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Abstract. Petri nets are a popular formalism to represent concurrent systems.
However, their standard form does not offer variability support to model and ef-
fectively analyse large sets of variants of a given system. For this purpose, we
propose a notion of product line of Petri nets to represent a set of similar con-
current systems. The formalization enriches Petri nets with a feature model char-
acterizing the variability of the systems. Moreover, places, transitions and arcs
can define presence conditions that determine the subset of system variants they
belong to.
To enable an efficient analysis of the set of all net variants, we have lifted several
structural analysis methods for Petri nets, to the product line level. Currently, we
support the lifted checking of the marked graph, state-machine, and (extended)
free-choice properties, which avoids their analysis on each particular net of the
product line in isolation.
We demonstrate the feasibility of our proposal using examples in the domain of
flexible assembly lines, and introduce an extensible tool infrastructure. The tool
is based on Eclipse and FeatureIDE, and permits adding new analysis methods
externally. Moreover, we present an evaluation that shows the efficiency gains of
our method with respect to an enumerative approach that analyses the properties
on every net within the product line separately.

Keywords: Petri nets, Structural analysis, Product lines, Model-driven engineer-
ing

1 Introduction

Petri nets are a popular formalism to model concurrent systems [19]. They are widely
used due to their rich body of theoretical results enabling analysis, and the plethora of
existing supporting tools1. However, some scenarios require modelling (possibly a large
set of) variants of similar systems. Some examples reported in the literature include the
design of the variants of controllers for cyber-physical systems [18], modelling all pos-
sible variants of flexible assembly lines [22], or building families of workflow process
models [26]. In these cases, the designer needs to build many variations of a base model.
However, if there are many variants, then building, maintaining and analysing this large
set of variants becomes challenging.

1 See for example https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
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To facilitate the management of large sets of net variants, we combine Petri nets
with software product lines (SPLs) [23, 25] to define a notion of Petri net product line
(PNPL). This allows modelling the variability space using a feature model, and auto-
matically producing specific Petri nets from given feature configurations [13].

As the main contribution of this paper, we propose lifting some structural anal-
ysis techniques of Petri nets to the product line level. This means that we do not
need to analyse each Petri net that can be produced from a PNPL separately, but our
analysis techniques work on the whole set of Petri nets directly. In this paper, we ex-
plain how to lift the analysis of the marked graph, state-machine, and (extended) free-
choice [9] properties to PNPLs, but other structural analysis techniques like (extended)
asymmetric choice [34] or equal conflict nets [30] can be lifted in a similar way. In
the above-mentioned scenarios, these structural analysis techniques can be used to as-
sess soundness of workflow nets [33] by analysing if some/all nets are free choice; to
check whether synchronization can interfere with conflicts in a flexible assembly line
by analysing if some/all nets are free choice; or checking whether any variant of a con-
troller design can lead to conflicts by checking if all variants are marked graphs.

As a second contribution, we present extensible prototype tool support to model
and analyse PNPLs. Our tool is based on Eclipse, and has an extension point to en-
able contributing further analysis techniques externally. Moreover, we use our tool to
evaluate the efficiency of our lifted analysis techniques, which show good improvement
compared to enumerating and analysing each Petri net within the product line.

This paper extends our work in [10] by a more comprehensive formalization of the
lifting process (Section 3.1), the lifted analysis of two additional properties (free-choice
and extended free-choice), improved tool support and an expanded evaluation.

In the following, Section 2 introduces PNPLs; Section 3 proposes lifting the anal-
ysis of structural properties to PNPLs and lifts the analysis of the marked graph and
(extended) free-choice properties; Section 4 presents tool support; Section 5 evaluates
the efficiency of our lifted analysis; Section 6 compares with related research; and Sec-
tion 7 concludes. The Appendix details the lifting of the state-machine property.

2 Petri Net Product Lines

This section defines PNPLs, and how to derive concrete Petri nets via feature config-
urations. We consider a simple notion of Petri net, as given in Definition 1, but the
approach can be easily adapted to other more complex versions.

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T,A), where P and T are
disjoint sets of places and transitions, and A ⊆ (P × T ) ∪ (T × P ) is the set of arcs
connecting either places to transitions or vice versa.

Given an arc a ∈ A, we use a0 to refer to its source, and a1 to refer to its target.
We define a notion of PNPL to support the definition of net variants. Figure 1 shows

the concepts that it involves. Firstly, the variability space is represented as a set of fea-
tures in a feature model. Then, the main idea is to superimpose all net variants within
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Fig. 1. Ingredients of a PNPL.

a single net – called 150% Petri net2 – and annotate its elements with presence con-
ditions (logic formulae over the features in the feature model). Users can retrieve a
particular net variant by selecting a subset of the available features. Such a choice is
called a configuration. Then, the selected features are substituted by true in the pres-
ence conditions, and the unselected ones by false. This makes each presence condition
to evaluate either to true or false. The elements whose presence condition evaluates to
false are eliminated from the 150% net, and the remaining elements form the selected
net variant. In the following, we define each component of the approach in detail.

PNPLs build on the notion of a feature model that defines the variability space of
possible configurations.

Definition 2 (Feature model). A feature model FM = (F, Ψ) consists of a set of
propositional variables F = {f1, ..., fn} called features, and a propositional formula
Ψ over the variables in F .

