
Pattern-based Model-to-Model Transformation

Juan de Lara1 and Esther Guerra2

1 Universidad Autónoma de Madrid (Spain), jdelara@uam.es
2 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es

Abstract. We present a new, high-level approach for the specification of
model-to-model transformations based on declarative patterns. These are
(atomic or composite) constraints on triple graphs declaring the allowed
or forbidden relationships between source and target models. In this way,
a transformation is defined by specifying a set of triple graph constraints
that should be satisfied by the result of the transformation.
The description of the transformation is then compiled into lower-level
operational mechanisms to perform forward or backward transforma-
tions, as well as to establish mappings between two existent models. In
this paper we study one of such mechanisms based on the generation of
operational triple graph grammar rules. Moreover, we exploit deduction
techniques at the specification level in order to generate more specialized
constraints (preserving the specification semantics) reflecting pattern de-
pendencies, from which additional rules can be derived.

1 Introduction

Model-Driven Development (MDD) is a software engineering paradigm where
models are the core asset. They are used to specify, simulate, test, verify and
generate code for the application to be built. Most of these activities include
the specification and execution of model transformations, some of them between
different languages. The transformation of a model conformant to a meta-model
into another one conformant to a different meta-model is called model-to-model
(M2M) transformation, and is the topic of this paper.

There are two main approaches to M2M transformation: operational and
declarative. The first one is based on rules or instructions that explicitly state
how and when the elements of the target model should be created starting from
the elements of the source one. In declarative approaches, a description of the
mappings between the source and target models is provided. This description
states the relation that should hold between two models rather than how to
create and link their elements. Declarative approaches are higher-level than op-
erational ones since they form a compact description of a set of (operational)
rules. In addition, they are inherently bidirectional because they do not specify
any causality. Thus, they bring together in a single specification forward (i.e.
source-to-target) and backward (i.e. target-to-source) transformations.

The state-of-the-art on declarative M2M transformation notations includes
a handful of languages (see Section 5). However, sometimes they lack a formal

foundation and analysis techniques able to prove properties of the transforma-
tion [1]. In other cases, specifications are not fully declarative and may require a
control mechanism or defining a causality between existing elements and those
to be created in a given relation [2, 3], introducing some degree of operationality.

In this paper, we propose a purely declarative, formal approach to M2M
transformation based on triple patterns to express the relations between source
and target models. These are similar to graph constraints [4] but for triple graphs,
made of two graphs related through an intermediate one. Patterns can specify
positive (the relation they declare must hold) or negative information (the re-
lation must not hold) and can be constrained by positive and negative restric-
tions. This high-level specification is compiled into lower-level mechanisms based
on triple graph grammar operational rules [3] to achieve forward and backward
transformations, as well as to relate two existing models. The compilation is per-
formed in two steps. First, we use deduction rules to derive additional patterns
that reflect dependencies and refine existing patterns with negative restrictions.
Then, a rule for the chosen transformation direction is derived from each pattern.

The advantages of our technique are the following. First, it is purely declar-
ative, based on patterns and constraints. This contrasts with other declarative
approaches (such as Triple Graph Grammars (TGGs) [2, 3, 5]) where a causal-
ity has to be given between the existing elements and the ones that have to
be created. As we exploit interactions between patterns, these dependencies are
automatically derived. Second, it has a formal foundation that allows the study
of the M2M transformation specification, in both declarative (i.e. patterns) and
operational (i.e. derived rules) formats. Finally, we have devised deduction tech-
niques, able to derive semantic information from the very patterns. For example,
having a positive pattern demanding a certain structure and a negative one for-
bidding its duplication allows generating two rules: one creating the structure if
it is not present, and another one reusing it if it already exists.
Paper Organization. Section 2 introduces triple patterns and Section 3 presents
their deduction rules. Then, Section 4 shows how to derive the operational rules.
Section 5 presents related work. Finally, Section 6 ends with the conclusions.

2 Specifying Transformations: Triple Patterns

This section introduces the different kinds of triple patterns, their satisfiability
and the characteristics of the underlying operational mechanisms. These con-
cepts rely on the notion of triple graph, which we introduce first.

