

tual (e.g., Kermeta [45]). In the case of modelling on

mobile devices, this syntax has to be chosen carefully

since the particularities of the device may influence the

user interaction and experience. Figure 5 shows a fea-

ture diagram with a classification of concrete syntaxes

tailored to mobile devices.

User 
representation 

Natural 
language Textual Tabular Graphical 

Concrete 
syntax 

Voice Text Geolocated Sketching Augmented 
reality 

Legend: 
           Or 

Mandatory 

Optional 

Fig. 5: Feature model for concrete syntax of modelling
languages on mobiles.

In mobile devices, a graphical concrete syntax may

be geolocated. In such a case, the model elements are

displayed on a map, and their position coordinates are

reified as graphical attributes. This syntax can eventu-

ally represent the user’s position on the map (feature

user representation). Figure 6 illustrates a geolocated

DSL for modelling touristic routes atop the DSL-comet

tool [20,102]. Objects of the DSL are geopositioned,

and links follow the map roads and streets. The user

is represented within the model as a pin (close to the

object named Big fountain).

A graphical concrete syntax may support sketching

to mimic the pen-and-paper feel of traditional mod-

elling via a touch-screen. As an illustration, Figure 7

shows a screenshot of the FlexiSketch tool [106] during

a modelling session in the home networking domain.

Fig. 6: Screenshot of DSL-comet illustrating a geolocated
graphical concrete syntax [20].

Fig. 7: Screenshot of FlexiSketch illustrating a sketch-based
concrete syntax [106].

Augmented reality (AR) [8] permits superimposing a

computer-generated image on a view of the real world.

AR in mobile devices is possible using their camera to

superimpose virtual objects, which can be interacted

via the device touch screen using technologies such as

ARKit [5] and ARCore [4]. Another option is the use



Modelling on mobile devices 7

of head-mounted devices (glasses) like HoloLens [40] or

Magic Leap [60], where the interaction occurs via ges-

tures. Modelling languages with an AR graphical syn-

tax provide an immersive model representation, as they

can be used to model close to the system under study

by overlaying the model elements onto real-world ele-

ments. Figure 8 shows a screenshot of HoloFlow [90], a

modelling tool to configure IoT devices and workflows

by the use of AR atop HoloLens.

Fig. 8: Screenshot of HoloFlow illustrating an AR-based
concrete syntax [90].

Tabular syntaxes represent the model elements in a

matrix or in menus. While this kind of concrete syn-

tax is not specific to mobile devices, it can be useful

to maximize the space in the reduced size of mobile

screens.

Finally, natural language concrete syntaxes enable

modelling via written text or voice. As an example, Fig-

ure 9 shows a screenshot of the Socio tool [78], which

permits building models within a social network via

conversation in (written) natural language with a bot.

In the figure, the user inputs the sentence “The order

contains a payment method, which can be paypal, credit

card or cash”, and the bot reifies the user utterance as

a model in the abstract syntax.

Table 5 classifies the relevant papers for our study

according to the concrete syntax features in the feature

model. We observe the following aspects:

Graphical concrete syntax. Graphical concrete

syntaxes are used by the great majority of the tools

(all except 4). DSL-comet has the particularity

of using geolocated concrete syntax with user

representation, and so, the model elements are

placed on a map and get geolocated (cf. Figure 6).

All approaches provide a 2D representation, except

Mind Mapping 3D [70], which uses 3D diagrams.

Sketching is supported by roughly 23% of the ap-

proaches with a graphical syntax. Specifically, Buch-

a) Comando start b)  Comando newproject  

d) , e)  Comando talk f) Comando undo 

g) Comando redo h) Comandos show y 
validate sin errores  

i) Comando validate con 
errores  

c)  Comando setproject 

Fig. 9: Screenshot of Socio illustrating modelling via natural
language conversation [78].

mann et al. [22], Calico [62], CollabTouch [46],

DrawExpress [29], FlexiSketch [106], the Horus

Method [2], Lekh Diagram [52], MobiDev [89],

NetSketcher [10], and Sá et al. [85] support a sketch-

based syntax which fits well in the touch-based

screens of most devices. In addition, MobiDev pro-

poses to sketch using pen and paper or a black-

board, take a picture with the mobile, and trans-

late the drawing into a digital model automatically

via shape-recognition. The approach by Sá et al.
[85] is aimed at designing prototypes of mobile apps

in-situ, and it allows augmenting the sketches with

behaviour (audio, video, and image elements).

While graph-like diagrammatic notations are the

norm, there are some exceptions. In particular, Mi-

croApp [31], Puzzle [26] and YinYang [65] share a

peculiar graphical style that consists of jigsaws rep-

resenting concepts to be assembled following a spe-

cific logic. This is at the border between graphical

and textual concrete syntaxes, and it is similar to

the Scratch programming language [61]. Figure 10

illustrates this syntax with a simple example, in-

spired by MicroApp and Puzzle, for sending an SMS

with a picture. The SMS jigsaw requires three other

jigsaws, whose type is given by the colour (in the

example, green corresponds to phone book actions,

blue to text-related actions, and yellow to picture-

related actions). Only jigsaws with the same colour

can fit. Thus, for sending an SMS, the SMS jigsaw

requires a target contact, a text and a picture, but



8 Léa Brunschwig et al.

Tool Graphical Tabular Textual NL

Approaches from the literature

Archinotes [99] •
BPMN-Tool [84] •
Buchmann et al. [22] Sketching
Calico [62] Sketching
CEL [53] •
CollabTouch [46] Sketching
DSL-comet [102] Geolocated

User repr.
Epidosite [54] •
FlexiSketch [106] Sketching
HoloFlow [90] AR
Horus Method [2] Sketching
icebricks [12] •
López-Jaquero et al. [56] •
Ma et al. [59] •
Metaphore [88] •
MicroApp [31] •
MobiDev [89] Sketching •
NetSketcher [10] Sketching
Nolte et al. [75] •
Pounamu/Thin [112] •
Puzzle [26] •
Sá et al. [85] Sketching
Socio [78] • Text
TouchDevelop [95] •
YinYang [65] •

Tools from app stores

Astah* UML Pad [6] •
Database Designer [50] •
DrawExpress [29] Sketching
Flowdia Diagrams [30] •
Halna Mind [38] •
Inspiration Maps [44] •
JSON Designer [25] •
KnowledgeBase Builder [43] •
Lekh Diagram [52] Sketching
Lucidchart [57] •
miMind [66] •
Mind Mapping 3D [70] •
Mind Meister [67] •
Mind Vector [68] •
Mindly [69] •
MindMaster [71] •
MindNode [72] •
Mindomo [73] •
OrgChart [77] •
PureFlow [1] •
SimpleMind [91] •
XMind [108] •

Table 5: Classification of relevant papers according to the
supported concrete syntax.

the latter needs to be taken and saved in the gallery

before.

Finally, HoloFlow [90] is the only modelling tool

supporting a concrete syntax rendered in AR, where

the model elements are attached to real-life objects.

Tabular concrete syntax. Tabular concrete syn-

taxes organize the model elements in a matrix or

in menus, which is a popular representation for

databases. Three approaches support this syntax.

CEL [53] is an alternative to graphical class models

Add contact

Add text

Add photo Take photo Save photo

Send SMS

Fig. 10: Example schema representing a jigsaw-based
concrete syntax.

that employs a tabular syntax. Elements are neither

sketched nor displayed diagrammatically, but they

are inserted into cells, which can be linked to repre-

sent relationships. This frees the user from arrang-

ing the model elements graphically, which can be

cumbersome given the reduced screen size of some

mobile devices. López-Jaquero et al. [56] provide a

tabular concrete syntax organized in menus, where

the users drag and drop the elements into different

categories. Similarly, MobiDev also relies on menus

to represent models.

Textual concrete syntax. Textual syntaxes are of-

ten discouraged for mobile devices due to the small

size of their screen. However, Epidosite [54] and

TouchDevelop [95] have tailored textual editors for

letting novice programmers write scripts on mobile

devices. The former has a focus on IoT devices, and

the latter enables developing small general-purpose

apps.

Natural language concrete syntax. A concrete

syntax based on natural language permits using

voice or text for creating and editing models.

Socio [78] is the only tool that offers this kind of

syntax. Models are constructed by conversing with

a chatbot within social networks like Twitter or

Telegram (cf. Figure 9). The approach is not based

on textual commands for creating elements, but

on textual requirement descriptions that the bot

interprets to create the abstract syntax of a model,

which is shown to the user as a response. This

prevents the users from dealing with the layout of

the models.

4.1.2 Extended modelling

Some modelling tools permit users to include informal

drawings or annotations on top of their models to con-

vey additional meaning. We call this capability extended



Modelling on mobile devices 9

modelling. Figure 11 shows a feature diagram covering

this aspect of a language syntax. This is an optional fea-

ture, whereby users are allowed to enrich models with

drawings or annotations to informally convey extra in-

formation. Drawings refer to any kind of sketching that

can be done over a model, like circling an element, or

pointing by drawing an arrow. This can be useful in col-

laborative modelling sessions by enabling users to point

to different parts of the model in a flexible way. Anno-

tations are pieces of information that can be attached

to model elements in the form of symbols, images, text

comments or others. For instance, they can be used to

report the model modality (e.g., fidelity of elements,

uncertainty or purpose) [93] or to provide additional

context to model elements by means of different media

(e.g., pictures, audio). In general, extended modelling is

only possible if the language syntax provides this extra

flexibility.

Extended 
modelling 

Drawings 

Symbols Text 

Annotations 

Images Other 

Legend: 
           Or 

Optional 

Fig. 11: Feature model for extended modelling on mobiles.

Table 6 shows the approaches that support extended

modelling. The low number of approaches may be due

to the fact that most of them are meant to be used

with no collaboration, or with live collaboration where

users are physically close or use a communication tool

like Skype, Microsoft Teams or Zoom. In these situa-

tions, extended modelling may not be seen as relevant.

However, apart from collaboration, extended modelling

can also help to increase the flexibility in modelling, as

it enables documenting context, additional information

about model elements, or tasks to be done in the next

modelling session.

Annotations. All tools having extended modelling ca-

pabilities support some kind of annotation. Among

them, Archinotes [99], Calico [62], DSL-comet [102],

the Horus Method [2] and Lucidchart [57] provide

collaboration mechanisms where different stake-

holders can edit the same model at the same or

different time. Archinotes permits attaching text,

audio or video annotations to models. Calico pro-

vides the possibility to flag a diagram as “DO NOT

ERASE” to let other users know that they should

Tool Drawings Annotations

Approaches from the literature

Archinotes [99] •
Calico [62] • •
DSL-comet [102] • •
Horus Method [2] •
Sá et al. [85] •

Tools from app stores

Database Designer [50] •
Lucidchart [57] •
Mind Meister [67] •

Table 6: Classification according to the extended modelling
ability of the approach.

not alter its content. DSL-comet supports the use

of annotations during live collaboration. The anno-

tations can be notes, which can be geolocated and

contain images, as well as temporal markers (‘?’ and

‘!’) for catching the attention of other users during

the collaboration. Horus allows sharing comments

in natural language and attaching illustrations to

model elements. Lucidchart permits attaching tex-

tual comments to model elements, in which case,

a symbol is displayed to allow other users to an-

swer the comment by clicking on the symbol. Mind

Meister [67] gives the possibility to rate elements

of a mind-map and add comments. Finally, Data-

base Designer [50] and Sá et al. [85] do not support

collaborative modelling, but users can add textual

notes on the canvas for the former one, and on the

created cards on the latter one.