Remark The propositional formula Ψ in the feature model is used to determine the
allowed combinations of feature values (those making the formula true).

Example As an illustration, we will be using a family of Petri nets describing the be-
haviour of a flexible assembly line, that is, a production system that can be quickly
reconfigured in different set-ups to produce a variety of goods or adapt to customer de-
mands [22]. Here, the problem is to model all such possible configurations in a compact
way, and analyse properties of all configurations efficiently. Figure 2(a) shows the fea-
ture model using a diagrammatic notation [13], and Figure 2(b) using Definition 2. Our

2 The term 150% model is standard in software product lines. It refers to the fact that a single
model contains many variants superimposed.
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Fig. 2. Feature model for the flexible assembly line using (a) the diagrammatic notation of feature
models [13], and (b) Definition 2.

assembly line can be configured to accept one or two kinds of input parts (PartA, PartB),
can optionally have a quality control process (QualityControl) and a parallel conveyor
(Parallel), and can produce one or two kinds of products (Prod1, Prod2).

A PNPL is a Petri net whose elements can be annotated with boolean formulae,
having as variables the features of the feature model.

Definition 3 (Petri net product line). A PNPL PNL = (FM,PN,Φ) is made of a
feature model FM , a Petri net PN (called the 150% Petri net), and a mapping Φ which
consists of pairs 〈x, Φx〉 mapping an element x ∈ P ∪T ∪A to a propositional formula
Φx (called the presence condition (PC) of x) over the features in FM .

PNL is well-formed if ∀a ∈ A : (Φa ⇒ Φa0) ∧ (Φa ⇒ Φa1) is true.

As noticed, we use an annotative approach to facilitate the analysis. The approach
relies on the definition of a 150% Petri net that contains all variants of the PNPL, and
the assignment of PCs to its elements. Then, a particular Petri net can be obtained by
removing the elements whose PC evaluates to false given a choice (a configuration) of
feature values. This kind of variability which starts from a maximal description of a set
of systems (the 150% Petri net) and deletes elements upon certain conditions is called
negative [8]. Instead, other approaches to SPLs use positive variability, i.e., they start
from a minimal description of the systems to which new elements are added depending
on the selected features [27]. Our method can also be applied to positive variability
approaches as long as they permit deriving a 150% Petri net.

In Definition 3, the well-formedness condition requires the PC of an arc to be
stronger than the PC of its source and target elements. This ensures that, if the arc is
present in a product Petri net (i.e., a Petri net derived from a configuration by deleting
from the 150% net the elements whose PC is false), its source and target elements will
be present as well. Definitions 4 and 5 will provide the formal notions of configuration
and Petri net derivation.

Example Figures 2 and 3 show the feature model and the 150% net composing the
PNPL of the flexible assembly line. The 150% Petri net in Figure 3 uses dashed regions
as a shortcut to assign the same PC to all the elements in the region. For example,
formula PartB in the top-left corner is attached to transition genB , to place cnvB , and
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Fig. 3. 150% Petri net with PC annotations, modelling a flexible assembly line.

to the arcs from/to place cnvB . If an element does not show an attached PC, then we
assume that its PC is true.

The way to obtain a specific product Petri net from a PNPL is by selecting a subset
of the features in its feature model. This selection is called a feature configuration. In
the following definition, we use Ψ [X/true, Y/false] to denote the substitution of all
variables in X by true, and all variables in Y by false, in formula Ψ .

Definition 4 (Feature configuration). A valid feature configuration ρ ⊆ F of a PNPL
PNL with feature model FM = (F, Ψ) is a subset of its features satisfying Ψ , i.e.,
Ψ [ρ/true, F \ ρ/false] evaluates to true when each f ∈ ρ is substituted by true, and
each f ∈ F \ ρ is substituted by false. We use P (FM) = {ρi} for the set of all valid
feature configurations of PNL.

To improve readability, in the remaining of the paper, feature configurations omit
features that are mandatory in any configuration.

Example Figure 2 admits 36 feature configurations. In all of them, PartA or PartB
(inclusive) need to be selected, and similarly, Prod1 or Prod2 need to be selected as well.
For instance, some valid configurations are ρ0 = {PartA, Prod1}, ρ1 = {PartA, PartB,
Prod1}, and ρ2 = {PartB, Parallel, Prod1}. As mentioned above, these configurations
would also include features FlexibleAssemblyLine, InParts, Process and OutProducts,
but we do not show them as they are mandatory.

Given a feature configuration, we obtain the corresponding product Petri net by
removing from the 150% Petri net any element whose PC is false.

Definition 5 (Petri net derivation). Given a PNPLPNL = (FM,PN = (P, T,A), Φ)
and a configuration ρ ∈ P (FM), we derive the net PNρ = (Pρ, Tρ, Aρ) building each
set Xρ ⊆ X (for X = {P, T,A}) as {x ∈ X | Φx[ρ/true, F \ ρ/false] = true}. We
use Prod(PNL) = {PNρ | ρ ∈ P (FM)} for the set of all derivable nets from PNL.

Example Figure 4 shows a Petri net derivation example using the feature configuration
ρ2 = {PartB, Parallel, Prod1}. This way, PNρ2 contains exactly those elements whose
PC evaluates to true.

