
Automated modelling assistance by integrating
heterogeneous information sources

Ángel Mora Seguraa, Juan de Laraa, Patrick Neubauerb, Manuel Wimmerb

aModelling & Software Engineering Research Group
http: // miso. es

Universidad Autónoma de Madrid (Spain)
bCDL-MINT, Business Informatics Group

https: // www. big. tuwien. ac. at

TU Wien (Austria)

Abstract

Model-Driven Engineering (MDE) uses models as its main assets in the software
development process. The structure of a model is described through a meta-
model. Even though modelling and meta-modelling are recurrent activities in
MDE and a vast amount of MDE tools exist nowadays, they are tasks typically
performed in an unassisted way. Usually, these tools cannot extract useful
knowledge available in heterogeneous information sources like XML, RDF, CSV
or other models and meta-models.

We propose an approach to provide modelling and meta-modelling assis-
tance. The approach gathers heterogeneous information sources in various tech-
nological spaces, and represents them uniformly in a common data model. This
enables their uniform querying, by means of an extensible mechanism, which
can make use of services, e.g., for synonym search and word sense analysis. The
query results can then be easily incorporated into the (meta-)model being built.
The approach has been realized in the Extremo tool, developed as an Eclipse
plugin.

Extremo has been validated in the context of two domains – production
systems and process modelling – taking into account a large and complex in-
dustrial standard for classification and product description. Further validation
results indicate that the integration of Extremo in various modelling envi-
ronments can be achieved with low effort, and that the tool is able to handle
information from most existing technological spaces.

Keywords: Modelling, (Meta-)modelling, Modelling assistance,
Domain-specific languages, Language engineering

Email addresses: Angel.MoraS@uam.es (Ángel Mora Segura), Juan.deLara@uam.es (Juan
de Lara), neubauer@big.tuwien.ac.at (Patrick Neubauer), wimmer@big.tuwien.ac.at
(Manuel Wimmer)

Preprint submitted to Computer Languages, Systems and Structures March 21, 2018

http://miso.es
https://www.big.tuwien.ac.at

1. Introduction1

Model-Driven Engineering (MDE) advocates an active use of models through-2

out the software development life-cycle. Thus, models can be used to specify,3

analyse, test, simulate, execute, generate code and maintain the software to be4

built, among other activities [1, 2, 3].5

Models are sometimes built with general-purpose modelling languages, such6

as the Unified Modelling Language (UML) [4]. In other cases, modelling is7

performed using Domain-Specific Languages (DSLs) [5]. DSLs contain tailored8

domain-specific primitives and concepts accurately representing the abstractions9

within a domain, which may lead to simpler, more intensional models. The ab-10

stract syntax of a DSL is described by a meta-model, which is itself a model.11

Meta-models are typically built using class diagrams, describing the set of mod-12

els considered valid. Thus, the construction of models and meta-models is a13

recurrent and central activity in MDE projects [6].14

High quality models and meta-models are pivotal for the success of MDE15

projects. They capture the most important concepts of a domain or describe the16

features of a system. Nevertheless, they are mostly built in an unassisted way,17

with no mechanisms for reusing existing knowledge. This situation contrasts18

with modern programming IDEs, which support code completion or provide help19

for using a given API [7, 8]. However, in the MDE field, the modeller normally20

has the burden of creating the model from scratch. For this reason, modellers21

would greatly benefit from flexible access and reuse of existing knowledge in a22

domain. This knowledge might be stored on various technological spaces [9, 10],23

including the modelling technical space, but also the XML, ontologies, and RDF24

technical spaces.25

In order to improve this situation, we propose an extensible approach that26

provides assistance during the modelling process. In our proposal, we extract27

the information from an extensible set of different technical spaces. For example,28

in the XML technical space, DTDs or XML schemas as well as specific XML29

documents are covered by the assistant; while in the modelling technical space,30

meta-models and models can be queried. This heterogeneous information is31

stored in a common data model, so that it can be queried and visualized in a32

uniform way. The query mechanism is extensible and can make use of services,33

e.g. for synonym search or word sense analysis. The results of the queries are34

prioritized and aggregated for all information sources in the repositories and35

can then be incorporated into the (meta-)model under construction.36

We have realized this concept in Extremo and provide an open source37

Eclipse plugin, which is freely available at the Extremo project website1. The38

web site includes short videos illustrating the main concepts explained in this39

paper as well as a set of resources, which have been used during the evaluation.40

Extremo’s architecture is extensible and modular by the use of Eclipse exten-41

sion points, and enables the addition of new information sources and types of42

1http://miso.es/tools/extremo.html

2

http://miso.es/tools/extremo.html

queries. The assistant has been designed to be easily integrated with external43

modelling environments, also through extension points.44

We have evaluated our approach under several perspectives. First, we show45

Extremo’s usefulness to create DSLs in two case studies. The first one is in46

the area of process modelling for immigration procedures and the second is in47

the area of standard-conforming industrial production systems. We have eval-48

uated its extensibility by describing its integration with a variety of modelling49

tools, ranging from graphical to tree-based editors. In order to evaluate format50

extensibility (i.e., the ability to import from new technical spaces), we perform51

an analytical evaluation of the degree of coverage of the data model. The query52

mechanism is tested by describing a catalogue of common queries for object-53

oriented notations. Finally, we address a discussion and the lessons learned54

from the results of the evaluation.55

In comparison with our previous work [11], we provide extensions for a set56

of different technical spaces that include constraint interpreters and an exten-57

sible query mechanism. Moreover, Extremo’s internal data model has been58

extended to handle level-agnostic information, i.e., for an arbitrary number59

of meta-levels. For example, we have integrated XML schemas and multi-level60

models [12] as information sources, and integrated Extremo with further mod-61

elling and meta-modelling environments. Finally, we report on an evaluation62

based on process modelling and production systems domain case study, using63

the eCl@ss standard [13] and provide an analytical evaluation on the generality64

of the data model we propose.65

The rest of this paper is organized as follows. Section 2 provides an overview66

of the approach and its motivation. Section 3 explains the main parts of the67

assistant: the handling of heterogeneous sources (Section 3.1), the ability to68

perform queries on them in a uniform and extensible way (Section 3.2), and69

the handling of constraints (Section 3.3). Section 4 describes the extensible and70

modular architecture of the assistant, and how it can be integrated with mod-71

elling and meta-modelling tools. Section 5 evaluates the approach under three72

different perspectives, which include the usefulness for (i) language engineer-73

ing, (ii) data extensibility, and (iii) integrability with external tools. Section 674

compares with related work, and Section 7 presents the conclusions and lines75

for future research.76

2. Motivation and overview77

Many technical tasks in software engineering require from access to knowl-78

edge found in a variety of formats, ranging from documents in natural lan-79

guage, to semi-structured and structured data. There is a current trend to80

make such information readily available and easy to embed in different types of81

artefacts generated during the software construction process [14]. For example,82

in the programming community, there are efforts to profit from code reposito-83

ries, and Q&A sites like StackOverflow to automate coding and documentation84

tasks [15, 16, 17]. Some of these approaches are based on a phase of artefact85

collection, followed by their preprocessing and storage into a uniform database,86

3

which then can be queried using appropriate languages [16]. Following this87

trend, our objective is to make available to the model engineer a plethora of88

(possibly heterogeneous) resources that can be queried in a uniform way, and89

embedded into the model being built.90

In general, the task of creating a high quality meta-model is complex because91

it involves two roles: (i) a domain expert, who has in-depth knowledge of a92

particular domain and (ii), a meta-modelling expert, who is experienced in93

object-oriented design and class-based modelling. Nevertheless, many times, the94

meta-modelling expert is left alone in the construction of a meta-model, or needs95

to make a decision based on tacit domain knowledge or under-specified language96

requirements. In this scenario, the meta-modelling expert takes the role of the97

domain expert too, which may lead to mistakes or omissions, compromising the98

quality of the meta-model.99

Meta-models within a domain are not completely different from each other,100

but they sometimes have recurring patterns and use common idioms to represent101

concepts [18, 19]. For example, while building a language to describe behaviour,102

designers normally resort to accepted specification styles, including variants of103

languages such as state machines, workflow, rule-based or data-flow languages,104

enriched with domain-specific elements. The language designer can obtain this105

information from sources like meta-models, class diagrams, ontologies, XML106

schema definitions (XSD) or RDF documents. Moreover, having access to a va-107

riety of information sources helps in obtaining the necessary domain knowledge,108

vocabulary and technical terms required to build the meta-model. This situa-109

tion also applies when building models, instances of a given meta-model. In this110

case, it may be helpful to have a way to query information sources and knowl-111

edge bases. These queries may use the data types present in the meta-model to112

help filtering the relevant information.113

For this purpose, we have devised a modelling assistance approach, whose114

working scheme is shown in Figure 1. The approach is useful for creating models115

at any meta-level. Our proposal is based on the creation of a set of repositories116

(label 1 in the Figure), in which heterogeneous data descriptions (OWL ontolo-117

gies, Ecore meta-models, RDF Schemas, XML schema definitions), and data118

sources (OWL, RDF data, EMF models, XML documents) are injected.119

Our system represents this heterogeneous data using a common data model,120

so that information sources can be stored in the repository in a uniform way.121

The system provides extensible facilities for the uniform and flexible query of122

the repository (label 2). We provide basic services for synonym search and word123

sense analysis, and a predefined catalogue of queries, which can be externally124

extended. The repository can also store heterogeneous constraints, and we125

support their evaluation using an extensible facility (label 3). The results of the126

queries for each source in the repository are aggregated and ranked according127

to their suitability and relevance. These query results and the information128

sources themselves can be visualized (label 4). Although the assistance system129

is independent of any modelling tool, it has been designed to be easy to integrate130

with a wide range of tools (label 5).131

We have identified several scenarios where the assistant is useful. They can132

4

Figure 1: Overview of our approach

be generally classified in three areas. Firstly, for creating models and meta-133

models. Second, to create artefacts describing a set of other artefacts, like in134

model-based product lines [20, 21] or model transformation reuse [22]. Finally,135

to evaluate quality aspects of a set of (perhaps heterogeneous) resources. More136

in detail, our approach is useful:137

• As support for the development of new domain meta-models. This way,138

domain concepts and vocabulary can be sought in external sources such139

as XML documents or ontologies.140

• To create models for a particular domain. In this case, model elements141

conforming to the same or similar meta-model can be incorporated into the142

model being built, and heterogeneous information sources can be queried143

in order to extract concrete data values.144

• To design a “concept” meta-model [22]. A concept is a minimal meta-145

model that gathers the core primitives within a domain, e.g., for workflow146

languages. Furthermore, concepts can be used as the source meta-model147

of a model transformation, becoming reusable, so they can be bound to a148

particular meta-model. This task implies the querying and understanding149

of a variety of meta-models for a particular domain and therefore the150

assistant becomes useful.151

• To aggregate multiple existing models into a model-based product line [20,152

21]. In this approach, a description of the space of possible features of a153

5

software system is created, typically through a feature model. The choice154

of features implies the selection of a software model variant. This way,155

there is a need for understanding an existing family of models and to de-156

scribe their variability. One possible approach is to merge or superimpose157

all model variants (leading to a so called 150% model) and use “negative158

variability”, which selectively removes deselected artefacts [20, 21].159

• To detect “bad smells” [23] or signs of bad modelling practices [24] in a set160

of resources. This is possible, as we can perform queries over a repository161

to e.g., detect isolated nodes, or find abstract classes with no children.162

Moreover, our query mechanism is extensible, so that technology-specific163

or domain-specific queries can be created.164

While our approach is useful in all these scenarios, to focus the paper, we165

concentrate on the modelling and meta-modelling scenarios.166

3. The ingredients of a (meta-)modelling assistant167

In this section, we detail the three main parts of our approach: (i) the168

handling of heterogeneous sources through a common data model (Section 3.1),169

(ii) the uniform support for queries (Section 3.2), and (iii) the managing of170

constraints (Section 3.3).171

3.1. Handling heterogeneous sources172

The first part of our approach adresses to the need for integrating several173

data sources stored in a variety of formats, providing a mechanism to organize174

and classify such resources. For this purpose, we rely on a common data model175

for storing the information of an arbitrary number of meta-levels. Heteroge-176

neous sources, like XML or Ontologies can then be integrated by establishing177

transformations into our common data model (cf. Figure 2). As we will see in178

Section 4, we have designed an extensible, component-based architecture which179

permits adding support for new sources – with so called format assistants –180

externally.181

In detail, each file or information source is represented by a Resource, which182

can be aggregated into Repository objects. Each resource contains a collection183

of SemanticNode, i.e., entities that are added to account for different technical184

spaces [25]. In other words, semantic nodes are elements that gather knowledge185

from (original) source elements and hence, serve as an abstraction for managing186

heterogeneous information. Resources can be nested to account for hierarchical187

organization. For example, in MetaDepth and EMF, models and packages are188

nested, respectively.189

Resources, nodes and properties are NamedElements that are identified by their190

name and can both act as descriptor, i.e., be a type or class, and be described191

by other elements, i.e., be instances of other elements. Further, our common192

data model can accommodate instance-relations found in heterogeneous techni-193

cal spaces, which include (i) descriptor-only elements, such as, meta-classes in194

6

* resources

DataProperty
value : String
type : Type

ObjectProperty

NamedElement
name : String

properties *

*

*
resourceElements

SemanticNode

supers *

Resource
uri : String

1 range

Repository
name : String
projectPath: String​​

abstract : boolean

subs *

* describes
* descriptors

RepositoryManager

lowerBound : int
upperBound : int

* repositories

type : String
name : String
body : String

*
constraints

«enumeration»
Type

string
int
boolean
float​​
double

key : String
value : String

ResourceElement
* metadata

inverseOf
0..1

Figure 2: The common data model (package dataModel)

meta-models, (ii) described-only elements, such as objects in models, and (iii)195

elements that are descriptors of other elements and are described by others si-196

multaneously, such as clabjects2 as applied in multi-level modelling [26]. Hence,197

our data model is meta-level agnostic, as we represent with the same concepts198

both models and meta-models, classes and objects, and attributes and slots,199

leading to simplicity and generality [27]. Moreover, our data model can accom-200

modate elements that are described by several elements. Thus, we can accom-201

modate non-exclusive class membership of objects, such as found in Ontologies,202

and modelling approaches supporting multiple typing, like MetaDepth [28] or203

the SMOF OMG standard [29].204

NamedElements can be associated with MetaData to account for technology-205

specific details that do not fit into our common data model. For example, when206

reading an EMF meta-model or a MetaDepth model, it may be necessary to207

store whether an object property represents a composition or the potency3 of208

an element, respectively. Additionally, a Resource, which is also a NamedElement,209

can manifest conformance relations between artifacts, such as models and meta-210

models, or XML documents and XML schema descriptions (XSDs), and thus211

permits representing simple mega-models [30].212

SemanticNodes can take part in generalization hierarchies (multiple inheritance213

2A clabject is a model element that has both type and instance facets and hence holds
both attributes, i.e., field types or classes, and slots, i.e., field values or instances.