Drawings. Informal drawings are less common in mo-

bile modelling tools, being supported just by Calico

and DSL-comet. The former also permits handwrit-
ing.

4.1.3 Semantics

Modelling languages encompass semantics, describing

the meaning of models. Figure 12 categorizes the as-

pects of semantics that are relevant for our study. A

modelling tool may or may not provide explicit seman-

tics for models, and so, this feature is optional in the

figure. If it does provide semantics, then, this can be ei-

ther generative or based on execution. In the first case,

semantics is implicitly defined via a code generator. In

the second case, semantics is defined via execution of

(part of) the model, for example via simulation (i.e.,

successive model transformation steps) or model inter-

pretation.

For the purpose of our study, we identify two per-

tinent features of the model execution: interaction and

context sensitivity. The interaction feature refers to the



10 Léa Brunschwig et al.

Legend: 
           

Interaction 

Internal 

Semantics 
Or 

External 
source 

Internal 
source 

Context 
sensitivity 

Mandatory 

Optional 
Execution Generative 

External 

Services Devices Camera Mic GPS Other 

Fig. 12: Feature model for semantics of modelling languages
on mobiles.

External
Tool

Services Devices
Internal

Approaches from the literature

Archinotes [99] •
DSL-comet [102] • •
Epidosite [54] • • •
HoloFlow [90] •
Metaphore [88] • •
MicroApp [31] • • •
Puzzle [26] • • •
Sá et al. [85] •
TouchDevelop [95] • •

Table 7: Classification according to the interaction
capabilities.

ability of a modelling language to communicate with

external services (e.g., a remote weather forecast API,

a social network), with external devices (e.g., IoT sen-

sors for domotic systems), or with internal services of

the mobile device (e.g., microphone, camera, GPS, or

others). These interactions will occur during the model

execution. Table 7 shows the approaches that support

interaction.

The second feature of execution semantics we are

interested in is context-sensitivity, which refers to the

ability to react to the context (e.g., changing the model)

during model execution. The behaviour of a context-

sensitive language relies on a context source and fol-

lows contextual rules. Context sources can be external

sources or internal sources. The former are based on the

interaction with remote components, such as APIs or

IoT devices. The latter refer to internal components and

sensors of the device on which the language is deployed,

like the battery or the device network connection. Ta-

ble 8 shows the context-sensitive approaches supporting

the definition of contextual rules.

In the following, we comment on the features related

to semantics that the analysed tools provide.

Tool External source Internal source

Approaches from the literature

Epidosite [54] •
HoloFlow [90] •
MicroApp [31] • •
Puzzle [26] •
TouchDevelop [95] •
YinYang [65] •

Table 8: Classification according to the sensitivity to the
context.

Generative semantics. Among all the analysed

tools, only three are generative: CEL [53] trans-

forms its models into Java, Objective C or C++

code skeletons; Database Designer [50] generates

SQL files; and JSON Designer [25] produces JSON

code as this is a tool for visualizing and designing

JSON structures.

External interaction. All approaches in Table 7 can

interact with external services or devices, but the

one by Sá et al. [85]. Specifically, Archinotes [99]

permits sharing models on Facebook groups for no-

tifying model changes to the active users on this

social network. DSL-comet [102] provides an API

broker for retrieving information from web services.

Epidosite [54] leverages smartphones as hubs for

IoT automation by means of scripts that can in-

corporate third-party mobile apps and web services.

HoloFlow [90] supports interaction with IoT devices

via AR. Metaphore [88] can detect items of the real

world using external Bluetooth Low Energy (BLE)

beacons as well as internal sensors of the device,

and it assigns the items an ontological type and do-

main properties. MicroApp [31] and Puzzle [26] are

similar to Epidosite, but instead of scripts, the users

compose jigsaws that may use web services, domotic

services and native services of the mobile. TouchDe-

velop [95] also provides access to web services, but

it does not support interaction with IoT devices.

Internal interaction. All tools in Table 7 can inter-

act with the internal components of the device, ex-

cept Archinotes and HoloFlow. This interaction can

serve different purposes. For geolocating model ele-

ments, DSL-comet uses the GPS of the smartphone,

and Metaphore uses several sensors of the mobile de-

vice (e.g., accelerometer, gyroscope, compass, GPS).

Epidosite permits using native services of the mobile

(e.g., GPS, clock) in scripts. Similarly, MicroApp

and Puzzle can incorporate native services (e.g., ac-

celerometer, gyroscope, GPS, camera, microphone)

in its jigsaw language. Sá et al. use the microphone

and camera of the device to augment sketches with

input/output elements. Finally, TouchDevelop pro-



Modelling on mobile devices 11

vides access to the internal services of the mobile as

well.

Context sensitivity. Table 8 shows the tools that

have sensitivity to the context. Epidosite and Holo-

Flow have been designed to interact with IoT de-

vices, and so, their context sources are external. Mi-

croApp can handle contextual stimuli from both in-

ternal and external sources. It adapts its jigsaw lan-

guage depending on the network connection or user

position, and users can use this context information

to implement micro apps or benefit from other apps

installed on the device, web services and IoT de-

vices. Puzzle retrieves external context information

from web services, IoT devices and other apps in-

stalled on the device like SMS messaging. Finally,

TouchDevelop and YinYang [65] only employ inter-

nal sources. The former uses native functionalities

of the device like the accelerometer or the GPS, and

the latter can use conditional statements for adapt-

ing the situation within its script like a regular pro-

gramming language.

4.1.4 Fine-grained access control

A model may need to be manipulated by multiple stake-

holders. In such a case, some modelling languages may

need mechanisms to control the access to their mod-

els or define different privileges depending on the user

(e.g., some users may create models, while other users

can only read the existing models).

DSL-comet [102] is the only tool with access con-

trol management at the modelling language level. The

tool permits defining roles with different model editing

permissions, and their assignment to users. As an ex-

ample, let’s consider the tourism DSL defined in DSL-

comet in [20] (cf. Figure 6). It defines the user roles

“touristic guide” and “tourist”. Touristic guides are al-

lowed to create, modify and delete touristic route mod-

els, while tourists only have permission to consult (but

not to change) existing route models. In addition to per-

missions at the DSL level, DSL-comet also proposes to

grant permissions on the model editor functionalities.

For instance, touristic guides are allowed to initiate a

live collaboration session but tourists can only join ex-

isting sessions.

Some of the other approaches (Archinotes [99], As-

tah* UML Pad [6], BPMN-Tool [84], icebricks [12],

Lekh Diagram [52], Lucidchart [57], miMind [66], Min-

domo [73], Mind Mapping 3D [70], Mind Meister [67],

Mind Vector [68], Mindly [69], MindMaster [71],

MindNode [72], OrgChart [77], Pounamu/Thin [113],

XMind [108]) provide access control at the tool level

(e.g., via credentials when logging in the tool) but this

does not have an impact on how the supported mod-

elling languages are to be used.

4.2 Language definition

In the previous subsection, we have analysed the dif-

ferent aspects of the supported modelling languages.

Now, we study how these languages are defined. As

Figure 13 shows, we have identified a dichotomy be-

tween tools that support fixed languages (feature fixed

language) and those which offer users the possibility

to create their own modelling languages (feature meta-

modelling support). For the latter cases, we distinguish

whether the language definition occurs within the mo-

bile tool itself (feature internal) or externally, likely in

a web-based or desktop application (feature external).

Legend: 
      Or 

Meta-modelling 
support 

Internal External 

Language 
definition 

Fixed 
language 

UML BPMN Other 

Alternative 

Mind 
map 

Flow 
chart 

App 
modelling 

Component 
diagram 

Class 
diagram 

Use case 
diagram 

Statechart 
Sequence 
diagram 

Activity 
diagram 

Object 
diagram 

Fig. 13: Feature model for language definition dimension.

In Tables 9 and 10, we can see that most approaches

support one or a set of fixed languages, while only six

approaches offer meta-modelling support. In the follow-

ing paragraphs, we analyse these two tables in more

detail.

Fixed language. Regarding tools and approaches fo-

cusing on fixed languages, works from the literature

support mostly UML or BPMN, while mind-maps

and flow charts are prominent in the tools from app

stores. Some tools support fixed, custom languages

specific to a domain. This is the case of Database

Designer [50], which is specialized for database de-

sign; or MobiDev [89], which is devoted to user in-

terface design. Other tools offer general-purpose no-

tations, like CEL [53], which proposes a light version

of UML class diagrams; JSON Designer [25], which

is a JSON visualization and design tool; and Org-

Chart [77], which simplifies the organization chart

maintenance in a tree structure. Other tools like

Calico [62] and Lekh Diagram [52] favour sketch-

based free modelling, not being constrained to a



12 Léa Brunschwig et al.

Tool UML BPMN Mind Map Flowchart App Modelling Other

Approaches from the literature

Archinotes [99] Class, Component
BPMN-Tool [84] •
Calico [62] •
CEL [53] •
CollabTouch [46] •
Epidosite [54] •
HoloFlow [90] •
Horus Method [2] •
icebricks [12] •
Ma et al. [59] Class, Use case, Component
MicroApp [31] •
MobiDev [89] •
NetSketcher [10] •
Nolte et al. [75] •
Puzzle [26] •
Sá et al. [85] •
Socio [78] Class
TouchDevelop [95] •
YinYang [65] •

Tools from app stores

Astah* UML Pad [6] Class
Database Designer [50] •
DrawExpress [29] Class, Use case, Sequence, Statecharts • • • •
Flowdia Diagrams [30] Class, Use case, Sequence, Activity • • • •
Halna Mind [38] •
Inspiration Maps [44] •
JSON Designer [25] •
KnowledgeBase Builder [43] • •
Lekh Diagram [52] • •

Lucidchart [57]
Class, Component, Use case,
Object, Activity, Sequence

• • • •

miMind [66] Class, Statecharts • • •
Mind Mapping 3D [70] •
Mind Meister [67] •
Mind Vector [68] •
Mindly [69] •
MindMaster [71] •
MindNode [72] •
Mindomo [73] •
OrgChart [77] •
PureFlow [1] •
SimpleMind [91] •
XMind [108] •

Table 9: Classification of papers according to their supported languages.

particular notation. In addition, the latter tool pro-

vides facilities for recognition of shapes and arrows

for several notations, and allows creating objects by

drag and drop from predefined palettes.

Another category of tools provide users with mobile

editors for creating small apps like Epidosite [54],

MicroApp [31], Puzzle [26], Sá et al. [85], TouchDe-

velop [95] and YinYang [65].

While most tools support just one language, a few of

them support several languages. Specifically, Draw-

Express [29], Flowdia Diagrams [30], Lucidchart [57]

and miMind [66] offer a large variety of languages

from UML or network designs to business processes

and mind-maps.

Internal meta-modelling support. There are just

two approaches that enable meta-modelling on the

mobile device. In FlexiSketch [106], modelling and

meta-modelling can be done in any order. For ex-

ample, a user can sketch a model informally, and

then upgrade some of the elements as concepts of a

language, adding them to the palette (cf. right part

of Figure 7). Metaphore [88] is a tool for domain-

specific, positioning-based modelling. In a first step,

a domain meta-model needs to be defined, and its



Modelling on mobile devices 13

Tool Meta-modelling support

Approaches from the literature

Buchmann et al. [22] External
DSL-comet [102] External
FlexiSketch [106] Internal
López-Jaquero et al. [56] External
Metaphore [88] Internal
Pounamu/Thin [112] External

Table 10: Classification according to the meta-modelling
support.

classes can be attached to BLE beacons. Then, when

a model is created, its objects can be attached to a

physical position via the sensors of the mobile (GPS,

compass) or BLE beacons.

