
Coverage-based Strategies for the Automated Synthesis of Test
Scenarios for Conversational Agents

Pablo C. Cañizares
Universidad Autónoma de Madrid

Madrid, Spain
Pablo.Cerro@uam.es

Daniel Ávila
Universidad Autónoma de Madrid

Madrid, Spain
rdavilao@outlook.com

Sara Pérez-Soler
Universidad Autónoma de Madrid

Madrid, Spain
Sara.PerezS@uam.es

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain
Esther.Guerra@uam.es

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
Juan.deLara@uam.es

ABSTRACT

Conversational agents – or chatbots – are increasingly used as
the user interface to many software services. While open-domain
chatbots like ChatGPT excel in their ability to chat about any topic,
task-oriented conversational agents are designed to perform goal-
oriented tasks (e.g., booking or shopping) guided by a dialogue-
based user interaction, which is explicitly designed. Like any kind
of software system, task-oriented conversational agents need to be
properly tested to ensure their quality. For this purpose, some tools
permit defining and executing conversation test cases. However,
there are currently no established means to assess the coverage of
the design of a task-oriented agent by a test suite, or mechanisms to
automate quality test case generation ensuring the agent coverage.

To attack this problem, we propose test coverage criteria for
task-oriented conversational agents, and define coverage-based
strategies to synthesise test scenarios, some oriented to test case
reduction. We provide an implementation of the criteria and the
strategies that is independent of the agent development platform.
Finally, we report on their evaluation on open-source Dialogflow
and Rasa agents, and a comparison against a state-of-the-art testing
tool. The experiment shows benefits in terms of test generation
correctness, increased coverage and reduced testing time.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Human-centered computing → Natural language
interfaces.

KEYWORDS

Testing, Test suite generation, Task-oriented conversational agents

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AST 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Pablo C. Cañizares, Daniel Ávila, Sara Pérez-Soler, Esther Guerra, and Juan
de Lara. 2024. Coverage-based Strategies for the Automated Synthesis of
Test Scenarios for Conversational Agents. In Proceedings of 5th International
Conference on Automation of Software Test (AST 2024). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Conversational agents are experiencing a fast evolution and adop-
tion in our society. Nowadays, it is common to find conversational
agents that provide a natural language user interface to assist in
all sorts of online services. One of the reasons for this widespread
adoption is their successful integration into daily life services such
as education, banking, shopping and restaurants [1, 12], as well as
their availability in engaging environments such as social networks
(e.g., Telegram, X/Twitter, Facebook Chat), smart speakers (e.g.,
Amazon Alexa, Google Assistant, Siri) and websites accessible from
different devices (e.g., tablets, smartphones).

Depending on their scope, conversational agents can be cate-
gorised into open-domain or task-oriented. Open-domain agents –
like ChatGPT1 or Google Bard2 – build on large language models
(LLMs) to provide a realistic and fluid conversation on arbitrary
topics. However, given their generative approach, they may suffer
from hallucinations [2], which are false or misleading responses to
a given question. Currently, this makes it difficult to adopt them
for conducting critical tasks or specific use cases [24, 35].

In contrast, task-oriented agents focus on specific tasks, such as
booking tickets, ordering food, or making medical appointments,
among many other possibilities. These agents are not prone to arti-
ficial hallucinations because both the conversations they are able to
react to and the agents’ responses are carefully designed for the task
at hand (i.e., they are not based on generative artificial intelligence).
There are many technologies on the market for designing and im-
plementing task-oriented conversational agents, such as Google’s
Dialogflow3, Microsoft’s Bot Framework4, Amazon Lex5 or Rasa6.

In this paper, our focus is on task-oriented conversational agents.
They are software systems, and therefore, their proper behaviour
must be ensured. In this respect, testing is a widely accepted tech-
nique for assessing the correct behaviour of systems [3, 31, 33].
Specifically for conversational agents, some approaches and tools –
1 https://openai.com/chatgpt 2 https://bard.google.com/chat
3 https://dialogflow.com/ 4 https://dev.botframework.com/
5 https://aws.amazon.com/en/lex/ 6 https://rasa.com/

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://openai.com/chatgpt
https://bard.google.com/chat
https://dialogflow.com/
https://dev.botframework.com/
https://aws.amazon.com/en/lex/
https://rasa.com/


AST 2024, April 2024, Lisbon, Portugal Pablo C. Cañizares, Daniel Ávila, Sara Pérez-Soler, Esther Guerra, and Juan de Lara

like Botium7 – enable the specification of test scenarios (expected
sequences of user utterances and agent responses) that can be
automatically executed. However, such approaches still face the
following challenges: (i) the manual specification of test scenarios is
costly, since agents may support hundreds or thousands of different
conversation paths; (ii) assessing the quality of an agent test suite
is an open question, as there is currently no reinterpretation in the
context of conversational agents of accepted criteria for measuring
and monitoring the testing activity, like test coverage metrics; (iii)
testing a conversational agent is extremely time-consuming, so
test reduction techniques ensuring a certain test coverage would
be most helpful. Indeed, test suite reduction is one of the open
challenges of testing conversational agents [9].

To fill this gap, in this paper, we present a classification of cov-
erage criteria for task-oriented conversational agents, attending
to factors like conversation design (conversation entry/exit points,
conversation paths, conversational steps) and vocabulary. These
criteria enable the measurement of agent test suites. Moreover,
we propose test suite generation strategies with different levels
of exhaustivity, which ensure the defined coverage criteria. Some
strategies apply reduction techniques principles to alleviate the
high cost associated with the test suite execution.

We have implemented our proposal on the basis of a technology-
neutral design language for conversational agents, calledConga [26].
This way, the coverage metrics and test suite generation can be
performed on agents developed with different technologies. To
analyse the suitability of our coverage-based strategies, we have
applied them to generate test suites for the Botium testing platform,
for six open-source agents created with Dialogflow and Rasa. Our
evaluation shows that the generated test suites are suitable (i.e.,
correct) and more complete than Botium’s test generation facilities,
and that reduction techniques help decreasing the testing time.
Paper organisation. Section 2 provides background on the architec-
ture of task-oriented conversational agents, and on testing with
Botium. Next, Section 3 analyses the state of the art. Section 4
details our coverage metrics and the strategies for the synthesis
of test scenarios based on them. Section 5 describes our tooling,
and Section 6 reports the results of the experimental study. Finally,
Section 7 presents conclusions and prospects for future work.

2 BACKGROUND

This section provides background on task-oriented conversational
agents (Section 2.1) and their testing using Botium (Section 2.2).

2.1 Task-oriented conversational agents

Task-oriented conversational agents (hereafter referred to as agents,
in short) are targeted to solve particular tasks or to interact with
specific software services, via conversation in natural language.

Fig. 1 outlines the elements that an agent specification comprises,
using an agent for a pizzeria as an illustration. As depicted in the
figure, agents define a collection of user intents that the agent aims
at recognising. Each intent declares a set of training phrases, which
exemplify how users could express the intent. This way, when
the user states an utterance in natural language to the agent, this
latter matches the most likely intent for the utterance with a certain
7 https://www.botium.ai/

Intent: cancel order
Intent: ask available toppings

I’d like a small pizza
A large pizza, please

Intent: start order

training 
phrases

Would you like any toppings?
agent

actions

…

required,
prompt: 

what size?

required,
prompt: 

what topping?

external
service

http-request

No thank you.
That’s all.

Intent: end order

…

Your order is ready!

Tuna please.
Add extra cheese.