To analyse a property in every Petri net that can be derived from a PNPL, a naive
method would derive and analyse each product Petri net one by one. However, this can
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Fig. 4. Petri net derivation example.

be time-consuming since the number of derivable Petri nets can be exponential on the
number of features in the worst case. Hence, the next section proposes a method to lift
the analysis of structural properties to the product line level.

3 Structural Analysis of Petri Net Product Lines

This paper is focused on the efficient analysis of structural properties of the set of nets
that can be derived from a PNPL. Structural properties depend only on the net topology
and are independent of the initial marking [19]. These properties include connectedness,
state-machine, marked graph, and (extended) free-choice, among others.

In the following, we first introduce the general scheme and required concepts for the
lifted analysis of structural properties (Section 3.1). Then, we lift the analysis for the
marked graph (Section 3.2), free-choice (Section 3.3) and extended free-choice proper-
ties (Section 3.4). The appendix contains the lifting of the state-machine property.

3.1 Lifting the analysis of structural properties

Structural properties look at connectivity patterns of a given Petri net to assert the oc-
currence of some particular structure. These properties are frequently formulated using
first-order logic and auxiliary functions, such as the pre- and post-sets of each place and
transition in the net. Figure 5(a) illustrates the formalization of a structural property
using a formula P , which is checked on a Petri net PN . We write PN |= P to indicate
that property P holds on the Petri net PN .

To check a structural property in the set of nets of a PNPL, we can separately check
the property in each derivable net PNi, as Figure 5(b) shows. Because we now look
at a set of nets, instead of at individual ones, we can distinguish between weak and
strong property satisfaction. Weak satisfaction requires that some product Petri net of
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the PNPL satisfies the property P (e.g., the marked graph property, cf. Definition 7),
while strong satisfaction requires that all product Petri nets satisfy P . The problem with
this solution is that checking P on each product net might be too costly as there may be
an exponential number of them.

Instead, we propose the solution outlined in Figure 5(c) to improve the efficiency of
the analysis of structural properties for a PNPL. In this solution, we first lift the property
P to the product line level. For this purpose, we encode P as a formula ΦP which takes
into account the PCs of the elements in the 150% Petri net, and is satisfied by those
configurations ρ such that PNρ |= P . Then, we recast the checking of weak/strong
property satisfaction as a constraint satisfaction problem. Specifically, if SAT (Ψ ∧ΦP )
(with SAT a predicate that holds if the formula is satisfiable, and Ψ the formula of the
feature model), then there is some valid configuration which produces a Petri net that
satisfies the property P . We can use a constraint solver to obtain a feature configuration
that satisfies the formula Ψ ∧ ΦP . If such a configuration exists, then we have weak
property satisfaction.

Conversely, the formula ¬ΦP is satisfied by those configurations that produce Petri
nets where P does not hold. This way, we have strong satisfiability if SAT (Ψ ∧ ¬ΦP )
does not hold. This means that no valid configuration (satisfying Ψ ) produces a Petri
net that does not satisfy P (where ¬ΦP holds).

The structural properties that we consider in this paper – state-machine, marked
graph, (extended) free-choice – make use of the pre- and post-sets of each place p and
each transition t (written •p, p•, •t and t• respectively). Hence, we need to incorporate
the PCs within those sets, as Definition 6 shows.

Definition 6 (Lifted pre-/post-sets). Given a PNPLPNL = (FM,PN = (P, T,A), Φ),
for any element x ∈ P ∪ T , the lifted pre-set of x is ◦x = {(y, Φ(y,x)) | (y, x) ∈ A},
while its lifted post-set is x◦ = {(y, Φ(x,y)) | (x, y) ∈ A}.

Remark. In the previous definition, we can use the PC of the arc (Φa) instead of the PC
of its source or target place or transition (Φa0 , Φa1 ) because, according to Definition 3,
in a well-formed PNPL, Φa ⇒ Φa0 ∧ Φa ⇒ Φa1 , and so, Φa ∧ Φa0 = Φa = Φa ∧ Φa1 .



As an illustration, the following subsections apply this approach to lift the analysis
of the marked graph, free-choice and extended free-choice properties. Since the state-
machine property is the dual of the marked graph property, we show it in the Appendix.
Other structural properties like asymmetric choice can be lifted in a similar way.

3.2 Lifted analysis of the marked graph property

Firstly, we provide the definition of the marked graph (MG) property. In a MG Petri net,
each place has exactly one input transition and one output transition, whereas each tran-
sition may have multiple input and output places. Therefore, a MG allows concurrent
and synchronization structures with no conflict.

Definition 7 (Marked graph, from [19]). A Petri net PN = (P, T,A) is a marked
graph, written PN |=MG, if ∀p ∈ P : |•p| = |p•| = 1.

We lift this definition of MG to the product line level. Therefore, a PNPL strongly
(weakly) satisfies the MG property if all (some of) its derivable nets are MGs.

Definition 8 (Strong and weak MG product line). A Petri net product line PNL is
a strong marked graph iif ∀PNρ ∈ Prod(PNL) : PNρ |= MG. PNL is a weak
marked graph iif ∃PNρ ∈ Prod(PNL) : PNρ |=MG.