External meta-modelling support. There are four

approaches that permit defining languages in ex-

ternal (typically desktop) tools, which produce the

necessary infrastructure to run the domain-specific

editor on a mobile device. In DSL-comet, the

meta-models of the DSLs are defined using the

Eclipse Modeling Framework (EMF) [23]. These

meta-models are annotated with information about

graphical syntax, geopositioning, access control or

external interaction, and then uploaded on a server

to allow their use inside DSL-comet.

While DSL-comet interprets the language defini-

tion on the mobile, the other approaches with ex-

ternal meta-modelling support generate artefacts

to be run on the device. In particular, the meta-

modelling tool Pounamu/Thin [113] produces Java-

based multi-view editors for graphical modelling

languages. It was initially designed as a desktop ap-

plication, which later was extended to generate web

and (Nokia) mobile clients [36,112,113] (and see

also the follow-up tool Marama/Thin [35]). López-

Jaquero et al. [56] synthesize multi-touch domain-

specific editors. They use EMF to define domain

meta-models, which need to be complemented with

presentation models to specify the icons and fonts to

represent the different object types. Then, they use

a set of heuristics to generate a touch interface based

on menus and forms. Finally, Buchmann et al. [22]

propose a framework to create sketch-based editors

for Android devices. The framework, which requires

defining the meta-models in Java, has been used to

extend the UML tool Valkyrie [21] with sketching

capabilities.

Please note that, while some works have automated

the creation of domain-specific mobile modelling tools

(e.g., for UML [22] or for activity planning [56]) using

external generative approaches, these generated tools

would need to be uploaded into an app store for their

distribution. Instead, internal meta-modelling mecha-

nisms and external interpreted approaches result in

truly mobile meta-modelling tools.

4.3 Tooling

After designing the modelling language of a mobile

modelling solution, the next logical step is to decide

where and how it will be used, i.e., we need a mod-

elling tool. In this section, we analyse tooling aspects of

the retrieved approaches in relation to their deployment

(Section 4.3.1), collaboration support (Section 4.3.2),

interoperability mechanisms (Section 4.3.3) and user in-

teraction (Section 4.3.4).

4.3.1 Deployment

The deployment of a modelling tool is an important

issue since it may affect the usability and target au-

dience of the tool. Figure 14 depicts the options that

we consider for deployment. First, we look at the ar-

chitecture of the solution, which can be one-tier (i.e.,

the tool runs stand-alone) or client-server (i.e., the tool

is a client that requires communication with a server).

Second, we look at the deployment target, which can be

a desktop computer, a mobile device, the web, or several

of them. When the deployment is on mobile devices, we

distinguish the target platform (Android, iOS, Windows

Phone, Other) or whether the approach is cross-device

(i.e., it can run on several systems). With Other, we may

refer, e.g., to phone platforms (like the old Nokia’s Sym-

bian) or to head-mounted mobile devices like HoloLens.

Legend: 
          OR 
          Alternative 
          Mandatory 

Target 

Web 
Mobile 
device Desktop 

Android 
Cross-
device iOS 

Deployment 

Client-
server 

One-
tier 

Architecture 

Other 
Windows 

Phone 

Fig. 14: Feature model for tool deployment.

Table 11 classifies the surveyed tools according to

their deployment.

One-tier architecture. The tools that do not use

external services or remote collaboration typically



14 Léa Brunschwig et al.

Target
Tool Architecture

Web Desktop Mobile device

Approaches from the literature

Archinotes [99] Client-server •
BPMN-Tool [84] Client-server iOS
Buchmann et al. [22] One-tier • Android
Calico [62] Client-server •
CEL [53] One-tier iOS
CollabTouch [46] Unknown • •
DSL-comet [102] Client-server iOS
Epidosite [54] Client-server Android
FlexiSketch [106] One-tier • Android
HoloFlow [90] Client-server Other (HoloLens)
Horus Method [2] Unknown •
icebricks [12] Unknown • Cross-device
López-Jaquero et al. [56] Unknown •
Ma et al. [59] Unknown •
Metaphore [88] One-tier iOS
MicroApp [31] Client-server •
MobiDev [89] One-tier Android
NetSketcher [10] One-tier •
Nolte et al. [75] Client-server •

Pounamu/Thin [112] Client-server • Other
(Nokia’s Symbian)

Puzzle [26] Client-server • Cross-device
Sá et al. [85] Client-server • Windows Phone
Socio [78] Client-server • • Cross-device
TouchDevelop [95] Client-server Windows Phone
YinYang [65] One-tier •

Tools from app stores

Astah* UML Pad [6] One-tier • iOS
Database Designer [50] One-tier Android
DrawExpress [29] One-tier Cross-device
Flowdia Diagrams [30] One-tier Cross-device
Halna Mind [38] One-tier Android
Inspiration Maps [44] One-tier iOS
JSON Designer [25] One-tier iOS
KnowledgeBase Builder [43] One-tier Android
Lekh Diagram [52] One-tier Cross-device
Lucidchart [57] Client-server • Cross-device
miMind [66] Client-server • Cross-device
Mind Mapping 3D [70] One-tier Cross-device
Mind Meister [67] Client-server • Cross-device

Mind Vector [68] Client-server • Cross-device,
Other (HoloLens)

Mindly [69] One-tier • Cross-device
MindMaster [71] Client-server • • Cross-device
MindNode [72] Client-server • iOS
Mindomo [73] Client-server • • Cross-device
OrgChart [77] Client-server • iOS
PureFlow [1] One-tier • iOS
SimpleMind [91] One-tier • Cross-device
XMind [108] Client-server • • Cross-device

Table 11: Classification according to deployment. A “•” on
column Mobile device indicates that the deployment platform

is unknown.

have one-tier architectures. These tools are Astah*

UML Pad [6], Buchmann et al. [22], CEL [53],

Database Designer [50], DrawExpress [29], Flex-

iSketch [106], Flowdia Diagrams [30], Halna

Mind [38], Inspiration Maps [44], JSON De-

signer [25], KnowledgeBase Builder [43], Lekh Di-

agram [52], Mind Mapping 3D [70], Mindly [69],

MobiDev [89], NetSketcher [10], PureFlow [1], Sim-

pleMind [91] and YinYang [65]. An exception is

Metaphore [88], which communicates using Blue-

tooth with external devices (BLE beacons).

Client-server architecture. The other tools use

client-server architectures either because they have

a backend or a remote database (BPMN-Tool [84],

Calico [62], DSL-comet [102], Lucidchart [57], Mind-

Master [71], Mind Meister [67], Mind Vector [68],

MindNode [72], Nolte et al. [75], OrgChart [77],

Pounamu/ Thin [112], Socio [78]), or, and maybe

in addition, because they communicate with exter-

nal services (Archinotes [99], Epidosite [54], Holo-

Flow [90], MicroApp [31], Puzzle [26], TouchDe-

velop [95]). In Table 11, we mark as unknown five

academic works for which we were not able to iden-

tify the architecture.

Mobile device. Table 11 shows that, unsurprisingly,

most of the tools are deployed in mobile devices.

We can distinguish three categories that justify this

choice in the case of academic tools.

The first reason is the desire to create editors along

with their compilers or interpreters for developing

on mobile devices. This includes several tools like

Epidosite [54], MicroApp [31], MobiDev [89], Puz-

zle [26], TouchDevelop [95] and YinYang [65]. Ac-

cording to recent studies [97,105], the number of

mobile users in 2020 is higher than the number of

desktop users. Thus, mobile apps may bring devel-

opment activities closer to a wider audience.

The second reason is the need for mobility, e.g., in

situations where access to a desktop is not possible.

This includes scenarios in which modelling occurs

at the location of the system being modelled (e.g., a

smart factory, a farm). Archinotes [99] enables col-

laboration between stakeholders who might be in

different geographical areas and might not have ac-

cess to a desktop. Icebricks [12] was initially imple-

mented as a web application, but now it has been

adapted as a hybrid app for modelling on mobile

devices. This is also the case for BPMN-Tool [84].

López-Jaquero et al. [56], DSL-comet [102], Meta-

phore [88], Pounamu/Thin [112] and Sá et al. [85]

are designed for modelling on-site at the system

location. The approach by López-Jaquero et al. is

illustrated with an app for the treatment of peo-

ple with Acquired Brain Injury by psychologists or

physiotherapists, who need to model while being

with their patients. DSL-comet permits geolocating

model elements on a map, with constraints relative

to their geoposition. Sá et al. want to provide the

user with a tool for creating prototypes at the same

location where the real app will be used. Metaphore

can position the elements of models in the real world

using BLE beacons that communicate with the ap-

plication via Bluetooth. The tool is useful to create

models for domotics, event planning or construction,

where the user needs to be at the location of the sys-

tem being modelled to profit from the short-distance

communication capability of the Bluetooth.



Modelling on mobile devices 15

The third reason is the need to support tactile in-

teraction. This is the case of sketching tools like

Buchmann et al. [22], Calico [62], CEL [53], Col-

labTouch [46], DrawExpress [29], FlexiSketch [106],

Lekh Diagram [52] and NetSketcher [10]. All these

tools except Calico, CEL and NetSketcher are also

deployed on desktop computers to support cross-

device collaboration with a desktop computer, an

interactive whiteboard or a tabletop.

We also hypothesize on the reasons why the tools

in the app stores exist. The first reason is to per-

mit their use on mobiles as this is a popular plat-

form (e.g., Database Designer [50], Flowdia Dia-

grams [30], Halna Mind [38], Inspiration Maps [44],

JSON Designer [25], KnowledgeBase Builder [43]

and Mind Mapping 3D [70]). In other cases, it is

to enable modelling across multiple platforms (e.g.,

Astah* UML Pad [6], Lucidchart [57], miMind [66],

Mind Vector [68], MindNode [72], Mindly [69], Org-

Chart [77], PureFlow [1] and SimpleMind [91]).

The last reason is for adapting a well-known desk-

top/web application to a mobile version, in order to

widen the existing user community of the tool.

Web. Table 11 shows that three tools can only be de-

ployed as web applications. The Horus Method [2]

allows drawing elements on mobile and on desktop

browsers, as well as drag and drop; Nolte et al. [75]

present a prototype for browsers of large interactive

display walls, digital tabletops and personal mobile

devices; and Ma et al. [59] propose a web architec-

ture based on HTML 5. We have included these

tools in the survey because they are specially de-

signed for their use on mobile devices, and their au-

thors wanted them to be cross-platform, with no

need for installation on the devices.

Other. HoloFlow [90] is not deployed on phones or

tablets but on smart glasses, more specifically on

Microsoft’s HoloLens. This gives an immersive mod-

elling experience, whereby the user needs to be at

the system location to create virtual objects at-

tached to real-life objects. Mind Vector [68] also of-

fers a version of the tool, called Holo Mind Vector,

that is deployed on HoloLens.

The tools Socio [78], MindMaster [71], Mindomo [73]

and XMind [108] are deployed on the three regular

platforms (web, desktop and mobile devices). So-

cio [78] can be used on social networks (Twitter and

Telegram) which are available via desktop applica-

tions, mobile browsers and dedicated mobile apps.

4.3.2 Collaboration

Collaboration is an optional functionality, useful in

many modelling scenarios. Figure 15 depicts the fea-

tures that we consider regarding collaboration in mobile

modelling tools. While these aspects are enough for our

purposes, the interested reader can consult other more

detailed taxonomies devised for classifying desktop and

web-based collaborative modelling approaches like [32,

64].

