
Wodel: A Domain-Specific Language for Model Mutation

Pablo Gómez-Abajo, Esther Guerra, Juan de Lara
Computer Science Department

Universidad Autónoma de Madrid
{Pablo.GomezA, Esther.Guerra, Juan.deLara}@uam.es

ABSTRACT
Model-Driven Engineering (MDE) is a software engineering
paradigm that uses models as main assets in all development
phases. While many languages for model manipulation exist
(e.g., for model transformation or code generation), there is
a lack of frameworks to define and apply model mutations.

A model mutant is a variation of an original model, created
by specific model mutation operations. Model mutation has
many applications, for instance, in the areas of model trans-
formation testing, model-based testing or education.

In this paper, we present a domain-specific language, called
Wodel, for the specification and generation of model mu-
tants. Wodel is domain-independent, as it can be used to
generate mutants of models conforming to arbitrary meta-
models. Its development environment is extensible, permit-
ting the incorporation of post-processors for different appli-
cations. As an example, we show an application consisting
on the automated generation of exercises for particular do-
mains (automata, class diagrams, electronic circuits, etc.).

CCS Concepts
•Software and its engineering→Domain specific lan-
guages; Specialized application languages; Source code
generation;

Keywords
Model-Driven Engineering; Domain-Specific Languages; Model
Mutation; Education

1. INTRODUCTION
Model-Driven Engineering (MDE) [3] uses models in all phases
of the software development process, where they are used to
specify, simulate, test and generate code for the final sys-
tem. Hence, model manipulation is a key activity in MDE,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2016,April 04-08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851751

for which domain-specific languages (DSLs) are heavily used.
For example, many DSLs exist to simulate models, produce
a model from another one, or synthesize code.

A model mutation is a kind of model manipulation that cre-
ates a set of variants (or mutants) of a seed model by the
application of one or more mutation operators. Model mu-
tation has many applications. For example, in model trans-
formation testing [1], a transformation is represented as a
model that is mutated to evaluate the efficacy of a test model
set. Such a test set may have been created by mutation of a
set of input seed models. In education, a model represent-
ing a correct solution in a domain (like a class diagram, an
automaton or an electronic circuit) is mutated to produce
exercises that can be automatically graded [9].

There are some frameworks for model mutation, but they
are specific for a language (e.g., logic formulae [5]) or domain
(e.g., testing [1, 2]); moreover, mutation operators are nor-
mally created using general-purpose programming languages
not tailored to the definition and production of mutants.
Hence, there is a lack of proposals facilitating the definition
of mutation operators, applicable to arbitrary languages and
applications. These would facilitate the creation of domain-
specific mutation frameworks like the abovementioned ones
by providing: high-level mutation primitives (e.g., for object
creation or reference redirection) together with strategies
for their customization; support for composition of muta-
tion operators; handy integration with external applications
through compilation into a general-purpose language; and
traceability of the applied mutations.

To facilitate the specification and creation of model muta-
tions in a meta-model independent way, we propose a DSL
called Wodel. This provides primitives for model muta-
tion (e.g., creation, deletion, reference reversal), item selec-
tion strategies (e.g., random, specific, all), and composition
of mutations. We have built a development environment
which allows creating Wodel programs and their compi-
lation into Java, and can be extended with post-processor
steps for particular applications. We illustrate our approach
by the automated generation of finite automata exercises.

Paper organization. Sect. 2 overviews our approach. Next,
Sect. 3 presents Wodel, and Sect. 4 tool support. Sect. 5
applies Wodel to the generation of test exercises. Sect. 6
discusses related works, and Section 7 concludes the paper.

2. OVERVIEW AND RUNNING EXAMPLE
In MDE, models must conform to a meta-model which de-
clares the admissible model elements, properties and rela-
tions. Thus, our goal is to make available a DSL to specify
mutation operators and their application strategy for models
conformant to a given arbitrary meta-model, and facilitate
the use of the generated mutants for different applications.

