
A Domain-Specific Language for Augmented Reality Games

Rubén Campos-López

Universidad Autónoma de Madrid

Madrid, Spain

ruben.campos@uam.es

Esther Guerra

Universidad Autónoma de Madrid

Madrid, Spain

esther.guerra@uam.es

Juan de Lara

Universidad Autónoma de Madrid

Madrid, Spain

juan.delara@uam.es

ABSTRACT
Augmented Reality (AR) applications have become popular over the

last few years, with significant impact on video games. AR does not

require advanced technology, but a mobile device with a camera

is enough. However, building AR games is time-consuming and

requires deep expertise in the tools, technologies and programming

languages of the field, as well as on mathematical concepts related

to the graphics and physics of the virtual objects. We attack this

problem by means of a Domain-Specific Language (DSL) named

argDSL, tailored to create AR games. It offers primitives to cus-

tomise the domain and logic of the game, the physics of the virtual

objects, and their graphical representation. We provide an Eclipse

environment enabling the definition of AR games using the DSL,

and an iOS client able to run the defined games.

CCS CONCEPTS
• Software and its engineering� Domain specific languages;
• Human-centered computing� Ubiquitous and mobile devices;
Mixed / augmented reality;

KEYWORDS
Domain-Specific Languages, Augmented Reality, Games

ACM Reference Format:
Rubén Campos-López, Esther Guerra, and Juan de Lara. 2024. A Domain-

Specific Language for Augmented Reality Games. In The 39th ACM/SIGAPP
Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.
ACM, NewYork, NY, USA, Article 1, 3 pages. https://doi.org/10.1145/3605098.

3636111

1 INTRODUCTION
Augmented Reality (AR) [1] technologies enable the visualisation of

virtual objects as part of the real world. The increasing capabilities

of mobile devices and the emergence of head-mounted widgets have

enabled the use of AR for all sorts of applications, from industrial

settings to education, health and video games [5].

Unlike Virtual Reality (VR), AR is quite accessible as it only re-

quires widely used hardware (smartphones and tablets, with their

camera and sensors) to run this type of applications. AR is becom-

ing increasingly popular, achieving high commercial success in

entertainment and video games [7]. Prominent examples of AR

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0243-3/24/04.

https://doi.org/10.1145/3605098.3636111

games include Pokemon GO and Pikmin Bloom (both by Niantic)

and the large AR ecosystem by SnapChat.

However, creating AR gameswith current approaches is complex,

as they require high development effort, deep technical expertise,

and knowledge of computer graphics and physics. To mitigate this

problem, we propose a Domain-Specific Language (DSL) to create

AR games, called argDSL (Augmented Reality Games DSL). This

is a declarative, textual DSL that allows customising all aspects

of an AR game, including the domain elements, their graphical

representation, their behaviour and the game logic. The goal of

argDSL is to avoid the need of programming or the use of complex

AR frameworks, lowering the entry barrier to AR game develop-

ment. Currently, it is focused on physically realistic skill games

(e.g., labyrinths, balance games, shooters). We have built an Eclipse

editor that permits defining AR games with argDSL, and an iOS

client able to run the defined games on iPhones and iPads.

2 THE ARG DOMAIN-SPECIFIC LANGUAGE

Game
Elements

AR
Representation

Game
Logic

Physics

ARGDSL

AR Game
model

«conforms to»

AR game
developer

gamers

interpret

code
generation

AR Game
description

Figure 1: Our approach.

Fig. 1 shows a scheme of our ap-

proach, which is based on model-

driven principles [2]. Specifically,

we have created the DSL argDSL
to allow AR game developers

to create AR games by defining

the elements used in the game,

their graphical AR representation,

their physics, and the game logic.

argDSL specifications conform to

a meta-model, and abstract away

technical low-level details of the

game.

Given an AR game specified

with argDSL, a code generator

produces a low-level representa-

tion of the game, which gets uploaded into a server. This represen-

tation is then interpreted by an iOS client which runs on iPads and

iPhones, so that gamers can play the game on their devices.