Collaboration

AsynchronousSynchronous

Serverless 
(local)

Server-based
(centralized)

Type Awareness

Legend:
OR
Optional
Mandatory

Fig. 15: Feature model for collaboration on mobile tools.

Modelling is often a collaborative activity that in-

volves many actors [32]. The best example is the tradi-

tional way of modelling using pen and paper or a white-

board, where several stakeholders meet at the same lo-

cation to sketch diagrams [110]. An app could be used

in this scenario if the same model can be accessed by

several users. This scenario employs synchronous col-

laboration because different stakeholders collaborate si-

multaneously on the same model. Synchronous collabo-

ration can be serverless, or local, if the stakeholders are

located closely and they either share the same screen or

connect their devices using an ad-hoc server via Blue-

tooth or Wi-Fi. Alternatively, synchronous collabora-

tion can be server-based, in which case, the stakeholders

can be at different locations when having a live collab-

oration session. In contrast, in asynchronous collabora-

tion, the stakeholders can work on a model at different

moments, likely offline, and the model gets synchro-

nized when its changes are committed to the server.

In both types of collaboration, it is also interest-

ing to study the capability of the tools to make users

aware of each other actions. According to Dourish and

Bellotti [27], awareness in the context of collaborative

applications refers to mechanisms for “understanding

the activities of others, which provides a context for

your own activity”. In collaborative systems, awareness

mechanisms have been defined using a variety of means,



16 Léa Brunschwig et al.

Type
Tool

Asynchronous Synchronous
Awareness

Approaches from the literature

Archinotes [99] • Centralized •
BPMN-Tool [84] Centralized
Calico [62] • Centralized •
CollabTouch [46] • Serverless •
DSL-comet [102] • Serverless •
FlexiSketch [106] • Serverless •
Horus Method [2] • Centralized
NetSketcher [10] • Serverless
Nolte et al. [75] • Serverless
Pounamu/Thin [112] • Centralized
Socio [78] • Centralized •

Tools from app stores

Lucidchart [57] • Centralized •
Mind Meister [67] • Centralized

Table 12: Classification of approaches according to
collaboration support.

such as informational (e.g., where collaborators inform

each other of the activities performed), role restrictive

(e.g., by assigning roles to users, which are then respon-

sible for certain tasks), and others (see [3] for a com-

prehensive classification of awareness mechanisms).

Collaboration can profit from the extended mod-

elling capabilities discussed in Section 4.1.1. Moreover,

it triggers some questions regarding consistency, con-

currency and security, the last of which can be tackled

via access control, as explained in Section 4.1.4.

Table 12 classifies the approaches that support some

form of collaboration with respect to the features of Fig-

ure 15. Most collaborative tools offer both synchronous

and asynchronous modes.

Asynchronous collaboration. The tools that fea-

ture asynchronous collaboration have different mo-

tivations for this choice:

– Allowing users to work at different moments and

share their work on a repository. This is the

case of Archinotes [99], DSL-comet [102], Lucid-

chart [57], Mind Meister [67], NetSketcher [10]

and Pounamu/Thin [112].

– Enabling individual work to be merged with the

work of other collaborators during synchronous

collaborative sessions. This is the case of Cal-

ico [62], CollabTouch [46], FlexiSketch [106] and

Nolte et al. [75].

– Preventing information loss in case of an internet

outage, as in the Horus Method [2]. This tool has

a smart internal cloud storage mechanism that

updates the application when the device is online

and there is an update available on the server.

Serverless synchronous collaboration. We iden-

tify three categories of serverless approaches

attending to their techniques and supported

scenarios:

– Creation of an ad-hoc network hosted on a de-

vice, to which other devices connect via Wi-Fi,

like in DSL-comet [102] and NetSketcher [10]. In

DSL-comet, users collaborate via a token-based

protocol, where the user initiating the modelling

session grants the token for model modification

to the users in the session. Modelling in Net-

Sketcher is concurrent, and users are identified

with a name and colour to know who sketched

what.

– Support of large screens like interactive tables

and whiteboards, enabling several users to work

on the same device at the same time. This is the

case of CollabTouch [46] and Nolte et al. [75].

– FlexiSketch [106] supports the creation of an ad-

hoc network hosted on a desktop and the display

of the model on a large screen (like in the pre-

vious category), but each user interacts from a

mobile device (as in the first category).

Server-based synchronous collaboration. If col-

laboration is server-based, the mobile clients have

access to the models shared on a server. Archi-

notes [99], Calico [62], the Horus Method [2], Lucid-

chart [57] and Mind Meister [67] support concurrent

editing. In Socio [78], the users can collaboratively

and synchronously edit models via natural language

messages within a social network. In addition, the

tool has a model server and a mechanism support-

ing the creation of branches with model variants [78]

– like in code versioning systems – to enable asyn-

chronous collaboration.

Awareness. The tools that provide awareness mecha-

nisms only apply them in the context of synchronous

collaboration. In some cases, awareness is limited to

broadcasting each user action on the model (like in

the case of CollabTouch [46] and Lucidchart [57]).

However, some tools provide additional functional-

ities. Archinotes [99] tracks all the changes within

a live session to enable consulting them later. Cal-

ico [62] shows the name of the user currently work-

ing on a canvas. In DSL-comet [102], only one des-

ignated person can edit at a time, but the other

users can use extended modelling features to react

to these changes. FlexiSketch [106] implements a

non-optimistic locking mechanism to prevent poten-

tial inconsistencies and conflicts by prohibiting the

modification of the same element by more than one

user. In this situation, the element is shown with

a red background and does not react to the inputs

of other users. Socio [78] is used within social net-

works via NL messages. Hence, every user can read

and reply to the messages of other users, since col-

laboration occurs within a chat room. In addition,



Modelling on mobile devices 17

Tool Export Import

Approaches from the literature

BPMN-Tool [84] GraphML
CEL [53] C++, Java, Objective C
DSL-comet [102] XMI XMI
FlexiSketch [106] GOPPRR
Horus Method [2] PNML
NetSketcher [10] XPDL
Socio [78] XMI

Tools from app stores

Database Designer [50] SQL SQL
JSON Designer [25] JSON JSON
Lucidchart [57] Visio Visio

Table 13: Classification of mobile modelling tools according
to their interoperability.

the messages that trigger the creation of model ob-

jects are attached to the objects, and it is possible

to obtain statistics of the percentage of authorship

of every user.

4.3.3 Interoperability

An important aspect for the success and acceptance of

a modelling tool is its ability to interoperate with other

tools, especially via modelling standards and widely ac-

cepted storage formats, like the XML meta-data inter-

change (XMI) [107].

Figure 16 shows the two aspects we consider for in-

teroperability: whether the models built with the tool

can be exported to other platforms, such as desktop

modelling tools (feature export), and whether models

built in other applications can be imported into the

mobile modelling tool (feature import).

Legend: 
          OR 

Interoperability 

Export Import 

Fig. 16: Feature model for interoperability of mobile
modelling tools.

Table 13 shows the approaches with interoperability

capabilities, which are very few.

Import. Only three tools provide import facilities

from standard formats: DSL-Comet [102] can im-

port XMI models, Database Designer [50] can im-

port database models from SQL, and JSON De-

signer [25] can import JSON files from both the mo-

bile device and a URL. In addition, Lucidchart [57]

can import diagrams with the Microsoft Visio pro-

prietary format.

Export. The file formats used to export the models are

very diverse, but we distinguish three groups. The

first one includes tools using file formats and stan-

dards specific to a narrow domain or particular tool.

This includes NetSketcher [10] with the serializa-

tion format for BPMN called XML Process Defini-

tion Language (XPDL) [109]; the Horus Method [2]

with the Petri Net Markup Language (PNML) [80];

FlexiSketch [106], which exports models and meta-

models as XML files that can be converted into the

GOPPRR format of MetaEdit+ [48]; and Lucid-

chart, which allows exporting diagrams with the Mi-

crosoft Visio format.

The second group comprises tools generating code.

This is the case of CEL [53], which can export mod-

els into C++, Java or Objective C; and Database

Designer, which exports database models into SQL.

The last group consists of the tools that export

to generic formats, like XMI, GraphML [34] or

JSON. Socio [78] and DSL-comet export models to

XMI; BPMN-Tool [84] exports BPMN models as

GraphML documents; and JSON Designer exports

models into JSON files.

4.3.4 User interaction

Finally, we analyse the user interaction possibilities for

modelling in mobility. These are depicted in Figure 17.

Legend: 
           

User 
interaction 

Customizable 

Sensor 

Camera Mic GPS Other 

Touch 
screen Keyboard 

Input 
device 

Mandatory 

Optional 

Or 

Accelerometer 

Fig. 17: Feature model for user interaction in tooling.

The traditional computer-assisted way to building

models in desktop applications is the use of keyboard

and mouse. In the case of mobile devices, they lack a

mouse, so interaction with the touch screen or the (vir-

tual) keyboard are used instead. Moreover, modelling

in a mobile device can benefit from its embedded sen-

sors, like the camera (e.g., for augmented reality), the

microphone (e.g., for voice-based interaction), the GPS



18 Léa Brunschwig et al.

Input device
Tool Custom.

Sensor
Touch

screen
Keyboard

Approaches from the literature

Archinotes [99] Camera, Mic • •
BPMN-Tool [84] • •
Buchmann et al. [22] • • •
Calico [62] •
CEL [53] • •

CollabTouch [46]
Camera,

Accelerometer
• •

DSL-comet [102] Camera, GPS • •
Epidosite [54] • •
FlexiSketch [106] • •
HoloFlow [90] Camera, Other
Horus Method [2] • •
icebricks [12] • •
López-Jaquero et al. [56] • •
Ma et al. [59] • •

Metaphore [88]
Accelerometer,

Other
• •

MicroApp [31] • • •
MobiDev [89] Camera • •
NetSketcher [10] • •
Nolte et al. [75] • •
Pounamu/Thin [112] •
Puzzle [26] • •
Sá et al. [85] Camera, Mic • •
Socio [78] •
TouchDevelop [95] • •
YinYang [65] • •

Tools from app stores

Astah* UML Pad [6] • •
Database Designer [50] • •
DrawExpress [29] • •
Flowdia Diagrams [30] • •
Halna Mind [38] • •
Inspiration Maps [44] • •
JSON Designer [25] • •
KnowledgeBase Builder [43] • •
Lekh Diagram [52] • •
Lucidchart [57] • •
miMind [66] • •
Mind Mapping 3D [70] • •
Mind Meister [67] • •
Mind Vector [68] • •
Mindly [69] • •
MindMaster [71] • •
MindNode [72] • •
Mindomo [73] • •
OrgChart [77] • •
PureFlow [1] • •
SimpleMind [91] • •
XMind [108] • •

Table 14: Classification of approaches according to their
user interaction capabilities for modelling.

(e.g., for the geolocation of model elements), the ac-

celerometer, or other sensors (e.g., for the positioning

of elements via Bluetooth). In addition, the user inter-

action of some tools is customizable, for example, con-

cerning the definition of gestures needed to create or

delete model elements on a mobile device.

Table 14 classifies the approaches based on their

user interaction capabilities. Almost all of them rely

on the touch screen and the keyboard for the interac-

tion. Hence, in the following, we comment on the tools

that only support one of these two forms of interaction,

as well as on tools making use of sensors.