Intent: add topping

…

loop

pizza-size
• small
• medium
• large
toppings
• tuna
• cheese
• olives
• …

entities

Conversational Agent

NL utterance response

param

param

Figure 1: Schema of task-oriented agent specification.

probability. If no intent matches above a threshold, the agent applies
a default fallback intent (if defined) to ask the user to rephrase the
utterance. In the figure, the agent declares 5 intents, none of which
are fallback. The figure also shows 2 training phrases for the intent
start order: “I’d like a small pizza”, and “A large pizza, please”.

When the agent matches an intent, it may need to extract in-
formation from the user utterance. This way, intents may declare
parameters, with training phrases hinting to that information. For
instance, intent start order requires one parameter (pizza size), and
phrases like “I’d like a small pizza” exemplify the provision of such
information. Parameters are typed by entities, which can be pre-
defined (e.g., dates) or agent-specific (e.g., pizza size). Moreover,
parameters can be optional or required. If an utterance misses the
value of a required intent parameter, then the agent asks the user
for its value using the specified prompt. For example, upon the
user utterance “I’d like a pizza”, the agent will prompt the question
“What size?”, since the pizza size is a required parameter.

Chatbots also define the actions that the agent must perform
when the intent is matched. A typical action is accessing an external
service via a webhook to manage the user intent. This is what
intent end order in the lower-right part of Fig. 1 does: it accesses
the pizzeria information system to store the order. The last action
associated to an intent is usually a response to the user, often textual,
but which can contain other items such as images and links.

Finally, full-fledged conversations are designed by interleaving
expected intents and agent actions, in user and agent turns. Each
entry point to a possible conversation is called a conversation flow.
Our pizzeria agent has 3 flows, which correspond to the conver-
sations starting in intents start order, ask available toppings, and
cancel order. In addition, some intents may be matched only after
another one (depicted as arrows between intents in the figure). This
enables designing conversations that may bifurcate in alternative
paths. For example, upon matching the intent start order, the user
is prompted for toppings, and depending on the user answer, either
add topping or end orderwill follow. Hence, the flow starting in start
order can follow 2 possible paths. Conversations can also include

https://www.botium.ai/


Coverage-based Strategies for the Automated Synthesis of Test Scenarios for Conversational Agents AST 2024, April 2024, Lisbon, Portugal

loops, as the one starting in the intent add topping, used to add
several toppings iteratively.

2.2 Testing with Botium

Botium is a quality assurance platform to test conversational agents.
It supports automated language understanding testing, conversa-
tion flow testing, security testing, performance testing and monitor-
ing. For this paper, we are interested in its support for conversation
flow testing via the definition and execution of test scenarios.

In Botium, a test scenario defines a conversation path that the
agent is supposed to follow. Listing 1 shows a simple test scenario
for the pizzeria agent, with the expected response of the agent (lines
3–4) upon a particular user utterance (lines 1–2). The test execution
will send to the agent the specified user utterance, and the agent’s
actual response will be compared with the one indicated in the
test scenario. If the agent does not respond as expected, the test
case (i.e., the scenario plus the particular test utterances used) is
considered as failed.

1 #me
2 I'd like to order a medium pizza
3 #bot
4 Would you like any toppings?

Listing 1: Basic test scenario in Botium.

Testing an intent typically requires many test utterances. For
compactness of specification, Botium permits separating the struc-
ture of the conversation from the testing phrases issued by the
users or the agent in different files, called convo and utterance files,
respectively. This facilitates the specification of multiple test cases
on the basis of the same scenario. As an example, Listing 2 shows a
convo with the conversation in Listing 1, but replacing the phrase in
line 2 by a reference to the utterance file ORDER_PIZZA in Listing 3.
Referencing an utterance file in a #me-section sends every phrase
in the file to the agent and checks the response. Referencing an
utterance file in a #bot-section admits any phrase in the file as a
valid agent response. In this example, the convo will be executed
thrice, once for each phrase in Listing 3 (i.e., three test cases).

1 #me
2 ORDER_PIZZA
3 #bot
4 Would you like any toppings?

Listing 2: Convo file.

1 ORDER_PIZZA
2 I'd like to order a medium pizza
3 I'd like a small pizza
4 A large pizza, please

Listing 3: Utterance file.

In addition to assert the expected agent text answers (e.g., line 4
in Listing 2), Botium supports other types of assertions, like the ex-
pected agent intent, or the inclusion of links or images in responses.

Botium allows injecting dynamicity in test cases by means of
its scripting memory. This enables using prebuilt system functions
(e.g., to obtain the current date or the value of a system variable),
as well as pushing variables to memory so that their value can be
used in convos. The name of the variables must be preceded by ‘$’,
and their value can be either extracted from the agent responses,
defined statically within the convo, or read from files. Listing 5
shows an example of the latter files. It defines three variables in
line 1 ($size, $kind, $price) and three value assignments in lines 2–4.
The convo in Listing 4 uses those variables. This way, the convo

will be executed thrice, each time replacing the variables by one of
the defined assignments.

1 #me
2 How much is a $size $kind pizza?
3 #bot
4 It is $price euros.

Listing 4: Convo file.

1 |$size |$kind |$price
2 Case1 |small |Margherita | 15
3 Case2 |large |Hawaiian | 30
4 Case3 |large |Pepperoni | 32

Listing 5: Variables file.

Finally, the Botium Crawler8 permits generating test cases from
the agents in an automated way. For this purpose, it explores the
quick responses and the lists of options offered by the agent, follow-
ing all paths down until reaching either the end of the conversation
or a user-defined maximum conversation depth. The identified
conversation paths are saved as test cases and utterance lists. In
Section 6.2, we will empirically study the suitability and coverage of
the agent definition by this test case generation facility, comparing
the quality of the test suites it generates with the coverage-based
strategies we propose in Section 4.2.

3 STATE OF THE ART

As Cabot at el. discuss [9], there are many open challenges for test-
ing task-oriented conversational agents, since current approaches
only cover a small set of chatbot testing aspects. Next, we discuss
testing proposals for conversational agents, focussing on intents
(Section 3.1), conversations (Section 3.2) and usability (Section 3.3).
Then, we review works on code coverage (Section 3.4).

3.1 Intent-level testing

Similar to unit testing, a first level of testing for conversational
agents is to ensure that individual intents are properly defined.

Most commercial platforms, like Dialogflow, offer a console
on which individual intents can be manually tested in isolation.
However, the challenge is generating and selecting sensible test
data. To check the accuracy of the intent recognition, some ap-
proaches generate input test utterances that simulate possible user
phrases [4, 6, 8, 19, 34]. For example, Charm [8] provides muta-
tion operators for input test phrases emulating common spelling
mistakes; rephrasing utterances using synonyms; generating new
phrases by translating existing phrases back and forth into an
intermediate language; or changing numbers to words and vice
versa. These operators can be applied to the training phrases of
the intents to generate test utterances. In a similar vein, Božić and
Wotawa [4, 6] rely on an ontology to formalise the mutation of
input phrases using metamorphic relations, and generate follow-up
test cases (i.e., additional input test utterances) from an initial test
suite. The system by Yalla and Sunill [34] creates new test phrases
by replacing nouns with synonyms. Similarly, DialTest [19] applies
synonym replacement, back translation, and word insertion. More-
over, it calculates a coefficient to select the test cases most likely to
find defects in an agent.

Unfortunately, some of these utterance transformers may gener-
ate unnatural test phrases (i.e., unlikely in real conversations) or
change the semantics of the source phrase. For this reason, meth-
ods like AEON [17] have been proposed to evaluate the semantic
similarity and language naturalness of the input test cases.
8 https://botium-docs.readthedocs.io/en/latest/04_usage/index.html#botium-crawler

https://botium-docs.readthedocs.io/en/latest/04_usage/index.html#botium-crawler


AST 2024, April 2024, Lisbon, Portugal Pablo C. Cañizares, Daniel Ávila, Sara Pérez-Soler, Esther Guerra, and Juan de Lara

3.2 Conversation testing

Intent-level testing alone is not enough to ensure a proper agent
behaviour, but other aspects such as the conversation flow need
to be tested. As Section 2.2 explained, Botium supports these tests.
Botium is independent on the underlying agent technology, pro-
viding connectors to several platforms9. Instead, BotTester10 is a
JavaScript framework built atop Mocha11 and Chai12 to test agents
created with Bot Builder13 (a Node.js framework for building bots).