Next, we describe how to describe an AR game with argDSL
using an AR football game as example. The player needs to throw

penalty kicks to the goal without touching any obstacles, and with

60 seconds to score as many goals as possible.

2.1 Game elements
To create an AR game with argDSL, the developer needs to declare
the elements of the game together with their properties and rela-

tions (i.e., the domain of the game). For this purpose, we built a

meta-model inspired by the OMG’s MetaObject-Facility [6].

https://doi.org/10.1145/3605098.3636111
https://doi.org/10.1145/3605098.3636111
https://doi.org/10.1145/3605098.3636111

SAC ’24, April 8–12, 2024, Avila, Spain Rubén Campos et al.

«enum»

PlaneType
HORIZONTAL
VERTICAL

ARSyntax

nodes

*

ARNode

ARConnection 3DObject

name: String
url: URL

* versionsconnections

*

colour: Color
pattern: Pattern
src: Decorator
tar: Decorator

«from domain»

Class

«from domain»

Attribute

«from domain mm»

Reference

«from domain»

GameDomain

represents

for

showAttributes

represents

*

NodeConstraint
overlapping: boolean = false
sizeInit: double = 1.0
sizeMin: double = 1.0
sizeMax: double = 1.0
xToOriginPos: double = -1.0
yToOriginPos: double = -1.0
zToOriginPos: double = -1.0
rotationX: double = 0

constraints

planes
0..2

Figure 2: AR representation meta-model.

1 Game football {
2 elements {
3 ball {}
4 net {}
5 obstacle {}
6 floor {}
7 }
8 }

Each type of element of the game is de-

scribed by a class, which may have attributes

and references. In addition to typical data types

(e.g., String, Int), we support images and videos,

which get displayed on the object’s virtual rep-

resentation. The listing to the right shows the

definition of the elements of the AR football

game, using the textual syntax of argDSL. There are four types of
elements: ball, net, obstacle and floor. No element defines attributes.

2.2 AR representation
The DSL permits assigning an AR representation to each class

and reference in the game domain (cf. Fig. 2). Each class can be

represented by one or several 3D objects, which can be swapped

during the game. The 3D objects are described by a name and the

URL of a file containing the AR image in Apple SceneKit (SCN)

format. In addition, it is possible to configure the features of the

AR objects (via class NodeConstraint), like their overlapping, size,
the distance they can be displaced from its original position, their

rotation, and the planes where they can be placed.

1 Graphics {
2 element ball {
3 versions {
4 v1 = "http://url.com/ball.scn"
5 }
6 constraints {
7 plane horizontal
8 overlaps

9 }
10 }
11 element net { ... }
12 ... }

The listing to the right de-

clares the AR visualisation of

the ball in our AR game, using

the DSL textual syntax. The ball
is represented by one 3D ob-

ject, can be placed on horizontal

planes (i.e., atop the floor of the
game) and can overlap with the

other elements.

2.3 Physics
Each element class may have physical information on how its ob-

jects should behave and move realistically during the game. Fig. 3

shows the meta-model for this part, inspired by Apple’s ARkit.

Each element class has a physical body (PhysicBody) specifying
its mass (in kilograms), electric charge (in coulombs), sliding and

rolling frictions, object resistance to air (damping), rotational friction
(angularDamping), and bouncing behaviour (restitution). In addition,

it is possible to specify whether the movement of an element class

will be affected by collisions with other objects, or by forces applied
by the players to impulse the element. Specifically, the physical

Physics
Model

PhysicBody
mass: double=1.0
charge: double=0
slidingFriction: double=0
rollingFriction: double=0
damping: double=0
angularDamping:double=0
restitution: double=0

Impacts

PhysicsClassSpec

Force
name: String
vectorX: double = 1.0
vectorY: double = 0
vectorZ: double = 0

«enum»

Gesture
Drag
Touch
Tilt

*

*

gesture

forces

elements

body

«enum»

BodyType
Static
Dynamic
Kynematic

b
o

d
yT

yp
e

cl
as

s

«from domain»

Class

contacts

co
lli

si
o

n
s

* co
n

ta
ct

s

*

Figure 3: Physics meta-model.

body of an element class can be either Static (not affected by colli-

sions or forces except gravity),Dynamic (affected by both forces and
collisions), or Kinematic (affected by collisions but not by forces).