Keyboard. Pounamu/Thin [112] and Socio [78] limit

their interaction to the keyboard. Pounamu/Thin

is one of the oldest approaches from the days when

touch-enabled devices were not available, but it runs

on Nokia devices from 2006. Socio supports interac-

tion via textual natural language. For this purpose,

it uses just the keyboard, but since it is a modelling

chatbot, it has the potential to use spoken natural

language via the microphone as well.

Touch screen. Calico [62] does not use the keyboard,

but it relies purely on sketching, to emulate the feel

of modelling on a whiteboard.

Sensor. Some approaches enable the use of sensors

as input device, most notably the camera. Holo-

Flow [90] needs the camera for using augmented re-

ality, and it features gesture recognition for interact-

ing with the model. DSL-comet [102] permits anno-

tating the model elements with pictures taken with

the camera, as well as using the GPS of the device

for geopositioning model elements. Archinotes [99]

and Sá et al. [85] can use the camera and the mi-

crophone, the former for annotating model elements

with pictures, videos and audio files, and the latter

for adding the expected input/output of behaviours.

MobiDev [89] proposes to use the camera to take a

picture of a model sketched on paper and then con-

vert it to the tool digital format. Metaphore [88] uses

BLE beacons, the compass and the accelerometer to

position selected model elements. CollabTouch [46]

uses the brightness sensor of the camera and the

accelerometer to detect if a tablet is touching the

table screen, meaning that the user aims to merge

his/her model with the group’s model.

Overall, the interaction possibilities in mobile de-

vices are many and can exploit not only touch ges-

tures but also information from sensors of the mo-

bile device. For this reason, some frameworks have

been proposed to facilitate the configuration of the

interaction for arbitrary mobile apps (not specifi-

cally for modelling). As an example, the toolbox

Milkyway [51] permits prototyping the interaction

of collaborative mobile apps based on the informa-

tion of the device sensors and programming by ex-

ample. The toolbox has been used to provide some

interesting interaction capabilities to the Business

Model Canvas (BMC), such as initiating a collab-

oration between several users when detecting cer-

tain blocks using image recognition, or sharing and

merging content by pouring it from one device to

another. Please note that the latter gesture is also

used by CollabTouch [46] for a similar purpose.

Customizable. Only two tools support customizabil-

ity. On the one hand, MicroApp [31] allows person-



Modelling on mobile devices 19

alizing the touch gesture required for triggering the

modelled micro apps. On the other hand, the ap-

proach of Buchmann et al. [22] supports the use of

the GestureBuilder Android app to specify sketch-

ing gestures to create the different object types.

These gestures are then recognized by the synthe-

sized domain-specific editors.

5 Discussion

This section discusses the results of our mapping study

by answering the research questions outlined in Sec-

tion 3. Section 5.1 answers RQ1 (What are the domains

where mobile modelling has been applied?), Section 5.2

answers RQ2 (What are the motivations argued for mo-

bile modelling?), Section 5.3 answers RQ3 (What are

the characteristic features of existing mobile modelling

approaches?), and Section 5.4 answers RQ4 (What are

the gaps in current approaches, and the research oppor-

tunities in mobile modelling?). The first three questions

cover the why and how of the current practice, and the

fourth question tries to look beyond that. Finally, Sec-

tion 5.5 summarizes the main take aways of the analysis

and Section 5.6 argues on possible threats to the valid-

ity of our study.

5.1 RQ1: What are the domains where mobile

modelling has been applied?

Table 15 presents a summary of the application do-

mains the analysed tools have tackled, and Figure 18
displays this information graphically. As depicted in

Figure 18, the existing approaches in the literature have

been applied to six application domains: software de-

sign (7), process modelling (6), domain-specific mod-

elling (6), mobile development (5), IoT (3), and UI de-

sign (1). Regarding tools from app repositories, they

target mind-map modelling (17 tools), software design

(7), process modelling (4), UI design (2), organization

modelling (1) and database modelling (1). Some of the

approaches and tools serve different domains.

Mind-map modelling is the most widely targeted do-

main by tools from app stores. One possible reason of

its prevalence is that this domain may be especially

suitable for mobile devices due to the simple syntax of

mind-maps, and the possibility for outlining and col-

lecting ideas everywhere (without the need for a desk-

top computer). Mind-maps might be popular in app

stores because their use does not require from special-

ized knowledge from users, and the generality of the no-

tation makes it applicable to different areas. Conversely,

Domain Approaches from literature Tools from app stores

Mind-map
modelling

DrawExpress [29], Flowdia
Diagrams [30] Halna Mind
[38], Inspiration Maps [44],
KnowledgeBase Builder [43],
Lekh Diagram [52], Lucid-
chart [57], miMind [66], Mind
Mapping 3D [70], Mind Meis-
ter [67], Mind Vector [68],
Mindly [69], MindMaster
[71], MindNode [72], Min-
domo [73], SimpleMind [91],
XMind [108]

Software
design

Archinotes [99], Buchmann et
al. [22], Calico [62], CEL [53],
FlexiSketch [106], Ma et al.
[59], Socio [78]

Astah* UML Pad [6], Draw-
Express [29], Flowdia Dia-
grams [30], JSON Designer
[25], Lekh Diagram [52],
Lucidchart [57], PureFlow [1]

Process
modelling

BPMN-Tool [84], Collab-
Touch [46], Horus Method
[2], icebricks [12], NetSketcher
[10], Nolte et al. [75]

DrawExpress [29], Flowdia
Diagrams [30], Lekh Diagram
[52], Lucidchart [57]

Domain-
specific
modelling

Buchmann et al. [22], DSL-
comet [102], FlexiSketch
[106], López-Jaquero et
al. [56], Metaphore [88],
Pounamu/Thin [112]

Mobile
development

MicroApp [31], MobiDev [89],
Sá et al. [85], TouchDevelop
[95], YinYang [65]

IoT Epidosite [54], HoloFlow [90],
Puzzle [26]

UI design Calico [62] DrawExpress [29], Lekh Dia-
gram [52]

Organization
modelling

OrgChart [77]

Database
modelling

Database Designer [50]

Table 15: Domains targeted by the approaches and tools.

0 5 10 15

Database modelling

Organization modelling

UI design

IoT

Mobile development

Domain-specific modelling

Process modelling

Software design

Mind-map modelling

Literature

App Stores

Fig. 18: Domains targeted by the approaches and tools.

other more specialized domains, like mobile develop-

ment, IoT, or support for domain-specific modelling are

only targeted by academic approaches. A possible rea-

son is that they are more demanding for the users and

focus on narrower domains, which is the opposite sce-

nario than for mind-maps.

Software design, process modelling and UI design

are domains covered by both approaches in the litera-

ture and app store tools. Software design is normally ap-

proached by supporting UML diagrams (cf. Table 10),

but in the case of Archinotes [99], it targets archi-

tectural design. We have distinguished software design

from some of its subareas, like UI design (typically sup-



20 Léa Brunschwig et al.

0 1 2 3 4 5 6 7 8 9 10 11

users are familiar with the usage of mobile devices
user engagement

scalability of models
scalability of collaboration

lightweigth modelling
lightweight metamodelling

intuitive handling
interoperability

indoor positioning
exploit context information

distributed teams in software projects
availability of apps for controlling IoT devices

additional way to access models
natural interaction (touch gestures)

natural interaction (sketching)
developing apps in phones to facilitate their testing

creative modelling
high number of mobile device users

on‐site modelling
end‐user development

pervasive access / portability / mobility
collaboration

Fig. 19: Authors’ motivations for proposing a mobile modelling approach.

ported by sketching of UI mockups) and IoT (with tools

offering different ways to customize the interaction with

external devices).

5.2 RQ2: What are the motivations argued for mobile

modelling?

We have elicited from the papers the motivations that

authors have argued for developing modelling tools on

mobile devices. Figure 19 summarizes the motivations,
where the horizontal axis corresponds to the number

of approaches that give a particular motivation. The

graphic only considers academic papers, since tools

from app stores do not provide any explicit motivation.

We can see that the most recurrent motivation is

collaboration (11 out of 25 approaches), which is men-

tioned by several approaches in the domains of process

modelling, software design and domain-specific mod-

elling. The possibility to use the application in mobil-

ity from everywhere (8) and facilitate end-user develop-

ment to novice users (7) are also popular motivations.

In two cases, end-user development targets mobile de-

velopment, and the rationale is to use the same device

to both develop and test mobile applications. In gen-

eral, most end-user development tools provide graphical

languages because they are easier to use in the reduced

screen of mobile devices. However, we also find jigsaw-

like and textual languages for the development of small

applications by non-programmers on the mobile. Even

though one can argue that these languages may be used

on desktop computers or the web, the authors of the

papers explicitly decided to focus the deployment on

mobile devices because the targeted audience has more

chances to access a mobile device than a computer.

On-site modelling is mentioned in the fourth place

(4) in the following scenarios: the agile creation of mod-

els while interviewing customers or domain experts, the

configuration of IoT devices in-place by interacting with

their sensors, and providing virtual objects with precise

coordinates from the real world (e.g., to build models

of convention centers or smart factories). The latter is

very much related to indoor positioning, which is also

given as motivation by 1 work.

The fifth reason for mobile modelling is the high

number of smartphone users (3). Then, it follows cre-

ative modelling (2), which refers to being able to build

design models more flexibly by relaxing their confor-

mance rules; this is in contrast to many modelling desk-

top applications which always require correct models

and hence may be too rigid for some scenarios such

as early design discussion [37]. Natural user interac-

tion, either based on sketching (2) or touch gestures

(2), is also a motivation of some authors’ works. Ac-

tually, even though only 2 papers explicitly mention

sketching as one of the fundamental reasons to adopt

modelling on mobile phones, this kind of syntax is sup-

ported by 8 (out of 25) academic tools, and by 2 tools

from app stores. Touch screens not only permit repro-

ducing the pen and paper feel in the early specification

process, but they eventually avoid having to make a



Modelling on mobile devices 21

model by hand and remake it on the machine, while

enabling model sharing among several potentially dis-

tributed stakeholders. Moreover, touch screens allow

manipulating models using a richer variety of gestures

(like tap, drag, flick, swipe, pinch, shake, rotate, touch

and hold) than standard mouse and keyboard applica-

tions.

One of the papers motivates mobile modelling by

the need to obtain and profit from context information,

which is possible by the sensors and components embed-

ded in the mobile devices, and also by the possibility

to interact with other external sensors like those in IoT

devices. The camera, the gyroscope, the accelerometer

or the GPS are some examples that are only available

on mobile devices.

Finally, other reasons for mobile modelling are inter-

operability with other tools, intuitive handling of smart

devices, lightweight (meta-)modelling, scalability of the

models or the collaboration, user engagement, and fa-

miliarity of the potential users with the usage of the

mobile device.

5.3 RQ3: What are the characteristic features of

existing mobile modelling approaches?

In this section, we reflect on the classification of ap-

proaches presented in Section 4 and the coverage of the

features in the feature models.

Regarding syntax (cf. Section 4.1.1), Figure 20

shows that the most common style is graphical (88%).

Of these graphical approaches, a substantial number

is based on sketching (23% of them), and three use

geolocation or AR. Other syntaxes – tabular, textual

and based on NL – are a minority (with percentages of

6%, 4% and 2% respectively). Two approaches combine

syntaxes: graphical and based on NL (Socio [78]), and

graphical/sketching and tabular (MobiDev [89]).

0 5 10 15 20 25 30

NL

Textual

Tabular

Geoposition

AR

Sketching

Graphical

Literature

App Stores

Fig. 20: Concrete syntax styles of mobile modelling
approaches and tools.

Only 17% of all tools and approaches support ex-

tended modelling, allowing users to draw atop the

model and annotate its elements. This is always per-

formed on languages with a graphical syntax, and in

one case, based on sketching.