Fig. 1 shows the workflow of our approach. First, the user
provides a set of seed models conformant to a meta-model
(label 1). Then, he uses Wodel to define the desired mu-
tation operators and their execution details, like how many
mutations of each type should be applied in each mutant,
or their execution order (label 2). In addition, each Wodel
program needs to declare the meta-model of the models to
mutate, which can be any as Wodel is meta-model inde-
pendent. This allows type-checking the program to ensure
it only refers to valid meta-model types and properties, and
allows checking that the result of the mutation is valid.

seed
models

Meta-
Model «conforms»

WODEL
program

domain-specific
artefacts/

applications

1

2

WODEL
engine model

mutants

Post-
processing

4

«conforms»

3

Figure 1: Scheme of our approach

Executing a Wodel program produces mutants of the seed
models (label 3). These are still valid models (i.e., they
conform to the seed models’ meta-model) as this is checked
upon generating each mutant. Finally, an optional post-
processing step can be used to generate domain-specific arte-
facts for particular applications of the mutants (label 4).

2.1 Running example
We will illustrate our proposal with an application of model
mutation to education. In particular, we will generate ex-
ercises where students are presented a correct automaton
(according to a specification) and other incorrect ones ob-
tained by mutating the former, and students have to identify
the correct one. Our approach permits generating exercises
with different degrees of difficulty and automatic correction.

Fig. 2 shows the meta-model for automata used in the ex-
ample. An Automaton is made of States, Transitions, and
an alphabet of symbols. A State has a name and can be
initial and/or final. A Transition connects two states and
may have a symbol attached; if it lacks a symbol, it is a λ-
transition. The meta-model includes three OCL invariants
that any Automaton must fulfill: the first one demands ex-
actly one initial state, the second one demands at least one
final state, and the last requires distinct alphabet symbols.

3. THE WODEL DSL
In this section, we introduce our DSL Wodel and illustrate
its usage showing examples of mutation operators for finite
automata conformant to the meta-model in Fig. 2.

Automaton

name: String

State
Transition

*

name: String
isInitial: boolean
isFinal: boolean

src

tar symbol 0..1

states * * transitions

inv1: self.states->one(s | s.isInitial)
inv2: self.states->exists(s | s.isFinal)
inv3: self.alphabet->forAll (a1, a2 |
 a1.symbol = a2.symbol
 implies a1 = a2)

alphabet

Symbol

symbol: String

Figure 2: Meta-model for finite automata

Wodel programs have two parts. The first one declares the
number of mutants to generate, output folder, seed models
and their meta-model. The second part defines mutation
operators and how many times they should be applied.

Listing 1 shows a simple Wodel program. Line 1 states that
we want to generate 3 mutants in folder out, from the seed
model evenBinary.fa. Line 2 indicates the meta-model of the
seed model. Lines 4–9 define three mutation operators: the
first one (lines 5–6) selects randomly a final state, and sets
it to non-final; the second one (line 7) creates a new final
state; and the last one (line 8) creates a new transition from
the state selected in line 5 to the one created in line 7.

1 generate 3 mutants in ”out/” from ”evenBinary.fa”
2 metamodel ”http://fa.com”
3

4 with commands {
5 s0 = modify one State where {isFinal = true}
6 with {reverse(isFinal)}
7 s1 = create State with {isFinal = true}
8 t0 = create Transition with {src = s0, tar = s1, symbol = one Symbol}
9 }

Listing 1: A simple Wodel program

Next, we detail the mutation primitives offered by Wodel.
These include atomic operations to create and delete ob-
jects and references, modify attribute values, or redirect the
source or target of references. Fig. 3 shows an excerpt of the
Wodel meta-model with the definition of some representa-
tive mutation primitives. All mutation kinds inherit from
Mutation, which holds the minimum and maximum number
of times the mutation is to be applied. If this information
is omitted, like in the mutations of Listing 1, they are exe-
cuted once. In its turn, a Mutation is an ObjectEmitter which
can receive a name, so that it can be referenced from other
mutations. For example, in line 8 of Listing 1, the name s0
is used to refer to the State modified in line 5. The main
supported kinds of Mutation are the following:

• CreateObject: It creates an object of the class indicated
by the type reference. Optionally, it is possible to select a
container object for the created one using an ObjectSelec-
tionStrategy (explained below). In such a case, refType in-
dicates the container’s reference where the new object will
be placed. If no container object is given, then Wodel
selects a suitable one, and if several exist, one is chosen
at random. In line 7 of Listing 1, it is not necessary to
specify a container for the new State because, assuming
one Automaton per model, the created state can only be
placed in collection states of the automaton. Alternatively,
we could make explicit the container object using create

Mutation
min: int=1
max: int=1

CreateObject

ObjectEmitter EClass
type

0..1
name: String[0..1]

ObjectSelection
Strategy

container 0..1

EReference

0..1 refType

AttributeSet EAttribute
attributes

*

Attribute
Init

Attribute
Swap

{ordered}

Attribute
Copy

object 0..1

Modify
Information

object 0..1

attributes * attributes *

Attribute
Type

value

Composite
Mutation

*

ModifySource
Reference

…

ObjectSelection
Strategy

so
u

rc
e

newSource

EReference

refType 0..1

Figure 3: Some supported mutations

State in one Automaton.states. Similarly, it is possible to
specify a value for the attributes and references of the new
object, and in case no value is given for a mandatory ref-
erence, Wodel assigns it one object of a compatible type.
Finally, note that shaded classes EClass, EReference and
EAttribute belong to the meta-modelling framework used
to build the domain meta-model (EMF [10] in our case).
For instance, in our running example, Automaton is an
EClass, states is an EReference, and name is an EAttribute.
This way to refer to the domain meta-model elements en-
ables type-checking and content assistance.

• CreateReference: It creates a new reference of the given
type between two objects. The objects may be selected
using an ObjectSelectionStrategy, or otherwise, source and
target objects of a suitable type are chosen at random.

• ModifyInformation: It selects an object by means of an
ObjectSelectionStrategy, and provides a set of modifica-
tions to be performed on its attributes (class AttributeSet).
The meta-model shows just a few of the possible modifica-
tions, like initializing the value of an attribute, swapping
the value of two attributes or references, and copying the
value of one attribute to another. Other modifications de-
pend on the attribute type. For example, it is possible to
reverse the value of boolean attributes (as done in line 6
of Listing 1), while strings can be transformed into up-
per/lower case, be substituted by a random choice within
a set, or some part of the string can be replaced.

• ModifySourceReference, ModifyTargetReference: It redirects
the source or target of a reference to another object se-
lected by an ObjectSelectionStrategy.

• RemoveObject: It safely removes an object selected by an
ObjectSelectionStrategy, ensuring no dangling edge to/from
the removed object remains.

• RemoveReference: It removes a reference of the given type.
The source and target objects of the reference can be cus-
tomised using ObjectSelectionStrategies.

• CompositeMutation: It allows defining composite muta-
tions made of a sequence of atomic or other composite
mutations, all of which are executed in a block.

Additionally, a Select operation permits selecting objects or
references according to some criteria, so that they can be
used in subsequent mutations.

Object and reference selection in mutations and selectors
can be done using the following strategies: select a random
element, a specific element (referenced by the name of an
emitter), all elements satisfying some condition, or a differ-
ent element to the one selected by the current mutation. The
meta-model in Fig. 4 shows three of these strategies. Speci-
ficObjectSelection selects an object referenced by an emitter.
SpecificReferenceSelection selects both an object and a ref-
erence defined by the object’s class. RandomObjectSelection
chooses a random object from the class specified by reference
type. All strategies can be parameterized with a condition
(class Expression) on the attribute and reference values of
the selected element. For example, in line 5 of Listing 1, the
ModifyInformation mutation uses a RandomObjectSelection
strategy (one State) with an attribute condition (where
{isFinal = true}).

ObjectSelection
Strategy

Random
Selection

RandomObject
Selection

Specific
Selection

SpecificObject
Selection

objSel

SpecificReference
Selection

EReference

refType

Expression

condition 0..1

…

…

…

EClass
type

0..1
ObjectEmitter

name: String[0..1]

Figure 4: Some supported selection strategies

As we have seen, Wodel has a textual concrete syntax.
Listing 2 shows a brief excerpt of its grammar.