Dynamic classes need to define the forces affecting them, by provid-

ing the name of the force, its magnitude in a 3-dimensional vector,

and the gesture in the user interface that triggers the force. The

latter can be either touching (Touch), sliding (Drag), or tilting (Tilt)
the screen. The magnitude of the force is mandatory when touching

the screen, and optional when dragging and tilting. Finally, each

class can specify the game elements with which it can collide or

have contact (class Impacts). Collisions affect the physic body of the

element, but contacts do not. This information can be used in the

game logic, as explained in next section.

The listing below defines the ball physics using the DSL. The ball

is set to be a dynamic object with a mass of 0.5 kilograms and some

friction forces (lines 3–10). It also declares the force kick, which gets

activated when dragging on the object (lines 11–13). Finally, the

ball can collide and contact with floor, obstacle and net (lines 14–17).

1 Physics {
2 element ball {
3 body dynamic {
4 mass 0.5
5 slidingFriction 0.5
6 rollingFriction 0.5
7 restitution 0.5
8 damping 0.1
9 angularDamping 0.1
10 }

11 forces {
12 kick : gesture drag
13 }
14 contacts {
15 collision floor obstacle net
16 contact floor obstacle net
17 }
18 }
19 element net { ... }
20 ... }

2.4 Game logic
A game can define the starting and winning game conditions: initial

score and number of lives of the player, and final score needed to

win the game. Moreover, it can display different text messages to

signal the start, win and lose situations.
Games define its logic by means of actions, which comprise one

of four possible basic actions (start the game from scratch, lose,

win, restart the game saving the progress), or none of them. Each

action may display a message, change the score, self-trigger the

action in a time interval of seconds, or make changes to the game

objects, namely, creating or deleting objects, modifying attribute

values, applying forces, or changing object positions. The actions

can be triggered when an object meets some conditions, there is a

collision, or a button is pressed (class Button).

A Domain-Specific Language for Augmented Reality Games SAC ’24, April 8–12, 2024, Avila, Spain

1 Gamelogic {
2 Display {
3 start "Game start"
4 win "You won!"
5 score {
6 start 0
7 finish ∗ /∗ no limit ∗/
8 lives 1
9 }
10 }
11 Actions {
12 gameover { /∗ Gameover after 60 secs ∗/
13 action win

14 timeEach 60 /∗ in seconds ∗/
15 }
16 goal {
17 score 1 /∗ increase score by 1 ∗/
18 message GOAL /∗ present a message ∗/
19 changes {
20 do delete fb /∗ fb defined in line 37 ∗/
21 do create ball named fb at front

22 }
23 }
24 miss {
25 message MISS
26 changes {
27 do delete fb /∗ fb defined in line 37 ∗/
28 do create ball named fb at front

29 }
30 }
31 }
32 Collisions {
33 element ball to net −> goal
34 element ball to obstacle −> miss
35 }
36 Elements {
37 fb : ball [0.0, 1.0, 1.0]
38 goalNet : net [0.0, 0.0, 10.0]
39 grass : floor [0.0, 0.0, 0.0]
40 ...
41 }}

Finally, it is nec-

essary to specify the

object set-up when

the game starts, in-

dicating the objects’

name, class, position,

and attribute values.

Objects may have

associated rules, to be

triggered when some

attribute condition is

met. Conditions can be

arithmetic or logical,

and their operands can

be constants, attribute

values, or an operation

to count the number

of objects of a class.

The listing to

the right shows the

game logic for the

running example. The

Display block (lines

2–10) defines different

messages for start and

winning (as this game

cannot be lost) and the

score system. Since

finish is set to *, the

game has no upper

score limit.