Triple graphs are made of two graphs related through an intermediate one.
We can use any graph model for these three graphs, from standard unattributed
graphs (V ; E; s, t : E → V) to more complex attributed graphs (e.g. E-graphs [4]).

Def. 1 (Triple Graph) A triple graph TrG = (Gs, Gc, Gt, cs : VGc → VGs ,
ct : VGc → VGt) is made of two graphs Gs and Gt called source and target,
related through the nodes of the correspondence graph Gc.

Nodes in the correspondence graph Gc have morphisms to nodes of the source
and target graphs. If ∃m ∈ VGc s.t. x

cs←−[m ct7−→ y we write x rel y. Other kinds
of mappings could be used as well, for example the simpler one in [2], where the
correspondence functions are graph morphisms or the more complex one in [6]
where the correspondence functions can relate edges or be undefined. We use
the notation TrG|x (for x ∈ {s, t, c}) to refer to the Gx component of TrG, and
write 〈Gs, Gt〉 for a triple graph with source and target graphs Gs and Gt, and
〈Gs, ∅, Gt〉 for a triple graph with empty correspondence.

Next, we define triple graph morphisms.

Def. 2 (Triple Graph Morphism) A triple graph morphism f = (fs, fc, ft) :
TrG1 → TrG2 is made of three graph morphisms fx : TrG1|x → TrG2|x (with
x = {s, c, t}), where fs|V ◦ cs1 = cs2 ◦ fc|V and ft|V ◦ ct1 = ct2 ◦ fc|V

Source and target graphs can be typed by a type graph, or more in general
by a meta-model, which includes inheritance [7]. In the latter case, we use the
term model instead of graph. Given meta-model MM , L(MM) refers to the set
of all valid models conformant to (typed by) it. Similarly, we use the notion of
meta-model triple [6] for the typing of triple graphs.

Triple patterns are similar to graph constraints [4, 8], but defined on triple
graphs. We use them to describe the allowed and forbidden relationships between
source and target models. We consider both simple and composite patterns.

Def. 3 (Pattern) Given triple injective morphism C
q→ Q and sets NPre =

{Q ci→ Ci}i∈Pre, NPost = {Q cj→ Cj}j∈Post of negative pre- and post-conditions:

–
∧

i∈Pre

←−
N (Ci) ⇒ P (Q)

∧
j∈Post

−→
N (Cj) is a simple pattern (S-Pattern).

–
∧

i∈Pre

←−
N (Ci)∧←−P (C) ⇒ P (Q)

∧
j∈Post

−→
N (Cj) is a composite pattern (C-Pattern).

–
−→
N (Cj) is a negative pattern (N-Pattern).

Remark. The notation
←−
P (·), ←−N (·) and

−→
N (·) is just syntactic sugar to indicate

a positive pre-condition, a negative pre-condition or a negative post-condition.
An S-Pattern is made of a positive graph Q restricted by negative pre-

and post-conditions (Pre and Post sets). Intuitively, Q should be present in
triple graph TrG whenever no negative pre-condition Ci is found; and if Q
is found, then no occurrence of the negative post-conditions should be found.
That is, while pre-conditions express restrictions for the pattern Q to occur,
post-conditions describe forbidden graphs. A C-Pattern is an S-Pattern with an
additional positive pre-condition graph C. Thus an S-Pattern is a C-Pattern
with C and q empty. Finally, an N-Pattern is a C-Pattern where C and Q are
empty and there is only one negative post-condition, forbidden to occur.

Def. 4 (M2M Specification) A M2M specification S =
∧

i∈I Pi is a conjunc-
tion of patterns, where each Pi can be simple, composite or negative.

Remark. For technical reasons, we assume that initially in a specification only
N-patterns have negative post-conditions. This is not a restriction, as any post-
condition can be expressed as an N-pattern. In fact, a M2M specification is
usually made of just N- and S-patterns, from which we automatically derive C-
patterns with positive pre-conditions encoding pattern dependencies, and trans-
form N-patterns into post-conditions for the other patterns (see Section 3).