To automate the generation of test scenarios, Božić et al. [5] use
an AI planning approach. Specifically, they convert the agents into a
first-order logic problem by using the Planning Domain Definition
Language (PDDL) [15], where the goals are to fill in the parameters
of the intents. Then, specific plans are generated that fulfil the goals,
which correspond to different conversation paths. The method is
specific to Dialogflow agents, and requires their manual translation
into PDDL, which is costly and error prone. Moreover, agents can
exhibit a vast number of conversation paths, each corresponding
to a specific plan, which can lead to an explosion of test cases. To
overcome this problem, we propose coverage criteria and several
strategies to reduce the number of test cases.

Instead of testing, Silva et al. [30] use model checking on the
conversation design, to ensure properties of interest in the conver-
sation model. This has the advantage that the verification can be
done in the design phase, but still requires from testing to ensure a
proper handling of the user utterances in natural language.

3.3 Usability testing

The success of an agent depends on its usability [28]. Focused on
this aspect, chatbottest14 defines guidelines for identifying chatbot
design issues in categories like answering, error management, intel-
ligence, navigation, personality and understanding. Chateval [29],
evaluates the quality of the agent responses using human judge-
ment (via Amazon’s Mechanical Turk15) against a baseline. Instead,
Han et al. [16] propose an automated framework that identifies
inappropriate agent responses and explain the causes. Følstad and
Taylor [13] propose a system that analyses the agent-user interac-
tions to understand response relevance and dialogue helpfulness,
identify interaction patterns, and improve the agent design. Also to
evaluate usability, BotTester [32] simulates users interacting with
the agent, and collects interaction metrics like answer frequency,
response time, or precision of intent recognition.

3.4 Code coverage

Code coverage measures the degree to which a test suite executes
the source code of a program. It is valuable in software engineering
and testing for maximising the analysed code, and consequently
reducing the number of potential errors in a system. In industry, sev-
eral safety standards apply code coverage to ensure the correctness
and reliability of the software under study. They require to achieve
a 100% structural coverage on key aspects such as entry points,
statements and branches. Some of the most important ones include
DO-178/ED-12 for safety-critical avionic software [18], EN 50128
for railways systems [14] and ISO 26262 for road vehicles [25].
9 https://botium-docs.readthedocs.io/en/latest/06_connectors/01_index.html
10 https://github.com/microsoftly/BotTester 11 https://mochajs.org/
12 https://www.chaijs.com/ 13 https://www.npmjs.com/package/botbuilder
14 https://chatbottest.com/ 15 https://www.mturk.com/

However, building test cases covering all possible execution
paths requires a huge effort. To illustrate the magnitude of this
challenge, consider the Facebook and Google testing environments.
The former was reinforced on Sapienz [21], a tool for generating and
executing test cases in Facebook OneWorld Platform, where 100000
commits per week are made. The latter executes over 150 million
of tests cases using the Test Automation Platform [22]. The high
computational cost of these testing processes makes it necessary
to maximise the quality of the selected test cases, discarding those
that obtain duplicate results, and prioritising fault detection ability.

Altogether, we find different testing approaches for agents to
assess their intents, conversation, and usability. Some of them au-
tomate the generation of new test utterances, but the test scenarios
typically need to be defined manually, which is costly and error
prone. Furthermore, it is not easy to know which parts of an agent
have been tested, or if testing is sufficient. Hence, based on the wide
acceptance that code coverage metrics have for general software,
we propose their reformulation for conversational agents. Our aim
is to help control and monitor the agent testing process, reducing
the number of errors. To our knowledge, this is the first proposal of
its kind. Moreover, to reduce the effort of creating test scenarios, we
propose their automated synthesis with several strategies ensuring
varying levels of coverage exhaustivity, including full coverage.

4 SYNTHESIS OF TEST SCENARIOS BASED ON

COVERAGE CRITERIA

In the following, Section 4.1 presents a set of coverage criteria on
agent designs to evaluate the strength and quality of a test suite.
Then, Section 4.2 proposes several strategies for the synthesis of
test scenarios based on the defined coverage metrics.

4.1 Coverage criteria for agent designs

Coverage is a widely accepted notion for code testing, with several
levels like function, statement, edge, branch or condition. Our goal
is to adapt this concept to the domain of conversational agents,
so that it is possible to synthesise test scenarios focused on some
criteria, and evaluate existing test suites against them.

Fig. 2 summarises our coverage criteria, which target the con-
versation and vocabulary of agents as follows:
• Flow coverage: This is the percentage of conversation entry
points (flows) that have been exercised.

• Path coverage: This is the percentage of conversation exit
points (paths) that have been tested.

• Loop coverage: This is the percentage of conversation loops
exercised 0 times, exactly once, and more than once.

• Intent coverage: This is the percentage of intents that have
been tested in at least one scenario.

• Parameter coverage: This is the percentage of parameters of
all intents that have been tested with utterances that assign
them a value, and utterances that do not assign them a value.
Moreover, if the parameter is required, the prompt asking the
user to give a value to the parameter must also have been tested.

• Entity coverage: This is the percentage of entities that have
been used in at least one test.

• Literal coverage: This is the percentage of literals of each entity
that have been used in at least one test.

https://botium-docs.readthedocs.io/en/latest/06_connectors/01_index.html
https://github.com/microsoftly/BotTester
https://mochajs.org/
https://www.chaijs.com/
https://www.npmjs.com/package/botbuilder
https://chatbottest.com/
https://www.mturk.com/


Coverage-based Strategies for the Automated Synthesis of Test Scenarios for Conversational Agents AST 2024, April 2024, Lisbon, Portugal

Agent Coverage

Conversation

Flow Path

Loop

Intent

Parameter

Vocabulary

Entity

Literal

Exhaustive

Covering

Basic

Exhaustive

Factoring

cov. Coverage criterion

cov. Aggregated criterion Synthesis strategy

Coverage decomposition

Legend:

Covering

Single-literal

Exhaustive

Figure 2: Coverage criteria for intent-based agents.

4.2 Coverage-based synthesis of test scenarios

To reduce the manual effort to specify test cases, we propose strate-
gies to generate test scenarios guided by our coverage criteria. The
strategies assume the existence of user utterance test sets UTS𝑛 for
each intent i𝑛 of the agent. Given an agent, the strategies create
a test scenario for each possible conversation path, and attempt
to reduce the number of user utterances tested at each step of the
conversation path, while ensuring a certain level of coverage of the
paths, parameters or literals of the agent design.

4.2.1 Path coverage strategies. In the exhaustive strategy, full path
coverage is obtained by using all test user utterances in every
step of the conversation paths. Alternatively, the factoring strategy
decreases the testing load by using only one test utterance in those
conversation steps tested in a previous scenario execution.

Example. Fig. 3 illustrates both strategies for an agent with two
conversation paths, given by intents i1–i2 and i1–i3. Both strate-
gies create a test scenario for each path. However, the exhaustive
strategy (a) uses the complete user utterance test sets of all intents
(UTS1, UTS2, UTS3) in both scenarios. This accounts to 32+32=18
test case executions (9 of each scenario, assuming 3 test utterances
in each set). Instead, the factoring strategy (b) does not use the
whole utterance test set UTS1 in scenario 2, since this set was al-
ready used when testing intent 𝑖1 in scenario 1. Thus, it is enough
to take one utterance utter1𝑘 ∈ UTS1 to place the agent execution
focus on intent 𝑖1, and then use the utterance test set UTS3. This
reduces the number of test case executions to 32+3=12.