3The potency of an element is represented by zero or a positive number that accounts for
the instantiation-depth of an element at subsequent meta-levels [26].

7

is supported), and be tagged as abstract. Generalization hierarchies can be sup-214

ported at any meta-level (i.e., not only at the class level), to account for ap-215

proaches where inheritance can occur at the object level [31]. A node is made of216

a set of properties (DataProperty) and a set of links to other nodes (ObjectProperty),217

both defining cardinality intervals. Similar to nodes, properties unify the con-218

cept of attribute, i.e. a specification of required properties in instances, and slot,219

i.e. a holder for values. The common data model supports a range of neutral220

basic data types (Type enumeration), such as string, int, boolean and double. For221

generality, the value of the property is stored as a String. Finally, any element222

can have Constraints attached. The handling of heterogeneous constraints will be223

explained in Section 3.3.224

Table 1 shows how several technologies can be mapped to our data model.225

We consider the modelling space (in particular the Eclipse Modelling Framework226

(EMF) [32], a widely used implementation of the Meta Object Facility (MOF)227

OMG standard [33]), ontologies and XSDs. In all three cases, we show how to228

map elements at different meta-levels into our common data model. Section 5.3229

will assess the generality of our data model by means of an analytical evaluation.230

Common
Data Model

EMF OWL XSD

Meta-level (types)
Resource Ecore file/EPackage OWL file XSD file
SemanticNode EClass OWL Class xs:element
Property (ab-
stract)

EStructuralFeature rdfs:domain xs:complexType
xs:element

ObjectProperty EReference owl:ObjectProperty Nested xs:element
IDREF attribute

DataProperty EAttribute owl:DatatypeProperty xs:attribute
Property.supers EClass.eSuperTypes Inverse of xs:element

rdfs:subClassOf type attribute
Constraint OCL EAnnotation N/A xs:restriction

Model/Data level (instances)
Resource XMI file OWL file XML file
SemanticNode EObject Individual XML element
ObjectProperty Java reference owl:ObjectProperty Nested xs:element

IDREF attribute
DataProperty Java attribute owl:DatatypeProperty XML attribute

Table 1: Mapping different representation technologies to the common data model

EMF supports two meta-levels, and the mapping is direct. Figure 3 shows231

a schema of how the translation from EMF into our data model is performed.232

The figure shows on the top that both meta-models (called ecore models) and233

models (typically serialized in XMI format) are transformed into Resources. In234

this case, the Resource object from the model is described by the Resource of the235

meta-model. The elements within both meta-models and models follow this236

translation scheme as well. Both EClasses and EObjects are transformed into237

SemanticNodes with a suitable descriptor relation, and similar for references and238

8

attributes. At the model level (in the compiled mode of EMF) links and slots239

are represented as Java fields, whose value is obtained via getter methods.240

:Ecore

:XMI

:Resource

:Resource

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant

:EClass :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant
:EObject

:EReference

Java reference

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant

:EAttribute

Java attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

EcoreAssistant

EcoreAssistant

Figure 3: Injecting EMF (meta-)models into the common data model

Figure 4 depicts the translation of XSDs, i.e., acting as language definitions241

and XML documents. This case is conceptually similar to EMF. The figure242

shows on the top that an schema, typically serialized in XSD format, is trans-243

formed into a Resource of our common data model. Then, as a result of XSDs244

being described in the XML format, the Resource object from the document is245

described by the Resource of the schema.246

The elements within the schema and the document follow this translation as247

well. For example, an XML element is transformed into a SemanticNode with a248

descriptor relation to an xs:element. Moreover, an XML element or XML attribute249

is transformed either into an ObjectProperty or a DataProperty depending on the250

type it specifies. In particular, in case of xs:IDREF an ObjectProperty is created,251

while a DataProperty is created for any other type.252

XSD file

XML element

:Resource

:Resource

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:element :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:elment / xs:attribute
(xs:IDREF)

XML element / xs:attribute
(xs:IDREF)

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XML element

xs:attribute

XML attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XSD file

XML element

:Resource

:Resource

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:element :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:elment / xs:attribute
(xs:IDREF)

XML element / xs:attribute
(xs:IDREF)

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XML element

xs:attribute

XML attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XSD file

XML element

:Resource

:Resource

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:element :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

Nested xs:elment /
xs:attribute (xs:IDREF)

Nested XML element /
attribute (xs:IDREF)

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XML element

xs:attribute

XML attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XSD file

XML element

:Resource

:Resource

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:element :SemanticNode

:SemanticNode

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

xs:elment / xs:attribute
(xs:IDREF)

XML element / xs:attribute
(xs:IDREF)

:ObjectProperty

:ObjectProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

XML element

xs:attribute

XML attribute

:DataProperty

:DataProperty

<<conforms_to>> :descriptor

XsdAssistant

XsdAssistant

Figure 4: Injecting XML schema descriptions into the common data model

Finally, in the case of Ontologies there are no explicit meta-levels (Figure 5).253

Then, classes may have several descriptors, and individuals (instances of a class)254

can have several classifiers, covering the different levels in the representation255

of concepts. Thus, SemanticNodes and Properties can take part in generalization256

hierarchies, all of them represented by the taxonomy.257

The technical realization of new format assistants will be explained in Sec-258

9

:NamedElement

:NamedElement

:descriptor

Ontology

Taxonomy

Concepts

Ontologies
Assistant

Instance-relations

:NamedElement

:NamedElement

:super

Generalization-relationsOntologies
Assistant

Figure 5: Injecting ontologies into the common data model

tion 4, while Section 5.3 will evaluate the generality of the data model.259

3.2. Querying260

Once the heterogeneous information is transformed into a common represen-261

tation, it can be queried in a uniform way. As information conforming to many262

different schemas may be available in the data model, the query mechanism263

provided needs to support the flexible exploration of the information gathered.264

Moreover, oftentimes, the developer may only have a vague idea on what to265

search, hence a mechanism for inexact matching [34] is needed. This mecha-266

nism should be able to provide the user with not only exact matches, but with267

other related elements as well.268

Thus, we refrained from using directly standard model query languages,269

like the Object Constraint Language (OCL) [35], because they would assume270

a precise, unique domain meta-model (while may need to query several models271

conformant to different domain meta-models), and rely on exact matches of272

queries. Moreover, queries would need to be re-expressed using the meta-model273

in Figure 2, instead of in terms of the domain meta-models, which may lead to274

cumbersome expressions. Finally, we need our query mechanism to work at any275

meta-level.276

Figure 6 shows the meta-model describing our extensible query approach.277

The meta-model provides a mechanism for configuring queries (by specifying278

the necessary query inputs, class SearchParam), while the actual query results are279

reified using objects of type SearchResult. The results can be aggregated in groups280

(through class GroupedSearchResult), or returned atomically (class AtomicSearchRe-281

sult).282

Our approach supports two types of queries: atomic (SimpleSearchConfiguration)283

and composite (CompositeSearchConfiguration). Atomic queries are configured by284

declaring a set of SearchParams (representing the expected input parameters from285

the user), specifying the type of element it searches (filterBy attribute). Com-286

posite queries are formed by combining other (atomic or composite) queries,287

through the and, or and not logical connectives. Composite queries are issued by288

combining the result sets of previous (simple or composite) queries (reference289

CompositeSearchConfiguration.inputSearchResults), and may be nested (composition ref-290

erence CompositeSearchConfiguration.children).291

10

fil
te

rB
y

: D
at

aM
od

el
Ty

pe
​

0.
.*

re
su

lts
{o

rd
er

ed
, r

ed
ef

in
es

re

su
lts

}

<<
ex

te
ns

ib
le

>>
Se

rv
ic

e

0.
.*

co
nf

ig
ur

at
io

ns

Se
ar

ch
C

on
fig

ur
at

io
n

na
m

e:
 S

tri
ng

​

C
om

po
si

te
Se

ar
ch

C
on

fig
ur

at
io

n
ty

pe
: C

on
ne

ct
io

nT
yp

e​​

«e
nu

m
er

at
io

n»
C

on
ne

ct
io

nT
yp

e
or an

d​​
no

t

R
ep

os
ito

ry
M

an
ag

er

re
su

lts
0.

.*

0.
.*

va
lu

es

«e
nu

m
er

at
io

n»
D

at
aM

od
el

Ty
pe

R
es

ou
rc

e
S

em
an

tic
N

od
e

D
at

aP
ro

pe
rty

O
bj

ec
tP

ro
pe

rty
​​

{o
rd

er
ed

}

bo
ol

ea
n

m
at

ch
es

(e
xp

re
ss

io
n:

 S
tri

ng
, v

al
ue

: S
tri

ng
)

na
m

e:
 S

tri
ng

fil
te

rB
y:

 T
yp

e​
<<

fro
m

 d
at

aM
od

el
>>

 ​
G

ro
up

ed
Se

ar
ch

R
es

ul
t

Se
m

an
tic

G
ro

up
0.

.*
gr

ou
ps

«f
ro

m
 d

at
aM

od
el

»
N

am
ed

El
em

en
t

0.
.*

el
em

en
ts

applyOnElements 0..*

At
om

ic
Se

ar
ch

R
es

ul
t

0.
.*

el
em

en
ts

Se
ar

ch
R

es
ul

t
0.

.1
 c

al
ls

0.
.*

se
rv

ic
es

0.
.*

ch
ild

re
n

«e
xt

en
si

bl
e»

P
re

di
ca

te
B

as
ed

S
ea

rc
h

«e
xt

en
si

bl
e»

C
us

to
m

S
ea

rc
h

Si
m

pl
eS

ea
rc

hC
on

fig
ur

at
io

n

in
it(

in
pu

ts
: S

ea
rc

hP
ar

am
Va

lu
e[

*])
bo

ol
ea

n
m

at
ch

es
(n

: N
am

ed
El

em
en

t)
se

ar
ch

(re
su

lt:
 S

ea
rc

hR
es

ul
t)

0.
.*

op
tio

ns

Pr
im

iti
ve

Ty
pe

Pa
ra

m

ty
pe

 :
Ty

pe
 <

<f
ro

m
 d

at
aM

od
el

>>

M
od

el
Ty

pe
Pa

ra
m

Se
ar

ch
Pa

ra
m

id
 :

S
tri

ng
na

m
e

: S
tri

ng

Se
ar

ch
Pa

ra
m

Va
lu

e

va
lu

e
: S

tri
ng

​​

Pr
im

iti
ve

Ty
pe

Pa
ra

m
Va

lu
e

va
lu

e
: S

tri
ng

​​

M
od

el
Ty

pe
Pa

ra
m

Va
lu

e

«f
ro

m
 d

at
aM

od
el

»
N

am
ed

El
em

en
t

1
va

lu
e

ty
pe

 :
D

at
aM

od
el

Ty
pe

1

op
tio

n

1
op

tio
n

in
pu

tS
ea

rc
hR

es
ul

ts
0.

.*

co
nf

ig
ur

at
io

n
1

F
ig

u
re

6
:

M
et

a
-m

o
d

el
o
f

o
u

r
ex

te
n

si
b

le
q
u

er
y

m
ec

h
a
n

is
m

(p
a
ck

a
g
e

q
u

er
ie

s)
.

Atomic queries can follow two styles: predicate-based (class PredicateBased-292

Search) or custom (class CustomSearch). In both cases, user-defined queries are293

expected to extend these two abstract classes. In practice, as we will show in294

Section 4, this is realized by profitting from Eclipse extension points. Their295

11

difference relies on how the iteration is performed: internally (driven by the296

engine), or externally (driven by the user code); and on the possibility of group-297

ing the results. In practice, predicate-based queries are easier to specify, while298

custom queries permit more control on how outputs are presented.299

Predicate-based queries select their result by providing a boolean predicate,300

evaluated on NamedElements. Their result is atomic (i.e., not divided in groups),301

made of all NamedElement objects satisfying the predicate. This kind of queries302

feature internal iteration. This way, our engine is responsible to traverse the303

repository and iterativelly pass each object (of the type expected by filterBy) to304

the matches method. Alternativelly, CustomSearch queries are responsible to both305

traverse the elements in the repository (external iteration) and select those306

elements fulfilling the query. This is a more flexible way of querying, which may307

construct results aggregated in groups.308

When a custom query is to be executed, the search method receives a SearchRe-309

sult object, which initially contains a set of SearchParamValue objects with the input310

parameter values (as entered by the user), and optionally a set of elements over311

which the query is to be executed (applyOnElements collection). If applyOnElements312

is empty, then the query is assumed to search through the whole repository. The313

input parameters of a search can either be of primitive data type (class Primi-314

tiveTypeParamValue), or model elements of a given kind like Resource, SemanticNode,315

DataProperty or ObjectProperty (class ModelTypeParamValue). After the execution of316

the search method the SearchResult must point to the selected element. In the317

grouped elements output case (class GroupedSearchResult), the search method im-318

plementation must decide how to split the members from the elements collection319

by the definition of SemanticGroups.320

Please note that different invocations to the search method results in different321

SearchResult objects, placed in the results ordered collection. This enables having a322

history of searches performed, which can be useful in explaning the provenance323

of the different elements in a model being built.324

In a predicate-based query, we rely on a matches method that must evaluate325

if the list of elements from the input collection belongs to the output (elements326

collection) or not. In this case, results are saved as AtomicSearchResults. Before327

the iteration starts, the init method is invoked, receiving a collection of input328

values (objects of type SearchParamValue), corresponding to the query parameter329

values input by the user.330

3.2.1. Query services331

As seen in the meta-model of Figure 6, queries can make use of Services332

through an extensible mechanism (extending meta-class Service). Services are333

functions for certain data types from our data model, such as strings or integers.334