Regarding semantics (cf. Section 4.1.3), most tools

and approaches (75%) do not define an explicit se-

mantics, 6% offer a generative one, and 19% provide

execution semantics. Just one tool (DSL-comet [102])

supports access control at the language level for grant-

ing different modelling privileges to its users (cf. Sec-

tion 4.1.4).

Most approaches and tools (89%) support one or

several fixed languages (cf. Section 4.2). Only a minor-

ity (13%) can be used to define DSLs, and in all cases,

they correspond to academic works.

The architecture of the analysed approaches and

tools (cf. Section 4.3.1) is divided roughly equally be-

tween one-tier (43%) and client-server (47%). In addi-

tion to target the deployment on mobile devices, 45%

of approaches are also deployed as web or desktop ap-

plications, and 11% as both. 34% of the tools are cross-

device, and interestingly, most tools in app stores have

versions for iOS and Android. Finally, in two cases

(HoloFlow [90] and Mind Vector [68]) the deployment

is on head-set devices.

Many approaches and tools (72%) lack collaboration

support (cf. Section 4.3.2). Collaboration is more fre-

quent in academic works, since 44% of the approaches in

the literature support collaboration. Most approaches

(92%) supporting synchronous collaboration also sup-

port some form of asynchronous collaboration. The

most frequent synchronous collaboration mechanism is

centralized via a server (77%).

Interoperability is poor in general (cf. Section 4.3.3).

Only 21% of the approaches and tools offer some export

capabilities, and 8% have both import and export ca-

pabilities. Interoperability support is more frequent in

approaches found in the literature (28% of them can

export to other format) than in tools from app stores.

Finally, the vast majority of approaches use the key-

board (96%) and the touch screen (94%) for modelling

(cf. Section 4.3.4). Instead, devices like the camera, mic,

accelerometer or GPS are only used by 13% of the ap-

proaches, all of them works found in the literature.

5.4 RQ4: What are the gaps in current approaches,

and the research opportunities in mobile modelling?

Our mapping study reveals some features that are

scarcely represented by existing mobile modelling tools.

These provide research opportunities within this field.



22 Léa Brunschwig et al.

In the following, we elaborate on such lines of potential

research.

5.4.1 Syntax

First, regarding the syntax of modelling languages,

most existing approaches support graphical syntaxes,

and sometimes sketching, to the detriment of other syn-

taxes. However, geolocated syntaxes and augmented re-

ality can bring a lot of opportunities for on-site mod-

elling (fourth motivation argued by researchers to use

a mobile modelling approach, see Figure 19). In par-

ticular, the ability to overlay virtual objects (with in-

formation coming from a model) over physical objects

can bring interesting possibilities for modelling [19] in

domains like smart factories, construction, IoT – as il-

lustrated by HoloFlow [90] – or interior design (like the

IKEA room planner [42]). AR-based syntaxes for DSLs

can be an enabling technology for the construction of

digital twins [81].

In turn, syntaxes based on voice/text natural lan-

guage may simplify the user interaction with the mobile

in certain scenarios, such as modelling by non-modelling

experts, by people with certain kinds of disabilities

(e.g., blind people) or for end-user development [78].

These syntaxes may be combined with other natural

mobile interaction modes like sketching or touch ges-

tures.

Actually, going one step further, one may devise

modelling languages with several syntaxes to give rise

to multi-experience development platforms (MXDPs)

for modelling. MXDPs6 are a novel concept for IDEs

that facilitate creating applications that run on mul-

tiple channels (desktop, web, mobile, among others).
An MXDP offers an integrated set of front-end devel-

opment tools and back-end services that make it easy

for developers to create fit-for-purpose applications by

means of different modalities (e.g., touch, voice, ges-

tures). This way, it provides a consistent user experi-

ence from different devices including mobile devices but

also the web, wearable devices, conversational agents

or augmented reality. We believe that mobile modelling

may play a prominent role in such modelling MXDPs.

We have seen that extended modelling features, such

as annotations or drawings, are poorly supported in mo-

bile modelling apps. Yet, they allow enhancing the in-

formal semantics of a model and providing indications

of future actions to be accomplished. This limitation is

not specific to mobile modelling applications, but it has

been reported by modelling languages in general. Quot-

ing Störrle [93], when it comes to “expressing different

6 https://www.gartner.com/en/documents/3987201/

magic-quadrant-for-multiexperience-development-platforms

degrees of reality or epistemic states, such as necessity,

contingency, and desirability ... conventional modelling

languages are poorly equipped to capture and document

this expressive richness”. Hence, there is a need to in-

vestigate and develop effective means to convey infor-

mal information and degrees of certainty in (mobile)

models.

5.4.2 Semantics

With respect to execution semantics, we have identified

several approaches that provide external interaction via

web services or IoT devices. However, exploiting the

context to adapt the models, the model editing actions,

or the modelling environment is largely unexplored in

mobile modelling tools. However, these features may be

crucial for approaches aiming at on-site modelling.

5.4.3 Fine-grained access control

Another gap in this area of research is the provision of

mechanisms for access control at the model level. We

argue that such mechanisms are especially important

in collaborative modelling apps to protect the modelled

information depending on user capacities or roles. Since

collaboration is one of the top motivations argued for

mobile modelling (cf. Figure 19), access control in con-

nection with language elements becomes relevant. In

this respect, solutions to provide role-based access con-

trol for desktop or web modelling applications [14,94]

may need to be transferred or adapted to work on mo-

bile devices. The vision paper [20] presents some steps

in this direction.

5.4.4 Language definition

Related to language definition capabilities, the support

for meta-modelling and the creation of domain-specific

languages is worth exploring. Even though not every

user will be willing or able to define a new language,

this does not preclude that such a functionality would

be useful to more advanced users. Meta-modelling sup-

port would allow such users to create fit-for-purpose

languages instead of using UML, which demands a soft-

ware engineering background and might be difficult to

understand by novices.

Current meta-modelling processes tend to be heavy-

weight, where meta-models are built up-front, and

sometimes involving code generation. However, lan-

guage definition can be much more agile, as demon-

strated for example by the FlexiSketch tool [106] or

by example-based meta-modelling approaches [55,88].

In those approaches, models are built first, and then



Modelling on mobile devices 23

relevant concepts lifted to the meta-model level, in an

automated/assisted way.

As mentioned in Section 4.2, truly mobile meta-

modelling tools would require either from an internal

meta-modelling approach (where meta-modelling oc-

curs in the mobile), or an interpreted external approach

(where meta-modelling occurs externally, but the arte-

facts produced are interpreted by the mobile tool). In-

stead, a generation-based approach cannot be fully au-

tomated, since it requires packaging the generated tool,

uploading it to an app store, and waiting for a review

process by the app store personnel, before the tool can

be distributed and installed.

Regarding the support for fixed languages, in the

software design domain, those approaches and tools tar-

geting UML tend to support mostly class diagrams,

so better coverage of other diagrams is currently lack-

ing. This situation could be improved by better meta-

modelling support.

5.4.5 Deployment

With respect to deployment, most of the tools designed

to be deployed on mobile devices target smartphones,

and only two are specific to smart glasses and other

head-mounted devices. Although few people have access

to these technologies nowadays, it remains an entire

area of research within the modelling community with

many potential and interesting applications, e.g., for

on-site modelling and education.

5.4.6 Collaboration

Collaboration is available in about one-third of the mo-

bile modelling tools. In many cases, this feature alone

serves as the main motivation for the tool (cf. Fig-

ure 19). However, we miss synchronous collaboration

approaches among mobile devices (instead of with other

fixed devices), as well as further support for remote col-

laboration. Moreover, collaboration is not exploited by

modelling languages with a textual or jigsaw-like con-

crete syntax, being this an unexplored area of research.

5.4.7 Interoperability

The interoperability feature is missing in most of the

tools, especially for the import. This implies that mod-

els developed with other tools, e.g., in a desktop com-

puter, have to be redone in the mobile device.

5.4.8 User interaction

Finally, regarding user interaction, mechanisms for

their customization are needed (e.g., see [92]). This

could improve the flexibility and efficacy of modelling

on mobile devices, which may be especially relevant

given the large number of gestures supported by touch

screens. Most approaches rely on the touch screen and

the keyboard, but supporting several ways of interac-

tion (e.g., voice, text, sketching) would help to realize

the idea behind MXDPs. Moreover, the use of sensors

like the accelerometer, the compass or the GPS would

enable the modelling solution to be useful for on-site

modelling.

5.5 Summary of findings

We next summarize the main findings of our study.

– Domains. We found that mobile modelling has

been applied to mind-maps modelling, software

design, process modelling, domain-specific mod-

elling, mobile development and IoT, among others.

We found mind-map modelling exclusively in app

stores; while approaches for domain-specific mod-

elling, mobile development and IoT were found in

academic papers.

– Motivations. The most recurrent motivation for

mobile modelling is collaboration, followed by per-

vasive access, and end-user development. Other mo-

tivations include on-site modelling and natural in-

teraction (via sketching and touch gestures).

– Features. Most tools offer graphical syntax for

modelling, sometimes based on sketching. They typ-

ically support a fixed set of languages, with many of

the tools being also available for the web or desktop

computers. Despite the motivation, only some tools

support collaboration, and most use the keyboard
and the touch screen for user interaction.

– Gaps and Opportunities. Most approaches sup-

port graphical syntax, but there is scarce support for

other more advanced syntaxes, based on augmented

reality or natural language. Most approaches do not

provide explicit model semantics (via execution or

code generation), but there is an opportunity given

the rich set of components and sensors the mobile

has and can communicate with. Even though argued

as the main motivation, many approaches lack col-

laboration, and therefore (fine-grained) access con-

trol mechanisms. There is typically poor interoper-

ability support, and only a few tools offer language

definition capabilities.

5.6 Threats to validity

The purpose of our study is to analyse the use of mod-

elling on mobile devices. Hence, the selection of the



24 Léa Brunschwig et al.

studied approaches and tools may impact the validity

of our review. A possible threat is that we might have

missed some papers due to the query used. To mitigate

this risk, we tried several versions of the query (as de-

scribed in Section 3.1) and applied it on the 5 most

used academic databases (cf. Table 4). Moreover, we

conducted a final process of snowballing [104] to con-

sider additional papers not retrieved in the previous

phases.

Since the field under study is tool-oriented, some

relevant tools might not come from academia, in which

case, they may lack an associated paper in the con-

sidered databases. To reduce this risk, we also looked

into app stores. However, Google Play and App Store

lack a filtering mechanism or an advanced search facility

to help refining the search queries. Therefore, we may

have missed some relevant tool. To tackle this issue, we

looked for references to tools in the selected relevant

papers, and performed a search in web search engines.

In addition, due to the amount of available tools, and to

ensure a certain level of quality, we filtered the results

based on ratings and downloads [39]. This might have

left some relevant tools out. Moreover, in the search

string used for the app stores, we tried to use key-

words that were in-line with those used for the academic

databases. These keywords might be more oriented to

software design, and so, we may have missed interesting

apps like room planners, minecraft- or sims-like games,

fashion design, or vehicle design apps, among others.

In any case, we are confident that the panorama ob-

tained is more accurate and complete than if we did

not consider tools from app stores.

Some of the tools in our study are web-based (cf.

Table 11) but were designed for their use on mobile de-

vices. Many web-based modelling tools exist and many

of them can be accessed and used on mobile devices.

