
Domain-Specific Modelling using Mobile Devices

Diego Vaquero-Melchor, Antonio Garmendia, Esther Guerra, and Juan de Lara

Modelling and Software Engineering Group
http://miso.es

Computer Science Department
Universidad Autónoma de Madrid (Spain)

{Diego.Vaquero, Antonio.Garmendia, Esther.Guerra, Juan.deLara}@uam.es

Abstract. Domain-Specific Languages (DSLs) are languages tailored
for a specific application area, like logistics, networking or mobile app
design. They capture the main primitives and abstractions within a do-
main, which permits modelling systems and problems within that domain
in a succinct and natural way. DSLs are heavily used in software devel-
opment paradigms like Model-Driven Engineering, and they are also a
means to enable end-users to perform simple programming tasks in par-
ticular domains.

Traditionally, modelling using DSLs has been supported by desktop com-
puters in static settings that neglect the surrounding contextual informa-
tion. Instead, we claim that DSLs can also be very useful in a dynamic
setting where they can profit from mobility and context. Therefore, in
this paper, we identify several scenarios where modelling using mobile
devices – like smartphones or tablets – is useful. We also propose an ar-
chitecture and a tool, called DSL-comet, which enables mobile modelling
using graphical DSLs, and supports seamless integration of desktop and
mobile graphical modelling environments.

Keywords: Model-Driven Engineering, Domain-Specific Languages, Graph-
ical Modelling Languages, Context, Mobile Devices, DSL-comet

1 Introduction

Domain-Specific Languages (DSLs) [10, 16] are “small” languages tailored to a
particular domain. In contrast to general-purpose languages (GPLs) – like Java
for programming or UML for modelling – DSLs target specific application areas,
like networking, user interface design or logical circuits [10]. This way, DSLs
provide useful primitives of the domain, which can be used to create simpler,
more intentional system descriptions than those that would result from the use
of GPLs. DSLs can be either graphical [10] or textual [26], though in this paper
we will focus on graphical ones.

DSLs are heavily used in Model-Driven Engineering (MDE) [2], a software
engineering paradigm that promotes an active utilization of models in all phases
of software development. In MDE, models are used to specify, analyse, simulate,



test, execute and generate code for the final applications, among other activi-
ties. While it is possible to define these models using GPLs like the UML, their
construction using DSLs tailored to particular domains is very frequent in prac-
tice [10, 27]. DSLs are also enablers for end-user development [11], as they permit
users with no or little computer science background to perform concrete, simple
programming tasks in particular contexts.

A primary goal of models in MDE is to serve as an automation mecha-
nism for development tasks like code generation. Thus, although initial phases
of modelling may take place in informal settings like whiteboards or using pen
and paper, models need to become precisely defined to be machine processable.
Traditionally, the modelling task takes place in desktop computers (or laptops)
assisted by modelling tools, like those based in Eclipse/EMF [22]. While this is
useful for late phases of model development, it introduces rigidity and prevents
using models in flexible scenarios that imply mobility and collaboration or need
to react to contextual information. Unfortunately, most tools for the creation of
DSLs are targeted to desktop environments [10, 26].

We claim that modelling using DSLs can benefit from mobility, collabora-
tion and context in several situations. In this paper, we identify scenarios where
mobile modelling is useful, and present an architecture and prototype tool for
the discussed scenarios. Our approach permits the automatic generation of both
desktop and mobile graphical modelling environments from a single description,
as well as the seamless editing of models in both kinds of environments. Our desk-
top modelling environment is an Eclipse plugin based on the Sirius [21] graphi-
cal modelling platform. The mobile modelling environment is based on iOS, and
permits model sharing and local collaborative model editing via local ad-hoc
WiFi networks. Communication between the desktop and mobile environments
is achieved through a dedicated server. Our tool is called DSL-comet (Domain
Specific Language COllaborative Modelling EnvironmenT) and is freely available
at the Apple’s app store, and at http://miso.es/tools/DSL-comet.html. To
illustrate its functionality, we will introduce a DSL for designing factory plants
as a running example.

This is an extended version of our previous paper [24] presented at the 10th

International Joint Conference on Software Technologies (ICSOFT). In this pa-
per, we enhance the presentation of the motivating scenarios for mobile mod-
elling, we present a more comprehensive description of the technical aspects of
our tool and architecture using a different case study, and we expand the analysis
of related works.