Therefore, services can be used by a particular query on SearchParamValues of a335

given type. Next we describe some of the most prominent services we provide.336

Inexact Matching Searchs that rely on exact string matching are likely to337

provide poor results, as entities can be named using compound names338

12

(“ProcessModel”), or using different derivations (e.g., “processing”, “pro-339

cessed”). This way, we provide a means for inexact matching [34] to in-340

crease the possibilities of finding useful information. The service is based341

on two techiques: (i) detection of compound names, and (ii) comparing342

words using their roots. This service is available on search inputs of type343

String (i.e., when the corresponding PrimitiveTypeParam is typed as String).344

Regarding the first technique, it is quite common to find entities in meta-345

models or ontologies whose name is the concatenation of two or more346

words, most often in camel case. Our service considers the complete word,347

and also its different parts in the comparison. Regarding the second tech-348

nique, comparing word pairs (e.g., “process”, “procedure”) might throw349

unsatisfying, or too general, results, even if they belong to the same word350

sense. For this reasone, the service uses the Porter stemmer algorithm [36],351

a method to reduce the comparison of two words to their lexical roots.352

Word synonym expansion and ranking The exploration of a domain is a353

difficult task for two reasons: (i) in a new domain, with no experience354

background, a developer may lack the knowledge base about the vocab-355

ulary that defines the domain and (ii) in a known domain, a developer356

can lose sight of the main parts of the domain and, as a consequence,357

build a poor meta-model. Thus, it might be useful to increase the name-358

based searchs to consider synonyms relevant for the domain. However,359

words have synonyms with respect to different senses and therefore better360

search results are obtained by ruling out unrelated senses. For example,361

the word “glass” has different senses, e.g., to refer to “tumbler or drinking362

container” and to “lens to aid in vision”.363

Thus, we offer a service that, given a set of terms, expand them creating a364

list of synonyms, ranking them according to the relevance for the domain365

of the input terms. The service is inspired by the Lesk algorithm [37]366

and evaluates each term in a sentence assuming that every term tends to367

share a common semantic field with its siblings. For that purpose, we368

use Wordnet (a lexical database for the English language) [38] to select,369

among the available entities, the most suitable candidates to match the370

common semantic fields from an input term list. The list of candidates is371

obtained by the use of a rule-based system. In the system, we assign points372

to the whole list of senses provided by Wordnet while they are evaluated373

to discover whether they fit to the target domain or not.374

The points are given by an strategy depending on which rule is more375

important during the evaluation. With the service we provide a set of376

strategies but new strategies can be added as well. Next, we present the377

rules for assigning those points and the strategies defined:378

We consider the following entities to calculate the ranking:379

• U is the universal set of all possible terms, or words.380

13

• T = {t1, ..., tn} ⊆ U is a set of input terms, or words, e.g. “process”,381

“activity”, “task”.382

• S = {s1, ..., sm} is a set of senses, for example the term “process”383

can refer to “set of actions” (e.g., s1) or “a series of changes in the384

body” (e.g., s2).385

• We consider phrases (denoted by pi), made of sequences of terms.386

We write t ∈ pi to denote that term t occurs in the phrase pi.387

We assume the following linguistic functions and predicates, which can be388

provided by systems like Wordnet:389

• Given a term t ∈ U , function sense(t) returns the different senses of390

t. For example sense(process) = {s1, s2}.391

• Given a sense s ∈ S, function syn(s) returns a set of terms, which392

are synonyms with respect to the sense s.393

• Given a term t ∈ U , function defs(t) returns a set of definitions (a394

set of sentences) of term t.395

• Given a term t ∈ U , function exs(t) = {p1, ..., pm | t ∈ pi} returns a396

set of example sentences, where each pi contains the term t.397

• Given two terms, predicate syn(t, t′) holds if both terms are syn-398

onyms, independently of the sense.399

• Given two terms deriv(t, t′) holds if the terms have a linguistic deriva-400

tive path.401

Given a set of terms T , our system returns a set of terms O = T
⋃

t∈T {u ∈402

U | syn(t, u)}, made of the input terms plus their synonyms where the403

words in O are ranked according to a number of points, given by the404

following rules:405

R1: Synonyms of input terms

∀t, t′ ∈ T • syn(t, t′) =⇒ points(t′) := points(t′) + p1

R2: Synonyms of sense synonyms

∀t ∈ T, ∀s ∈ sense(t), ∀g ∈ syn(s)•
syn(t, g) =⇒ points(g) := points(g) + p2

R3: Linguistic derivatives of sense synonyms

∀t ∈ T, ∀s ∈ sense(t), ∀g ∈ syn(s) •
deriv(t, g) =⇒ points(g) := points(g) + p3

R4: Synonyms in definitions

∀t ∈ T, ∀s ∈ sense(t), ∀g ∈ syn(s), ∀p ∈ defs(t) •
g ∈ p =⇒ points(g) := points(g) + p4

14

R5: Synonyms in examples

∀t ∈ T, ∀s ∈ sense(t), ∀g ∈ syn(s), ∀p ∈ exs(t) •
g ∈ p =⇒ points(g) := points(g) + p5

Several strategies can be used to assign points to every rule:406

• All the same: Each Ri receives the same quantity of points (pi).407

• Synonyms first: R1 and R2 receive more points than the rest of rules.408

• Definitions first: R4 receives more points than the rest of rules.409

• Examples first: R5 receives more points than the rest of rules.410

• Custom: A distribution based on a custom criteria.411

(t1) process (t2) activity (t3) task
Wordnet

s1 s2 s3

g11 g12 g21 g31 g32 g33

process

G1

d1 d2 d3

e11 e12 e21 e22 e23

E1

e31

Rule-based system (sti)
(St) strategies

For each t

candidates

Figure 7: Example execution of the synonym expansion and ranking service

Example. Figure 7 shows an execution schema for the service. Firstly, a412

set T of terms is received by the service. For each term (ti), a tree of413

senses (sij), definitions (di), examples (eij) and synonyms (gij) is formed,414

using information from Wordnet. The set of rules are applied for each415

term according to a selected strategy (sti). For example, for the list of416

terms T = process, activity, task for a custom strategy that assigns 1000417

points to the value p1, 80 to p2, 20 to p3, 100 to p4 and 20 to p5, the418

following output list of ranked candidates is obtained:419

1000 task420

1000 process421

1000 activity422

320 job423

320 chore424

300 summons425

260 body process426

260 bodily process427

260 bodily function428

240 procedure429

200 treat430

200 physical process431

200 outgrowth432

200 appendage433

180 natural process434

180 natural action435

100 work on436

100 work437

15

100 unconscious process438

100 swear out439

100 sue440

100 serve441

100 march442

100 litigate443

100 action444

0 undertaking445

0 project446

0 operation447

0 mental process448

0 labor449

0 cognitive process450

0 cognitive operation451

0 activeness452

where the service discards the words with no points.453

Numeric intervals For numeric properties, instead of writing concrete values,454

it is possible to enter intervals (e.g., [1..5] or [2..*]) to achieve more flexible455

queries.456

3.2.2. Examples457

In this section we present two examples, illustrating the query extensibility458

mechanisms and the services provided. The list of all available queries is shown459

in Table 9 in the appendix.460

:elements

:elements

:elements

param1: PrimitiveTypeParam
name = “name”
type = string

semanticNodeSearch:
SemanticNodeNameSearch

name = “A Semantic Node Has a Name”
filterBy = SemanticNode

<<instance of>>

primitiveParamValue:
PrimitiveTypeParamValue

value = “family”​​

atomicSearchResult:
AtomicSearchResult

:results

:values

:options
:option

:elements

:elements

Family:
SemanticNode

family:
SemanticNode

Family6:
SemanticNode

MyFamily:
SemanticNode

familyHouse:
SemanticNode

extension

queries

filterBy : DataModelType​

SimpleSearchConfiguration

init(inputs: SearchParamValue[*])
boolean matches(n: NamedElement)

«extensible»
PredicateBasedSearch

SemanticNodeNameSearch

<<extensible>>
Service

boolean matches(expression: String, value: String)

name: String
filterBy: Type​ <<from dataModel>> ​

InexactMatchingService

inexactMatching:
InexactMatchingService
name = “Inexact Matching”
filterBy = string

:calls

Figure 8: An instance of a predicate-based search (PredicateBasedSearch) with an atomic
result (AtomicSearchResult)

16

Figure 8 depicts a predicate-based search that gathers the results atomically.461

The upper part of the figure represents an excerpt of the queries package shown462

in Figure 6, which is extended with a query (SemanticNodeNameSearch) and the463

“Inexact Matching” service explained in Section 3.2.1.464

The lower part of the figure shows an instance model containing the pa-465

rameter of the search (object PrimitiveTypeParam), its input value (object Primi-466

tiveTypeParamValue) and the search results (semantic nodes referenced from object467

searchResult). Overall, the input value “family” is received by the search, which468

is then passed to the service. The service checks whether the attribute value469

of the semantic node matches with the expression or not. Finally, the set of470

selected semantic nodes are attached to the AtomicSearchResult object.471

SemanticNode
NameSearch

NumberOfChildren
Search

:SemanticNode
NameSearch

«instance of»

:NumberOfChildren
Search

csc: CompositeSearchConfiguration

:inputSearchResults

A B

type = and​​

A: AtomicSearchResult B: AtomicSearchResult

AandB:
AtomicSearchResult

:results

:results

extension

queries

SearchConfiguration
name: String​

CompositeSearchConfiguration
type: ConnectionType​​

search(result: SearchResult)​

:results

<<extensible>>
PredicateBasedSearch

init(inputs: SearchParamValue[*])
boolean matches(n: NamedElement)

:inputSearchResults

AandB

Figure 9: An and-type composition (CompositeSearchConfiguration) of two searches

Next, Figure 9 shows a composite search made of the conjunction of the472

search result of two queries: the SemanticNodeNameSearch query and NumberOfChil-473

drenSearch (which searches for nodes with more than a number of children through474

a generalization hierarchy, cf. Table 9). The composite query returns Semantic-475

Nodes belonging to both search results, as schematically depicted by the Venn476

diagram in the rop-right corner of the lower model.477

3.3. Handling constraints478

In our data model, SemanticNodes are used to store the knowledge found in an479

element, including properties and links to other nodes. Additionally, they may480

include restrictions to be satisfied by their instances.481

17

For example, in meta-models, a class may contain OCL invariants that all ob-482

jects of such class should obey. Other modelling technologies, like MetaDepth483

allow attaching constraints to whole models [12]. Similarly, elements in XML484

schemas may contain restrictions on properties of a given data type. These may485

be used to define patterns on strings (regular expressions), restrictions on the486

string length (min/max/exact length), and handling of white spaces, among487

others. While OWL does not directly support integrity constraints, extensions488

have been proposed for this purpose [39, 40].489

Thus, our data model includes a facility to store and interpret heterogeneous490

constraints. Constraints can be attached to any NamedElement, which includes491

Resources, SemanticNodes and Properties, covering the main scenarios in the different492

technical spaces. Constraints have a type identifying the kind of constraint (e.g.,493

OCL), a name, and a body.494

type: String​
name: String
body: String​

RepositoryManager

* constInterpreters
«extensible»

ConstraintInterpreter
type: String​

Constraint

«from dataModel»
NamedElement

name : String
1 appliedTo boolean eval(c: Constraint, n: NamedElement)​

* constraints

Constraint
Result

1 constraint

* unsat

evaluations

«from dataModel»
Resource

0..1 context

*

* evals

JavaObject
1 trace

Figure 10: Meta-model of the extensible constraint handling mechanism.

In order to support evaluation of heterogeneous constraints (OCL, XML495

schema restrictions, etc) our approach is extensible. This way, constraint inter-496

preters can be incorporated by extending class ConstraintInterpreter, declaring the497

constraint types they can handle, and implementing the evaluate method. The498

method receives a constraint and an instance of the element the constraint is499

attached to, and returns a boolean indicating if the element satisfies the con-500

straint. As we will see in Section 4, the addition of constraint interpreters is501

done through an Eclipse extension point. Similar to query results, constraint502

results are reified using ConstraintResult objects, which hold elements that do not503

satisfy the constraint, and in addition organizes results in the context of the504

enclosing Resource.505

4. Architecture and tool support506

We have realized the previously presented concepts in a tool called Ex-507

tremo. It has been implemented as an Eclipse plugin, is open source, and is508

freely available at http://miso.es/tools/extremo.html. The web page in-509

18

http://miso.es/tools/extremo.html

cludes videos, screenshots and installation details. A schema of Extremo’s510

architecture is shown in Figure 11.511

Assistant
Manager

<<Data Model>>
Core

Ecore Assistant

Ontologies Assistant

XML Assistant
Repository

Manager

Query Facility

Constraint
Interpreter Facility

contributes to

<<Eclipse Plugin
Infraestructure>>

UI

controls

communicates
with

<<neoEMF>>
Model

persistence

assistant

search

constraint
interpreter

contributes to

contributes to Constraint
Interpreter

Simple Search
Configuration

…

Figure 11: Architecture of Extremo

Extremo is made of a Core component, which provides support for the512

common data model and includes subcomponents for the query and constraint513

handling facilities. The Core component can be extended in different ways, e.g.,514

to provide access to heterogeneous information sources, as shown in Figure 11.515

This extensibility is realized through Eclipse extension points. These are inter-516

faces that can be implemented by external components to provide customized517

functionality.518

To allow for scalability, the repository is persisted using NeoEMF [41],519

a model persistence solution designed to store models in NoSQL datastores.520

NeoEMF is based on a lazy-loading mechanism that transparently brings into521

memory model elements only when they are accessed, and removes them when522

they are no longer needed.523

The UI component permits visualization and interaction with the resources524

and query results. A set of views, commands, wizards and actions has been525

defined to control the access to the repository, the list of query results and the526

constraint validation facilities. By extending this component, it is possible to527

integrate Extremo with external modelling tools.528

Next, we will detail the structure of the Core subsystem in Section 4.1, while529

the UI subsystem will be described in Section 4.2.530

4.1. The Core subsystem531

Figure 12 shows the main components of the Core subsystem: (i) a Repository532

Manager, which controls the access to the common data model and assists in the533

process of incorporating a new technological space; (ii) a Query Facility, which534

supports our query mechanisms in an extensible way; and (iii) a Constraint Inter-535

preter Facility, which provides flexible support for different constraint formats and536

interpreters.537

19

Ontologies

Repository
manager

Query
facility

Core

Constraint
Interpreter facility

Ecore

RegexDataProperty

assistant search constraint
interpreter

XMLText

MetaDepth

XML
Assistant

SemanticNode
Search

Ocl
Constraint
Interpreter

…

… …

Figure 12: Architecture of the Core component

For each part, a set of extension points have been defined, and the figure538

shows some example implementations of these. The first extension point (assis-539

tant) permits adding support for new data formats. It requires implementing a540

mapping from the format-specific structure, such as XML, to the common data541

model, as described in Section 3.1.542

We predefined a set of assistants as well as a framework for their creation,543

which permits their conceptual organization as model-to-model transformations.544

Hence, we provide an abstract class with a number of methods, which need to545

be overriden for the particular assistant, and act as rules in a transformation.546

In these methods, it is possible to create one or more elements in the common547

data model, hence supporting one-to-many and many-to-one mappings.548

To facilitate the construction of new assistants, it is possible to define class549

hierarchies, and hence reuse import functionality. In addition, our scheme can550

profit from existing transformations between two specific technical spaces. For551

example, if one had a transformation from XSD to Ecore, and an assistant for552

Ecore (translating Ecore to Extremo’s common data model), then an assistant553

for XSD can be built by first translating into Ecore and then invoking the Ecore554

assistant. This is the way we implemented the XsdAssistant (see Figure 4) [42, 43,555

44].556

The second and third extension points provide extensibility for queries. Con-557

ceptually, user defined queries extend the meta-model of Figure 6. The exten-558

sions allow defining custom, predicate-based, and composite queries by subclass-559

ing from the corresponding classes in Figure 6. Finally, the last extension point560

permits contributing support for evaluating new types of constraints, extending561

the meta-model in Figure 10.562

4.2. The UI subsystem563

Figure 13 shows the architecture of the UI subsystem. It is made of contribu-564

tions to the Eclipse infrastructure to visualize and interact with the repository,565

to visualize the search results and the list of elements that satisfy a constraint.566