4.2.2 Parameter coverage strategies. In the exhaustive strategy, full
parameter coverage is obtained by using as many test user utter-
ances as necessary to consider all combinations of existing/non-
existing values for the parameters of each intent in each conversa-
tion step. Inspired by combinatorial testing [23], we propose two
other strategies. The basic strategy only uses utterances that give
value to all the parameters of each intent. This is a quick testing
strategy that however does not provide full coverage, as it does not
test for the absence of parameter values, but only for their pres-
ence. As a middle ground, the covering strategy iteratively tests the

i1

i2

utter11

utter21

UTS1

UTS2

i3

i1

i3

utter1k

utter31

UTS3

i2

Test scenario 1 Test scenario 2

i1

i2

utter11

utter21

UTS1

UTS2

i3

i1

i3

utter31

UTS3

i2

Test scenario 1 Test scenario 2

utter11
UTS1

(a)

(b)

Figure 3: Test utterance selection strategies for path coverage.

(a) Exhaustive. (b) Factoring.

conversations by providing test utterances that exercise all combi-
nations of existing/non-existing parameter values for one intent,
and using utterances giving values to all parameters for the other
intents. This strategy yields full parameter coverage as well.

Example. Fig. 4 illustrates the strategies for testing a conversation
path given by intents i1–i2, where each intent has two parameters.
The exhaustive strategy (a) partitions the utterance test set UTS1
in four disjoint subsets, each containing the utterances of one of
the combinations of assigning or not a value to each parameter of
intent i1. For instance, the utterances in subset UTS1,10 give value
to parameter p1 but not to p2, the utterances in subset UTS1,11 give
value to both parameters, and so on. A similar strategy is used for
intent i2. Then, the scenario is executed for each combination of
existing/non-existing values for parameters p1, p2, p3 and p4. If
each subset had exactly one utterance, this would imply 42=16 test
case executions. If the parameters were mandatory, then specific
scenarios would be needed to test that the agent asks for their value.

Fig. 4(b) shows the basic strategy, which only uses utterances
that give a value to each parameter. In this example, the strategy
would perform 1 test case execution.

Fig. 4(c) illustrates the covering strategy, which needs to employ
two test scenarios. In the first one, intent i1 is tested with the four
partitions of UTS1 used in strategy (a), and i2 is tested with the
utterance set UTS2,11 of strategy (b) that gives value to all its param-
eters. Conversely, the second scenario uses UTS1,11 of strategy (b)
to test i1, and the four partitions of UTS2 used in strategy (a) to test
i2. In total, the covering strategy would perform 4+4=8 test case ex-
ecutions (4 of each scenario), resulting in half the executions of the
exhaustive strategy, even if both provide full parameter coverage.

4.2.3 Literal coverage strategies. In the exhaustive strategy, full
literal coverage can be obtained by using, for each intent with pa-
rameters, test user utterances that jointly employ every possible
literal of the entities typing those parameters. Instead, the single-
literal strategy reduces the number of test cases by selecting a



AST 2024, April 2024, Lisbon, Portugal Pablo C. Cañizares, Daniel Ávila, Sara Pérez-Soler, Esther Guerra, and Juan de Lara

i1

UTS1

UTS2

Test scenario 1

p1

p2

i2
p4

p3

p1… …

UTS1, 10

p1… … …p2

UTS1, 11

p2… …

UTS1, 01

…

UTS1, 00

p3… …

UTS2, 10

p3… … …p4

UTS2, 11

p4… …

UTS2, 01

…

UTS2, 00

i1

UTS1

UTS2

Test scenario 1

p1

p2

i2
p4

p3

p1… … …p2

UTS1, 11

p3… … …p4

UTS2, 11

i1

UTS1

UTS2

Test scenario 1

p1

p2

i2
p4

p3

p1… …

UTS1, 10

p1… … …p2

UTS1, 11

p2… …

UTS1, 01

…

UTS1, 00

p3… … …p4

UTS2, 11

i1

UTS1

UTS2

p1

p2

i2
p4

p3

p1… … …p2

UTS1, 11

p3… …

UTS2, 10

p3… … …p4

UTS2, 11

p4… …

UTS2, 01

…

UTS2, 00

Test scenario 2

(a)                                 (b)                                                  (c)

Figure 4: Test utterance partition strategies for parameter

coverage. (a) Exhaustive. (b) Basic. (c) Covering.

single test utterance for each entity (i.e., with one literal). If several
intents have parameters typed by the same entity, then the utter-
ances to test each intent would employ different literals, to increase
coverage. In any case, this strategy does not usually yield a high
literal coverage. In between these two strategies, the covering one
uses test utterances for every possible literal of each entity, but
divided equally among the intents using the entity, thus achieving
100% literal coverage collectively. If an entity is used from just one
intent, then the exhaustive and covering strategies are equivalent.
Interestingly, the three strategies achieve 100% entity coverage.

Example. Fig. 5 exemplifies the strategies for testing a conver-
sation path given by intents i1–i2, both having a parameter typed
by the same entity e1, which in turn declares three literals (l1, l2,
and l3). The exhaustive strategy (a) uses, in each intent, test user
utterances for the three literals, achieving a 100% literal coverage.
The single-literal strategy (b) selects test utterances for one of the
literals (e.g., l1) in intent i1, and utterances for another literal (e.g.,
l2) in intent i2, achieving a coverage of 66.67%. Finally, the covering
strategy divides the utterance partitions between the two intents,
so that i1 is tested with the utterances using literal l1, and i2 is
tested with those using l2 or l3, achieving 100% literal coverage.
As for the number of test case executions, if there were just one
test utterance for each literal, then the exhaustive strategy would
require 9 test case runs, the single-literal 1, and the covering 2.

5 TOOL SUPPORT

We have implemented the proposed coverage criteria and test gen-
eration strategies presented in the previous section. The implemen-
tation builds on an existing neutral language for agent designs, and

i1
UTS1

UTS2

Test scenario 1

p1

i2
p2

p1… …

UTS1, l1

p1… …

UTS1, l3UTS1, l2

e1

l1

l2

l3

p1… …

p2… …

UTS2, l1

p2… …

UTS2, l3UTS2, l2

p2… …

i1

UTS1

UTS2

Test scenario 1

p1

i2
p2

p1… …

UTS1, l1

e1

l1

l2

l3

p2… …

UTS2, l2

100% literal
coverage

66.67% literal
coverage

(a)

(b)

i1
UTS1

UTS2

Test scenario 1

p1

i2
p2

p1… …

UTS1, l1

e1

l1

l2

l3
p2… …

UTS2, l3UTS2, l2

p2… …

100% literal
coverage

(c)

Figure 5: Test utterance partition strategies for literal cover-

age. (a) Exhaustive. (b) Single-literal. (c) Covering.

parsers from different agent development technologies into this
neutral language, which makes it possible to apply the strategies
to agents created with diverse technologies (currently, Dialogflow
and Rasa agents). Next, we provide details of the tool architecture
(Section 5.1), the neutral agent design language (Section 5.2), and
the test generation capabilities (Section 5.3).

5.1 Architecture

Fig. 6 shows the architecture of our tooling. It has been developed
as part of Asymob [10, 20], which is a platform to compute static
metrics on conversational agents, and cluster sets of agents by their
conversation topic. Asymob is available on GitHub as open source16.