If we can derive from the product line PNL a net that is not a MG, then PNL
is not a strong MG product line. In particular, given a feature configuration ρ, a Petri
net derivation PNρ is not a MG if it has a place p with more than one input tran-
sition, more than one output transition, no input transitions, or no output transitions.
Therefore, for a PNPL to be a strong MG, we require that the size of the lifted pre-set
◦p = {(t0, Φ(t0,p)), ..., (tn, Φ(tn,p))} and the lifted post-set p◦ = {(t0, Φ(p,t0)), ..., (tn,
Φ(p,tn))} of every place p to be one for every possible configuration. For the case of the
pre-set, this is the case if the following formula is true:

Φ◦p , false ∨
(Φ(t0,p) ∧ ¬Φ(t1,p) ∧ ... ∧ ¬Φ(tn,p)) ∨
(¬Φ(t0,p) ∧ Φ(t1,p) ∧ ... ∧ ¬Φ(tn,p)) ∨ ...

(¬Φ(t0,p) ∧ ¬Φ(t1,p) ∧ ... ∧ Φ(tn,p))

(1)

The formula is made of a disjunction of conjunctions, where only one term in each
conjunction can be true. This ensures that, regardless of the configuration, the pre-set of
the place will have size one. The disjunctions start with false, so that Φ◦p is false when
◦p is empty. The terms Φ(ti,p) are the PCs in the lifted pre-set of p (◦p). The formula
that ensures that the size of the post-set of a place is one for every possible configuration
is defined similarly, but using the terms Φ(p,ti) in the lifted post-set of p (p◦).

This way, a PNPL includes some Petri net that is a MG if there is a feature configu-
ration ρ such that for every place p in the PNPL:

– p is not in PNρ, therefore Φp is false; or
– p is in PNρ, and therefore Φ◦p and Φp◦ need to be true.



We can express these conditions as the logical formula in Equation 2.

ΦMG = ∧p∈P [¬Φp ∨ (Φp ∧ Φ◦p ∧ Φp◦)] (2)

If SAT (Ψ ∧ΦMG) is true, then the PNPL is a weak MG. In such a case, we can use
a constraint solver to obtain a feature configuration that satisfies the formula. The Petri
net derived using this feature configuration is ensured to be a MG.

Conversely, the feature configurations making the formula ΦMG false yield Petri
nets that are not MGs. Hence, a PNPL is a strong MG if SAT (Ψ ∧ ¬ΦMG) is unsatis-
fiable (i.e., no valid configuration produces a net that is not a MG).

Example In the PNPL consisting of the feature model in Figure 2 and the 150% net in
Figure 3, the interesting cases are those for places in and ctrl. In the latter case, any Petri
net that contains either both transitions inc1 and inc2, or both transitions prod and fix, is
not a MG because place ctrl would have either two incoming or two outgoing arcs. This
is the case for the Petri nets derived from configurations that select the features Parallel
or QualityControl. Similarly, place in will have two incoming arcs for configurations that
select the feature QualityControl, and two outgoing arcs for configurations that select the
feature Parallel, resulting in nets that are not MGs. Overall, the example PNPL is not
a strong MG product line. However, it is a weak MG product line as, for example, the
configuration that only selects features PartA and Prod1 produces a Petri net that is a
MG. In practice, if we would like to have no conflicts in the flexible assembly line, we
might rule out the problematic variants (i.e., those that are not MGs) by extending the
formula Ψ in the feature model. The concrete formula, not reduced, corresponding to
the MG property of our example PNPL is the following:

ΦMG = (¬PartA ∨ (PartA ∧ PartA ∧ PartA)) ∧
(¬PartB ∨ (PartB ∧ PartB ∧ PartB)) ∧ (QualityControl ∧ Parallel) ∧
(¬Parallel ∨ (Parallel ∧ Parallel ∧ Parallel)) ∧
(Parallel ∧ QualityControl) ∧ (¬Prod1 ∨ (Prod1 ∧ Prod1 ∧
(Prod1 ∧ Prod2))) ∧ (¬Prod2 ∨ (Prod2 ∧ Prod2 ∧ (Prod1 ∧ Prod2))) ∧
((¬(Prod1 ∧ Prod2)) ∨ ((Prod1 ∧ Prod2) ∧ (Prod1 ∧ Prod2)))

Then, to assess the MG property on the PNPL, we analyse the satisfiability of the
conjunction of this formula ΦMG and the formula of the feature model Ψ .

Interestingly, the lifted analysis of the MG property is very similar to the analysis
of the state-machine property. A state-machine (SM) is a subclass of Petri net where
each transition t has exactly one input place and one output place, while each place
may have multiple input and output transitions. This way, analysing whether a PNPL
is a weak/strong SM product line is dual to checking the MG property in a PNPL but
replacing transitions by places and vice versa (details in the Appendix).

3.3 Lifted analysis of the free-choice property

Next, we define the free-choice (FC) property. In a FC net, it is not possible to mix
choice and synchronization into one routing construct, i.e., either a choice is preceded
by a synchronization, or vice versa. FC Petri nets do not have conflicts since every
transition has a unique input place.



Definition 9 (Free-choice, from [5]). A Petri net PN = (P, T,A) is a free-choice
Petri net, written PN |= FC, if for every two transitions t1 and t2 ∈ T , t1 6= t2 : •t1∩
•t2 6= ∅ ⇒ |•t1| = |•t2| = 1.