The rest of this paper is organized as follows. First, Section 2 motivates the
need for mobile modelling using DSLs, describes several scenarios of interest,
and elicits some technical requirements for tools aimed at supporting mobile
modelling. Next, Section 3 describes the architecture we propose to support
these scenarios. Section 4 introduces DSL-comet, the prototype tool that realizes
this vision. Then, Section 5 presents a comparison with related research. Finally,
Section 6 ends with the conclusions and open lines of future work.



2 Scenarios for mobile modelling

In this section, we discuss several scenarios where modelling can profit from
mobility, context and collaboration. We will use these scenarios to elicit require-
ments for tools aimed at supporting domain-specific modelling in mobile devices.

2.1 Multi-device modelling

Mobile modelling tools should keep models compatible with other devices. There-
fore, in the first scenario, we deem necessary being able to use seamlessly models
both in mobile and desktop environments. This means that models can be cre-
ated in a desktop environment and then be used in a mobile device, or vice-versa.
Figure 1 shows a schema of this scenario. A server is in charge of storing the
models, which can be downloaded for their editing in mobile and desktop envi-
ronments indistinctly, and then be uploaded to the server again.

Desktop modelling

environment

Server

Mobile modelling

environment

DSL users

Fig. 1: Combined desktop and mobile modelling.

Applications of this scenario include modelling in remote locations (e.g., a
wind turbine) through mobile devices. As an example, an operator of a factory
may need to inspect a model of the factory plant on-site, change its parameters
according to the current working location, or even create a model of the plant
while visiting the factory. In this case, the operator would find preferable per-
forming these modelling actions using a mobile device while staying on the plant.
On the other hand, the same models may need to be analysed by other engi-
neers at desktops in the company offices, or be used for simulation or run-time
monitoring.

The seamless integration of desktop and mobile modelling also enables in-
formal, agile meetings between engineers, who may use a combination of tablets
and desktop monitors for model visualization.



Finally, this scenario is also applicable to the educational domain. In this
setting, professors can create models and modelling exercises in their desktop
computers, and students may access these exercises or modelling lessons for
learning in mobility. Then, students may upload the solution to the exercises to
the server, and be graded by the professors in their desktops.

From the analysis of this scenario, we derive as a technical requirement the
need of a common format to represent models in desktop and mobile environ-
ments. This is more easily achievable if both environments are generated from a
single definition of the DSL being used to build the models.

2.2 Mobile collaborative modelling

When modelling in mobility in remote locations (e.g., a farm or a building in the
country side) one cannot assume the availability of a WiFi Internet connection
or even mobile coverage. In this scenario, users can benefit from the short-range
communication capabilities of mobile devices to enable local collaboration, e.g.,
for joint model construction or inspection. This eliminates the need to use a
remote server to orchestrate and coordinate the collaboration, which may incur
in long delays or can be impossible in remote locations where no data connection
is available. Instead, collaboration can occur by using short-range communication
of mobile devices like Bluetooth or WiFi.

Figure 2 illustrates this scenario. First, one user (user 1) downloads from
the server a palette with the different kinds of elements that can appear in the
model. Alternatively, the user may already have the palette stored locally in the
mobile device. Then, this user sets a local WiFi network and invites other nearby
users to the collaborative session. The collaboration rules may be customizable
depending on the particular application. For example, it can be token-based,
with either implicit or explicit assignment of the modification token. The figure
shows a token-based collaboration, where only the user holding the modification
token (user 2) can change the model. In the meantime, the devices of all users
participating in the session will display an updated view of the model as it is
being modified. When the session finishes, the model can be stored either in the
server or locally.

Applications of this scenario include those presented in Section 2.1, but en-
hanced with local collaboration facilities. In particular, local collaboration en-
ables joint model creation, model revision and discussion, or the collaborative
solution of modelling exercises in an educational setting.