Path

Exhaustive

Covering

Basic

Exhaustive
Factoring

Agent

Agent
Model

CONGA

Meta-model

Test Case
Generator

Generation strategy configuration

Test
Cases

Asymob

Agent
Parser

Botium

Test
Report

Static
Coverage

Report
«conforms to»

Test
Cases

Test
Cases

1a

2 3 4

6

5

7

8

Literal

Exhaustive

Covering

Single-literal

Parameter

1b

Figure 6: Architecture of our tool.

16 https://github.com/PabloCCanizares/asymob

https://github.com/PabloCCanizares/asymob


Coverage-based Strategies for the Automated Synthesis of Test Scenarios for Conversational Agents AST 2024, April 2024, Lisbon, Portugal

In the figure, we have numbered the steps required to generate
a test suite based on our coverage-based strategies. First, the user
must provide an agent (label 1a) and select the generation strate-
gies among those described in Section 4.2 for paths, parameters
and literals (label 1b). While our implementation is agnostic of the
agent technology, currently the tool admits Dialogflow and Rasa
agents. Then, the platform parses the received agent (label 2) and
converts it into a Conga model (label 3). Conga is a neutral lan-
guage for designing agents, which we will introduce in Section 5.2.
Next, the test case generator (label 4) receives the agent model and
the selected strategy as input, and generates a set of Botium test
cases (convo, utterance and scripting memory files, label 5). The
generator also performs a static analysis of the agent model, and
produces a coverage report that includes the percentage of flows,
paths, intents, parameters, entities and literals exercised in the tests
(label 6). Finally, the generated test cases are executed with Botium
(label 7), which provides a report of the test results (label 8).

5.2 A neutral language for agent designs

To make our test generation strategies independent from the tech-
nology and conversation design of the particular agent, our pro-
posal is built on the basis of a neutral agent design language called
Conga [26, 27]. This language encompasses the common features
of the most widely used conversational platforms. This way, once
our tool has converted the given agent into Conga (cf. labels 1–3 in
Fig. 6), it is possible to handle the agent as a white box, facilitating
the exploration of its internal structure and its static analysis.

Following model-driven engineering principles [7], the abstract
syntax of Conga is defined by a meta-model. Fig. 7 shows a sim-
plified excerpt, by which an agent design model (class Chatbot)
contains intents (class Intent), which may be fallback. Intents have
training phrases (class TrainingPhrase) and parameters (class Param-
eter), and these latter can be typed by predefined or user-defined
entities (class Entity). The conversation flows (class Flow) are made
of user-bot interactions (classes UserInteraction and BotInteraction),
where bot interactions may define actions, like sending a text mes-
sage (class Text). Conga supports multi-language agents (e.g., Eng-
lish and Spanish), for which the enumerate Language and the inter-
mediate classes LanguageIntent, EntityLanguage or TextLanguage are
needed. More details about Conga can be found at [26, 27].

5.3 Synthesis of test scenarios

From the agent design captured as a Congamodel, our tool synthe-
sises test scenarios for Botium according to the selected coverage-
based strategy (cf. labels 4–5 in Fig. 6).

To achieve this, the tool first performs a static analysis of the
agent design to extract the information needed to synthesise the test
scenarios, such as the conversation paths, the intents, their training
phrases and parameters, the agent responses, and the entities with
their literals. Subsequently, the test case generation proceeds as
follows. Each conversation path is converted into a convo file, which
specifies a sequence of user utterances and agent responses (see
Listing 1 in Section 2.2). Depending on the generation strategy,
the set of training phrases of each intent is converted into one or
several utterance files, which are used from the convo files when
necessary (see Listings 2 and 3 in Section 2.2). In particular, selecting

«enum»
Language

ENGLISH
SPANISH
...

«enum»
PredefinedEntity

TEXT
DATE
...

...

init

......

...
...

...

...

actions

params inputs

flows

Flow

BotInteractionUserInteraction

Training
Phrase

literals: String[*]

LanguageIntent

lang: Language

Intent

name: String
fallback: boolean

SimpleInput

value: String
synonyms: String[*]

Input

EntityLanguage

lang: Language

Entity

name: String

Parameter

name: String
ptype: PredefinedEntity[0..1]
list: boolean
required: boolean
prompts: String[*]

LanguageText

literals: String[*]
lang: Language

Text

Action

name: String

Chatbot

name: String
lang: Language[1..*]

next*

next

1..* 1..*

intent

langs
*

phrases
*

refparams
*

*

intents
1..*

1..*

 entities *

type

0..1
langs

1..*

refparams
*

text
1..*

actions
1..*

Figure 7: Simplified meta-model excerpt of Conga.

a parameter coverage strategy will partition the training phrases
into several utterance files based on the parameters included in the
phrases, while selecting a literal coverage strategy will partition
them based on the literals they use (cf. Section 4.2). The responses
provided by the agent are converted into action files, used from the
convo files as oracles. In some particular cases (e.g., Rasa agents that
control the actions using Python instead of declaratively) the oracle
is set to the expected intent instead of a specific action. Finally, each
entity is converted into a scripting memory file that contains all the
entity literals (see Listings 4 and 5 in Section 2.2).

6 EVALUATION

In order to evaluate our proposal, we have performed an experiment
involving agents of different technologies. The evaluation aims at
answering the following research questions (RQs):

RQ1 How do Asymob’s test generation strategies compare with
industrial ones in terms of correctness rate?

RQ2 How complete are the test suites produced by our coverage-
based strategies?

RQ3 Can the reduction techniques decrease the computational
testing cost?

Next, Section 6.1 describes the experimental setup, Sections 6.2–
6.4 address the RQs, and Section 6.5 provides a discussion on the
experiment results and the potential threats to validity. The exper-
iment dataset and its results are available at https://github.com/
PabloCCanizares/asymob/tree/master/experiments/coverage.

6.1 Experimental setting

For the experiment, we selected 6 agents from GitHub, built with
Dialogflow and Rasa, and created by third-parties.

Table 1 shows some design metrics for the selected agents, cal-
culated with Asymob. The first column contains the agent name,
and the subsequent columns show the number of conversation en-
try points (FLOW), conversation paths (PATH), total paths (TPATH),

https://github.com/PabloCCanizares/asymob/tree/master/experiments/coverage
https://github.com/PabloCCanizares/asymob/tree/master/experiments/coverage


AST 2024, April 2024, Lisbon, Portugal Pablo C. Cañizares, Daniel Ávila, Sara Pérez-Soler, Esther Guerra, and Juan de Lara

Name FLOW PATH TPATH INT ENT PAR LIT

Dialogflow

BikeShopAgent 4 4 6 5 1 3 15
beta 15 15 16 17 5 11 77

Insurance_Bot 6 12 17 19 0 6 0
Rasa

256644 10 10 10 11 0 0 0
Email-WhatsApp 3 6 6 8 0 0 0

Episode8 4 5 7 10 1 4 5
Table 1: Features of the selected agents.

intents (INT), user-defined entities (ENT), parameters (PAR), and lit-
erals (LIT). The number of total paths is the number of conversation
paths, plus the additional paths that arise when a user does not pro-
vide a value for a mandatory parameter, so the agent prompts for it.
For example, an agent that defines a single intent with two manda-
tory parameters (p1 and p2) has one conversation path (PATH=1)
and 4 total paths (TPATH=4). The latter comprise the 4 possible
conversation paths depending on whether a value is provided or
not for p1 and p2 (i.e., 4 combinations).

As the selection criterion, we tried to maximise the heterogeneity
of the agents. That is, we selected agents with linear conversations
(PATH=FLOW), conversations that bifurcate (PATH>FLOW), conver-
sation paths that depend or not on the provision of parameter values
(TPATH>PATH and TPATH=PATH), with and without parameters, and
with different design (INT) and vocabulary size (ENT, LIT).

Then, we generated test scenarios for the 6 agents using the
Botium Crawler introduced in Section 2.2, and Asymob with all
strategies. As test utterances, we took the training phrases of each
intent. The following sections answer the RQs by analysing the
generated tests and their execution on the 6 agents.