In other words, a Petri net is FC if every place is either connected to a unique output
transition, or all its output transitions have a unique input place. Formally:

∀p ∈ P : |p•| = 1 ∨ ∀t ∈ p• : |•t| = 1 (3)

Following the rationale of the previous analysis, we first lift the definition of prop-
erty FC to the product line level. Hence, a PNPL is a strong (weak) FC if all (some) its
derivable nets are FC.

Definition 10 (Strong and weak FC product line). A Petri net product line PNL
is a strong free-choice iif ∀PNρ ∈ Prod(PNL) : PNρ |= FC. PNL is a weak
free-choice iif ∃PNρ ∈ Prod(PNL) : PNρ |= FC.

According to Equation 3, every outgoing arc from a place either is unique, or is the
only incoming arc to the target transition of the arc. Therefore, a PNPL includes a FC
Petri net if there is a feature configuration ρ such that for every place p in the PNPL:

– p is not in PNρ, therefore Φp is false; or
– p is in PNρ, and therefore either Φp◦ is true, or for every transition t in the post-set
p•:
• t is not in PNρ, therefore Φt is false; or
• t is in PNρ, and therefore Φ◦t needs to be true.

Equation 4 shows the encoding of these conditions as a logical formula expressing
the cases in which a PNPL is a FC product line.

ΦFC = ∧p∈P [¬Φp ∨ (Φp ∧ (Φp◦ ∨ (∧t∈p• [¬Φt ∨ (Φt ∧ Φ◦t)])))] (4)

If SAT (Ψ ∧ ΦFC) is satisfied, then the PNPL is a weak FC product line. On the
contrary, configurations leading to nets that are not FC satisfy Ψ ∧ ¬ΦFC . Therefore, a
PNPL is a strong FC product line if SAT (Ψ ∧ ¬ΦFC) does not hold.

Example The sets of conflicting transitions in the PNPL of Figure 3 (out1 and out2;
prod and fix) only have one input place, and therefore, the example is a strong FC prod-
uct line. In practice, this means that our example has a sound design: in no variant
of our flexible assembly line, synchronization (i.e., sequencing of part production or
movement through the conveyors in the assembly line) interferes with conflicts (i.e.,
choice of paths for parts in the assembly line).

3.4 Lifted analysis of the extended free-choice property

Extended-free choice (EFC) Petri nets satisfy a weaker condition than FC Petri nets,
and every FC Petri net is also EFC. Informally, we say that a Petri net is EFC if the
result of a choice between two transitions is never influenced by the rest of the system.
The following definition formalizes this intuition.



Definition 11 (Extended free-choice, from [5]). A Petri net PN = (P, T,A) is an
extended free-choice Petri net, written PN |= EFC, if for every two transitions t1 and
t2 ∈ T , t1 6= t2 : •t1 ∩ •t2 6= ∅ ⇒ •t1 = •t2.

In an EFC Petri net, if a transition has two or more input places, then all these places
must have the same set of output transitions. Formally:

∀t ∈ T : ∀p1, p2 ∈ •t ⇒ p1
• = p2

• (5)

Next, we lift the definition of the EFC property to the product line level. A PNPL is
a strong (weak) EFC if all (some) derivable nets are EFC.

Definition 12 (Strong and weak EFC product line). A Petri net product line PNL is
a strong extended free-choice iif ∀PNρ ∈ Prod(PNL) : PNρ |= EFC. PNL is a
weak extended free-choice iif ∃PNρ ∈ Prod(PNL) : PNρ |= EFC.

According to Equation 5, we check that each transition t has the following EFC
condition:

– t is not in PNρ, therefore Φt is false; or
– t is in PNρ, and therefore Φt needs to be true, and moreover, for every two places
p1 and p2 in the pre-set •t such that p1 6= p2:
1. each transition t′ that is not in the post-set of both p1 and p2 is not in PNρ, and

hence Φ(pi, t′) is false (for i = 1 or 2); and
2. each transition t′ that is in the post-set of both p1 and p2 is in PNρ (and hence
Φ(p1, t

′) and Φ(p2, t′) are true), or disappears from both post-sets (and there-
fore Φ(p1, t′) and Φ(p2, t′) are false).

In the previous condition, the first requirement demands configurations where the
transitions t′ that only belong to one of the post-sets (i.e., to p1• \ p2• or to p2• \ p1•)
disappear from this post-set. The second requirement demands the common transitions
in p1•∩p2• to be maintained. Equation 6 captures these conditions as a logical formula:

ΦEFC(t) = ¬Φt ∨ (Φt ∧p1,p2∈•t|p1 6=p2 [ ∧t′∈p1•\p2• ¬Φ(p1,t′) ∧
∧t′∈p2•\p1• ¬Φ(p2,t′) ∧
∧t′∈p2•∩p1• Φ(p1,t′) ⇔ Φ(p2,t′)])

(6)

Therefore, we define ΦEFC = ∧t∈T ΦEFC(t). Consequently, if there exists a fea-
ture configuration that satisfies SAT (Ψ ∧ ΦEFC), then there is a derivable Petri net
that is EFC, and hence the PNPL is a weak EFC product line. A PNPL is strong EFC if
SAT (Ψ ∧ ¬ΦEFC) does not hold.