2.3 Context-based modelling

Mobile devices can access contextual information, which can be useful in some
modelling scenarios [1]. For example, a mobile modelling environment may present
different parts of a model, or allow different editing actions, depending on the
context. This context may include information about the device state – like
battery, size of screen, orientation, or availability of a WiFi connection – and



Server

model

1

2

3

Fig. 2: Local collaborative modelling. User 1 starts the session, and user 2 has
the modification token. All users’ devices display an updated view of the model
as it is being modified.

external information – like position, time or weather conditions –. Figure 3 il-
lustrates the adaptation of a mobile modelling environment depending on the
context.

context 

Server 

model 

environment 
adaptation 

Fig. 3: Mobile contextual modelling.

For instance, in the factory example introduced in Section 2.1, the mobile
app may present a model of the plant where the engineer is located, updating
this view when the engineer moves to a different location. This way, it becomes
easier for the engineer to monitor or modify the operating conditions of the
machines nearby the current location.

Domotics is another domain where this scenario applies. Similarly to the
factory example, a mobile app could present a model of the devices (TVs, blinds,
lights, heating, etc.) inside the room where the house owner is currently located.
This view would get updated when the owner moves to a different room. By
manipulating the model, the owner may interact with the home devices.



2.4 Requirements for mobile domain-specific modelling

From an analysis of the presented scenarios, we identify the following require-
ments for a mobile modelling platform:

Rq1 Models should be compatible in mobile and desktop applications.
The environment should enable the seamless use of models in
desktop and mobile devices.

Rq2 In order to allow multi-device modelling (scenario 1), the gener-
ation of both desktop and mobile environments should be easy.
Moreover, the effort needed to generate one desktop and one
mobile environment should be the same as the effort needed to
generate only one of them.

Rq3 Model visualization in the mobile environment should be adapted
to the reduced screen size.

Rq4 Model editing in the mobile environment should be adapted to
support typical mobile interaction gestures (e.g., swipe, tap and
pinch).

Rq5 In order to allow mobile collaborative modelling (scenario 2),
the platform should support local collaboration in the mobile
environment.

Rq6 In order to allow context-based modelling (scenario 3), the plat-
form should enable context adaptation in the mobile environ-
ment, and incorporation of context information and the corre-
sponding adaptation rules in the DSL definition.

The next section describes an architecture that addresses scenarios 1 and 2

and requirements Rq1 to Rq5. Scenario 3 and requirement Rq6 are left for future
work.

3 Architecture

Figure 4 shows the scheme of our proposed architecture, which provides support
for scenarios 1 and 2. It considers two main phases: DSL definition (label 1) and
DSL use (label 2).

In the first phase, the DSL developer defines the DSL. This includes the def-
inition of the DSL abstract syntax (the concepts of interest, together with their
properties and relations), concrete syntax (their visualization), and semantics
(what the models mean, typically enacted by model simulators or code genera-
tors). In this work, we focus on the abstract and concrete syntax, and leave the
semantics for future work.

In MDE, the abstract syntax of a DSL is described through a meta-model.
Implementation-wise, we use standard tools based on the Eclipse Modelling
Framework (EMF) [22] to create the meta-models. Therefore, meta-models are
built using Eclipse in a desktop environment, and then they are uploaded to the
server once their definition is complete.



define
abstract
syntax

Server

DSL
developer

mobile modelling
environment

DSL users

desktop modelling
environment

DSL definition

define
concrete

syntax

m
et

a-
m

o
d

e
l

p
al

et
te DSL use

1

2

Fig. 4: Our proposed architecture.

The graphical concrete syntax (which we call palette) can be defined either
from the mobile environment or from Eclipse in the desktop [5]. In both cases, it
is defined using a wizard that allows assigning icons and shapes to the different
meta-model elements. This palette is stored as a model in the server. For this
purpose, we have created a meta-model to describe graphical concrete syntaxes
in a platform-independent way.

To enable combined modelling, we use the same definition (abstract syntax
meta-model and concrete syntax description) to synthesize both a desktop and
a mobile modelling environment, thus covering requirements Rq1 and Rq2. The
desktop environment is realised as a Sirius editor, while we have built our own
tool called DSL-comet to allow the editing of models in mobile devices. DSL-
comet supports typical visualization and interaction styles for mobile devices,
thus covering requirements Rq3 and Rq4.

The DSL users can build models using any of the two generated environments,
and store the models either locally or in the server. This permits the seamless
editing of models both in the mobile device and the desktop environment. In case
of mobility, it is also possible to set up a collaborative modelling session between
several nearby users by temporarily designating one of their mobile devices as a
local server. This enables collaboration without requiring an internet connection,
as demanded by requirement Rq5.