The game declares three actions: gameover (lines 12–15), goal
(lines 16–23) and miss (lines 24–30). Action gameover specifies that
the game is won after 60 seconds, which is controlled by a time

trigger (timeEach). Action goal increases the score by 1, presents

a message, and makes two changes on the game: it deletes the

ball (named fb) and creates another one in the front position of

the screen. The DSL also permits positioning objects at the back
of the screen, or in the default position of the object. Creating

Figure 4: Resulting AR game.

objects requires providing

their type (e.g., ball) and name

(e.g., fb), and having several

objects of the same type is

possible. Action miss presents
a message, deletes the ball

and creates another in front.

Next, lines 32–35 declare two

collisions. In the first one,

when the ball collides with the

net, the goal action is triggered.

In the second one, a collision

of the ball with an obstacle
triggers action miss. Finally,

lines 36–41 show an excerpt

of the definition of the initial

object set-up. Each object has

a name (e.g., fb, goalNet), a domain class (e.g., ball, net), an initial

position in the 3D space, and optionally, attribute values.

Fig. 4 shows a screenshot of the defined game. The floor is green

and horizontal, the net at the back is white, and there is a grey rectan-

gular obstacle. A video is available at https://youtu.be/ lUV3uTLBg2o.

3 ARCHITECTURE AND TOOL SUPPORT
Fig. 5 shows the architecture of our solution based on argDSL.
Developers can define AR games using the argDSL editor, which

is built with Xtext. The meta-models describing the abstract syn-

tax of the DSL are defined with the Eclipse Modeling Framework

(EMF) [3], the de-facto standard for meta-modelling within Eclipse.

Eclipse

AR game
developer

gamers

EMF

ARGDSL
Xtext editor

Code
generator

Acceleo

Game Server

JSON
document

ALTER
GAMING

Figure 5: argDSL architecture.

After defining an AR game, developers can invoke a code gener-

ator that synthesizes a set of four JSON documents with the game

information. This generator was built using Acceleo, a template-

based language to emit text from EMF models. The IDE offers an

option to upload these JSON documents into our game server, and

store them in a MongoDB database. Then, an iOS client, built atop

the AlteR tool [4], is in charge of interpreting the JSON files, so

that gamers can play the games.

More information on the tool can be found at https://alter-ar.
github.io/gaming.html.

4 CONCLUSIONS AND FUTUREWORK
Building AR games is time-consuming and requires deep expertise

in AR technologies and programming models. To attack this prob-

lem, we have proposed a DSL to define AR games. Our solution

allows describing the most relevant aspects of the game (domain,

graphics, physics, logic), contributing to democratise AR game

development.

As future work, we plan to extend our DSL to enable the use of

the GPS, and the definition of multi-user and multi-level games.

ACKNOWLEDGMENTS
Work funded by the Spanish MICINN (PID2021-122270OB-I00).

REFERENCES
[1] R. T. Azuma. 1997. A survey of augmented reality. Presence Teleoperators Virtual

Environ. 6, 4 (1997), 355–385.
[2] M. Brambilla, J. Cabot, and M. Wimmer. 2017. Model-Driven Software Engineering

in practice. Synthesis Lectures on Software Engineering (2017).

[3] F. Budinsky et al. 2011. EMF: Eclipse Modeling Framework. Addison-Wesley.

[4] R. Campos-López, E. Guerra, J. de Lara, A. Colantoni, and A. Garmendia. 2023.

Model-driven engineering for augmented reality. J. Obj. Tech. 22, 2 (2023), 1–15.
[5] H. Ling. 2017. Augmented reality in reality. IEEE Multim. 24, 3 (2017), 10–15.
[6] MOF. 2016. http://www.omg.org/MOF.

[7] A. Nikolaidis. 2022. What is significant in modern augmented reality: A systematic

analysis of existing reviews. J. Imaging 8, 5 (2022), 145.

https://youtu.be/lUV3uTLBg2o
https://alter-ar.github.io/gaming.html
https://alter-ar.github.io/gaming.html
http://www.omg.org/MOF

	Abstract
	1 Introduction
	2 The ARG Domain-Specific Language
	2.1 Game elements
	2.2 AR representation
	2.3 Physics
	2.4 Game logic

	3 Architecture and Tool Support
	4 Conclusions and Future Work
	Acknowledgments
	References