Example In the PNPL of Figure 3, there are two transitions that may have two in-
coming places in some configurations: proc and pack. However, their incoming places
only have those transitions as their output, and therefore, the example is a strong EFC.
Actually, as we have seen in Section 3.3, the example is a strong FC product line, and
in consequence, we can conclude that it is a strong EFC product line as well.
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Fig. 6. Architecture of our Petrinets var tool.

4 Tool Support

We have implemented an Eclipse plugin, called Petrinets var, which supports the pre-
sented approach. Figure 6 shows its architecture.

Petrinets var provides two editors: one to specify the 150% Petri net, and another to
assign PCs to its elements in a so-called mapping model. We use the Eclipse Modeling
Framework (EMF) [29] as the underlying modelling technology, and therefore, both
the 150% Petri net and the mapping model are EMF-based models that conform to
their respective meta-models. The meta-model of the mapping model defines classes to
represent the abstract syntax of the boolean formulae making the PCs, together with a
cross-reference that points to the Petri net meta-model elements that can be annotated.

We rely on FeatureIDE [17] to specify the feature model and the feature configu-
rations. FeatureIDE provides an extension point Composer that our tool instantiates to
automate the derivation of specific Petri nets from the 150% Petri net given a feature
configuration. Our tool defines an extension point as well, called Property Analysis,
that allows extending the tool with new analysis methods. We currently provide four
instances of this extension point to analyse whether some/all Petri nets in a PNPL are
state-machines, marked graphs, free-choice or extended free-choice. Since the analysis
techniques provided so far rely on the Sat4J solver [3], our plugin provides facilities to
transform the conjunction of the analysis formula and the formula of the feature model
into conjunctive normal form (CNF), as Sat4J requires. This can simplify the imple-
mentation of new analysis techniques by future users.

Figure 7 shows a screenshot of our tool. The Eclipse project explorer (label 1) con-
tains the FeatureIDE project with the definition of the PNPL used as a running exam-
ple. This project is configured with our composer and declares the 150% Petri net (file
150mm.petrinets), the feature model (file model.xml that is being edited in the window
labelled 2), and the mapping model (file annotation.vrb that is being edited in the win-
dow labelled 3). As the figure shows, there are dedicated editors for each kind of file.
The textual editor for the PCs has code completion (e.g., offering the available feature
names) and validation (e.g., it checks that the used features are defined in the feature
model). A popup menu on the mapping model allows selecting the lifted analysis to
perform. The results of the analyses, including the analysis time, are shown in a dialog
box like the one shown in the figure.



Fig. 7. Screenshot of our Petrinets var tool.

Our current implementation uses its own EMF meta-model to represent 150% Petri
nets. This meta-model supports a simple notion of net like the one we have used in the
paper. However, to improve interoperability with other Petri net tools, we are planning
to use the standard Petri Net Markup Language (PNML) [24] instead, for which there
is an EMF implementation available.

5 Evaluation

Next, we report on two experiments to assess the efficiency gains of our lifted analyses,
compared to generating all derivable nets in a PNPL and analysing each net separately.
In the latter case, we perform an explicit analysis of each single net (i.e., without con-
verting the analysis into a constraint satisfaction problem, which may take longer). In
our evaluation, we measure the time for analysing the strong satisfaction of the MG,
SM, FC and EFC properties (i.e., whether all nets in the PNPL satisfy the property).

We have carried out two experiments based on the running example. In the first ex-
periment, illustrated in Figure 8, we have analysed the efficiency of our analysis tech-
niques when considering PNPLs with 150% Petri nets of different size but the same
number of features. For this purpose, we have created ten PNPLs having the same fea-
ture model as in Figure 2, and whose 150% Petri net contains n replicas of the assembly
line in Figure 3, with n from 1 to 10 (i.e., the first PNPL contains 1 replica, the second
one contains two replicas, and so on). All created PNPLs have 36 valid feature config-
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Fig. 8. Experiment 1: PNPL modelling a replicated flexible assembly line.

urations. As in the running example, the PNPLs are neither strong MG nor strong SM
product lines, but they are strong FC and EFC product lines.

Figure 9 shows the analysis time in milliseconds with logarithmic scale of running
10 times the first execution. We consider just the first execution to discard cache effects.
As it can be observed, all lifted analysis techniques were up to three orders of magni-
tude faster than the time to generate and analyse each net in isolation. In addition, the
analysis time did not depend on the size of the 150% Petri net.

The goal of our second experiment is assessing whether an increase in the number
of features of the PNPL has an impact in the analysis time. For this purpose, we have
created seven PNPLs whose 150% Petri net contains a single assembly line, but they
define an increasing number of features to model additional input parts (PartA, PartB,
PartC, and so on) and output products (Prod1, Prod2, Prod3, and so on). Figure 10
illustrates the construction of the different feature models. The simplest PNPL contains
one input part and one output product, and the most complex one has five input parts
and five output products. These PNPLs are constructed by adding replicas of the PartA
and Prod1 regions in the PNPL of Figure 3. The PNPL with one input part and one
output product is both a strong MG and a strong SM, but the remaining PNPLs are not.
All PNPLs in the experiment are strong FC and EFC product lines.