However, as mentioned in Section 2, we excluded them

from our study because our focus is on native mobile

apps that are able to access the capabilities of the mo-

bile. We believe that web-based modelling is a topic

that deserves its own systematic mapping study.

Finally, the misunderstanding of the tool features

or the impossibility to try a tool may have introduced

mistakes in our classification. To alleviate this issue, we

installed and tested the tools whenever possible, but

some functionalities required specific context or condi-

tions (IoT devices, other devices for initiating collab-

oration, payment for unlocking some functionalities).

On the academia side, some tools were not available

anymore, and in those cases, we looked for additional

materials (videos, web pages) on the Internet.

6 Conclusions

In this paper, we have presented a systematic mapping

study about modelling on mobile devices. To provide

a comprehensive view of the current state of this field,

we analysed both approaches from academia and tools

from app stores. To classify the existing proposals, we

created a feature diagram around three main dimen-

sions: the supported modelling language, its definition

and the tool support.

We conducted this study to answer four research

questions. In the first two, we wanted to investigate the

domains where mobile modelling has been applied, and

the reasons to adopt it. We found that mobile modelling

has been applied to mind-maps, software design, pro-

cess modelling, domain-specific modelling, mobile de-

velopment and IoT, among others; and that collabo-

ration, pervasive access, end-user development, on-site

modelling, and natural interaction via sketching and

touch gestures are recurrent reasons for mobile mod-

elling approaches. Third, we wondered about the fea-

tures of existing mobile modelling tools. We found that

most tools support a fixed set of graphical languages,

sometimes based on sketching; with many of the tools

being also available for the web or desktop computers;

some supporting collaboration; and most using the key-

board and the touch screen for user interaction. Fourth,

we aimed at identifying gaps in the current approaches

and research opportunities in the area. We pointed out

that concrete syntaxes using AR, geolocation or voice

are scarce; there are almost no tools for head-set de-

vices; and there are research opportunities on high-level

features of mobile modelling tools such as interoperabil-

ity, external interaction, extended modelling, context,
meta-modelling, sensor-based interaction and user in-

teraction customizability.

This paper is an invitation to the MDE community

to tackle the existing challenges relative to mobile mod-

elling and to improve the current MDE tools available

for mobile devices.

Acknowledgements We thank the reviewers for their use-
ful comments. This work has been funded by the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sk lodowska-Curie grant agreement n◦ 813884
(Lowcomote [96]), by the Spanish Ministry of Science (project
MASSIVE, RTI2018-095255-B-I00), and by the R&D pro-
gramme of Madrid (project FORTE, P2018/TCS-4314).

References

1. Aleksandr Kozlov: Pureflow (2020)
2. Alpers, S., Eryilmaz, E., Hellfeld, S., Oberweis, A.: Mo-

bile modeling tool based on the horus method. In: 2014



Modelling on mobile devices 25

International Workshop on Advanced Information Sys-
tems for Enterprises (IWAISE), pp. 65–71 (2014)

3. Antunes, P., Herskovic, V., Ochoa, S.F., Pino, J.A.: Re-
viewing the quality of awareness support in collabora-
tive applications. J. Syst. Softw. 89, 146–169 (2014)

4. ARCore: https://developers.google.com/ar (2020)
5. ARKit: https://developer.apple.com/

augmented-reality/ (2020)
6. Astah* UML Pad: https://astah.net/products/

astah-uml-pad/ (2020)
7. Avgoustinov, N.: Modelling in Mechanical Engineering

and Mechatronics. Springer-Verlag (2007)
8. Azuma, R.T.: A survey of augmented reality. Presence

Teleoperators Virtual Environ. 6(4), 355–385 (1997)
9. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on

context-aware systems. Int. J. Ad Hoc Ubiquitous Com-
put. 2(4), 263–277 (2007)

10. Baloian, N., Zurita, G., Santoro, F.M., Araujo, R.M.,
Wolfgan, S., Machado, D., Pino, J.A.: A collaborative
mobile approach for business process elicitation. In:
15th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pp. 473–480
(2011)

11. Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A.:
End-user development, end-user programming and end-
user software engineering: A systematic mapping study.
J. Syst. Softw. 149, 101–137 (2019)

12. Becker, J., Clever, N., Holler, J., Shitkova, M.: ice-
bricks - mobile application for business process model-
ing. In: 10th International Conference on New Horizons
in Design Science: Broadening the Research Agenda
(DESRIST), LNCS, vol. 9073, pp. 361–365. Springer
(2015)

13. Bencomo, N., Götz, S., Song, H.: Models@run.time: a
guided tour of the state of the art and research chal-
lenges. Software and Systems Modeling 18(5), 3049–
3082 (2019)

14. Bergmann, G., Debreceni, C., Ráth, I., Varró, D.:
Towards efficient evaluation of rule-based permissions
for fine-grained access control in collaborative model-
ing. In: 2nd International Workshop on Collaborative
Modelling in MDE (COMMitMDE@MODELS), CEUR
Workshop Proceedings, vol. 2019, pp. 135–144. CEUR-
WS.org (2017)

15. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., Riboni, D.: A survey of
context modelling and reasoning techniques. Pervasive
Mob. Comput. 6(2), 161–180 (2010)

16. Blair, G.S., Bencomo, N., France, R.B.: Mod-
els@run.time. IEEE Computer 42(10), 22–27 (2009)

17. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven
Software Engineering in Practice, Second Edition. Syn-
thesis Lectures on Software Engineering. Morgan &
Claypool Publishers (2017)

18. Brooks, F.P.: No silver bullet - essence and accidents of
software engineering. Computer 20(4), 10–19 (1987)

19. Brunschwig, L., Campos-López, R., Guerra, E., de Lara,
J.: Towards domain-specific modelling environments
based on augmented reality. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER), pp. 56–60
(2021)

20. Brunschwig, L., Guerra, E., de Lara, J.: Towards ac-
cess control for collaborative modelling apps. In:
ACM/IEEE 23rd International Conference on Model
Driven Engineering Languages and Systems (MODELS
Companion), pp. 67:1–67:10. ACM (2020)

21. Buchmann, T.: Valkyrie: A uml-based model-driven en-
vironment for model-driven software engineering. In:
7th International Conference on Software Paradigms
Trends (ICSOFT), pp. 147–157. SciTePress (2012)

22. Buchmann, T., Pezoldt, P.: A lightweight framework for
graphical editors on android devices. In: 9th Interna-
tional Conference on Software Engineering and Appli-
cations (ICSOFT-EA), pp. 81–89 (2014)

23. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Model-
ing Framework. Pearson Education (2003)

24. Corley, J., Syriani, E., Ergin, H.: Evaluating the cloud
architecture of atompm. In: 4th International Confer-
ence on Model-Driven Engineering and Software De-
velopment (MODELSWARD), pp. 339–346. SciTePress
(2016)

25. Cribster: Json designer (2020)
26. Danado, J., Paternò, F.: Puzzle: A mobile application

development environment using a jigsaw metaphor. J.
Vis. Lang. Comput. 25(4), 297–315 (2014)

27. Dourish, P., Bellotti, V.: Awareness and coordination
in shared workspaces. In: 1992 ACM Conference on
Computer-Supported Cooperative Work (CSCW), pp.
107–114. ACM (1992)

28. Döweling, S., Tahiri, T., Schmidt, B., Nolte, A., Khalil-
beigi, M.: Collaborative business process modeling on
interactive tabletops. In: 21st European Conference on
Information Systems (ECIS), p. 29 (2013)

29. DrawExpress: https://drawexpress.com (2020)
30. Flowdia Diagrams: https://www.bezapps.com (2020)
31. Francese, R., Risi, M., Tortora, G.: Iconic languages:

Towards end-user programming of mobile applications.
J. Vis. Lang. Comput. 38, 1–8 (2017)

32. Franzago, M., Ruscio, D.D., Malavolta, I., Muccini,
H.: Collaborative model-driven software engineering: A
classification framework and a research map. IEEE
Trans. Software Eng. 44(12), 1146–1175 (2018)

33. Gaouar, L., Benamar, A., Bendimerad, F.: Model
driven approaches to cross platform mobile develop-
ment. In: International Conference on Intelligent In-
formation Processing, Security and Advanced Commu-
nication (IPAC), pp. 1–5 (2015)

34. GraphML: http://graphml.graphdrawing.org (2020)
35. Grundy, J.C., Hosking, J., Li, K.N., Ali, N.M., Huh,

J., Li, R.L.: Generating domain-specific visual language
tools from abstract visual specifications. IEEE Trans-
actions on Software Engineering 39(4), 487–515 (2013)

36. Grundy, J.C., Hosking, J.G., Cao, S., Zhao, D., Zhu,
N., Tempero, E.D., Stoeckle, H.: Experiences develop-
ing architectures for realizing thin-client diagram edit-
ing tools. Softw. Pract. Exp. 37(12), 1245–1283 (2007)

37. Guerra, E., de Lara, J.: On the quest for flexible mod-
elling. In: Proc. MODELS, pp. 23–33. ACM (2018)

38. Halna Mind: https://sites.google.com/site/

halnablue/ (2020)
39. Harman, M., Jia, Y., Zhang, Y.: App store mining and

analysis: Msr for app stores. In: Proceedings of the 9th
IEEE Working Conference on Mining Software Reposi-
tories, MSR ’12, pp. 108–111. IEEE Press (2012)

40. HoloLens: https://www.microsoft.com/en-us/hololens

(2020)
41. Hutchinson, J.E., Whittle, J., Rouncefield, M.: Model-

driven engineering practices in industry: Social, organi-
zational and managerial factors that lead to success or
failure. Sci. Comput. Program. 89, 144–161 (2014)

42. IKEA room planner. https://apps.apple.com/us/app/

ikea-place/id1279244498 (2021)
43. InfoRapid: Knowledgebase builder (2020)



26 Léa Brunschwig et al.

44. Inspiration Maps: https://www.inspiration-at.com/

inspiration-maps/ (2020)
45. Jézéquel, J., Combemale, B., Barais, O., Monperrus, M.,

Fouquet, F.: Mashup of metalanguages and its imple-
mentation in the kermeta language workbench. Softw.
Syst. Model. 14(2), 905–920 (2015)

46. Kammerer, K., Kolb, J., Ronis, S., Reichert, M.: Collab-
orative process modeling with tablets and touch tables
- a controlled experiment. In: 9th IEEE International
Conference on Research Challenges in Information Sci-
ence (RCIS), pp. 31–41 (2015)

47. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson,
A.: Feature-oriented domain analysis (FODA) feasibility
study. Tech. Rep. CMU/SEI-90-TR-021, Software En-
gineering Institute, Carnegie Mellon University, Pitts-
burgh, PA (1990)

48. Kelly, S., Lyytinen, K., Rossi, M.: Metaedit+ a fully
configurable multi-user and multi-tool case and came
environment. In: 8th International Conference on Ad-
vanced Information Systems Engineering (CAISE), pp.
1–21. Springer Berlin Heidelberg (1996)

49. Kelly, S., Tolvanen, J.: Domain-specific modeling - En-
abling full code generation. Wiley (2008)

50. klim: Database designer (2020)
51. Korzetz, M., Kühn, R., Kegel, K., Georgi, L., Schu-

mann, F., Schlegel, T.: Milkyway: A toolbox for pro-
totyping collaborative mobile-based interaction tech-
niques. In: 13th International Conference on Universal
Access in Human-Computer Interaction. Multimodality
and Assistive Environments, UAHCI 2019, Lecture Notes

in Computer Science, vol. 11573, pp. 477–490. Springer
(2019)