Currently, we use a MongoDB NoSQL database to store the models, meta-
models and palettes. Technically, all these artefacts are stored in JSON format,
and they are converted into XMI to ensure compatibility with the desktop en-
vironment.



Once we have seen the main parts of the architecture we propose, in the next
section we detail its main features. As a running example, we will use a DSL for
factory plants.

4 Tool support

This section describes our prototype tool for the proposed architecture. The
tool, named DSL-comet (Domain Specific Language COllaborative Modelling
EnvironmenT) is made of three components: a desktop client, a server, and a
mobile app. The desktop client is based on Eclipse, the server is based on Node.js,
and the client is a native iOS app. Next, we explain the three components. More
information about the tool is available at http://miso.es/tools/DSL-comet.
html.

4.1 The desktop client

In order to define the abstract syntax of the DSL, we use our tool DSL-tao [19].
The distinguishing feature of the tool is that it permits constructing meta-models
by composing predefined patterns. As an example, the window at the back of
Figure 5 shows an excerpt of the meta-model for the factory DSL, specified using
DSL-tao. According to the meta-model, a factory may contain different types of
machines (generators, terminators and assemblers) connected through conveyors
and controlled by operators. Machines manipulate different types of parts, like
handles, knobs and hammers. Moreover, two attributes in class Machine permit
configuring whether a machine is busy or broken.

Once the meta-model of the DSL is complete, we need to define its con-
crete syntax. This is performed using a dedicated wizard, which is shown at the
front of Figure 5. The specified concrete syntax is internally described through
a platform-independent meta-model called GraphicRepresentation that records
the selected appearance for the classes and relations in the DSL meta-model
(shape, colour, etc.) as well as the palette that the generated modelling environ-
ments will provide to create instances of the different classes. An excerpt of the
meta-model is shown in Figure 6. The diagram elements are organized into lay-
ers. This is useful to occlude elements or show more details. However while the
generated desktop graphical editor supports layers, currently the mobile editor
does not.

Layers contain graphical elements (class DiagramElement), which point to the
meta-model classes they represent. Objects can be represented as nodes (class
Node) or edges (class EdgeClass). Class EdgeClass provides attributes for setting
the references acting as the source or target of the edge, from the available
references of the class. Moreover, the EdgeStyle contain the information about the
graphical style of the edge (e.g., dash, dot or solid). With respect to the Nodes,
there are different styles of representation, either defining a predefined figure
(e.g., Ellipse, Rectangle or Diamond) or an external one (e.g., SVG). Some of
its attributes can be selected as the label of the node (class LabelAttribute), and



Fig. 5: Meta-model of a DSL for factory plants (back). Wizard to define the
concrete syntax of the DSL (front).

Fig. 6: Excerpt of GraphicRepresentation meta-model.

spatial relations between nodes (adjacency, overlapping, containment) can be
defined. However currently, the mobile editor does not support spatial relations,



but the desktop editor does. Common graphical descriptions among different
objects can be reused using abstract nodes (attribute isAbstract in class Node)
and inheritance relations (references Node.parents). As we will see in Section 4.3,
“expandable” nodes (Nodes with isExpandable true) can include non-graphical
objects, especially useful in mobile devices because of their reduced screen size
(Rq3 in Section 2.4).

From the DSL meta-model and the concrete syntax description, we generate
a desktop graphical modelling environment based on Sirius. Although we cur-
rently target Sirius, other technologies like Graphiti [8] or EuGENia [12] could
be targeted as well. Figure 7 shows a screenshot of the resulting desktop editor.
Since it is a Sirius-based editor, its generation accounts to producing an odesign
model that describes the modelling workbench.

The desktop client provides a dedicated view called Mobile Server View to
interact with the remote server. This view has two tabs. The first one, named
Meta-models, lists all meta-models stored in the server and its corresponding
graphic representation. The window in the back of Figure 5 shows this tab.
By right clicking on one of the listed meta-models it is possible to download it,
together with its concrete syntax. Additionally, the client has also functionalities
to upload the meta-model and the concrete syntax in the server. We allow a single
meta-model to have several concrete syntax representations.