The graphics in Figure 11 show the analysis time in milliseconds with logarithmic
scale (vertical axis to the left of the graphics), and the number of configurations of each
PNPL (vertical axis to the right). Like in the first experiment, we consider just the first
execution to discard cache effects. It can be observed that the number of configurations
is exponential on the number of features. While the analysis time of all nets in the
PNPL one by one is exponential as well, the analysis time of the lifted property is
roughly constant. Therefore, the larger the number of features in a PNPL, the bigger the
efficiency gains of our lifted analysis compared to an enumerative approach.

Threats to validity While our experiments show gains of at least two orders of magni-
tude with respect to an enumeration-based approach, the experiments were based on a



0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
co

n
fi

gu
ra

ti
o

n
s 

A
n

al
ys

is
 t

im
e 

(m
s 

lo
g 

sc
al

e)
 

Number of assembly lines 

Marked Graph 

Number of products PNPL All Products

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
co

n
fi

gu
ra

ti
o

n
s 

A
n

al
ys

is
 t

im
e 

(m
s 

lo
g 

sc
al

e)
 

Number of assembly lines 

State Machine 

Number of products PNPL All Products

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
co

n
fi

gu
ra

ti
o

n
s 

A
n

al
ys

is
 t

im
e 

(m
s 

lo
g 

sc
al

e)
 

Number of assembly lines 

Free Choice 

Number of products PNPL All Products

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
co

n
fi

gu
ra

ti
o

n
s 

A
n

al
ys

is
 t

im
e 

(m
s 

lo
g 

sc
al

e)
 

Number of assembly lines 

Extended Free Choice 

Number of products PNPL All Products

Number of configurations                 PNPL                All nets 

 
  Number of configurations                 PNPL                All nets 

 
  

Number of configurations                 PNPL                All nets 

 
  Number of configurations                 PNPL                All nets 

 
  

Fig. 9. Analysis time (ms in logarithmic scale) for PNPLs with 150% Petri nets of different size.

synthetic net and variations of it generated by replicating either a part of the net or a
part of the feature model. Therefore, to further validate these results, we plan to consider
models arising in realistic scenarios.

In addition, these results are for checking strong satisfaction of the properties. We
plan to extend the experiments to consider weak satisfaction, for which we would re-
quire PNPLs with different percentages of product Petri nets satisfying the properties.
We expect that our method will provide larger efficiency gains when the percentage of
product Petri nets satisfying the property is low, as more nets within the PNPL need to
be inspected to find one satisfying the property.

6 Related Work

The main analysis techniques for Petri nets can be classified into three groups [7]: i)
enumeration, ii) transformation (mainly reduction), and iii) structural. Enumeration
methods are based on the construction of a reachability/coverability graph, but they
suffer the state explosion problem. Transformation methods obtain a slice of a Petri net
that is easier to analyse but preserves the properties under study [4]. Structural analysis
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techniques are based on the net structure and its initial marking, and can be divided
into two subgroups: linear programming techniques based on the state equation, and
graph-based techniques based on “ad hoc” reasoning frequently derived from the firing
rule. A survey on Petri nets models and their analysis techniques can be found at [28].

There are several mechanisms to model variability for SPLs. Most of them can be
classified into annotation-based and composition-based techniques [1]. In annotation-
based approaches, parts of a model are annotated with information about their mapping
to products of the product line. They are widely used since they are easy to implement
but they work under the closed world assumption, i.e., the set of features is fixed. In
composition-based modelling, the product line is decomposed into separate modules
representing features that can be composed to derive products. They support positive
variability, that is, composition units are added on demand. Surveys on SPL modelling
techniques can be found in [2, 6, 31].

Just like us, some works have added variability to Petri nets using SPL techniques.
Feature Petri nets (FN) [20] extend Petri nets to allow modelling the behaviour of an
entire SPL. A FN transition is activated if its input places are marked and its application
condition (a logical constraint over features) is true under the current configuration
state. Dynamic feature Petri nets (DFPN) [21] extend FN to control feature bindings at
runtime, and allow the evaluation of some dynamic properties using model checking.
These works lift analysis techniques based on the reachability graph to the product
line level, by adding PCs to this graph. They follow an annotative approach to model
variability. Similarly, some works have used variability in Petri nets to express variants
of higher-level languages – like activity diagrams – and use a variable reachability graph
for analysis [12]. This work also uses an annotative approach for SPLs. With respect to
these works, our mapping model is more general: [12] only supports variability in edges
and [21] only supports variability in arcs and transitions, while our approach permits
PCs in arcs, places and transitions. With respect to analysis techniques, the mentioned
works focus on the reachability graph, while we lift structural analysis techniques.

In addition to SPL methods, other techniques to handle variability in Petri nets have
been proposed. Conditional Petri nets [32] associate to each transition a condition de-
fined with the family of L languages, and transitions are conditioned by the transition
sequence previously applied. Likewise, logical Petri nets [15] limit transition firing by
means of constraints on first-order logic. There are also reconfigurable nets [16], which
can change the net topology at runtime by means of rewriting rules. Instead, PNPLs are
static: the user needs to provide a configuration to derive a Petri net.

Regarding analysis of model-based product lines, Czarnecki and Pietroszek [8] pro-
pose an approach to check whether all possible derivable models satisfy the OCL con-
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Fig. 11. Analysis time (ms in logarithmic scale) for PNPLs with feature models of different size.

straints of their meta-model. We may have encoded the different structural properties
in OCL and used that technique. However, our solution permits generating specific
constraints for the analysed PNPL (instead of relying on one generic OCL constraint),
which therefore can be solved using simpler and potentially more efficient standard
SAT-solving techniques. Instead, Czarneck’s approach requires extending an existing
OCL-based checker to consider PCs, while in practice we just use the Sat4J SAT solver.