6.2 RQ1: Suitability of test suites

To answer this RQ, we compare the correctness of the test scenarios
generated with Botium, and those generated with Asymob.

Table 2 summarises the scenarios generated by Botium. The first
two columns show the platform and the agent name. The next four
columns provide information related to the quality of the test suite:
its size in terms of the number of test cases (TCs), the number of
successful (Pass) and failed (Fail) test cases, and the execution time
of the whole suite (Time), in seconds. The next two columns show
the number of generated convo and scripting memory files. Finally,
the last six columns capture the coverage of flows, (total) paths,
intents, entities, parameters and literals by the generated test suite.

Table 3 shows the same information for the test suites generated
using the exhaustive strategy of Asymob.
Answering RQ1. In Table 2, only agents 256644 and Email-WhatsApp
pass all the tests generated by Botium. However, all agents should
satisfy these tests, since the test utterances are the training phrases
of the agents’ intents. That is, all the test cases must pass, so a failed
test case reveals a problem in the test case design. Instead, as Table 3
shows, all the agents pass the test suites generated by Asymob using
the exhaustive strategy. They also pass the test suites synthesised
for our other strategies (omitted due to space limitations). Hence,
we conclude that our test generation strategies achieve a higher
correctness rate than Botium’s for the synthesis of test scenarios.

6.3 RQ2: Completeness of test suites

To address RQ2, we have measured the coverage on conversation
and vocabulary aspects by the different strategies, as well as the
testing artefacts produced by the strategies.

First, we take Botium as a baseline (Table 2). We observe that the
size of the test suites ranges from 18 to 423 test cases, encoded in 3
to 164 convos, and no scripting memory file. In terms of coverage,
the test suites generated by Botium cover 100% of some elements
like INT and ENT. However, the achieved coverage is not complete
for other aspects such as PATH in each of the considered agents, LIT
in the beta agent, and FLOW in the Rasa agents.

With respect to our exhaustive strategy (Table 3), the generated
test suites are generally bigger17, ranging from 107 to 16847 test
cases. This increase in size is due to an in-depth exploration of all
conversation paths, achieving a 100% coverage in all FLOW, PATH,
INT, PAR, ENT and LIT in both Dialogflow and Rasa agents. The test
suites were encoded in 6 to 17 convos, and 0 to 5 scripting mem-
ory files. Interestingly, our strategy generated fewer convos than
Botium. This is so as our strategy produces convos with longer con-
versations that test many intents, while Botium-generated convos
typically consist of a single user-bot interaction. In addition, our
technique is able to generate scripting memory files with suitable
values for parameters.

Table 4 shows the effect of our test case generation strategies
relative to the exhaustive one. In the basic strategy, the test suites
are generally smaller than those created by the exhaustive strategy,
with reductions from 0 to 3150 test cases. Moreover, this strategy
achieved a 100% coverage in FLOW, INT, ENT, PAR and LIT. However,
this strategy compromised the full coverage of PATH, reducing it
in a range from 12.5% to 50% in beta, Episode8, Insurance_Bot and
BikeShopAgent.

The covering strategy produces the same test suites as the ex-
haustive strategy in all cases. Moreover, the literal covering strategy
was not applicable to any of the agents.

The factoring strategy generates test suites very similar to those
of the exhaustive strategy when it is applied over linear agents (e.g.,
BikeShopAgent, beta). However, when applied over agents with
complex conversations, it reduces the size of the test suite (41 test
cases less in Insurance_Bot, 707 test cases less in Email-WhatsApp,
and 6065 test cases less in Episode8) while maintaining the coverage
levels of the exhaustive strategy. Hence, this strategy achieves a
good compromise between coverage and reduction, being suitable
for the synthesis of test cases for agents where PATH > FLOW.

Finally, in the single-literal strategy, the size of the test suites of
the agents that contain literals in their design (LIT > 0) becomes
significantly reduced. This is reflected in the agents BikeShopAgent,
Episode8 and beta, whose test suites are reduced in 602, 5096 and
16485 test cases, respectively. The size of the test suites of the other
agents remains equal to the exhaustive strategy. The coverage of
the agents’ elements is maintained except in the case of LIT, which
decreases significantly.
Answering RQ2. The exhaustive strategy achieves 100% coverage in
all conversation and vocabulary criteria. Anyhow, reaching 100%
coverage on entities and literals depends on the availability of suit-
able test utterances. Since we used the training phrases as test

17 The number of test cases is equal for the case of Insurance_Bot.



Coverage-based Strategies for the Automated Synthesis of Test Scenarios for Conversational Agents AST 2024, April 2024, Lisbon, Portugal

Platform Name TCs Pass Fail Time (s) #Convos #Scripts FLOW PATH INT ENT PAR LIT

Dialogflow
BikeShopAgent 18 10 8 17.3 3 0 100 50 100 100 100 100

beta 362 352 10 382.6 14 0 100 87.5 100 100 100 45.16
Insurance_Bot 107 34 73 110.9 11 0 100 64.7 100 - 100 -

Rasa
256644 73 73 0 3.1 21 0 90 90 100 - - -

Email-WhatsApp 48 48 0 3 8 0 33.3 33.3 100 - - -
Episode8 423 235 188 10529.2 164 0 40 28.5 100 100 100 100

Table 2: Summary of the test suites generated with Botium.

Platform Name TCs Pass Fail Time (s) #Convos #Scripts FLOW PATH INT ENT PAR LIT

Dialogflow
BikeShopAgent 620 620 0 1318 6 3 100 100 100 100 100 100

beta 16847 16847 0 19323 16 5 100 100 100 100 100 100
Insurance_Bot 107 107 0 345 17 0 100 100 100 - 100 -

Rasa
256644 107 107 0 5.3 10 0 100 100 100 - - -

Email-WhatsApp 836 836 0 168 6 0 100 100 100 - - -
Episode8 6400 6400 0 2770.9 7 2 100 100 100 100 100 100

Table 3: Summary of the test suites generated with the exhaustive strategy.

Basic Covering Factoring Single-literal

Name TCs Coverage TCs Coverage TCs Coverage TCs Coverage

BikeShopAgent -440 -50% PATH 0 – 0 – -602 -80% LIT
beta -12 -12.5% PATH 0 – 0 – -16485 -94%LIT

Insurance_Bot -45 -48% PATH 0 – -41 – 0 –
256644 0 – 0 – 0 – 0 –

Email-WhatsApp 0 – 0 – -707 – 0 –
Episode8 -3150 -29% PATH 0 – -6065 – -5096 -75% LIT

Table 4: Effect of the reduction strategies on the generated test suites w.r.t. the exhaustive strategy.

utterances, 100% was achieved. Our reduction strategies decrease
the amount of test cases generated, which may have a toll on cov-
erage. In comparison with our baseline Botium, we obtain higher
coverage, and produce scripting memory files, which helps to better
structure the test specifications. Remarkably, the PATH coverage of
our basic strategy is similar to the one of Botium for Dialogflow.

6.4 RQ3: Computational cost reduction

Achieving full coverage may have a high computational cost, hence
we analyse the test execution time of each proposed reduction strat-
egy. Fig. 8 displays the execution times of the test suites generated
by the exhaustive, basic, covering, factoring and single-literal strate-
gies. The x-axis represents the names of the agents under study
while the y-axis shows the total time in seconds.

To measure the effectiveness of the reduction strategies, we use
the execution times of the exhaustive approach as a baseline. The
strategy has required 1318 seconds for BikeShopAgent (Fig. 8(a)),
16835 seconds for beta (Fig. 8(b)), 312 seconds for Insurance_Bot
(Fig. 8(c)), 5.3 seconds for 256644 (Fig. 8(d)), 168 seconds for Email-
WhatsApp (Fig. 8(e)), and 2770.9 seconds for Episode8 (Fig. 8(f)).