Figure 7 shows the second tab of the view, called Diagrams. It displays the
list of diagrams (i.e., models) stored in the server. By right clicking on a model,
a contextual menu with several options appears. From the options in this menu,
it is possible to obtain a pre-visualization of the selected model (as shown in the
figure), download the model in XMI format (standard format to persist EMF
models), and download the graphical information of the model (e.g., position of
nodes). As an example, Figure 7 shows a model previously created in a mobile
device, which has been downloaded (both its XMI and graphical information) to
the desktop environment from the server. Sirius stores the graphical information
attached to models in aird files.

4.2 The server

We have developed a remote server to store models, meta-models and palettes
(called artefacts henceforth). The server is deployed on the Heroku [9] platform
and uses “Node.js” [18] technology. The server can be accessed from http://

miso.es/tools/DSL-comet.html.

There are two ways to manage artefacts in the server: either using REST
services or through the web-based application. In order to enhance scalability, we
store artefacts in a MongoDB [17] database using JSON format. The advantage
this format brings is that other external tools can use our artefacts directly.

On the other hand, the desktop clients use EMF technology, which is not
directly accessible on mobile platforms. To solve this problem, we have developed
some services to convert back and forth between JSON and XMI. This technique
has the advantage of providing a lighter, portable format for using models in



Fig. 7: Screenshot of the Sirius desktop client.

mobile apps. Other mobile platforms may use these services to work with meta-
models.

4.3 The iOS client

The mobile client has been developed for iOS devices (i.e., iPhone and iPad).
It has been designed to use the minimum internet traffic, and therefore, it does
not require data connectivity most of the time. An internet connection is only
necessary to download palettes and meta-models from the server though. Once
those files are downloaded, the user may create and edit diagrams with no need
for connectivity.

Figure 8 shows the main screen of the mobile app, where the same model
shown in Figure 7 is being edited. The image is decorated with labels depicting
its main functionalities.

Label 1 corresponds to the canvas where the model is drawn. We have spe-
cially kept in mind the reduced screen size of mobile devices when creating the
app (from 4.0 inches in an iPhone 5s, to 12.9 inches in an iPad Air). The user
may drag classes from the bottom palette (label 2) to the canvas, in order to
create instances of them. This palette can be collapsed to save space.

The user can add annotations (such as notes, hand-made drawings and tem-
poral alerts) to the diagram, using the button with label 4. A new model can be
created (label 5) and saved locally or in the server (label 6).



Fig. 8: Screenshot of the editor on an iPhone SE.

Label 7 points to the search tool, which is useful to find elements on the
canvas using filters. Users may initiate a collaboration session with nearby users
(label 8), select a new palette (label 9) and share the model via Airdrop1. Finally,
it is possible to take a screenshot of the current model (label 11) and save it on
the camera roll or send it via Twitter or e-mail.

Tool workflow The app user can either use a palette from the server or use a
local one (see Figure 9). Taking into account that this tool may be used without
internet connection, the app can download a palette and store it locally on the
mobile device.

Model editing is done by gestures in the mobile touch screen. Draggable
elements are created by dragging from the palette. As the palette may be too
long, we support scrolling to show more elements. The canvas itself supports
zoom-in (open pinch) and zoom-out (close pinch).

Connecting elements is done by a long press from the source node to the
target one. The tool is able to resolve the admissible relationships that may
exist between those two elements. If several relationships are possible, the user
can select the desired one.

If an object is selected in the canvas, the application displays a detailed view
with its attributes and output connections (see Figure 10). The user can update

1 Airdrop is a file sharing technology of iOS similar to Bluetooth.



Fig. 9: Selecting a palette Fig. 10: Example of a node details

its attributes and the visual representation gets updated accordingly. Given that
models can become large, the application includes a search tool where the user
can ask for any object using filters, as shown in Figure 11. The filters allow
searching for nodes having a certain value in some selected attributes, as shown
in Figure 12.

When defining a DSL (see Section 4.1), the DSL developer can declare some
references as “Expandable”. Figure 13 shows an instance of the Conveyor class
with the default behaviour, which is representing the links between the conveyor
and the three parts it contains (a hammer, a handle and a knob) as edges.
By setting the part reference of the Conveyor class as “Expandable”, those parts
would not be shown in the canvas. Instead, the details view of the conveyor
would include an option to create instances of Part, as Figure 14 shows. If we
select the Create Link Parts option, the new view in Figure 15 will be shown.
From this view, we can create instances associated to the conveyor that will not
appear on the canvas. This is especially useful in a mobile app to save space,
given the reduced size of the screen of mobile devices.