Concerning SPL analysis of temporal properties, Legay et al. [14] represent the be-
haviour of variability-intensive systems by means of an extension of transition systems,
called Feature Transition System. These authors also propose model checking algo-
rithms to verify all products of a SPL [6]. Unlike this approach, we only focus on static
properties, but we plan to explore behavioural properties in future works.

Altogether, to the best of our knowledge, there are no previous works on lifting the
analysis of structural properties of PNPLs. This is relevant to enable an efficient anal-
ysis of structural properties for all variants within a PNPL. Structural analysis helps in
discovering possible design errors in some product Petri net, e.g., related to the exis-
tence of conflicts, or interference of synchronization with conflicts. Our work is a first
step in this direction, which we have realized in practice through extensible tooling.



7 Conclusions and Future Work

In this paper, we have proposed the notion of Petri net product line, and showed how
to analyse structural properties (the marked graph, state-machine, free choice and ex-
tended free choice properties) at the product line level. We have validated the approach
in practice by presenting an extensible prototype on top of FeatureIDE, and an experi-
ment that shows the benefits of our approach with respect to an enumerative one.

In the future, we plan to support more types of static analysis techniques, exploit
compositionality of Petri nets in these analysis techniques, and perform more thorough
experiments. We also plan to consider further types of properties (not only strong and
weak), in the line of [11]. Our idea is to develop a domain-specific language to express
such analyses, which then can be compiled into standard SAT solving procedures. At
the tool level, we will use the PNML meta-model to ease the connection of our approach
with Petri net tools like CPN Tools [35]. We are also planning to explore the lifting of
dynamic analysis techniques, e.g., based on the incidence matrix and on the reachability
graph (similar to [21]). For the former, our idea is to include the PCs on the elements
of the matrix, and use constraint solving to find place/transition invariants for some/all
Petri net products. For the latter, a first idea – if we restrict to Petri nets with PCs only
in transitions – is to calculate the reachability graph of the 150% Petri net, and then
annotate the reachability graph with PCs, in the style of [21]. Finally, we would like to
combine product lines with other types of Petri nets (e.g., with inhibitor or read arcs, or
with timed transitions), and consider variability of the Petri net language itself.
Acknowledgments: Work funded by the Spanish Ministry of Science (RTI2018-095255-
B-I00) and the R&D programme of Madrid (P2018/TCS-4314).

Appendix

This appendix lifts the analysis of the state-machine property. A state-machine (SM)
is a subclass of Petri net where each transition t has exactly one input and one output
place, while each place may have multiple input and output transitions. SMs allow
representing decisions, but not the synchronization of concurrent activities.

Definition 13 (State-machine, from [19]). A Petri net PN = (P, T,A) is a state-
machine, written PN |= SM , if ∀t ∈ T : |•t| = |t•| = 1.

Next, we lift the definition of the SM property to the product line level. A PNPL is
a strong (weak) SM if all (some) derivable nets are SMs.

Definition 14 (Strong and weak SM product line). A Petri net product line PNL is
a strong state-machine iif ∀PNρ ∈ Prod(PNL) : PNρ |= SM . PNL is a weak
state-machine iif ∃PNρ ∈ Prod(PNL) : PNρ |= SM .

Similar to the case of MGs, to ensure that all derivable nets are SMs, we check that
the size of the lifted pre-set ◦t = {(p0, Φ(p0,t)), ..., (pn, Φ(pn,t))} and the lifted post-set
t◦ = {(p0, Φ(t,p0)), ..., (pn, Φ(t,pn))} of a transition t is one in every configuration. The
size of the lifted pre-set ◦t of a transition t is one if the following formula is true. The



disjunction starts with false to consider the case when ◦t is empty. The formula Φt◦ to
check that the size of the lifted post-set of a transition t is one is defined similarly.

Φ◦t , false ∨
(Φ(p0,t) ∧ ¬Φ(p1,t) ∧ ... ∧ ¬Φ(pn,t)) ∨
(¬Φ(p0,t) ∧ Φ(p1,t) ∧ ... ∧ ¬Φ(pn,t)) ∨ ...

(¬Φ(p0,t) ∧ ¬Φ(p1,t) ∧ ... ∧ Φ(pn,t))

(7)

Hence, a PNPL includes some Petri net that is a SM if there is a feature configuration
ρ such that for every transition t in the PNPL:

– t is not in PNρ, therefore Φt is false; or
– t is in PNρ, and therefore Φ◦t and Φt◦ need to be true.

Equation 8 shows the formula that captures the two previous conditions.

ΦSM = ∧t∈T [¬Φt ∨ (Φt ∧ Φ◦t ∧ Φt◦)] (8)

If there is a feature configuration such that SAT (Ψ ∧ΦSM ) holds, then there is a
derivable Petri net that is a SM, and the PNPL is a weak SM. On the contrary, the fea-
ture configurations that produce nets which are not SMs are those making the formula
¬ΦSM true. Hence, the PNPL is a strong SM if SAT (Ψ ∧ ¬ΦSM ) does not hold.
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