Fig. 1. M2M Specification.

Example. Fig. 1 shows some patterns in an ex-
ample M2M specification, inspired by the class to
relational database transformation [1]. S-Pattern
C-T states that a C node (a class) that is not con-
nected to another one (i.e. it does not have a par-
ent) should be related to a T (table). S-Pattern
A-Co states that a C node connected to an A (an
attribute), should be related to a T with a Co (col-
umn). Differently from TGGs, we don’t need to
specify here a positive pre-condition stating that
a relation between a C and a T should already
exist. This dependency is detected by the deduc-
tion rules we present in Section 3. S-Pattern A-Co2
specifies that in the case of two C nodes connected
through an R (a directed relation), the associated
T node of the source C should have as foreign key
(F node) an attribute of the target class. Finally,
N-Pattern notDupF forbids two F s between two T s.

Next we define the satisfaction of a pattern. As S- and N-Patterns are special
cases of C-Patterns, it is enough to formulate C-Pattern satisfaction.

Def. 5 (Pattern Satisfaction) Triple graph TrG satisfies CP = [
∧

i∈Pre

←−
N (Ci)∧←−

P (C) ⇒ P (Q)
∧

j∈Post

−→
N (Cj)], written TrG |= CP , iff:

– CP is forward satisfiable, TrG |=F CP : [∀ms : Ps → TrG s.t. (∀i ∈ Pre
s.t. Ns

i � Ps, @ns
i : Ns

i → TrG with ms = ns
i ◦ as

i), ∃m : Q → TrG with
m ◦ qs = ms, s.t. ∀j ∈ Post @nj : Cj → TrG with m = nj ◦ cj],

– and CP is backwards satisfiable, TrG |=B CP : [∀mt : Pt → TrG s.t. (∀i ∈
Pre s.t. N t

i � Pt, @nt
i : N t

i → TrG with mt = nt
i ◦ at

i), ∃m : Q → TrG with
m ◦ qt = mt, s.t. ∀j ∈ Post @nj : Cj → TrG with m = nj ◦ cj],

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {s, t}), see
the left of Fig. 2. C +C|x Q|x is the pushout object of C and Q|x through C|x.
Remark. Morphisms qx : Px → Q (x = {s, t}) uniquely exist due to the uni-
versal pushout property (as C|x ↪→ C

q→ Q = C|x qx→ Q|x ↪→ Q). For the same

reason, ax
i : Px → Nx

i uniquely exist (as C|x ↪→ C
es

i→ Nx
i = C|x qx→ Q|x ci|x→

Ci|x di→ Nx
i). Moreover, bi

x = ci ◦ qx.¥
C-Patterns have a universal quantification, therefore we split them into two

directed constraints. For this purpose we demand that in forward satisfaction,

Ci|s
di ²² P.O.

C|s
nN

}}{{
{{ qs

""FF
FF

bi
soo

Ns
i

/
ns

i 00

C
=

es
ioo

cs

!!CC
CC

C P.O. Q|s
ps

{{xxx
xx

Ps
=

as
i

[[

ms

²²

qs

// Q
= =

cj //

m{{www
ww

Cj

/
nj

nnTrG

Fig. 2. Forward Satisfaction of Pattern (left). Forward Satisfaction Example (right).

for each occurrence of Ps = Q|s +C|s C = 〈Q|s, C|c, C|t〉 satisfying the negative
pre-conditions, an occurrence of Q must be found satisfying the negative post-
conditions, see the left of Fig. 2. A positive pattern graph Q is satisfied either
because no ms is found (vacuous satisfaction), because ms and some negative
pre-conditions are found (negative satisfaction), or because ms and m are found
and the negative pre- and post-conditions are not found (positive satisfaction).
Note that if the resulting directed negative pre-condition Nx

i is isomorphic to Px,
then it is not taken into account. This is needed as many pre-conditions express
a restriction in either source or target but not on both. In addition to forward
satisfaction, similar conditions are demanded for the target graph (backwards
satisfiability). A graph satisfies specification S if it satisfies all its patterns.
Example. The right of Fig. 2 shows the forward satisfaction of S-Pattern C-T
by a triple graph. We have that TrG |=F C − T as there are two occurrences of
ms, the first one is shown in the figure (upper node C in TrG) and is positively
satisfied, while the second (lower C) is negatively satisfied. We also have TrG |=B