Once the user has created the model, it can be saved either on the server or
locally. The model can also be shared via Airdrop or via some external apps like
Google Drive or Dropbox (Figure 16). The model is serialized as a “.demiso”
file with XML schema. This file extension is detected by the operative system,
whereby it will show the user the option to open those files with the DSL-comet
app.



Fig. 11: Filtering by class type Fig. 12: Filtering by attributes

Fig. 13: Example of a conveyor without expandable items

Collaboration support The mobile app allows a group of nearby users to
work together on a diagram without an internet connection. For this purpose,
first, one of the users needs to offer a diagram in collaboration. The user’s device
will become the local server of the session. Then, one or more users can connect



Fig. 14: A conveyor with an expand-
able reference

Fig. 15: Creating a Part linked to the
conveyor

Fig. 16: Some sharing options

to this local server. The role of this server is to store the diagram information
and send the model changes to the clients periodically, so that every connected
device has a synchronized model status.



We use a token-based collaboration approach, where only the user holding
the token (initially the server) can modify the model. Any model change is sent
to the server device, and from there, it is propagated to all connected clients, so
that they see the synchronized model on their screens. Clients may ask for the
token at any point, and the collaboration server has to agree (or deny) to grant
the token.

5 Related work

Many tools have been proposed along the years to create graphical DSLs, like
AToM3 [4], EuGENia [12], GMF [6], Graphiti [8], MetaEdit+ [10] or Sirius [21].
However, most of them target the generation of graphical editors for the desktop,
but not for mobile devices.

Some recent works allow creating graphical DSL environments for modelling
in the web, like AToMPM [23], EuGENia Live [20] or WebGME [15]. However,
although these environments can be utilized within a mobile device using a web
browser, this poses several drawbacks. First, the web environments are not tai-
lored to the particularities of mobile devices, whereas a mobile app is optimized
for its execution in the mobile, and enables forms of visualization and interaction
gestures especially designed for the reduced space of a mobile device. Second,
web applications require connectivity, which might not be available when mod-
elling in remote locations. Finally, relying on a web application for collaborative
modelling might involve greater delays than the local short-range form of col-
laboration we support.

On the other hand, although MDE has been used to produce mobile applica-
tions [25], few works report on mobile domain-specific modelling environments.
Some of them are described next.

CEL [13] is a mobile iOS application to create UML class diagrams, with
no support for collaboration or model sharing. FlexiSketch [28] is a sketching
mobile modelling tool especially tailored for software requirements modelling,
and it supports collaboration. However, none of these two tools support combined
modelling in desktop and mobile.

The flexibility that touch screens provide for modelling has also been ex-
plored. For instance, Calico [14] is a sketching tool, where the sketched elements
can be scrapped and reused in other parts of the diagrams. It works on a digital
whiteboard, not on mobiles, but relies on touch-based interaction.

Some works allow programming in mobile devices using graphical languages [3].
However, such languages are fixed, and the environment is created ad-hoc for
them. Instead, we enable the creation of arbitrary graphical DSLs, where their
environment is configured with the DSL descriptions. We believe that our tool
could greatly simplify the construction of these kinds of applications.

Altogether, we can conclude that our approach is novel as it permits creating
both a desktop and a mobile DSL modelling environment, multi-device modelling
in the mobile and the desktop, and collaboration using mobile devices.



6 Conclusions

In this paper, we have presented our proposal for enabling mobile domain-specific
modelling, showing some scenarios of interest and a working prototype tool called
DSL-comet. We claim that enabling modelling on mobile devices present interest-
ing opportunities for MDE, including more flexibility and the use of contextual
information.

We are currently improving our prototype tool to support more advanced
collaborative model editing. In the short term, we will also address scenario 3

and requirement Rq6 related to contextual modelling, which implies specifying
the contextual information of interest and adaptation rules in the DSL definition.
We would like to combine the tool with Wodel [7], a system to generate modelling
exercises, so that students can make those exercises in mobile devices. Finally,
we plan to conduct empirical user studies to evaluate our proposal for different
domains.