20

<< ViewPart>>
Repository

UI

<< ViewPart>>
Constraint Results

sorter / filter

Core

<< ViewPart>>
Search Results

<< ViewPart>>
ResourceExplorer

Zest

action drag & drop

:configurations

:RepositoryManager
:Search
Result

<< WizardDialog >>
Search

:ConstraintResult

<< Menu >>
Composite
Query

:Search
Result

Figure 13: Architecture of the UI component

The UI subsystem is composed of: (i) a Search wizard dialog, that receives567

the list of search configurations; (ii) a Resource Explorer, a mechanism based568

on Zest (see https://www.eclipse.org/gef/zest/), a component for graph-569

based visualization, which provides support for filtering and layouts; and (iii) a570

set of view parts, that reflect the current state of the repository set model, the571

query results (as instances of the class SearchResult) and the constraints validation.572

All of them can be sorted or filtered by means of an extension point.573

As an example, Figure 14 shows Extremo in action. In particular, it shows574

the query dialog by which any of the defined queries can be selected, input575

values can be given to each of its input parameters, and services can be selected576

depending on the types of the parameters. In the lower part, the figure shows577

the repository view, with some resources and their content; and the search result578

view, which permits browsing through the query results. It must be noted that579

semantic nodes in the repository view have distinct icons, depending on whether580

they contain data, object properties or constraints, and on whether they are581

types, instances or both.582

Figure 15 shows the resource explorer. In particular, it shows on the right an583

instance of our common data model and the relationships between nodes. Since584

the resource explorer is based on a component for graph-based visualization, the585

SemanticNode instances are represented as nodes and the ObjectProperty instances586

are represented as edges of the graph. The left part shows how the resource587

explorer can be invoked from every resource with a action contribution to the588

pop-up contextual menu of the repository view.589

The UI subsystem has been designed so that it can be flexibly integrated with590

external modelling tools. For that purpose, two extension points have been de-591

fined. The first one enables the addition of an action to the view parts, as a592

reference in the contextual menu and the toolbar. The other extension point593

enables the drag operation from the views and the dropping of the selected in-594

formation into any graphical editor based on Graphical Editing Framework [45].595

21

https://www.eclipse.org/gef/zest/

UI

Figure 14: Extremo in Action: Search Wizard Dialog and views

UI

Zest

Figure 15: Extremo in Action: Resource Explorer

This is the underlying framework of Eclipse graphical editors. We will explain596

these two integration styles in the next two sections.597

4.2.1. Integration with a modelling tool by means of actions598

In this section we present the integration of the core components of Ex-599

tremo with a modelling tool using an action contribution to the view parts of600

22

the UI subsystem. We will illustrate this section with the UML model editor4,601

a solution based on a TreeEditor. This kind of editor is an extensible part of the602

Eclipse infraestructure.603

0..*
properties

Class
isAbstract: Boolean​​

Classifier
name: String​​

PrimitiveDataType

name: String​​
Property​​

Association​​
0..1

parent

1 target

1 source

DataProperty
value : String
type : Type

ObjectProperty

NamedElement
name : String

properties *SemanticNodesupers *

1 range

abstract : boolean

subs *

lowerBound : int
upperBound : int

dataModel

UML (simplified)

ExtensibleViewPartActionContribution
id: String
name: ​​String
editorPart: IEditorPart
viewer: StructuredViewer

execute(IEditorPart editorInput,
 ISelection selection, String editorID);

action

UML2
ActionContribution

from to

d1: DataProperty
type = string

:propertiess1: SemanticNode
abstract = false

o1: ObjectProperty
lowerBound = 0
upperBound = 1

:properties

s2: SemanticNode
abstract = false

:range

d1: Property
:properties

s1: Class
isAbstract = false

s1s2o1: Association
lowerBound = 0
upperBound = 1

:source

s2: Class
isAbstract = false

:target

1 type

execution

<<instance_of>>
<<instance_of>>

string:
PrimitiveDataType:type

lowerBound : int
upperBound : int

s1s2:
Property

:properties

:type

1

3

2

4

Figure 16: Example: action-based integration

Figure 16 illustrates the working scheme of this integration style, where an604

instance of our data model (Figure 2) selected by the user (e.g., via a query) is605

incorporated into a UML model [4]. The elements selected by the user (label 1)606

are two non-abstract SemanticNode objects. The first one contains a DataProperty607

(d1, typed as string) and an ObjectProperty that refers to the second SemanticNode.608

The addition of a new action contribution is enabled by an extension point.609

The action contribution provides the mapping between our common data model610

and the intrinsic model of the TreeEditor. The action contribution must extend611

the ExtensibleViewPartActionContribution class (label 2) and implement an abstract612

method that creates the instances of the target model, conceptually working as613

a model-to-model transformation (label 3). Finally, a UML model is created614

(label 4). The initial two SemanticNode objects are mapped into two non-abstract615

Class objects, the initial DataProperty object is mapped into a Property object and616

the initial ObjectProperty object is mapped into an Association object.617

Figure 17 shows how this is achieved in practice. The repository view of618

Extremo is shown in label 1. In this view, the user can select a number of619

elements that are to be incorporated into the UML model (editor shown in label620

3). For this purpose, a contextual menu offers the different action contributions621

(label 2). The UML editor in the figure shows already the Ecore elements622

4UML2-MDT, www.eclipse.org/modeling/mdt

23

www.eclipse.org/modeling/mdt

1

2

3

Figure 17: Integrating Extremo with the UML2 modelling tool using an action contribution

incorporated into the UML model.623

4.2.2. Integration with a modelling tool by means of drag and drop624

The second integration style enables the addition of a drag operation from625

the views and the dropping of a set of NamedElements into a graphical editor626

based on Graphical Editing Framework [45], the underlying framework of Eclipse627

graphical editors.628

We will illustrate this section with DSL-tao [19], an Eclipse plugin for the629

construction of DSLs using a pattern-based approach. The underlying represen-630

tation of DSL-tao is Ecore. Thus, in this case, Figure 18 shows an example that631

transfers an instance of our data model (Figure 2) into an instance of Ecore.632

0..*
eReferences

<<feature>>
EClass

containment: boolean​​

<<feature>>

EReference​​
<<draggable>>

DataProperty
value : String
type : Type

<<draggable>>
ObjectProperty

NamedElement
name : String

properties *<<draggable>>
SemanticNodesupers *

1 range

abstract : boolean

subs *

lowerBound : int
upperBound : int

dataModel
DSLtao implicit metamodel:
Ecore metamodel (simplified)

IExtensibleGEFDnDContribution

getGraphicalViewer();

drag & drop

DSLtao
GEFDnDContribution

from to

d1: DataProperty
type = string

:propertiess1: SemanticNode
abstract = false

o1: ObjectProperty
lowerBound = 0
upperBound = 1

:properties

s2: SemanticNode
abstract = false

:range

d1: EAttribute
:eAttributes

s1: EClass

s1s2o1: EReference
containment: true

s2:
EClass

:eRefType

<<instance_of>> <<instance_of>>

string:
EDataType

:eAttribute
Type

1

3

2

4

1
eRefType

<<feature>>

EAttribute​​

EDataType

1
eAttributeType

0..*
eAttributes

ENamedElement
name: String​​

:eReferences

drop
(DropTargetEventevent)

dragSetData
(DragSourceEventevent)

transfer

Figure 18: Example: drag and drop based integration

As in the previous section, the portion of the model selected by the user633

24

(label 1) contains two non-abstract SemanticNode objects. The first one contains634

a DataProperty (d1, typed as string) and an ObjectProperty that refers to the second635

SemanticNode. The addition of a new dropping contribution is enabled by an636

extension point. The dropping contribution provides the transfer of a set of637

NamedElements selected from the views and the catching of the drag and drop638

event. The dropping contribution must extend the IExtensibleGEFDnDContribution639

interface (label 2) and implement a method resolving the graphical viewer editor640

that receives the selected elements (label 3). Finally, an Ecore model is created641

(label 4). The initial two SemanticNode objects are mapped into two EClass objects,642

the initial DataProperty object is mapped into an EAttribute object and the initial643

ObjectProperty object is mapped into an EReference object.644

1

2

3

Figure 19: Integrating Extremo with DSL-tao using a drag and drop contribution

Figure 19 shows how this is achieved in practice. The Figure shows the main645

canvas of DSL-tao, which permits building graphically a meta-model using the646

palette to the right. The bottom of the figure shows the views contributed by647

Extremo. In this case, the user may initiate a drag from some model element648

in the view and drop it into the canvas (labels 2 and 3). In the Figure, the user649

has incorporated class Member into the meta-model, while it is also possible to650

incorporate attributes and references.651

5. Evaluation652

We present an evaluation of our approach under different perspectives. We653

start by describing the research questions we address in the evaluation in Sec-654

25

tion 5.1, followed by three different evaluations in Sections 5.2, 5.3 and 5.4, and655

finishing with a discussion of threats to validity in Section 5.5.656

5.1. Research Questions657

By conducting this evaluation, we aim at solving the following research ques-658

tions:659

RQ1: How useful is Extremo to solve practical problems in Language Engi-660

neering?.661

In order to assess the usefulness of Extremo, we will use two demonstration662

cases [46]. In both of them, Extremo was used to support the development of663

complete DSL implementations for process modelling in the immigration domain664

(Section 5.2.1) and modelling of production systems (Section 5.2.2).665

RQ2: How capable is Extremo to represent information coming from different666

technological spaces?.667

As previously described, the range of formats currently supported by Extremo668

can be extended. This way, Section 5.3 presents an analytical evaluation to669

assess how well Extremo’s data model covers the space of possible information670

description approaches.671

RQ3: How integrable is Extremo?.672

One of the salient features in Extremo is the possibility of integrating it with673

third-party tools. Having already successfully integrated a number of tools674

with Extremo, we intend to assess the reach and limitations of the integration675

mechanism. This question is approached in Section 5.4.676

5.2. Evaluating usefulness677

In this section, we evaluate usefulness by presenting two demonstration cases.678

The first one is on process modelling in the immigration domain (Section 5.2.1),679

while the second one is on modelling of production systems (Section 5.2.2).680

In the cases, Extremo was used in combination with two different modelling681

tools (DSL-tao and the Ecore tree editor), while assistants for four different682

technologies were used (Ecore, Ontology, CSV and XML). The purpose of the683

cases is evaluating the power of combining heterogeneous information sources684

for language engineering.685

Characteristics of the two selected cases are (i) they cover both structural686

and behavioral modelling languages, (ii) they combine information from stan-687

dardized modelling languages and from very focused domain-specific languages,688

and (iii) modelling languages are integrated with small to large domain descrip-689

tions coming from different technological spaces. They differ in the variety of690

technical spaces and the size of resources being considered.691

For both cases we will highlight the use of our framework over a sequence of692

phases, which include (i) the scope of the language and an example of model,693

(ii) the collection of resources required, (iii) the resource import and querying694

of the common data model, (iv) the construction of a language meta-model and695

creation of instances, and (v) the results obtained.696

26

5.2.1. Immigration process modelling697

In the first demonstration case, we present the construction of a DSL for698

describing administrative e-Government processes for immigration.699

Scope of the Language. We will construct a language for the modelling of700

processes to issue visas according to the American regulation5, called701

IWML. The language will include elements showing the variety of offices,702

concepts from the domain of immigration and agents involved in the pro-703

cess and generic elements of workflow languages like BPMN [47].704

Example Model. Figure 20 shows an example IWML model, which contains705

(i) domain-specific knowledge related to the agents (DOS, DHS, Medical Ser-706

vice, User), and the artefacts (the I-130 form, the variety of Visas and the707

Payment method) involved in the process, (ii) specific activities needed in708

immigration processes, such as �Application Process�, �Date Selection�, or709

�Interview�, (iii) more generic elements – such as tasks, events, and gate-710

ways – typically found in process modelling languages. In the figure, a711

User is required to fill in a standard I-130 form and to set a date for an712

interview with the embassy personnel. Then, the user is interviewed by713

the US Department of Home Security (DHS) and they perform a study of714

the application submitted. Afterwards, the Department of State (DOS)715

validate the data. In a parallel process, the candidate is expected to go716

through a Medical Examination. Once both the ordinary verifications and the717

medical report have been checked, the document is dispatched. Depend-718

ing on the characteristics of the applicant various types of visa should be719

issued. In this case, a E1 type Visa is approved and consequently issued;720

otherwise, the document is denied.721

Resource Collection. In order to gather all the required elements we defined722

a set of repositories and resources according to the data model shown in723

Figure 2. A list of resources were taken from: (i) the Object Management724

Group (OMG)6 (http://www.omg.org/spec/); (ii) Ecore repositories,725

such as the ATL zoo (http://web.emn.fr/x-info/atlanmod/), which726

includes meta-models for BPEL, DoDAF, Gantt, ODP, SPEM and some727

others; and (iii) Ecore files available on the OMG repository with standard728

meta-models, such as BMM, BPMN, CMMN, DMN, SBVR and SPEM.729

For the domain-specific concepts, open resources were required. In our730

case, we took CSVs from the U.S. Open Data Portal (https://www.data.731

gov/) and US e-Government domain ontologies (http://oegov.org/),732

which are available in OWL and RDF formats. This second repository733

contains ontologies that model the set of United States government facets.734

These include the Government ontology, the U.S. Government ontology,735

5https://www.usa.gov/visas
6The OMG is the standarization body behind many modelling standards such as UML,

SysML, MOF or BPMN.

27

http://www.omg.org/spec/
http://web.emn.fr/x-info/atlanmod/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
http://oegov.org/
https://www.usa.gov/visas

DOS

Inmigrant

<<User>>

DHS

<<Office>>

<<Office>>

<<Artefact>>

I-130

<<Artefact>>

E1

Medical

Examination

New Application

Received

Complete

Application
Interview

Date

Data

Validation

Issue

Visa

Visa

cancelled

Examination

passed

Visa application

started

Interview

Application Form

M.S.

<<Office>>

Date Selection

Appli. Process

Interview

Initial

Event

Message

Event

Final

Event

I-130

M.S. DHS DOS

User

Visa

Exclusive

Gateway

Parallel

Gateway

I-130 Form

Medical

Service

DHS DOS

Study

Application

Figure 20: Example process for issuing a visa with IWML (left) and legend (right)

the Department of Homeland Security ontology and Department of State736

ontology.737

Table 2 summarizes the number of instances of the resource collection738

by focusing on the meta-level and, in the case of the ontologies, taking739

into account also the individuals. Even though in this case the resources740

imported were not large (this will be evaluated in the second case study)741

we can appreciate that Extremo was able to gather information coming742

from different technological spaces. The total size of the reused artefacts743

amounted to around 2,4 MB of data.744

Ontology concept Number
of in-
stances

OWL file 22
OWL Class 141
Individuals 1118
owl:ObjectProperty 35
owl:DatatypeProperty 91

EMF concept Number
of in-
stances

Ecore file/EPackage 30
EClass/EDataType 2484
EReference 892
EAttribute 326
OCL EAnnotation 0

Table 2: Number of collected instances of different Ontology and EMF-concepts, respectively.