1 WODELPROGRAM ::= DEFINITION with commands { MUTATION∗ }
2

3 DEFINITION ::=
4 generate <num> mutants in <folder> from SEEDS
5 metamodel <meta−model>
6

7 MUTATION ::=
8 (CREATEOBJECT | MODIFYINFORMATION |
9 MODIFYSOURCEREFERENCE | ... | COMPOSITEMUTATION)

10 ([(<min> ..)? <max>])?
11

12 CREATEOBJECT ::=
13 (<name> ’=’)? create <EClass>
14 (in OBJECTSELECTIONSTRATEGY (’.’ <EReference>)?)?
15 (with { ATTRIBUTESET (, ATTRIBUTESET)∗ })?
16

17 MODIFYINFORMATION ::=
18 (<name> ’=’)? modify OBJECTSELECTIONSTRATEGY
19 with { ATTRIBUTESET (, ATTRIBUTESET)∗ }
20

21 MODIFYSOURCEREFERENCE ::=
22 modify source <EReference>
23 (from OBJECTSELECTIONSTRATEGY)?
24 (to OBJECTSELECTIONSTRATEGY)?
25

26 COMPOSITEMUTATION ::= (<name> ’=’)? [MUTATION∗]
27 ...

Listing 2: Excerpt of Wodel grammar

Listing 3 shows another example that generates 3 mutants

from every model in folder models (line 1). Lines 5–7 define
a composite mutation which removes a random non-initial
State (line 5), and then removes all Transition objects point-
ing to, or stemming from, the deleted state (lines 6–7). The
transitions to delete are those having an undefined value
in references src or tar. The mutation in lines 8–10 selects
a Transition randomly, and modifies its reference symbol to
point to a different Symbol. The mutations define a cardi-
nality, so that the first one will be applied between 0 and 2
times in every mutant, and the second one between 1 and 3.

1 generate 3 mutants in ”out/” from ”models/”all
2 metamodel ”http://fa.com”
3

4 with commands {
5 c0 = [remove one State where {isInitial = false}
6 remove all Transition where {src = null}
7 remove all Transition where {tar = null}] [0..2]
8 modify target symbol
9 from one Transition

10 to other Symbol [1..3]
11 }

Listing 3: Composite mutation and cardinalities

Since Wodel programs handle each defined mutation as an
operation, it is not possible to have contradictory mutations;
however, two mutations may cancel each other (e.g., one
mutation creates an object, and another deletes it).

3.1 Expresiveness and succinctness of Wodel
Next, we discuss the expressivity and conciseness of Wodel.
Expressivity is approached by using Wodel to define inter-
esting mutations for automata, both devised by us and found
in the literature [9]. Note that [9] does not consider final
states or mutate transition symbols, but it applies different
number of mutations which we express with cardinalities.

Table 1 lists the mutations. The first twelve change the lan-
guage recognized by an automaton (assuming it is minimal),
and the last two make an automaton non-deterministic. Al-
though Wodel lacks the control structures of full-fledged
programming languages, its expressivity was enough to ex-
press the mutations for our running example. Moreover,
loops can be emulated with composite mutations and car-
dinalities, and conditionals are implicit in the conditions of
selection strategies. While the expressivity of Wodel does
not depend on the meta-model for which the mutations are
defined, we acknowledge that its usage in other application
contexts (e.g., model transformation testing) may require
introducing new Wodel primitives.

We analyse conciseness by comparing with the equivalent
Java code, which would be a natural alternative for integrat-
ing mutation operations into applications. Programming the
mutation operations in Java would require from knowledge
of the EMF reflective API [10], as one cannot assume that
Java implementation classes exist for the types in the given
meta-model. It also requires taking care of accidental de-
tails that Wodel manages for free, like placement of ob-
jects in containers, initialization of mandatory references,
type-checking of mutations w.r.t. the meta-model, model
serialization, checking well-formedness of resulting mutants,
or comparing for equal resulting mutants.