C − T , as there is just one mt, positively satisfied. Thus, TrG |= C − T .
Please note that the specification does not explicitly state if a class with a

parent should be connected with a table or not. An additional pattern could de-
scribe such situation. The forward operational mechanism presented in Section 4
does not add such table, as it minimally enforces the specification.

Starting from a specification S, lower level operational mechanisms are de-
rived to perform forward (

−→
S) and backward transformations (

←−
S), as well as to

relate two existing models (
←→
S , omitted for space constraints, see [9]).

Def. 6 (Operational Mechanisms) Specification S has the following associ-
ated operational transformations:

– Forward: A function
−→
S : VS(MMS) → TrG with domain VS(MMS) =

{Ms ∈ L(MMs)|∃〈Ms, X〉 |= S} s.t. ∀Ms ∈ VS(MMS) [
−→
S (Ms) |= S] ∧

[
−→
S (Ms)|s ∼= Ms].

– Backwards: A function
←−
S : VT (MMT) → TrG with domain VT (MMT) =

{Mt ∈ L(MMt)|∃〈X,Mt〉 |= S} s.t. ∀Mt ∈ VT (MMT) [
←−
S (Mt) |= S] ∧

[
←−
S (Mt)|t ∼= Mt].

The previous definitions are similar to the concept of correct transformation
given in [10], but in addition we forbid modifying the source (resp. target) model
in forward (resp. backwards) transformations.

3 Deduction and Annotation Mechanisms for Patterns

Next we present the deduction rules we use to: (i) generate new patterns that
take dependencies into account, which guide the order of pattern enforcement
by the operational mechanism; (ii) enrich S- and C-Patterns with pre- and post-
conditions derived from other patterns; and (iii) deduce positive information
from N-Patterns. We use two operations: deduction, which infers new patterns,
and annotation, which makes dependencies among patterns explicit.

For example, from the specification in Fig. 1, the deduction rules generate
a new pattern to reflect the dependency between C-T and A-Co (to take into
account whether a pair (C, T) is already related, before relating a pair (A,Co)).
The deduction rules also add negative post-conditions derived from the notDupF
N-pattern to the rest of patterns, and produce new patterns that reuse part of
notDupF so that duplication of F objects is not possible.

Most deduction rules are based on the maximal intersection of two triple
graphs, called maximal intersection object (MIO), which is defined next.

Def. 7 (MIO) Given triple graphs TrG1 and TrG2, a maximal intersection
(MI) is given by a span of injective morphisms (TrG1

m1←− M
m2−→ TrG2), s.t.

M � ∅∧@ M ′ �M with (TrG1
m′

1←− M ′ m′
2−→ TrG2) and m12 : M → M ′ injective

s.t. the diagram to the left of Fig. 3 commutes. Object M is called MIO.

MIOs are not unique, as the example to the right of Fig. 3 shows: M1 and
M2 are both MIOs, but not M3 as M1 is bigger. The set of all MIs (resp. MIOs)
of TrG1 and TrG2 is denoted by MI(TrG1, T rG2) (resp. MIO(TrG1, T rG2)).

M ′

m′1
uuu

uuu
u

zzuuuuuu m′2
III

III
I

$$IIIIII== M

/ m12

OO

m1
xx

||xx
m2
FF

""FF

m′
1(M

′)
=

± n

))

m1(M)? _oo
_Ä

²²

m2(M)
Â Ä //

_Ä

²²

m′
2(M

′)
Pp

uu

=

TrG1 TrG2

Fig. 3. Conditions for MIO (left). Example (right).

Patterns in a specification may have dependencies inducing a certain order of
enforcement by the operational mechanism. We make such dependencies explicit
by annotating patterns with additional graphs, related to the positive graph Q.