Resource Import. We imported the Ecore meta-models taken from the OMG745

and the ATL zoo by the application of our EcoreAssistant (cf. Section 3.1)746

and the domain-specific concepts by applying our OntologyAssistant and the747

CsvAssistant.748

Meta-Model Construction. The meta-model was developed using DSL-tao,749

integrated with Extremo following the approach described in Section 4.2.2750

28

by means of a drag and drop extension point. Figure 21 shows a moment751

in the construction of the meta-model. In particular, it shows the Eclipse752

IDE with the Extremo perspective open (label 1), which includes the753

Resource Collection previously mentioned in the repository view (label 2)754

and the BPMN.ecore resource visualized in the resource explorer (label 3).755

The meta-model construction phase involved some of the queries listed in756

Table 9, such as finding types of forms, organizations and gateways. Once757

a query has been issued, the resulting elements can be highlighted on the758

original resource (label 4). Finally, a set of semantic nodes can be dropped759

over the DSL-tao design diagram (label 5).760

1

2 3
4

5

Figure 21: Integration of Extremo with DSL-tao (from the perspective of the case study)

Result. Figure 22 shows the final result obtained. In detail, IWML has ele-761

ments originating from the set of meta-models that describe workflows,762

such as Gateways, Events or Task. Moreover, IWML is composed of some763

domain-specific concepts taken from the set of domain ontologies, like764

DOS, DHS or MedicalService; CSVs, such as the type of Visas or the set of765

Users. Roughly 22% of the classes in our solution have been obtained from766

different ontologies and CSVs, 48% of the classes have been obtained by767

combining different representations of process modelling meta-models and768

the rest (30%) have been added by hand taking information from the gov-769

ernment websites. This suggests that Extremo is useful as a help in770

the construction of a complex meta-model, as we were able to build the771

meta-model by reusing elements from different heterogeneous information772

sources.773

29

N
am
ed
El
em
en
t

na
m

e
:

S
tri

ng

Ac
tiv
ity

Ev
en
t

Ta
sk

Ag
en
t

Ap
pl

ic
at

io
n

Pr
oc

es
s

In
te

rv
ie

w
D

at
e

Se
le

ct
io

n

Bu
re

au
U

se
r

ty
pe

 :
 U

se
rT

yp
e

<<
en

um
er

at
io

n>
>

U
se

rT
yp

e
VW

PC
iti

ze
n

N
ot

Im
m

ig
ra

nt
Im

m
ig

ra
nt

D
H

S
M

ed
ic

al
Se

rv
ic

e
D

O
S

<<
en

um
er

at
io

n>
>

V
is

aT
yp

e
To

ur
is

m
 (B

1/
B2

)
St

ud
yi

ng
 (F

1)
Ex

ch
an

ge
 P

ro
gr

am
s (

J1
)

Te
m

po
ra

ry
 W

or
ke

rs
R

el
ig

io
us

 W
or

ke
rs

D
om

es
tic

 E
m

pl
oy

ee
s

M
em

be
rs

 o
f S

hi
p

In
ve

st
or

s
(E

1)
Pr

es
s

&
M

ed
ia

 (I
)

D
ip

lo
m

at
s (

A)

Ar
te
fa
ct

VI
SA

Pa
ym

en
t

I-1
30

 F
or

mD
S-

16
0

Fo
rm

Fi
na

lE
ve

nt

In
iti

al
Ev

en
t

M
es

sa
ge

Ev
en

t

Pr
oc

es
s

0.
.*

el
em

en
ts

0.
.1

 a
ge

nt

Ac
tiv
ity

0.
.1

 c
on

su
m

es

0.
.1

 p
ro

du
ce

s

G
at
ew
ay

Pa
ra

lle
l

G
at

ew
ay

Ex
cl

us
iv

e
G

at
ew

ay

0.
.1

ta
rg

et

0.
.1

 s
ou

rc
e

ty
pe

 :
 V

is
aT

yp
e

Fr
om

 O
nt

ol
og

ie
s

an
d

R
D

F
cl

as
se

s

…

Fr
om

 C
SV

s

Fr
om

 E
co

re
s

 A
dd

ed
 b

y
ha

nd

F
ig

u
re

2
2
:

E
x
ce

rp
t

o
f

th
e

p
ro

ce
ss

es
fo

r
im

m
ig

ra
ti

o
n

m
et

a
-m

o
d

el
.

5.2.2. Industrial production system modelling774

In the second case, we present the development of a DSL for industrial775

production systems to enable the construction of models that conform to an776

30

interoperable cross-industry standard for products and services called eCl@ss7.777

The goal of this case study is to reduce the number of potential candidates for778

conveyor-belt system-components that are available in the eCl@ss-standard, and779

thus to conveyor-belt system-modellers, by applying Extremo for constructing780

the desired language.781

Scope of the Language. We construct a language for the modelling of pro-782

duction systems conforming to the eCl@ss-standard called EPML. The783

language includes elements from conveyor-belt systems that must fulfill784

the constraints imposed by the eCl@ss-standard and the GEMOC initia-785

tive8, such as the Signal Process Modelling Language (SigPML)—a DSL786

dedicated to data flow processing.787

Example Model. Figure 23 shows an example EPML model, which contains788

(i) electrical drives (DC Engine), (ii) communication cables or ready-made789

data cables that represent SigPML connectors, (iii) PC-based controls790

or field buses, i.e., decentralized peripherals, which represent controls,791

(iv) controls in terms of inductive proximity switches, and (v) sets of792

rectangular industrial connectors, which represent connector systems. In793

the figure, a DC Engine is connected to a Fieldbus through a communication794

cable and a data cable with a set of industrial connectors. The Fieldbus also795

has a connection with a Proximity Switch through a communication cable and796

a data cable using the industrial connectors that the Proximity Switch has.797

Resource Collection. In order to gather all the required elements we define798

a set of repositories and resources according to the data model shown799

in Figure 2. The resources were taken from: (i) the GEMOC initiative,800

such as SigPML defined in form of an Ecore meta-model; (ii) the eCl@ss-801

standard, defined in form of several XML schema definitions (XSDs) and802

XML instances.803

Table 3 summarizes the number of instances of the eCl@ss-standard as804

well as the SigPML by focusing on the meta-level. However, domain-805

specific concepts in the eCl@ss-standard measure a substantial size, i.e.,806

only the basic and advanced specifications in the English language consist807

of 41,000 product classes and 17,000 properties, which amount to 15.5808

Gb of data. In this situation, extracting desired concepts requires the809

manual examination of a vast amount of resources as well as their re-810

implementation by a target DSL. Moreover, any update that is performed811

on eCl@ss-standard resources, may also impact the implementation in812

the target system and involve complex and time-consuming maintenance813

tasks. In an effort to counteract such limitations we apply the Extremo814

framework as follows.815

7An ISO/IEC-compliant international standard for the unified and consistent definition
and classification of products, materials, and services alongside typical supply chains by the
use of commodity codes.

8http://www.gemoc.org

31

http://www.gemoc.org

DC Engine

Proximity
Switch

Fieldbus

Communication
Cable Data Cable

Data Cable

Communication Cable

Production System

Production System Application

Block

Connector

Input Port

Output Port

Figure 23: Abstract graphical representation of the conveyor-belt production system model.

XSD concept in
eCl@ss-standard

Number
of in-
stances

XSD file 30
xs:element 960
xs:element IDREF
attribute

110

xs:attribute 104
xs:restriction 84

EMF concept in
SigPML

Number
of in-
stances

Ecore file/EPackage 1
EClass 14
EReference 18

EAttribute 10
OCL EAnnotation 0

Table 3: Number of collected instances of different XSD and EMF-concepts, respectively.

Resource Import. First, we import the resource collection by the applica-816

tion of the EcoreAssistant and the XsdAssistant. The XsdAssistant reuses func-817

tionality of the XMLIntellEdit framework [44]—composed of XML-818

Text [42] and IntellEdit [43]. The XMLText framework transforms819

XML-artifacts, i.e., XSDs and XML instances, to corresponding MDE-820

artifacts, i.e., Ecore meta-models and conforming models. Then, the Eco-821

rAssistant is used to map the MDE-artifacts into the common data model.822

Meta-Model Construction. Next, we employ the Extremo Eclipse perspec-823

tive as well as the Sample Reflective Ecore Model Editor, integrated with824

32

Extremo following the approach described in Section 4.2.1. Figure 24825

shows a moment in the construction of the EPML meta-model. In partic-826

ular, it shows the set of resources in the repository view (label 1) and the827

Extremo functionalities involved in the meta-model construction phase828

for querying (label 2), traversing (label 3), and applying desired concepts829

from the imported repositories (label 4). For example, available concepts830

that represent an electrical drive in the eCl@ss-standard are gathered by831

issuing an Extremo query for retrieving semantic nodes that are named832

“engine” and then used for creating corresponding concepts in the EPML833

meta-model. Extremo traversal-functionalities, such as Reveal On Repos-834

itory, Go To Type, and Go To Domain, are employed for gathering respective835

classes, which are referenced as super-types and thus enforce conformance836

to the eCl@ss-standard.837

1

2

3

4

Figure 24: Integration of Extremo with the Sample Reflective Ecore Model Editor (from the
perspective of the case study)

The final result of the EPML meta-model construction process is depicted838

in Fig. 25. In detail, the EPML data flow process elements originated839

from the SigPML (in dark-grey) such as System, Application, Block, Connec-840

tor, and Port. Moreover, EPML is composed of several eCl@ss-standard841

concepts (in light-grey), which include (i) electrical drives, (ii) cables,842

(iii) controls, (iv) binary sensors, i.e., safety-related sensors, and (v) con-843

nector systems. For example, the eCl@ss-standard CATEGORIZATIONCLASS844

represents the super-type of Block and Connector in EPML. Additionally,845

subtypes of Block and Connector are also instances of CATEGORIZATIONCLASS846

in the eCl@ss-standard. As a result of distinguishing specific instances847

of categorization-classes adds additional EPML-specific semantics that848

gather concepts found in SigPML and the eCl@ss-standard.849

Result. Finally, we evaluate the capability of handling large models as they850

occur in the eCl@ss-standard in form of XML files, which are transformed851

33

System

0 .. * ownedPort

0 .. * ownedBlock 0 .. *
ownedConnector

1 .. 1 inputPort

1 .. 1 outputPort

SensorTechnology ConnectorSystem

PCBasedControls

CommunicationCable

Fieldbus

InductiveProximitySwitch

ReadyMadeDataCable

IndustryConnector

RectangularConnectorSet

Block Connector

Port

OutputPort

InputPort

Cable

Control

DCEngine

ElectricalDrive

ProximitySwitch

Application

1 .. 1 ownedApplication

CATEGORIZATIONCLASS

DICTIONARY

eCl@ss-standard
(XSD)

eCl@ss-
standard (XML)

SigPML (Ecore)

Figure 25: Excerpt of industrial production system meta-model based on SigPML and the
eCl@ss-standard.

to XMI files by the XMLIntellEdit framework to enable their use by852

Extremo. Further, SigPML (only) contains 13 semantic nodes at meta-853

model level and none at model-level and is thus neglected in Table 4.854

To summarize, the meta-level contains one Resource, i.e., “EPML.ecore”,855

which references 18 different XSD files, that is instantiated by a single856

XML file, i.e., “eClass9 1 BASIC EN SG 27.xmi” (55.6 MB). Moreover,857

at the model-level there are 487,746 instances of semantic nodes (525 dif-858

ferent kinds), 805,097 instances of object properties (500 different kinds),859

487,745 instances of data properties (26 different kinds), and 820,356 in-860

stances of constraints9 (88 different kinds).861

Consequently, our results indicate that the Extremo-constructed EPML862

reduces the number of potential candidates for conveyor belt system com-863

ponents, which are available in the eCl@ss standard, by approximately864

99.17% (97.05%), i.e., from 487,746 (805,097) to 4,071 (23,752) semantic865

nodes (object properties) that represent instances (references) of CATEGO-866

RIZATIONCLASS and thus potential candidates for instances (references) of867

(to) Block and Connector in SigPML.868

Additional comments. EPML may be extended by either adding further869

eCl@ss-standard specific concepts, which represent instances of CATEGO-870

RIZATIONCLASS, to the meta-model or by expressing the concept of blocks871

and connectors as concrete (instead of abstract) classes. In more detail,872

the latter option would move the decision making-process of choosing de-873

sired eCl@ss-standard elements from meta-model level to model-level. Al-874

though Extremo supports such cases by the means of level-agnostic data875

handling, we choose to constrain EPML at meta-model level to limit the876

set of possible types, which can be instantiated at model-level, and thus877

fit the purpose of modelling conveyor-belt production systems.878

9Note that the “number of instances” of constraints refers to the number of constraints
defined at meta-level and validated at model-level.

34

Number of instances
Common Data
Model concept

Meta-level
(types)

Model-level
(data)

Resource 1 1
SemanticNode 525 487,746

(4,071)
ObjectProperty 500 805,097

(23,752)
DataProperty 26 487,745
Constraint 88 820,356

Table 4: Instances of imported Common Data Model concepts within the industrial production
system modelling case study.

5.2.3. Summary of the demonstration cases879

The processes for immigration case study (Section 5.2.1) imports and queries880

data from different technical spaces, i.e., Ecore meta-models, CSV files, and881

OWL specifications and the industrial case study (Section 5.2.2) considers XML882

schemas, XML instances, and Ecore meta-models. Thus, in the first one, we883

consider a greater variety of technical spaces and smaller models. In contrast,884

in the second one we address the importing of a lower variety of technical spaces885

but larger models, i.e., XML instances in the size of multiple gigabytes. Then, in886

the first case study, we evaluate the ability of Extremo in providing assistance887

during the modeling of resources that are originated from a variety of technical888

spaces, and in the second case study, we evaluate the applicability of Extremo889

in assistance-scenarios that require dealing with industrially-sized resources.890

Table 5 summarizes the number of meta-classes obtained from each assis-891

tant in both cases. In the first one, a total of 6 meta-classes were obtained892

according to the domain-specific concepts, 12 metaclasses were obtained from893

different ecores and the rest were added by hand. In the second one, a total894

of 16 meta-classes were obtained from different schemas and descriptions us-895

ing the XSD assistant and the rest from ecores. Overall, most content in both896

meta-models was reused from the available resources, which were taken from 4897

different technical spaces.898

From these demonstration cases, we can answer RQ1: How useful is Ex-899

tremo to solve practical problems in language engineering? by stating that900

Extremo was helpful in locating elements within heterogeneous resources that901

helped to create the meta-models. These elements could be directly inserted in902

the final meta-model. For both cases, most elements in the meta-models were903

reused from the artefacts in the repository.904

5.3. Evaluating format extensibility905

In order to evaluate format extensibility, we perform an analytical evalua-906

tion of the degree of coverage of the data model of common features found in907

information modelling approaches [48, 49]. Figures 26 and 27 show a feature908

35

Table 5: Evaluating the usefulness of Extremo: results of the experiments

Measures Case 1: Pro-
cesses for immi-
gration

Case 2: Produc-
tion Systems

Size of metamodel ob-
tained

27 metaclasses 23 metaclasses

From Ecore Assistant 13 metaclasses 7 metaclasses
From Ontologies Assistant 4 metaclasses N/A
From CSV Assistant 2 metaclasses N/A
From XSD/XML Assistant N/A 16 metaclasses
Manually added 8 N/A

diagram (splitted in two parts for readability) displaying these features. Our909

aim is not to be fully exhaustive, but to cover a reasonable design space for910

information modelling approaches.911

optional mandatoryalternative or

Semi-structured
formats

Structure

Container

Featured

RelationInheritance

Single Multiple

Hierarchical Arity

Binary N-ary

Navigability

Uni- Bi-

Featured

Abstract

Artefact

Container

Relation

Cardinality

Container

Feature

Relation

Arity

DataTypes

Extensible Element Semantics of
“many”

SetSequence

Ordered

Enumerations

Figure 26: Feature model of characteristics of structured formats (1/2).