To illustrate the complexity of the equivalent Java code,

Mutations that change the language
Create transition [9] create Transition with {symbol = one Symbol}
Create final state Listing 1, line 7
Create connected
state

s = create State
with {name = random−string(1,4)}

t = create Transition
with {tar = s, symbol = one Symbol}

Delete transition remove one Transition

Delete state and ad-
jacent transitions

Listing 3, lines 5–7

Change symbol in
transition

Listing 3, lines 8–10

Change final state to
non-final

Listing 1, lines 5–6

Change initial state
to a different one [9]

s0 = modify one State where {isInitial = true}
with {isInitial = false}

s1 = modify one State where {self <> s0}
with {isInitial = true}

Swap direction of
transition [9]

modify one Transition with {swap(src, tar)}

Swap symbol of two
sibling transitions

t = select one Transition
modify one Transition
where {self <> t and src = t.src}
with {swap(symbol, t.symbol)}

Redirect transition
to a new final state

s = create State with {name=’f’, isFinal=true}
modify target tar from one Transition to s

Combination of
adding a new tran-
sition and changing
the initial state [9]

s0 = modify one State where {isInitial = true}
with {reverse(isInitial)}

s1 = modify one State where {self <> s0}
with {isInitial = true}

create Transition
with {src=s1,tar=s0,symbol=one Symbol}

Mutations that produce a non-deterministic automaton
Create λ-transition create Transition

Create transition
with same symbol
from a state to a
different one

t = select one Transition where {symbol<>null}
create Transition
with { src = t.src, symbol = t.symbol,
tar = one State where {self <> t.tar}}

Table 1: Using Wodel to define automata mutations

Listing 4 shows part of the code implementing mutation Cre-
ate transition (cf. Table 1). This excerpt creates a transi-
tion (lines 3–4), obtains an automaton object from the seed
model (lines 8–10), adds the transition to the automaton
(lines 12–13), selects a state (lines 15–17), and sets the state
as source of the transition (lines 18–19). The listing omits
the code for tasks like model loading or checking confor-
mance of the result. Altogether, the mutation amounts to
103 lines of code, empty lines and comments excluded.

1 ...
2 // create transition
3 EClass transitionClass = (EClass)epackage.getEClassifier(”Transition”);
4 EObject transition = EcoreUtil.create(transitionClass);
5

6 // search object automaton in model
7 EObject automaton = null;
8 for (TreeIterator<EObject> it = seed.getAllContents(); it.hasNext();) {
9 automaton = it.next();

10 if (automaton.eClass().getName().equals(”Automaton”)) {
11 // add transition to automaton
12 EStructuralFeature feature = automaton.eClass().

getEStructuralFeature(”transitions”);
13 ((List<EObject>)automaton.eGet(feature)).add(transition);
14 // set random state as source of the transition
15 feature = automaton.eClass().getEStructuralFeature(”states”);
16 List<EObject> states = (List<EObject>)automaton.eGet(feature);
17 EObject randomState = states.get(rand.nextInt(states.size()));
18 feature = transitionClass.getEStructuralFeature(”src”);
19 transition.eSet(feature, randomState);
20 ...

Listing 4: Java code for mutation Create transition

4. TOOL SUPPORT
We have built a development environment for Wodel, avail-
able as an Eclipse plugin, to mutate EMF models. Fig. 5
shows its architecture. The environment provides an editor
for Wodel, built with Xtext1, which incorporates a valida-
tor and code completion facilities to help users in selecting
valid class, reference and attribute names from the domain
meta-model. Correct Wodel programs are automatically
compiled into Java using an Xtend2 code generator. The
produced Java code, which is in charge of creating the mu-
tants from the seed models, can be transparently executed
from the Wodel IDE. The advantage of explicitly generat-
ing Java code is that it can be used in stand-alone applica-
tions. Moreover, this code is generic as it manipulates mod-
els reflectively, and hence, it can be reused to mutate any
model conformant to the domain meta-model (see Listing 4
for an example of use of the EMF reflective API). In addi-
tion, Wodel defines an extension point which allows users
to register domain-specific post-processors to be executed
upon mutant generation (see Section 5 for an example).

seed
models

DSL
meta-
model

postProc

WODEL
engine

editor (Xtext)

code gen (Xtend)

Java code
model

mutants

code completion, validator

WODEL
program

«conforms»

check

generate, compile, execute

Figure 5: Architecture of Wodel’s environment

Fig. 6 shows a screenshot of the IDE illustrating the code
completion facilities. In this case, it suggests valid attributes
for class State, and some applicable modification operators.