Dependencies are calculated by the intersection of two patterns, and can be
interpreted as restrictions that must not hold when the pattern is enforced.

Def. 8 (Annotated Pattern) An annotated pattern (P, {nk : Dk → Q}k∈K)
contains a pattern P and a set of dependencies Dk to P ’s positive graph Q.

Before presenting the deduction rules, we define an operation called pre-
condition weakening (PW), which tests whether the positive graph of a C-Pattern
is included in another one, and then adds the negative pre-conditions from the
former to the latter. We show it here in its simplest form for S-Patterns, see [9]
for the complete definition.

Def. 9 (PW) PW on [
∧

i∈Pre1

←−
N (C1

i) ⇒ P (Q1)] ∧ [P (Q2)] with Q1 ↪→ Q2

results in [
∧

i∈Pre1

←−
N (C1

i) ⇒ P (Q1)] ∧ [
∧

i∈Pre1

←−
N (C1

i +Q1 Q2) ⇒ P (Q2)]

Remark. The specification resulting from PW is not equivalent to the original
one. The second pattern is added negative pre-conditions, so that it is satisfiable
by more graphs, namely by those in which ∃ni : C1

i +Q1 Q2 → TrG (injective), as
then Q2 is not forced to occur. However, we use this operation to make coherent a
specification: as an occurrence of the second pattern implies an occurrence of the
first, by adding the negative pre-conditions we ensure that a positive satisfaction
of the second implies a positive satisfaction of the first.
Example. As S-Pattern C-T is included in A-Co, PW adds the negative restric-
tion

←−
N (noParent) from the former to the latter. The resulting pattern is shown

to the right of Fig. 4 (second row, to the left).
Next, we show some deduction rules that preserve the specification semantics.

We only show the simplest forms of them (for S-Patterns), see [9] for additional
definitions and proofs. We first present the deduction rule for two S-Patterns
called S-Deduction and its annotation mechanism SA(,). S-Deduction creates
a new pattern handling an intersection of two S-Patterns, while the annotation
mechanism adds such intersections as dependencies to the two original patterns.

Prop. 1 (S-Deduction) From
∧

k∈{1,2}[
∧

i∈Prek

←−
N (Ck

i) ⇒ P (Qk)], we deduce

the new patterns
∧

M∈MIO(Q1,Q2)[
∧

i∈Pre1∪Pre2

←−
N (C ′i) ∧

←−
P (M) ⇒ P (Q1 +M

Q2)], where the C ′i are calculated as shown to the left of Fig. 4.

Def. 10 (S-Annotation) Given two annotated S-Patterns (Pi, Di) with posi-
tive graphs Qi: SA((P1, D1), (P2, D2)) = {(Pi, Di

⋃
M∈MIO(Q1,Q2){M → Qi})}i=1,2⋃

M∈MIO(Q1,Q2){(SD(P1, P2, M), ∅)}, with SD(P1, P2,M) the resulting pattern
from applying S-Deduction using M .

Example. The right of Fig. 4 shows an example of S-Annotation, where the
newly generated pattern (bottom right) considers the fact that the relation de-
manded by pattern C-T may already exist. The added dependencies (D1) ensure
that the first and second patterns will only be enforced by the operational mech-
anisms when no occurrence of D1 is found. As we will see later, this makes the

M

m1
vvv

{{vv m2
HHH

##HH

P.O.Q1

c1i

²²

##FFF
FFF

Q2

c2j

²²

{{xxx
xxx

Q1 +M Q2

²² ²² P.O.P.O.

C1
i

// C′i C′j C2
j

oo

Fig. 4. Negative Pre-Conditions in S-Deduction (left). S-Annotation Example (right).

TGG operational rules generated for the first two patterns mutually exclusive
with the one of the third, as well as confluent. Moreover, the rule for the third
pattern will be able to reuse the structure created by the rule of the first.

Next deduction rule is used to take into consideration the interaction of N-
patterns, which express global negative constraints, with other patterns.