In general, we observe that, in all cases, at least one reduction
technique performs better than the exhaustive strategy. The ba-
sic strategy outperforms the exhaustive strategy in three agents
(BikeShopAgent, Insurance_Bot and Episode8) requiring 323, 133.3
and 1185.7 seconds, respectively. This entails a reduction of 75.4%,

57.37%, and 57.2% in execution time. The covering strategy beats the
exhaustive one in case of the 256644 and Email-WhatsApp agents,
completing the test in 5.2 and 149 seconds, resulting in an 2% and
11.3% of reduction. The factoring approach is faster than the exhaus-
tive strategy in the Insurance_Bot, Email-WhatsApp and Episode8
agents, completing in 174.2, 19.4 and 144.2 seconds and reducing the
execution time by 44.1%, 88.4% and 94.8%. Finally, the single-literal
strategy achieves faster executions compared to the exhaustive
strategy in four agents (BikeShopAgent, beta, Email-WhatsApp,
Episode8) requiring 45.3, 665.5, 139.9 and 545.7 seconds, respec-
tively. This corresponds to reductions of 96.5%, 96.1%, 16.7% and
80.2% in total time. Please note that, in some cases, the reduction
strategies show slightly higher execution times than the exhaustive
one. We argue that this is a spurious effect of the execution, since
the reduction strategies never produce more test cases than the
exhaustive one.
Answering RQ3. Comparing all strategies, the single-literal has ob-
tained the best results in two agents (BikeShopAgent and beta),
the factoring in two agents (Email-WhatsApp and Episode8), the
basic in one agent (Insurance_Bot) and the covering in one agent
(256644). In conclusion, reduction strategies effectively decrease
computational costs compared to the exhaustive strategy, allowing
us to respond RQ3 affirmatively.



AST 2024, April 2024, Lisbon, Portugal Pablo C. Cañizares, Daniel Ávila, Sara Pérez-Soler, Esther Guerra, and Juan de Lara

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

BikeshopAgent

T
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

Exhaustive
Covering

Basic
Factoring
S-literal

(a) BikeShopAgent

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

beta

T
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

Exhaustive
Covering

Basic
Factoring
S-literal

(b) beta

 100

 150

 200

 250

 300

 350

Insurance-Bot

T
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

Exhaustive
Covering

Basic
Factoring
S-literal

(c) Insurance_Bot

 5.2

 5.25

 5.3

 5.35

 5.4

 5.45

 5.5

 5.55

 5.6

256644

T
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

Exhaustive
Covering

Basic
Factoring
S-literal

(d) 256644

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Email-WhatsApp

T
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

Exhaustive
Covering

Basic
Factoring
S-literal

(e) Email-WhatsApp

 0

 500

 1000

 1500

 2000

 2500

 3000

Episode8

T
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

Exhaustive
Covering

Basic
Factoring
S-literal

(f) Episode8

Figure 8: Computational time required to execute the proposed reduction techniques.

6.5 Discussion and threats to validity

The experiment has shown three main points. First, that the use of
an explicit agent design (as extracted by Asymob from Dialogflow
and Rasa agents, and represented in Conga) is beneficial when
generating test suites, in comparison to a black-box test generation
technique as realised by Botium. This is so as the availability of
the agent design enables a white-box analysis that can generate
more complete test suites, using more sophisticated elements (e.g.,
scripting memory files). Second, our coverage criteria can be used
to quantify the completeness of the test cases. We have seen that
our exhaustive strategy achieves higher completeness than that
of Botium Crawler. Finally, we have seen that by using reduction
techniques, we can decrease the test execution times, controlling
the level of completeness of the test suite.

Regarding threats to the validity of the experiment, the reduced
size of our dataset (6 agents) may affect the generalisability of
the results (external validity). This way, stronger results may be
achieved with a larger sample size, which we plan to conduct in
future work. Regarding construct validity, we used coverage as a
measure of the completeness of the test suite. This could be used as
a proxy for its quality, but its ability to detect errors, e.g., as given
by mutation analysis [11], can be used here. We plan to perform
such a study in future work. Finally, we found some spurious effects
when measuring execution times of the reduction strategies against
the exhaustive one. Even if all chatbots were deterministic w.r.t.
intent recognition, these could have beenmitigated by repeating the
testing more times and calculating the average. The long execution

times in some cases (>6 hours) prevented us from performing this
procedure, which we will conduct in the future.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we have characterised coverage criteria for testing
task-oriented conversational agents, along with different reduction
strategies for test scenario generation. We have implemented a test
generation facility atop the Asymob tool, which is able to synthesise
Botium test scenarios for agents created in Dialogflow and Rasa.
Our evaluation shows that the generated test suites are suitable (i.e.,
correct), more complete than industrial test generation facilities,
and reduction techniques can help decrease testing time.

In future work, we plan to use mutation analysis to evaluate the
effectiveness of the different strategies, and we aim to explore new
prioritisation and minimisation strategies based on artificial intelli-
gence (AI). We plan to combine the presented techniques with test
case augmentation techniques for analysing the understandability
of the agents. For this, we aim at generating test utterances by in-
crementing the training phrases of the system, including variations
that emulate syntactical errors committed by the users. Finally,
we plan to adapt the proposed strategies for their application to
conversational agents based on generative AI (e.g., GPT4, LlaMA
2), like those built with Langchain (https://www.langchain.com/).

ACKNOWLEDGMENTS

Work funded by the SpanishMICINNwith projects TED2021-129381B-
C21, PID2021-122270OB-I00, and RED2022-134647-T.

https://www.langchain.com/


Coverage-based Strategies for the Automated Synthesis of Test Scenarios for Conversational Agents AST 2024, April 2024, Lisbon, Portugal

REFERENCES

[1] Eleni Adamopoulou and Lefteris Moussiades. 2020. Chatbots: History, Technol-
ogy, and Applications. Machine Learning with Applications 2 (2020), 100006.

[2] Hussam Alkaissi and Samy I McFarlane. 2023. Artificial Hallucinations in Chat-
GPT: Implications in Scientific Writing. Curēus 15, 2 (2023), 4 pages.

[3] Antonia Bertolino, Emilio Cruciani, Breno Miranda, and Roberto Verdecchia.
2022. Testing Non-Testable Programs Using Association Rules. In 3rd ACM/IEEE
International Conference on Automation of Software Test. ACM/IEEE, 87–91.

[4] Josip Bozic. 2022. Ontology-Based Metamorphic Testing for Chatbots. Softw.
Qual. J. 30, 1 (2022), 227–251.

[5] Josip Bozic, Oliver A. Tazl, and Franz Wotawa. 2019. Chatbot Testing Using AI
Planning. In 2019 IEEE International Conference on Artificial Intelligence Testing
(AITest). IEEE, 37–44.

[6] Josip Bozic and Franz Wotawa. 2019. Testing Chatbots Using Metamorphic
Relations. In 31st IFIPWG 6.1 Int. Conf. on Testing Softw. and Syst. (LNCS, Vol. 11812).
Springer, 41–55.

[7] M. Brambilla, J. Cabot, and M. Wimmer. 2017. Model-Driven Software Engineering
in Practice, Second Edition. Morgan & Claypool Publishers.

[8] Sergio Bravo-Santos, Esther Guerra, and Juan de Lara. 2020. Testing Chatbots
with Charm. In 13th Int. Conf. on Quality of Information and Communications
Technology (CCIS, Vol. 1266). Springer, 426–438.