Figure 6: Screenshot of the Wodel IDE

5. WODEL-EDU: MODEL MUTATION FOR
THE GENERATION OF EXERCISES

For our running example, we have a Wodel program that
produces incorrect solutions (i.e., model mutants) from a
correct one. In addition, we have built a post-processor
which, out from the correct solution and its mutants, gen-
erates exercises that can be automatically graded for self-
evaluation. Fig. 7 shows its architecture. The post-processor
1http://www.eclipse.org/Xtext/
2http://www.eclipse.org/xtend/

can be configured with a description of the exercises and how
model elements should be rendered. This allows generating
exercises not only for automata, but for different domains.

postProc

WODEL
engine

WODEL-EDU

DSL eduTest

DSL modelDraw

mutants

model rendering
description

code gen

learning
environment

exercises
description

Figure 7: Architecture of the Wodel-Edu plugin

Listing 5 shows a fragment with the description of some ex-
ercises. Line 1 states that failed exercises cannot be retried,
and that exercises will show both correct and incorrect so-
lutions and students should select the correct one. Instead,
selecting showall=no produces exercises where a single model
is presented, and students must identify if it is correct.

1 retry=no, showall=yes
2 description for ’aut0.fa’ = ”Select which of these automata accepts
3 this formal language: a∗bab∗”
4 description for ’aut1.fa’ = ”Select the automata accepting...”

Listing 5: Describing the exercises

Model rendering can be configured using a language similar
to the dot notation provided by Graphviz3, which is the tech-
nology we use to visualize models. Fig. 8 shows a screenshot
of the generated application, which contains some automata
exercises. The shown exercise consists in selecting the au-
tomaton accepting the language a∗bab∗. The automaton in
the middle is correct. The other two, which are incorrect,
were generated by applying the mutation modify target tar
from one Transition to other State, which redirects a ran-
dom transition to a different target state. This application
can be accessed on-line at http://www.wodel.eu.

Figure 8: Generated application

3http://www.graphviz.org/

Wodel-Edu can be used to create similar exercises for other
domains (e.g., class diagrams) by providing a Wodel pro-
gram with the mutations of interest, how model elements are
visualized, and a description of the exercises as in Listing 5.

6. RELATED RESEARCH
Mutation is used in areas like model-based testing, program
testing [7], evaluation of clone-detection algorithms [11], gen-
eration of large model sets [8], education [9], or evolutionary
algorithms [6]. While most of these systems are built ad-hoc,
Wodel may automate their construction.

The mutation framework in [1] is specific to model transfor-
mation testing, and mutation operators are defined with the
Kermeta model management language4. Instead, Wodel
has primitives tailored to mutation, and is not restricted to
mutation testing. Also for mutation testing, MuDeL [4] al-
lows describing mutation operators for grammar-based arte-
facts, typically programs. MuDeL is based on replacement
patterns, and Wodel on operations. Moreover, Wodel has
further facilities to combine mutation operators and discard
malformed or duplicated mutants. In the area of mutation-
based testing, Muta-Pro [12] uses techniques to detect equiv-
alent mutants, whereas we use model comparison.

Model-based mutation testing has been applied to adaptive
systems [2], model-based delegation security policies [7] and
logic formula [5]. It has also been used with Simulink models
to compare clone-detection algorithms [11]. In these cases,
mutation operators were manually encoded using low-level
languages, and the frameworks were built ad-hoc. Tools like
Wodel may help to improve development automation.

The SiDiff framework [8] allows creating large models with
some statistical properties. While the authors only illustrate
creation operations, the creation context can be selected via
stochastic properties. Other tools to generate sets of large
models include the Ecore Mutator5, which provides a pro-
grammatic API to code mutations in plain Java. Wodel
can be used for model generation as well, but it is more gen-
eral as it provides primitives for deletion and modification.