Figure 26 shows features related to the space of possible supported structure912

primitives. Formats to represent semi-structured information are based on some913

kind of container for data (models, nodes, objects, classes), and on relations914

among them (features Container and Relation) [49, 50]. Containers may support915

features (fields, references), may support nesting, and have ways to control916

their instantiability (e.g., abstractness tag). Relations have an arity, which is917

typicaly either binary (to model relations between exactly two containers) or918

n-ary (to model multi-container relations). Similar to containers, some systems919

may allow relations to own features. Relations may by navigable either in one920

or both directions [51, 52].921

Some systems support some form of inheritance to reuse information [51].922

Inheritance relations can normally be set either between containers or relations,923

and be single (at most one super) or multiple (any number of super elements).924

Often, systems support a notion of cardinality, to specify the expected range of925

values of a given element can take. Typically, cardinalities can be attached to926

containers, relations or features. Some systems permit specifying the semantics927

of “many” cardinality: a set (no repetition allowed) optionally ordederd, or a928

36

sequence (repetitions allowed) [51, 52]. Finally, many systems may have prede-929

fined data types (like integer, String, etc), have support for enumerations, and930

be extensible with new data types, provided by the user.931

Semi-structured

formats

Meta-Levels Typing

Two Arbitrary Optional Many Strict

Constraints

Local Global

forbids forbids

Figure 27: Feature model of characteristics of structured formats (2/2).

Figure 27 captures additional features. Some systems organize their elements932

in meta-layers, typically two (e.g., models and meta-models), but others support933

an arbitrary number of them. If meta-levels are supported, some kind of typing934

is needed between entities in different layers. In some cases, this typing can935

be optional, or allowed to be multiple. In other cases, the typing is strict,936

meaning that each element of a certain level is typed exactly by one entity at937

the level above [53]. This precludes optional typing, multiple typings and typing938

relations within the same level [54]. Finally, some systems support constraints,939

typically defined on one meta-level, and evaluated in some meta-level below.940

These constraints can be local (i.e., involving features of just one entity) or941

global (if entities of the whole resource need to be access).942

Once we have set the design space for information modelling formats, we943

analyse how different technologies are positioned in it, and the degree of coverage944

of our data model. A summary of such analysis is shown in Table 6.945

Table 6: Features of some information modelling technologies: DataType (E=Extensible,
F=Fixed, EN=Enumerations), Cardinality (C=Container, F=Feature, R=Relation,
Sem=Configurable semantics of many), Inheritance (C=Container, R=Relation, S=Single,
M=Multiple), Container (F=Featured, A=Abstract, H=Hierarchical), Relation (Bin=Binary,
N=N-ary, F=Featured, U=Unidirectional, B=Bidirectional), Typing (S=Strict, O=Optional,
M=Many), Meta-Levels (2=Two, A=Arbitrary), Constraint (L=Local, G=Global).

System DT Card Inh Container Relation Typing Levels Const
EMF E, EN F, Sem C, M F, A, H Bin, U, B S 2 L, G
UML E, EN F, Sem C, M F, A, H N, U, B, F M 2 L, G
MetaDepth F, EN C, F, R, Sem C, M F, A, H Bin, U, B, F O A L, G
XSD E, EN F, Sem C, S F, H Bin, U S 2 L
OWL E, EN F, Sem C, M F, A Bin, U, B O, M A L
CSV F – – F – – – –
Extremo F F C, M F, A, H(Rsr) Bin, U, B O, M A L, G

In the modelling technical space, we have taken three representatives: EMF,946

UML and MetaDepth. It can be seen that EMF allows enumerations and947

extensible data types, permits cardinalities on features and fine-tuning the se-948

mantics of “many”. It supports multiple inheritance on classes, classes (but not949

references) may have features, and can be abstract. Both packages and classes950

37

can be organized hierarchically (classes may define containment references that951

contain other classes). Relations are binary, and can be bidirectional (emulated952

through opposite references). The typing is strict and on a two meta-level archi-953

tecture. Constraints can be expressed by OCL and can be both local and global.954

UML offers similar features, but includes N-ary, featured relations (association955

classes), and typing can be multiple (through overlapping generalization hier-956

archies). Finally, MetaDepth permits adding cardinalities on nodes, relations957

(edges) and features. Edges can have features, and there is optional typing on958

an arbitrary number of meta-levels.959

In addition to the modelling technical space, we are interested in evaluating960

representatives from other technical spaces. First, we selected XSD which offers961

enumerations and extensible data types as well as cardinalities on features with962

different configurations for the semantics of “many”. Furthermore, XSD offers963

for element types the following three possibilities: single inheritance, features,964

and nesting of element types (i.e., hierarchies). XSD only allows binary uni-965

directional references. Typing in XSD is considered to be strict, except open966

points in XSD descriptions which allow for any valid XML structure. XSD fol-967

lows the classical two-level approach and allows for local constraints. For global968

constraints, additional format languages such as Schematron have to be used.969

OWL has similar features, but it allows for multiple inheritance between classes970

which may be also abstract classes. There is no explicit hierarchy based on971

nesting classes. Relations in OWL may be defined as bi-directional and addi-972

tion to many other relationship types. Interestingly, OWL allows for optional973

typing as well as multiple types. Furthermore, arbitrary modeling levels may974

be defined with OWL, to be more precise, with OWL Full. Local constraints975

are supported, however, for global constraints, additional constraint languages976

such as SHACL [55] have to be used.977

It can be seen that the data model of Extremo supports most features,978

with some limitations that can either be overcomed, or are not important for979

Extremo’s goals, as explained next. First, Extremo’s data types are currently980

not extensible. Instead, unsupported data types (e.g., currency) need to be981

mapped to an existing one (e.g., String) and the can be annotated using MetaData982

objects. Similarly, enumerations need to be stored as Strings. However, this983

is not problematic when issuing queries. Cardinality can only be placed on984

features, and the semantics of “many” is not configurable. However, this is not985

an important feature to issue queries, and can be reflected using MetaData or986

Constraint objects. Inheritance is on containers and can be multiple. This is in-987

line with most analyzed systems. Containers can have features and be abstract.988

However, only resources can be hierarchial. Nonetheless, hierarchy of semantic989

nodes can be emulated by ObjectProperties. Relations (ObjectProperties) are binary,990

can be bidirectional (by declaring opposites) and may have features. N-ary or991

featured associations can be emulated by adding an intermediate SemanticNode.992

This is the strategy we followed when building the assistant for MetaDepth.993

Extremo’s typing is optional and multiple, supporting an arbitrary number of994

levels. Finally there is support for both local and global constraints.995

Please note that the common data model can also accommodate data formats996

38

with no explicit descriptions, like e.g. CSV. In such a case, each data row would997

be imported as a semantic node, and each cell as a data property.998

Altogether, from this analytical evaluation, we can conclude that most com-999

mon features of information modelling approaches can be directly mapped to1000

our common data model, or can be emulated. Therefore, we can answer RQ2:1001

How capable is Extremo to represent information coming from different techno-1002

logical spaces? by stating that Extremo will be able to accommodate most1003

commonly used information modelling approaches.1004

5.4. Evaluating the integration with external tools1005

The idea of Extremo is to be a modelling assistant easy to integrate in1006

other (meta-)modelling tools. Hence, we have assessed to what extent this1007

integration is feasible, by integrating Extremo with a set of tools developed1008

by third-parties. In some cases, the original code was not accessible, while in1009

others it was. In the first case, we used the UML model editor10 (as shown in1010

Figure 17), the standard Ecore editor and Exeed, an enhanced version of the1011

built-in EMF reflective tree-based editor that enables developers to customize1012

the labels and icons of model elements11. All these solutions are based on a1013

TreeEditor, an extensible part of the Eclipse infraestructure. Since a drag and drop1014

integration is not possible because of restrictions to access to the original code,1015

the solution was performed by means of the action extension point. Each of1016

these integrations costed 234 lines of Java code (LOCs) in average, which can1017

be considered as very light.1018

In the second case, we used DSL-tao, which was built by our team. In this1019

case, the code was available, and performing a solution by means of the drag and1020

drop extension point. costed 134 lines of Java code (LOC).1021

Table 7 shows details on the number of LOCs for each integration. The1022

integration mechanisms by means of actions and drag and drop are already provided1023

by the tool (marked with an asterisk) and do not need to be provided by the1024

developer. Therefore, most of the code needed was related to the transformation1025

from the instances of our data model (Figure 2) to the classes of the modelling1026

tool (cf. Figures 16 and 18). In the case of the integration made by means of1027

actions, the method execute needs to resolve the editor part that will receive the1028

portion of the model instance and the selected elements from the views before to1029

create the new elements of the transformation (shown in row 3). The necessary1030

LOCs to transform nodes, data and object properties are detailed in rows 4-61031

of the table.1032

Thus, from this study, we can answer RQ3: How integrable is Extremo?1033

by stating that integration of Extremo is lightweight for modelling tools based1034

on tree or GEF-based editors.1035

10UML2-MDT, www.eclipse.org/modeling/mdt
11Epsilon Exeed, http://www.eclipse.org/epsilon/

39

www.eclipse.org/modeling/mdt
http://www.eclipse.org/epsilon/

DSL-tao EcoreEditor UML2Editor ExeedEditor
Ext. Point Used drop actions actions actions
Ext. Point Integration 59∗ 49∗ 49∗ 49∗

Tree Selection Solver - 163 165 163
SemanticNode 24 8 4 8
DataProperty 27 33 4 33
ObjectProperty 24 9 32 9

Table 7: LOCs for integrating Extremo with other tools

5.5. Discussion and threats to validity1036

As we have seen in the three preceding subsections, we were able to use Ex-1037

tremo to help in constructing DSLs by reusing heterogeneous artefacts (some1038

of which had large size); we analysed the degree in which the data model of1039

Extremo is able to accommodate possible information modelling approaches;1040

and how easy is it to integrate Extremo with external (meta-)modelling tools.1041

While the results are positive, there are of course also potential threats to the1042

validity of the experiments. According to Wohlin et al. [56], there are four basic1043

types of validity threats that can affect the validity of our study. We cover each1044

of these in the following paragraphs.1045

5.5.1. Construct Validity1046

Construct validity is concerned with the relationship between theory and1047

what is observed. The demonstration cases in Section 5.2 focussed on evaluating1048

the use of Extremo with assistants for different technologies, and standards1049

(like eCl@ss) developed by third parties. However, although taking realistic1050

requirements, the DSLs to be constructed were devised by us. Therefore, further1051

studies would need to be performed by constructing DSLs with requirements1052

specified by third parties.1053

The evaluation of the demonstration cases focussed on DSL construction.1054

However, it used artefacts acting as descriptors (XSD) and at the model/data1055

level (XML documents). While this shows that Extremo can be used to extract1056

information at the model level, a further study would be needed to assess the1057

usefulness of Extremo for domain-specific modelling. However, please note1058

that creating a meta-model is a structural modelling activity already.1059

5.5.2. Conclusion Validity1060

Conclusion validity is concerned with the relationship between the treat-1061

ment and the outcome. We considered two demonstration cases from different1062

domains, seven format languages from four technical spaces, and integrated our1063

approach with four modeling editors. While these numbers may be not enough1064

to reason about statistical relevance, they still show a clear tendency of the1065

usefulness, applicability, and integrability of our approach.1066

40

5.5.3. Internal Validity1067

Internal validity checks whether the treatment used in the experiment actu-1068

ally causes the outcome. We were the performers of both demonstration cases.1069

While the performer of one of the case study was not involved in the devel-1070

opment of Extremo, a user study would be needed to further assess the tool1071

usability and the subjective usefulness of Extremo. However reporting on a1072

user study would deserve a separate publication, and we will tackle this issue1073

in future work. Similarly, the integration of Extremo with external tools was1074

also performed by us. Although lightweight in terms of LOC, it could be more1075

demanding for other developers in terms of effort.1076

Another aspect is that we set the class as the unit of reuse, neglecting prop-1077

erties. We believe this is a good indicator as the number of classes outperforms1078

that of properties.1079

Having good resources available is crucial for the approach to work properly.1080

We did not evaluate how easy is it to perform this phase of resource collection1081

(since this phase is out of the scope of our tool), but we evaluated how large1082

was the contect of the repository, though.1083

5.5.4. External Validity1084

Regarding external validity (i.e., generalizability of the results), we did not1085

include an explicit evaluation of query extensibility, because the extension points1086

we have defined permit adding new queries by using arbitrary Java code. Table 91087

in the appendix lists a collection of queries we have defined by implementing the1088

extension point and that covers a set of accepted quality criteria in conceptual1089

modelling [24].1090

For RQ3 (integrability) we did not evaluate the integration of Extremo1091

with text-based modelling tools, e.g., built with Xtext, but we have assessed1092

to what extent this integration is feasible, by integrating Extremo with a set1093

of tools developed by third-parties (and also developed by us). In addition, we1094

integrated Extremo with other tools within Eclipse, but not with tools in other1095