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Compet-
itivity (TIN2014-52129-R), and the R&D programme of the Madrid Region
(S2013/ICE-3006).

References

1. C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan,
and D. Riboni. A survey of context modelling and reasoning techniques. Pervasive
Mob. Comput., 6(2):161–180, Apr. 2010.

2. M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. Morgan & Claypool, USA, 2012.

3. J. Danado and F. Paternò. Puzzle: A mobile application development environment
using a jigsaw metaphor. J. Vis. Lang. Comput., 25(4):297–315, 2014.

4. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-
modelling. In FASE, volume 2306 of LNCS, pages 174–188. Springer, 2002.

5. A. Garmendia, A. Pescador, E. Guerra, and J. de Lara. Towards the generation of
graphical modelling environments aided by patterns. In SLATE, CCIS, pages 1–8.
Springer, 2015.

6. GMF. http://www.eclipse.org/modeling/gmp/.
7. P. Gómez-Abajo, E. Guerra, and J. de Lara. Wodel: a domain-specific language

for model mutation. In SAC, pages 1968–1973, 2016.
8. Graphiti. https://eclipse.org/graphiti/.
9. Heroku. https://www.heroku.com/, 2016.

10. S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full Code Gener-
ation. Wiley, 2008.

11. A. J. Ko, R. Abraham, L. Beckwith, A. F. Blackwell, M. M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. A. Myers, M. B. Rosson, G. Rothermel,
M. Shaw, and S. Wiedenbeck. The state of the art in end-user software engineering.
ACM Comput. Surv., 43(3):21, 2011.



12. D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige, F. A. C. Polack, and G. Bot-
terweck. Taming EMF and GMF using model transformation. In MODELS Part
I, volume 6394 of LNCS, pages 211–225. Springer, 2010.

13. R. Lemma, M. Lanza, and F. Olivero. CEL: modeling everywhere. In ICSE, pages
1323–1326. IEEE / ACM, 2013.

14. N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek. Supporting informal
design with interactive whiteboards. In CHI, pages 331–340. ACM, 2014.

15. M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz, T. Leven-
dovszky, and Á. Lédeczi. Next generation (meta)modeling: Web- and cloud-based
collaborative tool infrastructure. In MPM @ MoDELS, volume 1237 of CEUR
Workshop Proceedings, pages 41–60. CEUR-WS.org, 2014.

16. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

17. MongoDB. https://www.mongodb.org/, 2016.
18. Node.js. https://nodejs.org/, 2016.
19. A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, and J. de Lara. Pattern-

based development of domain-specific modelling languages. In MoDELS, pages
166–175. IEEE, 2015.

20. L. M. Rose, D. S. Kolovos, and R. F. Paige. Eugenia live: A flexible graphical
modelling tool. In XM @ MoDELS, pages 15–20. ACM, 2012.

21. Sirius. https://eclipse.org/sirius/, 2016.
22. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling

Framework, 2nd Edition. Addison-Wesley Professional, NJ, 2008.
23. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo, and H. Ergin.

AToMPM: A web-based modeling environment. In Joint Proceedings of MODELS
Invited Talks, Demonstration Session, Poster Session, and ACM SRC, volume 1115
of CEUR Workshop Proceedings, pages 21–25. CEUR-WS.org, 2013.

24. D. Vaquero-Melchor, A. Garmendia, E. Guerra, and J. de Lara. Towards enabling
mobile domain-specific modelling. In ICSOFT 2016 - Volume 2: ICSOFT-PT,
pages 117–122. SciTePress, 2016.

25. S. Vaupel, G. Taentzer, J. P. Harries, R. Stroh, R. Gerlach, and M. Guckert.
Model-driven development of mobile applications allowing role-driven variants. In
MODELS, volume 8767 of LNCS, pages 1–17. Springer, 2014.

26. M. Voelter. DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages. dslbook.org, 2013.

27. J. Whittle, J. E. Hutchinson, and M. Rouncefield. The state of practice in model-
driven engineering. IEEE Software, 31(3):79–85, 2014.

28. D. Wüest, N. Seyff, and M. Glinz. Flexisketch: A mobile sketching tool for software
modeling. In MobiCASE, volume 110 of LNICST, pages 225–244. Springer, 2013.