Similar to our application Wodel-Edu, in [9], mutation is
used to generate exercises for state machines for a massive
open online course. However, [9] is work in progress and the
authors aim at building the system by hand. This could be
done automatically with Wodel. Moreover, Wodel-Edu
can be applied to generating exercises in any domain.

In summary, our proposal is novel as current mutation-based
systems are commonly built by hand. The few existing lan-
guages to define mutations [1] focus on testing and work
over grammars. As many applications need to specify and
produce mutants, an extensible approach like ours is useful.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented Wodel, a DSL to specify domain-
specific mutation operators and mutation programs. Wodel
is domain-independent, and its development environment

4http://www.kermeta.org/documents/
5https://code.google.com/a/eclipselabs.org/p/
ecore-mutator/

can be extended for different applications. In this work,
we showed an application in the education domain.

In the future, we will enrich the languages of the Wodel-
Edu plugin to support more complex learning environments
(e.g., including gamification) and exercises (e.g., interactive
exercises where students have to correct an incorrect solu-
tion). We also plan to develop plugins for Wodel for other
areas, like model-based testing and evolutionary computa-
tion, which might trigger improvements in Wodel itself.

Acknowledgements. Thanks to Vı́ctor López Rivero for
the initial implementation of the Wodel IDE. Work sup-
ported by the Spanish Ministry of Economy and Competi-
tivity (TIN2014-52129-R), the Madrid Region (S2013/ICE-
3006), and the EU commission (FP7-ICT-2013-10, #611125).

8. REFERENCES
[1] Aranega, V., Mottu, J., Etien, A., Degueule,

T., Baudry, B., and Dekeyser, J. Towards an
automation of the mutation analysis dedicated to
model transformation. STVR 25, 5-7 (2015), 653–683.

[2] Bartel, A., Baudry, B., Munoz, F., Klein, J.,
Mouelhi, T., and Traon, Y. L. Model driven
mutation applied to adaptative systems testing. In
ICST Workshops (2011), pp. 408–413.

[3] Brambilla, M., Cabot, J., and Wimmer, M.
Model-Driven Software Engineering in Practice.
Morgan & Claypool, USA, 2012.

[4] da Silva, A., and Maldonado, J. C. MuDeL: a
language and a system for describing and generating
mutants. J. Braz. Comp. Soc. 8, 1 (2002), 73–86.

[5] Henard, C., Papadakis, M., and Traon, Y. L.
Mutalog: A tool for mutating logic formulas. In ICST
Workshops Proceedings (2014), IEEE CS, pp. 399–404.

[6] Moawad, A., Hartmann, T., Fouquet, F., Nain,
G., Klein, J., and Bourcier, J. Polymer - A
model-driven approach for simpler, safer, and
evolutive multi-objective optimization development. In
MODELSWARD (2015), SciTePress, pp. 286–293.

[7] Nguyen, P. H., Papadakis, M., and Rubab, I.
Testing delegation policy enforcement via mutation
analysis. In ICST Workshops (2013), pp. 34–42.

[8] Pietsch, P., Yazdi, H., and Kelter, U. Controlled
generation of models with defined properties. In SE
(2012), vol. 198 of LNI, GI, pp. 95–106.

[9] Sadigh, D., Seshia, S. A., and Gupta, M.
Automating exercise generation: A step towards
meeting the MOOC challenge for embedded systems.
In WESE (2013), ACM, pp. 2:1–2:8.

[10] Steinberg, D., Budinsky, F., Paternostro, M.,
and Merks, E. EMF: Eclipse Modeling Framework,
2nd Edition. Addison-Wesley Professional, 2008.

[11] Stephan, M., Alalfi, M. H., Stevenson, A., and
Cordy, J. R. Using mutation analysis for a
model-clone detector comparison framework. In ICSE
(2013), IEEE / ACM, pp. 1261–1264.

[12] Vincenzi, A. M. R., da Silva, A., Delamaro,
M. E., and Maldonado, J. C. Muta-Pro: Towards
the definition of a mutation testing process. J. Braz.
Comp. Soc. 12, 2 (2006), 49–61.