IDEs, like JetBrains. While Extremo is an Eclipse plugin, its Core subsystem1096

(described in Section 4.1) is largely independent from it (in contrast to the UI1097

subsystem 4.2). Hence, migrating the Core into JetBrains would require little1098

effort, but the UI subsystem (dealing with visualization and interaction with1099

resources and query results) would need to be redesigned.1100

We did not present a formal evaluation of scalability or performance, which1101

are left for future work. Regarding the former, the XML artefacts considered in1102

the second demonstration case reached a size of 55Mb. Moreover, resources are1103

imported and persisted using NeoEMF, a model persistence solution designed1104

to store models in NoSQL datastores, which is able to handle very large models1105

efficiently (e.g., models of more than 40.000.000 elements were reported to be1106

created in [57]).1107

Regarding performance, our experience and preliminary evaluations indicate1108

that resource import time is linear in the size of the resource. Typically, it takes1109

a few seconds for resources of sizes in the order of hundreds of elements. While1110

we plan to optimize this performance, this is a one-time operation, and once1111

41

a resource is imported, it can be handled through NeoEMF. Regarding query1112

performance, those that need to traverse the whole resource are in the order of1113

one second for sizes up to thousands of elements. However, they may become a1114

bottleneck for larger resources. To alleviate this issue, we cache both the input1115

parameters for predicate-based searches (init operation shown in Figure 6) and1116

the query results, while NeoEMF lazy-loading mechanisms that transparently1117

brings into memory model elements only when they are accessed. Further op-1118

timizations to speed-up queries, e.g., based on the creation of derived features1119

and indexes for the resources [58], are left for future work.1120

6. Related work1121

The increasing complexity of software development has prompted the need1122

for code recommenders for example, for API usage, or program quick fix. How-1123

ever, although code recommenders are increasingly used in programming IDEs [7,1124

8], there is lack of such assistive tools for (meta-)modelling in MDE.1125

The closest work to our proposal is [59, 60, 61], where a generic architec-1126

ture for model recommenders is proposed. The architecture is extensible, in the1127

sense that different recommender strategies can be plugged-in. In contrast, the1128

extensibility of our approach is in the supported data source, while we specifi-1129

cally focus on the extraction of knowledge from these sources. In addition, our1130

approach supports out-of-the-box visualization and extensible query facilities.1131

Other approaches to model recommendation focus on proposing suitable1132

ways to complete a model with respect to a meta-model [62]. Hence, using1133

constraint solving techniques, the system proposed ways to complete a model1134

so that it becomes a valid instance of a meta-model. In [63] the authors use1135

ontologies in combination with domain-specific modelling, and hence can use1136

ontology reasoners to provide reasoning services like model validation, inconsis-1137

tency explanation, and services to help in the model construction phase.1138

Some approaches propose a common architecture to index and represent1139

models, with the purpose of reuse. For example, in [64] the authors transform1140

SysML models into a “universal” representation model called RHSP, which can1141

be queried to discover reusable models. They support queries based on par-1142

tial models (and model similarity search) and natural language (similar to our1143

synonym searchs). In our case the queries are extensible, and our data model1144

provides richer support for representing model features, including constraints.1145

Instead of using a common data model, an alternative design would have1146

been to use model adapters, in the style of the Epsilon model management1147

languages [65]. In this approach, the languages do not access the particular1148

information technology (EMF, XML) directly, but through a model connectivity1149

layer. This is an interface that can be implemented to enable uniform access to1150

different technologies. We opted for a common data model, where the different1151

heterogeneous elements are reified uniformly, and stored using NeoEMF, hence1152

providing scalability and performance.1153

Storing artefacts in a database, to enable their flexible query has also been1154

applied to source code [15, 66]. In our case, the artefacts come from different1155

42

heterogeneous sources, and hence we need to transform them into the common1156

data model. Our query approach is extensible, based on extension points.1157

Other works have considered the exchange of models/data between different1158

meta-modelling tools [67] or technical spaces [68]. In [67] the authors propose1159

a solution that creates transformation between different meta-modelling tech-1160

nologies by means of declarative mappings. Our approach differs from these1161

works by mapping the technical spaces into a common data model instead of1162

establishing mappings between individual technical spaces. As a result, our ap-1163

proach is independent of a single technical space and thus enables the import,1164

persistence, and querying of interdependent concepts that are originated from1165

distinctive technical spaces and may be lost within single mappings. In [68]1166

the maintenance of intra-space transformations is improved by automating the1167

discovery and reuse of mappings between schema elements. In contrast, Ex-1168

tremo provides assistance during the import of artifacts from different tech-1169

nical spaces and the creation of new languages and models that are based on1170

existing technical spaces, such as Ecore, regardless of their originating technical1171

space. Although Extremo requires to specify assistants for different technical1172

spaces, existing EMF-based work that bridges technical spaces, such as XML-1173

Text [42] for XML schema, can be reused and (only) requires the specification1174

of a mapping within the same technical space, i.e., Ecore in case of Extremo1175

and XMLText.1176

Some researchers have exploited ontologies for creating DSLs [69]. For ex-1177

ample, in [70] the authors advocate the use of (OWL) ontologies in the domain1178

analysis phase of DSL construction. As they target textual DSLs, they propose1179

a tool for the automated generation of a textual grammar for the DSL. In a1180

similar vein, in [71], the authors generate meta-model design templates from1181

OWL ontologies, which are later manually refined into domain meta-models.1182

In our approach, we assume that not all the required information to create a1183

meta-model is present in one ontology, but typically such information is scat-1184

tered in informational resources of different kinds, like ontologies, RDF data, or1185

meta-models.1186

Combining modeling approaches from MDE with ontologies has been studied1187

in the last decade [72]. There are several approaches to transform Ecore-based1188

models to OWL and back, e.g., cf. [73, 74]. In addition, there exist approaches1189

that allow for the definition of ontologies in software modeling languages such1190

as UML by using dedicated profiles [75]. Moreover, there are approaches which1191

combine the benefits of models and ontologies such as done in [76, 77] for rea-1192

soning tasks. Not only the purely structural part of UML is considered, but1193

some works also target the translations of constraints between these two tech-1194

nical spaces by using an intermediate format [78]. For the data import, we1195

may build on these mentioned approaches, but we focus on recommendation1196

services exploiting the imported data from different technical spaces to build1197

domain-specific modeling languages.1198

Finally, there are some approaches directed to search relevant models within1199

a repository. Their aim is slightly different from our goal, which is looking for rel-1200

evant information within a repository. Moogle [34] is based on textual, “Google-1201

43

like” queries, similar to ours. As they focus on EMF model-level queries, they1202

use the meta-model information for filtering, like we do as well. However, our1203

queries are extensible, and hence new types of queries can be defined. Moreover,1204

their results are shown in textual format and we parse and aggregate the results1205

as well as offer graphical visualization. EMF query is directed to search EMF1206

models [79], using OCL queries or text-based search. The latter may include1207

regular expressions, but does not look for relevant synonyms as we do. More-1208

over, our extensible approach supports technologies like Ecore, OWL and RDF.1209

Furthermore, there are dedicated approaches offering search capabilities tailored1210

for a specific modelling domain such as [80, 81]. Although these approaches al-1211

low to reason on behavioral similarity aspects, we aim for general model search1212

support independently of the modelling domain and technical space.1213

Work Assistance Heterogeneous Sources Common Model Queries
Dyck et al. [59, 60, 61] 3 7 7 7

Sen et al. [62] 3 7 7 7

Walter et al. [63] 3 ∼ (OWL) 7 7

Mendieta et al. [64] 7 ∼ (SysML) 3 Not extensible
Kern, Dimitrieski et al. [67, 68] 7 3 7 7

Ontology-based DSL development [70, 71] 7 ∼ (OWL) 7 7

Moogle [34] 7 ∼ (EMF) 7 Not extensible
Extremo 3 3 3 Extensible

Table 8: Summary comparison of Extremo and closest related works

Table 8 presents a feature-based summary of Extremo and the closest1214

related works. In summary, our approach is novel in that it provides an as-1215

sistant system that profits from the integration and querying of heterogeneous1216

information sources. Although some approaches have focussed on using specific1217

technologies, such as Ontologies [63, 69, 70, 71], to build (meta-)models, our ap-1218

proach is more general as a result of supporting different technologies. Moreover,1219

there exist approaches that establish bridges between technical spaces [67, 68],1220

our contribution differs by providing a common data model to store, query, and1221

establish assistance for information from different technical spaces. Further, in1222

contrast to other existing approaches, which have devised query mechanisms1223

to search for relevant models in a repository [34], our querying mechanism is1224

extensible. Finally, some approaches to provide model assistance are based on1225

model completion (w.r.t. a meta-model) [62] or provide a generic mechanism1226

to plug-in assistants [59, 60, 61]. Contrarily, we contribute a specific architec-1227

ture to support assistance that is based on querying heterogeneous information1228

sources.1229

7. Conclusions and future work1230

In this paper, we have presented Extremo, an extensible assistant for mod-1231

elling and meta-modelling. The system is able to gather information from differ-1232

ent technological spaces (like ontologies, RDF, XML or EMF), by representing1233

this information under a common data scheme. This enables their uniform1234

querying and visualization. Extremo is independent of the particular mod-1235

elling tool, but easily integrated with them due to its modular architecture1236

44

based on extension points. We have shown its integration with DSL-tao and1237

several other tools, and used it for the construction of DSLs in the e-Government1238

and production systems domain. We have performed an evaluation of several1239

aspects, showing good results.1240

In the future, we plan to connect Extremo with meta-model repositories,1241

such as MDEForge [82]. Extremo currently supports a re-active integration1242

mode, where the assistant is explicitly invoked.1243

Similar to [60], we would also like to explore pro-active modes for assistance.1244

For this purpose, we plan to use recommendation techniques based on rich1245

contextual models, which take into account not only the current model state,1246

but also the user interaction with the IDE [83]. We are currently considering a1247

user study, made of two parts. First, we will evaluate the perceived usefulness1248

of Extremo by engineers in order to perform different modelling tasks (e.g.,1249

construct or modify a model). Second, we will compare the quality of the1250

resulting models, and the effectivenes of the modelling task, with respect to not1251

using assistance. Finally, we plan to improve query efficiency by using model1252

indexes [58].1253

Acknowledgements. We would like to thank to the reviewers for their valu-1254

able comments. This work was supported by the Ministry of Education of1255

Spain (FPU grant FPU13/02698); the Spanish MINECO (TIN2014-52129-R);1256

the R&D programme of the Madrid Region (S2013/ICE-3006); the Austrian1257

agency for international mobility and cooperation in education, science and re-1258

search (OeAD) by funds from the Austrian Federal Ministry of Science, Research1259

and Economy - BMWFW (ICM-2016-04969); and by the Christian Doppler1260

Forschungsgesellschaft, the Federal Ministry of Economy, Family and Youth and1261

the National Foundation for Research, Technology and Development, Austria.1262

References1263

[1] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering1264

in Practice, 2nd Edition, Morgan & Claypool, 2017.1265

[2] D. C. Schmidt, Guest editor’s introduction: Model-driven engineering,1266

Computer 39 (2) (2006) 25–31.1267

[3] A. R. da Silva, Model-driven engineering: A survey supported by the unified1268

conceptual model, Computer Languages, Systems & Structures 43 (Supple-1269

ment C) (2015) 139 – 155. doi:https://doi.org/10.1016/j.cl.2015.1270

06.001.1271

[4] UML 2.5 OMG specification, http://www.omg.org/spec/UML/2.5/.1272

[5] S. Kelly, J. Tolvanen, Domain-Specific Modeling - Enabling Full Code Gen-1273

eration, Wiley, 2008.1274

[6] J. E. Hutchinson, J. Whittle, M. Rouncefield, Model-driven engineering1275

practices in industry: Social, organizational and managerial factors that1276

lead to success or failure, Sci. Comput. Program. 89 (2014) 144–161.1277

45

http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.06.001
http://www.omg.org/spec/UML/2.5/

[7] Eclipse Code Recommenders, http://www.eclipse.org/recommenders.1278

[8] M. P. Robillard, R. J. Walker, T. Zimmermann, Recommendation systems1279

for software engineering, IEEE Software 27 (4) (2010) 80–86.1280

[9] J. Bézivin, Model driven engineering: An emerging technical space, in:1281

Generative and Transformational Techniques in Software Engineering, In-1282

ternational Summer School, GTTSE, Vol. 4143 of Lecture Notes in Com-1283

puter Science, Springer, 2005, pp. 36–64.1284

[10] I. Kurtev, J. Bézivin, M. Aksit, Technological spaces: An initial appraisal,1285

in: International Symposium on Distributed Objects and Applications,1286

DOA 2002, 2002.1287

URL http://doc.utwente.nl/55814/1288

[11] Á. M. Segura, A. Pescador, J. de Lara, M. Wimmer, An extensible meta-1289

modelling assistant, in: IEEE EDOC, IEEE Computer Society, 2016, pp.1290

1–10.1291

[12] J. de Lara, E. Guerra, Deep meta-modelling with metadepth, in: TOOLS,1292

Vol. 6141 of Lecture Notes in Computer Science, Springer, 2010, pp. 1–20.1293

[13] eCl@ss Standard 9.0, http://wiki.eclass.eu/.1294

[14] P. A. Ménard, S. Ratté, Concept extraction from business documents for1295

software engineering projects, Autom. Softw. Eng. 23 (4) (2016) 649–686.1296

[15] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes, P. Baldi,1297

Sourcerer: mining and searching internet-scale software repositories, Data1298

Min. Knowl. Discov. 18 (2) (2009) 300–336.1299

[16] S. Subramanian, L. Inozemtseva, R. Holmes, Live API documentation, in:1300

ICSE ’14, ACM, 2014, pp. 643–652.1301

[17] C. Treude, M. P. Robillard, Augmenting api documentation with insights1302

from stack overflow, in: Proceedings of the 38th International Conference1303

on Software Engineering, ICSE ’16, ACM, New York, NY, USA, 2016, pp.1304

392–403.1305

[18] F. Basciani, J. D. Rocco, D. D. Ruscio, L. Iovino, A. Pierantonio, Auto-1306

mated clustering of metamodel repositories, in: CAiSE, Vol. 9694 of Lecture1307

Notes in Computer Science, Springer, 2016, pp. 342–358.1308

[19] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, J. de Lara, Pattern-1309

based development of domain-specific modelling languages, in: MoDELS,1310

2015, pp. 166–175.1311

[20] K. Czarnecki, M. Antkiewicz, Mapping features to models: A template ap-1312

proach based on superimposed variants, in: GPCE, Springer-Verlag, Berlin,1313

Heidelberg, 2005, pp. 422–437.1314

46

http://www.eclipse.org/recommenders
http://doc.utwente.nl/55814/
http://doc.utwente.nl/55814/
http://wiki.eclass.eu/

[21] A. Polzer, D. Merschen, G. Botterweck, A. Pleuss, J. Thomas, B. Hedenetz,1315

S. Kowalewski, Managing complexity and variability of a model-based em-1316

bedded software product line, Innovations in Systems and Software Engi-1317

neering 8 (1) (2012) 35–49.1318

[22] J. S. Cuadrado, E. Guerra, J. de Lara, A component model for model trans-1319

formations, IEEE Transactions on Software Engineering 40 (11) (2014)1320

1042–1060.1321

[23] N. Moha, Y. Guéhéneuc, L. Duchien, A. L. Meur, DECOR: A method1322

for the specification and detection of code and design smells, IEEE Trans.1323

Software Eng. 36 (1) (2010) 20–36.1324

[24] D. Aguilera, C. Gómez, A. Olivé, Enforcement of conceptual schema quality1325

issues in current integrated development environments, in: Proc. CAiSE,1326

Vol. 7908 of Lecture Notes in Computer Science, Springer, 2013, pp. 626–1327

640.1328

[25] I. Kurtev, M. Aksit, J. Bézivin, Technical Spaces: An Initial Appraisal, in:1329