[9] Jordi Cabot, Loli Burgueño, Robert Clarisó, Gwendal Daniel, Jorge Perianez-
Pascual, and Roberto Rodríguez-Echeverría. 2021. Testing Challenges for NLP-
intensive Bots. In 3rd IEEE/ACM International Workshop on Bots in Software
Engineering (BotSE@ICSE). IEEE, 31–34.

[10] P. C. Cañizares, J. M. López-Morales, S. Pérez-Soler, E. Guerra, and J. de Lara.
2023. Measuring and clustering heterogeneous chatbot designs. ACM Trans.
Softw. Eng. Methodol. (2023), 42 pages. https://doi.org/10.1145/3637228

[11] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on
Test Data Selection: Help for the Practicing Programmer. Computer 11, 4 (1978),
34–41.

[12] Dana Doherty and Kevin Curran. 2019. Chatbots for Online Banking Services. In
Web Intelligence, Vol. 17. IOS Press, 327–342.

[13] Asbjorn Folstad and Cameron Taylor. 2021. Investigating the User Experience of
Customer Service Chatbot Interaction: A Framework for Qualitative Analysis of
Chatbot Dialogues. Quality and User Experience 6 (2021), 1–17.

[14] European Committee for Electrotechnical Standardization. 2001. EN 50128: Rail-
way Applications-Communication, Signalling and Processing Systems-Software for
Railway Control and Protection Systems. Standard.

[15] Malik Ghallab, Adele Howe, Craig A. Knoblock, Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL – The Planning
Domain Definition Language. Technical Report CVC TR-98-003/DCS TR-1165.
Yale Center for Computational Vision and Control.

[16] Xu Han, Michelle Zhou, Yichen Wang, Wenxi Chen, and Tom Yeh. 2023. Democ-
ratizing Chatbot Debugging: A Computational Framework for Evaluating and
Explaining Inappropriate Chatbot Responses. In 5th International Conference on
Conversational User Interfaces. ACM, New York, NY, USA, Article 39, 7 pages.

[17] Jen-tse Huang, Jianping Zhang, Wenxuan Wang, Pinjia He, Yuxin Su, and
Michael R. Lyu. 2022. AEON: A Method for Automatic Evaluation of NLP Test
Cases. In 31th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, New York, NY, USA, 202–214.

[18] Leslie A. Johnson. 1998. DO-178B: Software Considerations in Airborne Systems
and Equipment Certification. CrossTalk 199 (1998), 11–20.

[19] Zixi Liu, Yang Feng, and Zhenyu Chen. 2021. DialTest: Automated Testing
for Recurrent-Neural-Network-Driven Dialogue Systems. In 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA). ACM, 115–126.
[20] Jose María López-Morales, Pablo C. Cañizares, Sara Pérez-Soler, Esther Guerra,

and Juan de Lara. 2022. Asymob: A Platform for Measuring and Clustering
Chatbots. In 44th IEEE/ACM International Conference on Software Engineering:
Companion Proceedings (ICSE Companion). ACM/IEEE, 16–20.

[21] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In 25th International Symposium on Software
Testing and Analysis. ACM, 94–105. See also: https://engineering.fb.com/2018/05/
02/developer-tools/sapienz-intelligent-automated-software-testing-at-scale/.

[22] Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric Nickell, Rob
Siemborski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In
39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). IEEE, 233–242.

[23] Changhai Nie and Hareton Leung. 2011. A survey of combinatorial testing. ACM
Comput. Surv. 43, 2, Article 11 (feb 2011), 29 pages.

[24] OpenAI. (last accessed in 2023). https://openai.com/research/gpt-4#limitations.
[25] Rob Palin, David Ward, Ibrahim Habli, and Roger Rivett. 2011. ISO 26262 Safety

Cases: Compliance and Assurance. In 6th IET International Conference on System
Safety 2011. IET, 1–6.

[26] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2020. Model-Driven Chatbot
Development. In 39th International Conference on Conceptual Modeling (ER) (LNCS,
Vol. 12400). Springer, 207–222.

[27] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2021. Creating and Migrating
Chatbots with Conga. In 43rd IEEE/ACM International Conference on Software
Engineering: Companion Proceedings (ICSE Companion). IEEE, 37–40.

[28] Ranci Ren, John W. Castro, Silvia Teresita Acuña, and Juan de Lara. 2019. Evalua-
tion Techniques for Chatbot Usability: A Systematic Mapping Study. Int. J. Softw.
Eng. Knowl. Eng. 29, 11&12 (2019), 1673–1702.

[29] João Sedoc, Daphne Ippolito, Arun Kirubarajan, Jai Thirani, Lyle H. Ungar, and
Chris Callison-Burch. 2019. Chateval: A Tool for Chatbot Evaluation. In 2019
Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations). Association for Computational Linguistics, 60–65.

[30] Geovana Ramos Sousa Silva, Genaína Nunes Rodrigues, and Edna Dias Canedo.
2023. A Modeling Strategy for the Verification of Context-Oriented Chatbot
Conversational Flows via Model Checking. Journal of Universal Computer Science
29, 7 (2023), 805–835.

[31] Richard J. Somers, James A. Douthwaite, David J. Wagg, Neil Walkinshaw, and
Robert M. Hierons. 2023. Digital-Twin-Based Testing for Cyber-Physical Systems:
A Systematic Literature Review. Inf. Softw. Technol. 156 (2023), 107145.

[32] Marisa Vasconcelos, Heloisa Candello, Claudio Pinhanez, and Thiago dos Santos.
2017. Bottester: Testing Conversational Systems with Simulated Users. In XVI
Brazilian Symposium on Human Factors in Computing Systems (Joinville, Brazil).
ACM, New York, NY, USA, Article 73, 4 pages.

[33] Franz Wotawa, Lorenz Klampfl, and Ledio Jahaj. 2021. A Framework for the
Automation of Testing Computer Vision Systems. In 2021 IEEE/ACM International
Conference on Automation of Software Test (AST). IEEE, 121–124.

[34] Muralidhar Yalla and Asha Sunil. 2020. AI-Driven Conversational Bot Test Au-
tomation Using Industry Specific Data Cartridges. In IEEE/ACM 1st International
Conference on Automation of Software Test (AST). ACM, New York, NY, USA,
105–107.

[35] J. D. Zamfirescu-Pereira, Heather Wei, Amy Xiao, Kitty Gu, Grace Jung,
Matthew G. Lee, Bjoern Hartmann, and Qian Yang. 2023. Herding AI Cats:
Lessons from Designing a Chatbot by Prompting GPT-3. In 2023 ACM Designing
Interactive Systems Conference (DIS). ACM, 2206–2220.

Received 24 January 2024

https://doi.org/10.1145/3637228
https://engineering.fb.com/2018/05/02/developer-tools/sapienz-intelligent-automated-software-testing-at-scale/
https://engineering.fb.com/2018/05/02/developer-tools/sapienz-intelligent-automated-software-testing-at-scale/
https://openai.com/research/gpt-4#limitations

	Abstract
	1 Introduction
	2 Background
	2.1 Task-oriented conversational agents
	2.2 Testing with Botium

	3 State of the Art
	3.1 Intent-level testing
	3.2 Conversation testing
	3.3 Usability testing
	3.4 Code coverage

	4 Synthesis of Test Scenarios based on Coverage Criteria
	4.1 Coverage criteria for agent designs
	4.2 Coverage-based synthesis of test scenarios

	5 Tool Support
	5.1 Architecture
	5.2 A neutral language for agent designs
	5.3 Synthesis of test scenarios

	6 Evaluation
	6.1 Experimental setting
	6.2 RQ1: Suitability of test suites
	6.3 RQ2: Completeness of test suites
	6.4 RQ3: Computational cost reduction
	6.5 Discussion and threats to validity

	7 Conclusions and Future Work
	Acknowledgments
	References