Prop. 2 (N-Deduction) [
∧

i∈Pre

←−
N (Ci) ⇒ P (Q)

∧
j∈Post

−→
N (Cj)] ∧ [

−→
N (CN)]

is equivalent to [
∧

i∈Pre

←−
N (Ci) ⇒ P (Q)

∧
j∈Post

−→
N (Cj)

∧
Cr∈RS

−→
N (Cr)]∧[

−→
N (CN)]

with RS = {rn : Q → Cr}Cr∈PO(MI(Q,CN)) and PO(MI(Q,CN)) is the set of
pushout objects of all spans in MI(Q,CN).

Proof(Sketch). We have related CN in all possible (maximal) ways with Q, which
is given by the pushout of each span in MI(Q, CN). This is similar to the pro-
cedure to convert a graph constraint into a post-condition [4, 8]. ¥
Remark. Removing

−→
N (CN) does not yield an equivalent specification, as e.g.

a graph with no occurrence of Q is allowed to have an occurrence of CN . Note
however that we will delete N-Patterns when generating the TGG operational
rules, as these by construction cannot generate any forbidden pattern.

Fig. 5. N-Deduction Example (left). NP-Deduction and Annotation Example (right).

Example. The left of Fig. 5 shows how N-Pattern notDupF induces a negative
constraint on S-Pattern A-Co2, resulting in the S-Pattern to its right. There

are two isomorphic MIOs (both made of two T s and one F) resulting in two
isomorphic negative constraints, so that one is eliminated.

The following deduction rule detects N-Patterns that forbid a repetition of
structures and generates a positive pattern that reuses such structure. First, we
define the completion of a triple graph M with respect to a graph T such that
M ↪→ T . The completion adds to M |t all elements that are related to elements
of M |s and belong to T − M , and similar for source elements. In addition,
completion includes all unrelated elements of T .

Def. 11 (Completion) C(M, T) = G iff G is the smallest graph s.t. M ↪→
G ↪→ T ∧ (∀n ∈ VG|s ,@m ∈ VT |t − VG|ts.t. n rel m) ∧ (∀x ∈ VG|t , @y ∈ VT |s −
VG|ss.t. y rel x) ∧ (@z ∈ (VT |s ∪ VT |t)− (VG|s ∪ VG|t) s.t. z is unrelated). G also
contains all edges of T with source and target in nodes of G.

Fig. 6. Example of Completion.

Example. Fig. 6 shows an example of completion, where graph M is completed
with respect to graph T, yielding graph C(M, T). Note that M ↪→ C(M, T) ↪→ T .

Prop. 3 (NP-Deduction) [
∧

i∈Pre

←−
N (Ci) ⇒ P (Q)]∧[

−→
N (S)], with S the pushout

of two isomorphic graphs S1
∼= S2 and S1 ∈ MIO(Q,S), is equivalent to [

∧
i∈Pre←−

N (Ci) ⇒ P (Q)] ∧ [
−→
N (S)] ∧ [

∧
i∈Pre

←−
N (Ci) ∧←−P (C(S1, Q)) ⇒ P (Q)].

Proof. C(S1, Q) ↪→ Q, thus [
←−
P (C(S1, Q)) ⇒ P (Q)] is subsumed by P (Q). ¥

The NP-Deduction rule has an associated annotation rule NP (,), which
adds a dependency to the S-Pattern equal to the positive pre-condition of the
newly generated pattern (see details in [9]).
Example. The right of Fig. 5 shows the derivation of C-Pattern A-Co2.notDupF
from A-Co2 and notDupF. The latter is made of the pushout of two isomorphic
graphs made of two T s and one F , which belongs to MIO(A-Co2, NotDupF).
The completion of one of the isomorphic graphs with respect to A-Co2 is the
pre-condition graph

←−
P () of A-Co2.notDupF. The newly generated pattern reuses

two T s and one F so that the rule to be generated from it will not produce the
situation forbidden by notDupF. The annotation procedure adds a dependency
to A-Co2 so that the generated rule will be mutually exclusive with the one for
the deduced pattern.