Proc. of CoopIS, 2002.1330

[26] C. Atkinson, T. Kühne, Reducing accidental complexity in domain models,1331

Software and System Modeling 7 (3) (2008) 345–359.1332

[27] C. Atkinson, B. Kennel, B. Goß, The Level-Agnostic Modeling Language,1333

Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 266–275.1334

[28] J. de Lara, E. Guerra, A Posteriori typing for model-driven engineering:1335

Concepts, analysis, and applications, ACM Trans. Softw. Eng. Methodol.1336

25 (4) (2017) 31:1–31:60.1337

[29] OMG, SMOF 1.0, http://www.omg.org/spec/SMOF/1.0/ (2013).1338

[30] Z. Diskin, S. Kokaly, T. Maibaum, Mapping-aware megamodeling: Design1339

patterns and laws, in: Proc. SLE, Vol. 8225 of Lecture Notes in Computer1340

Science, Springer, 2013, pp. 322–343.1341

[31] J. de Lara, E. Guerra, R. Cobos, J. Moreno-Llorena, Extending deep meta-1342

modelling for practical model-driven engineering, Comput. J. 57 (1) (2014)1343

36–58.1344

[32] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Mod-1345

eling Framework, Addison-Wesley, 2008.1346

[33] OMG, MOF 2.5.1, http://www.omg.org/spec/MOF/2.5.1/ (2016).1347

[34] D. Lucrédio, R. P. de Mattos Fortes, J. Whittle, MOOGLE: a metamodel-1348

based model search engine, Software and System Modeling 11 (2) (2012)1349

183–208.1350

[35] OCL 2.4. specification, http://www.omg.org/spec/OCL/.1351

47

http://www.omg.org/spec/OCL/

[36] M. F. Porter, An algorithm for suffix stripping, Program 40 (3) (2006)1352

211–218.1353

[37] M. Lesk, Automatic sense disambiguation using machine readable dictio-1354

naries: how to tell a pine cone from an ice cream cone, in: SIGDOC, ACM,1355

1986, pp. 24–26.1356

[38] G. A. Miller, Wordnet: A lexical database for english, Comm. ACM 38 (11)1357

(1995) 39–41.1358

[39] E. Kharlamov, B. C. Grau, E. Jiménez-Ruiz, S. Lamparter, G. Mehdi,1359

M. Ringsquandl, Y. Nenov, S. Grimm, M. Roshchin, I. Horrocks, Capturing1360

industrial information models with ontologies and constraints, in: Proc1361

ISWC, Part II, Vol. 9982 of Lecture Notes in Computer Science, 2016, pp.1362

325–343.1363

[40] B. Motik, I. Horrocks, U. Sattler, Adding integrity constraints to OWL, in:1364

Proc. OWLED, Vol. 258 of CEUR Workshop Proceedings, CEUR-WS.org,1365

2007.1366

URL http://ceur-ws.org/Vol-2581367

[41] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, D. Launay, Neo4emf, A1368

scalable persistence layer for EMF models, in: Proc. ECMFA, Vol. 8569 of1369

Lecture Notes in Computer Science, Springer, 2014, pp. 230–241.1370

[42] P. Neubauer, A. Bergmayr, T. Mayerhofer, J. Troya, M. Wimmer, XML-1371

Text: From XML Schema to Xtext, in: Proceedings of SLE, 2015, pp.1372

71–76.1373

[43] P. Neubauer, R. Bill, T. Mayerhofer, M. Wimmer, Automated generation of1374

consistency-achieving model editors, in: IEEE SANER, 2017, pp. 127–137.1375

[44] P. Neubauer, R. Bill, M. Wimmer, Modernizing domain-specific languages1376

with xmltext and intelledit, in: IEEE SANER, 2017, pp. 565–566.1377

[45] Eclipse Graphical Editing Framework, https://eclipse.org/gef/.1378

[46] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Soft-1379

ware Engineering: Guidelines and Examples, 1st Edition, Wiley Publishing,1380

2012.1381

[47] OMG Business Process Model and Notation, http://www.bpmn.org/.1382

[48] J. Mylopoulos, Characterizing Information Modeling Techniques, Springer1383

Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 17–57.1384

[49] H. Kern, A. Hummel, S. Kühne, Towards a comparative analysis of1385

meta-metamodels, in: Proceedings of the compilation of the co-located1386

workshops, DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, and1387

VMIL’11, Portland, OR, USA, October 22 - 27, 2011, 2011, pp. 7–12.1388

48

http://ceur-ws.org/Vol-258
http://ceur-ws.org/Vol-258
https://eclipse.org/gef/
http://www.bpmn.org/

[50] P. Buneman, Semistructured data, in: Proceedings of the Sixteenth ACM1389

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-1390

tems, ACM Press, 1997, pp. 117–121.1391

[51] A. Olivé, Conceptual modeling of information systems, Springer, 2007.1392

doi:10.1007/978-3-540-39390-0.1393

[52] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to1394

Semistructured Data and XML, Morgan Kaufmann, 1999.1395

[53] C. Atkinson, T. Kühne, Profiles in a strict metamodeling framework, Sci.1396

Comput. Program. 44 (1) (2002) 5–22.1397

[54] T. Kühne, Matters of (meta-)modeling, Software and System Modeling1398

5 (4) (2006) 369–385.1399

[55] Shapes Constraint Language (SHACL), https://w3c.github.io/1400

data-shapes/shacl/.1401

[56] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, Experimen-1402

tation in Software Engineering, Springer, 2012.1403

[57] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Improving memory efficiency1404

for processing large-scale models, in: BigMDE, University of York, York,1405

UK, United Kingdom, 2014.1406

URL https://hal.inria.fr/hal-010331881407

[58] K. Barmpis, D. S. Kolovos, Towards scalable querying of large-scale models,1408

in: ECMFA, Vol. 8569 of Lecture Notes in Computer Science, Springer,1409

2014, pp. 35–50.1410

[59] A. Dyck, A. Ganser, H. Lichter, Enabling model recommenders for1411

command-enabled editors, in: MDEBE, 2013, pp. 12–21.1412

[60] A. Dyck, A. Ganser, H. Lichter, A framework for model recommenders -1413

requirements, architecture and tool support, in: MODELSWARD, 2014,1414

pp. 282–290.1415

[61] A. Dyck, A. Ganser, H. Lichter, On designing recommenders for graphical1416

domain modeling environments, in: MODELSWARD, 2014, pp. 291–299.1417

[62] S. Sen, B. Baudry, H. Vangheluwe, Towards domain-specific model editors1418

with automatic model completion, Simulation 86 (2) (2010) 109–126.1419

[63] T. Walter, F. S. Parreiras, S. Staab, An ontology-based framework for1420

domain-specific modeling, Software and Systems Modeling 13 (1) (2014)1421

83–108.1422

[64] R. Mendieta, J. L. de la Vara, J. Llorens, J. Álvarez-Rodŕıguez, Towards1423

effective sysml model reuse, in: Proc. MODELSWARD, SCITEPRESS,1424

2017, pp. 536–541.1425

49

http://dx.doi.org/10.1007/978-3-540-39390-0
https://w3c.github.io/data-shapes/shacl/
https://w3c.github.io/data-shapes/shacl/
https://w3c.github.io/data-shapes/shacl/
https://hal.inria.fr/hal-01033188
https://hal.inria.fr/hal-01033188
https://hal.inria.fr/hal-01033188
https://hal.inria.fr/hal-01033188

[65] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, F. A. C. Polack, The1426

design of a conceptual framework and technical infrastructure for model1427

management language engineering, in: ICECCS, IEEE Computer Society,1428

2009, pp. 162–171.1429

[66] E. Hajiyev, M. Verbaere, O. de Moor, K. D. Volder, Codequest: querying1430

source code with datalog, in: Proc. OOPSLA 2005, ACM, 2005, pp. 102–1431

103.1432

[67] H. Kern, F. Stefan, V. Dimitrieski, M. Čeliković, Mapping-based exchange1433

of models between meta-modeling tools, in: DSM, ACM, New York, NY,1434

USA, 2014, pp. 29–34.1435

[68] V. Dimitrieski, M. Čeliković, N. Igić, H. Kern, F. Stefan, Reuse of rules1436

in a mapping-based integration tool, in: SoMet, Springer International1437

Publishing, Cham, 2015, pp. 269–281.1438

[69] R. Tairas, M. Mernik, J. Gray, Using ontologies in the domain analysis of1439

domain-specific languages, in: TWOMDE, 2008, pp. 20–31.1440

[70] I. Ceh, M. Crepinsek, T. Kosar, M. Mernik, Ontology driven development1441

of domain-specific languages, Comput. Sci. Inf. Syst. 8 (2) (2011) 317–342.1442

[71] A. Ojamaa, H. Haav, J. Penjam, Semi-automated generation of DSL meta1443

models from formal domain ontologies, in: MEDI, 2015, pp. 3–15.1444

[72] D. Gasevic, D. Djuric, V. Devedzic, Model Driven Engineering and Ontol-1445

ogy Development, Springer, 2009.1446

[73] T. Walter, F. S. Parreiras, G. Gröner, C. Wende, OWLizing: Transforming1447

Software Models to Ontologies, in: ODiSE, 2010, pp. 7:1–7:6.1448

[74] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-1449

chitzegger, W. Schwinger, M. Wimmer, Lifting Metamodels to Ontologies:1450

A Step to the Semantic Integration of Modeling Languages, in: MoDELS,1451

2006, pp. 528–542.1452

[75] M. Milanovic, D. Gasevic, A. Giurca, G. Wagner, V. Devedzic, Towards1453

Sharing Rules Between OWL/SWRL and UML/OCL, ECEASST 5.1454

[76] F. S. Parreiras, S. Staab, A. Winter, On marrying ontological and meta-1455

modeling technical spaces, in: FSE, 2007, pp. 439–448.1456

[77] F. S. Parreiras, S. Staab, Using ontologies with UML class-based modeling:1457

The TwoUse approach, DKE 69 (11) (2010) 1194–1207.1458

[78] D. Djuric, D. Gasevic, V. Devedzic, V. Damjanovic, A UML Profile for1459

OWL Ontologies, in: MDAFA, 2004, pp. 204–219.1460

[79] EMF Query, https://projects.eclipse.org/projects/modeling.emf.query.1461

50

[80] B. Bislimovska, A. Bozzon, M. Brambilla, P. Fraternali, Textual and1462

content-based search in repositories of web application models, TWEB 8 (2)1463

(2014) 1–11.1464

[81] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, J. Mendling,1465

Similarity of business process models: Metrics and evaluation, Inf. Syst.1466

36 (2) (2011) 498–516.1467

[82] J. D. Rocco, D. D. Ruscio, L. Iovino, A. Pierantonio, Collaborative repos-1468

itories in model-driven engineering, IEEE Software 32 (3) (2015) 28–34.1469

[83] M. Gasparic, G. C. Murphy, F. Ricci, A context model for ide-based recom-1470

mendation systems, Journal of Systems and Software 128 (2017) 200–219.1471

51

Appendix: List of queries1472

Table 9 shows the list of pre-defined queries of Extremo, which were de-1473

fined by implementing the provided extension points. The user may provide ad-1474

ditional queries by implementing the extension point (in Java). Some of these1475

queries come from catalogues of accepted quality criteria in conceptual mod-1476

elling [24]. We divide them into predicate and custom, and depict the element1477

they inspect (filterBy).1478

SearchConfiguration filterBy Description
Predicate Based Search

A NamedElement has a
name

NamedElement Checks if a NamedElement object has a name that matches
with a value. Options: name: PrimitiveTypeParam typed as
string

All instances of a
NamedElement

NamedElement Returns all the NamedElements that are instances of an-
other one. Options: type: ModelTypeParam and recursive:
PrimitiveTypeParam typed as boolean

A node with a property
with value X

SemanticNode Checks if a SemanticNode object has a data property which
has a concrete value. Options: value: PrimitiveTypeParam
typed as string

A node has more than a
number of parents

SemanticNode Checks if a SemanticNode object has more than a number
of supers instances. Options: parents: PrimitiveTypeParam
typed as int

A node has more than a
number of children

SemanticNode Checks if a SemanticNode object has more than a number
of subs instances. Options: children: PrimitiveTypeParam
typed as int

Attributes are over-
loaded

SemanticNode Checks if a SemanticNode object contains more than a
number of DataProperties. Options: maxattrs: Primi-
tiveTypeParam typed as int

References are over-
loaded

SemanticNode Checks if a n: SemanticNode object contains more than
a number of ObjectProperties. Options: maxrefs: Primi-
tiveTypeParam typed as int

An abstract node with-
out children

SemanticNode Checks if a SemanticNode object is abstract and there are
no supers instances.

An abstract node with
an unique child

SemanticNode Checks if a SemanticNode object is abstract and it has only
a supers instance.

Data Properties Value DataProperty Checks if a DataProperty object has a concrete value. Op-
tions: valuefield: PrimitiveTypeParam typed as string

Data Properties Value
Range

DataProperty Checks if the integer value of a DataProperty object ranges
between a minimum and a maximum. Options: minval-
uefield: PrimitiveTypeParam typed as int and maxvaluefield:
PrimitiveTypeParam typed as int

Custom Search
Nodes without descrip-
tions

Resource For a resource, split the nodes in two groups. The first
one refers to the nodes with descriptions are the second
one refers to the nodes without descriptions. Options:
resource: ModelTypeParam typed as Resource

Isolated nodes Resource Checks if a resource contains nodes that are isolated. Op-
tions: resource: ModelTypeParam typed as Resource

A hierarchy is too deep Resource Checks if a node is too deep on a level of hierarchy. Op-
tions: maxdepth: PrimitiveTypeParam typed as int

No node is referred from
too many others

Resource In a resource, checks if there is a node that is referred
from too many others. Options: maxrefs: PrimitiveType-
Param typed as int and resource: ModelTypeParam typed as
Resource

Hierarchy Splitter Resource For a resource, split the nodes in groups. In every group
a inheritance hierarchy is left. Options: resource: Model-
TypeParam typed as Resource

Table 9: List of simple search configurations (queries)

52

	Introduction
	Motivation and overview
	The ingredients of a (meta-)modelling assistant
	Handling heterogeneous sources
	Querying
	Query services
	Examples

	Handling constraints

	Architecture and tool support
	The Core subsystem
	The UI subsystem
	Integration with a modelling tool by means of actions
	Integration with a modelling tool by means of drag and drop

	Evaluation
	Research Questions
	Evaluating usefulness
	Immigration process modelling
	Industrial production system modelling
	Summary of the demonstration cases

	Evaluating format extensibility
	Evaluating the integration with external tools
	Discussion and threats to validity
	Construct Validity
	Conclusion Validity
	Internal Validity
	External Validity

	Related work
	Conclusions and future work