52. Lekh Diagram: https://www.lekhapp.com (2020)
53. Lemma, R., Lanza, M., Mocci, A.: Cel: Touching soft-

ware modeling in essence. In: 22nd IEEE Interna-
tional Conference on Software Analysis, Evolution, and
Reengineering (SANER), pp. 439–448 (2015)

54. Li, T.J., Li, Y., Chen, F., Myers, B.A.: Programming
IoT devices by demonstration using mobile apps. In:
6th International Symposium on End-User Development
(IS-EUD), LNCS, vol. 10303, pp. 3–17. Springer (2017)

55. López-Fernández, J.J., Garmendia, A., Guerra, E.,
de Lara, J.: An example is worth a thousand words:
Creating graphical modelling environments by example.
Software and Systems Modeling 18(2), 961–993 (2019)

56. López-Jaquero, V., Navarro, E., Simarro, F.M.,
González, P.: Metamodels infrastructure and heuris-
tics for metamodel-driven multi-touch interaction. In:
13th IFIP TC13 International Conference on Human-
Computer Interaction (INTERACT), LNCS, vol. 8118,
pp. 210–227. Springer (2013)

57. Lucidchart: https://www.lucidchart.com/ (2020)
58. Ludewig, J.: Models in software engineering. Softw.

Syst. Model. 2(1), 5–14 (2003)
59. Ma, Z., Yeh, C.Y., He, H., Chen, H.: A web based uml

modeling tool with touch screens. In: 29th ACM/IEEE
International Conference on Automated Software Engi-
neering (ASE), ASE ’14, pp. 835–838 (2014)

60. MagicLeap: https://www.magicleap.com (2020)
61. Malan, D., Leitner, H.: Scratch for budding computer

scientists. 38th ACM Technical Symposium on Com-
puter Science Education (SIGCSE) 39 (2007)

62. Mangano, N., van der Hoek, A.: A tool for distributed
software design collaboration. In: 2012 ACM Conference
on Computer Supported Cooperative Work Companion
(CSCM), pp. 45–46 (2012)

63. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B.,
Völgyesi, P., Jurácz, L., Levendovszky, T., Lédeczi, Á.:
Next generation (meta)modeling: Web- and cloud-based
collaborative tool infrastructure. In: 8th Workshop on
Multi-Paradigm Modeling (MPM@MODELS), CEUR

Workshop Proceedings, vol. 1237, pp. 41–60. CEUR-
WS.org (2014)

64. Masson, C., Corley, J., Syriani, E.: Feature model for
collaborative modeling environments. In: Proceedings of
MODELS 2017 Satellite Events, CEUR Workshop Pro-

ceedings, vol. 2019, pp. 164–173. CEUR-WS.org (2017)
65. McDirmid, S.: Coding at the speed of touch. In: 10th

SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (On-
ward!), pp. 61–76. ACM (2011)

66. miMind: http://mimind.cryptobees.com (2020)
67. Mind Meister: https://www.mindmeister.com/ (2020)
68. Mind Vector: http://www.mindvectorweb.com (2020)
69. Mindly: https://www.mindlyapp.com (2020)
70. MindMapping 3D: https://www.scapehop.com (2020)
71. MindMaster: https://www.edrawsoft.com/mindmaster/

(2020)
72. MindNode: https://mindnode.com (2020)
73. Mindomo: https://www.mindomo.com/ (2020)
74. Müller, T., Müller, H.: Modelling in Natural Sciences:

Design, Validation and Case Studies. Springer-Verlag
(2003)

75. Nolte, A., Brown, R., Anslow, C., Wiechers, M.,
Polyvyanyy, A., Herrmann, T.: Collaborative business
process modeling in multi-surface environments. In:
Collaboration Meets Interactive Spaces, pp. 259–286.
Springer (2016)

76. Oppl, S., Stary, C.: Effects of a tabletop interface on
the co-construction of concept maps. In: 13th IFIP
TC13 International Conference on Human-Computer
Interaction (INTERACT), LNCS, vol. 6948, pp. 443–
460. Springer (2011)

77. OrgChart: https://orgchartgo.com (2020)
78. Pérez-Soler, S., Guerra, E., de Lara, J.: Collaborative

modeling and group decision making using chatbots in
social networks. IEEE Software 35(6), 48–54 (2018)

79. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Sys-
tematic mapping studies in software engineering. In:
12th International Conference on Evaluation and As-
sessment in Software Engineering (EASE), pp. 68–77.
BCS Learning and Development Ltd. (2008)

80. User Interface Description Language. http://www.uidl.

net (2011). Last accessed, January 2021
81. Rabah, S., Assila, A., Khouri, E., Maier, F., Ababsa, F.,

bourny, V., Maier, P., Mérienne, F.: Towards improving
the future of manufacturing through digital twin and
augmented reality technologies. Procedia Manufactur-
ing 17, 460–467 (2018). 28th International Conference
on Flexible Automation and Intelligent Manufacturing

82. Rachad, T., Idri, A.: Intelligent mobile applications:
A systematic mapping study. Mob. Inf. Syst. 2020,
6715,363:1–6715,363:17 (2020)

83. Ribeiro, A., Silva, A.: Survey on cross-platforms and
languages for mobile apps. In: 8th International Con-
ference on the Quality of Information and Communica-
tions Technology (QUATIC), pp. 255–260 (2012)

84. Ritter, C.T., Schwaiger, J., Johannsen, F.: A prototype
for supporting novices in collaborative business pro-
cess modeling using a tablet device. In: 10th Interna-
tional Conference on New Horizons in Design Science:
Broadening the Research Agenda (DESRIST), LNCS,
vol. 9073, pp. 371–375. Springer (2015)



Modelling on mobile devices 27

85. de Sá, M., Carriço, L.: A mobile tool for in-situ pro-
totyping. In: 11th International Conference on Human-
Computer Interaction with Mobile Devices and Services
(MobileHCI) (2009)

86. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio,
A.: Supporting the understanding and comparison of
low-code development platforms. In: 46th Euromicro
Conference on Software Engineering and Advanced Ap-
plications (SEAA), pp. 171–178. IEEE (2020)

87. Schmidt, D.C.: Guest editor’s introduction: Model-
driven engineering. Computer 39(2), 25–31 (2006)

88. Sebastián-Lombraña, A., Guerra, E., de Lara, J.:
Positioning-based domain-specific modelling through
mobile devices. In: 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA),
pp. 150–157. IEEE (2020)

89. Seifert, J., Pfleging, B., del Carmen Valderrama Ba-
hamóndez, E., Hermes, M., Rukzio, E., Schmidt, A.:
Mobidev: a tool for creating apps on mobile phones.
In: 13th International Conference on Human-Computer
Interaction with Mobile Devices and Services (Mobile-
HCI), pp. 109–112. ACM (2011)

90. Seiger, R., Gohlke, M., Aßmann, U.: Augmented reality-
based process modelling for the internet of things with
holoflows. In: 20th International Conference on Enter-
prise, Business-Process and Information Systems Mod-
eling (BPMDS/EMMSAD@CAiSE), LNBIP, vol. 352,
pp. 115–129. Springer (2019)

91. SimpleMind: https://simplemind.eu (2020)
92. Sousa, V., Syriani, E., Fall, K.: Operationalizing the in-

tegration of user interaction specifications in the synthe-
sis of modeling editors. In: 12th ACM SIGPLAN Inter-
national Conference on Software Language Engineering
(SLE), pp. 42–54. ACM (2019)

93. Störrle, H.: Modeling moods. In: 22nd ACM/IEEE In-
ternational Conference on Model Driven Engineering
Languages and Systems Companion (MODELS Com-
panion), pp. 468–477. IEEE (2019)

94. https://www.eclipse.org/cdo/. Last accessed, January
2021

95. Tillmann, N., Moskal, M., de Halleux, J., Fähndrich,
M., Burckhardt, S.: Touchdevelop: app development on
mobile devices. In: 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-20),
p. 39. ACM (2012)

96. Tisi, M., Mottu, J., Kolovos, D.S., de Lara, J., Guerra,
E., Ruscio, D.D., Pierantonio, A., Wimmer, M.: Lowco-
mote: Training the next generation of experts in scalable
low-code engineering platforms. In: STAF (Co-Located
Events), CEUR Workshop Proceedings, vol. 2405, pp. 73–
78. CEUR-WS.org (2019)

97. Turner, A.: How many smartphones are in
the world? https://www.bankmycell.com/blog/

how-many-phones-are-in-the-world (2020)
98. UML 2.5.1 OMG specification. http://www.omg.org/

spec/UML/2.5.1/ (2017)
99. Urrego, J.S., Muñoz, R., Mercado, M., Correal, D.:

Archinotes: A global agile architecture design approach.

In: 15th International Conference on Agile Processes in
Software Engineering and Extreme Programming (XP),
LNBIP, vol. 179, pp. 302–311. Springer (2014)

100. Vangheluwe, H., de Lara, J., Mosterman, P.: An intro-
duction to multi-paradigm modelling and simulation.
In: Proc. of AI, Simulation and Planning in High Au-
tonomy Systems, pp. 9–20 (2002)

101. Vaquero-Melchor, D., Garmendia, A., Guerra, E.,
de Lara, J.: Domain-specific modelling using mobile
devices. In: 12th International Conference on Soft-
ware Technologies (ICSOFT), Revised Selected Papers,
CCIS, vol. 743, pp. 221–238. Springer (2017)

102. Vaquero-Melchor, D., Palomares, J., Guerra, E.,
de Lara, J.: Active domain-specific languages: Making
every mobile user a modeller. In: ACM/IEEE 20th
International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 75–82. IEEE
Comp. Soc. (2017)

103. Voelter, M.: DSL Engineering - Designing, Implement-
ing and Using Domain-Specific Languages. dslbook.org
(2013). URL http://www.dslbook.org

104. Wohlin, C.: Guidelines for snowballing in systematic lit-
erature studies and a replication in software engineer-
ing. In: 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE), pp.
38:1–38:10. ACM (2014)

105. Wu, Y.: Global smartphone user penetration forecast by
88 countries: 2007-2022. Wireless Smartphone Strate-
gies Services (2016)

106. Wüest, D., Seyff, N., Glinz, M.: Flexisketch: a
lightweight sketching and metamodeling approach for
end-users. Software and Systems Modeling 18(2), 1513–
1541 (2019)

107. OMG’s XML Metadata Interchange. https://www.omg.

org/spec/XMI/About-XMI/ (2015). Last accessed, Jan-
uary 2021

108. XMind: https://www.xmind.net/ (2020)

109. The XML Process Definition Language (XPDL) by the
Workflow Management Coalition. https://www.wfmc.

org/standards/xpdl (2012). Last accessed, January 2021

110. Zarwin, Z., Bjekovic, M., Favre, J., Sottet, J., Proper,
H.A.: Natural modelling. J. Object Technol. 13(3), 4:
1–36 (2014)

111. Zein, S., Salleh, N., Grundy, J.: A systematic mapping
study of mobile application testing techniques. J. Syst.
Softw. 117, 334–356 (2016)

112. Zhao, D., Grundy, J.C., Hosking, J.G.: Generating mo-
bile device user interfaces for diagram-based modelling
tools. In: 7th Australasian User Interface Conference
(AUIC), CRPIT, vol. 50, pp. 101–108. Australian Com-
puter Society (2006)

113. Zhu, N., Grundy, J.C., Hosking, J.G., Liu, N., Cao,
S., Mehra, A.: Pounamu: A meta-tool for exploratory
domain-specific visual language tool development. J.
Syst. Softw. 80(8), 1390–1407 (2007)