4 Generating the Operational Rules

Next we show the generation of operational TGG rules from a specification.
Compilation into other formalisms is also possible, e.g. to a constraint satisfac-
tion problem [11]. We first present the structure of non-deleting TGG rules.

Def. 12 (Non-Deleting Oper. TGG Rule) A TGG rule r = (L l→ R, pre =
{ni : L → N i

L}i∈I , post = {nj : R → N j
R}j∈J) is made of an injective morphism

l of triple graphs, and sets pre and post of negative pre- and post-conditions.

Next we show how to generate a TGG rule given an annotated C-Pattern.
The main idea is to use Ps = C +C|s Q|s = 〈Q|s, C|c, C|t〉 as the LHS (for the
forward rule) and Q as the RHS. The negative pre- and post-conditions of the
C-Pattern are used as negative pre- and post-conditions of the rule. Note the
similarities with the satisfiability of patterns (Def. 5 and Fig. 2). The rule’s RHS
is used as a negative pre-condition so that satisfiability is enforced only once.
Finally, dependencies are converted into negative pre-conditions.

Def. 13 (Derived TGG Rule) Given annotated pattern T = (
∧

i∈Pre

←−
N (Ci)∧←−

P (C) ⇒ P (Q)
∧

j∈Post

−→
N (Cj), D = {nk : Dk → Q}k∈K), the following TGG op-

erational rules are derived:

– Forward. −→rT : (L = 〈Q|s, C|c, C|t〉 (id,qc,qt)−→ R = Q, pre = {L n→ R} ∪
{as

i : L → Ns
i |L � Ns

i }i∈Pre∪{sk : L → Sk}k∈K , post = {nj : R → Cj}j∈Post).

– Backwards. ←−rT : (L = 〈C|s, C|c, Q|t〉 (q|s,q|c,id)−→ R = Q, pre = {L n→
R} ∪ {at

i : L → N t
i |L � N t

i }i∈Pre ∪ {sk : L → Sk}k∈K , post = {nj : R →
Cj}j∈Post).

where Nx
i
∼= Ci|x +C|x C, and ax

i : L → Nx
i is uniquely determined (see Fig. 2,

where Px = L). Sk is the left-extension of Dk, see left of Fig. 7, where nk ◦ bk =
r ◦ lk and dk ◦ bk = sk ◦ lk are pullback and pushout squares respectively.

Bk
bk

//

lk²²
P.B.

Dk

nk

²² dk

¸¸

L

sk --

r // R = Q
P.O.

Sk

Fig. 7. Left Extension of Dk → Q (left). Generated Forward Rule A-Co (right).

Example. The right of Fig. 7 shows the generated forward rule from the anno-
tated pattern A-Co of Fig. 4. Note how the NAC S1 forbids applying the rule if

the node C has an associated T . In this case, the rule generated from the derived
pattern C-T.A-Co in Fig. 4 would be applicable (see rule C-T.A-Co in Fig. 8).

Before generating the rules we use the deduction and annotation mechanisms
on the initial M2M pattern specification in order to transform N-patterns into
negative post-conditions of the other patterns, generate patterns that take into
consideration the satisfaction of other patterns, and identify dependencies be-
tween them. As stated before, we assume that the initial specification does not
include patterns with both a positive graph and a negative post-condition.

Def. 14 (Generation of Operational TGG Rules) Given specification S:

1. Use PW (Def. 9) on all possible patterns.
2. Use S-Annotation (Def. 10) for each pair of S-Patterns.
3. Use NP-Annotation on all possible patterns, initial and derived.
4. Use N-Deduction (Prop. 2) on all possible patterns and eliminate N-Patterns.
5. Take each derived pattern, and add to it all dependencies of the patterns it

was derived from. Do not add such dependencies if they are included in the
positive pre-condition of the derived pattern, as the pattern would be useless.

6. Generate an operational TGG rule for each causal pattern (Def. 12).

Fig. 8. Some of the Generated Forward Operational Rules.

Example. Fig. 8 shows some of the generated forward rules. Rule C-T is gen-
erated from pattern C-T. NAC1 results from a pre-condition, while NAC2 is
equal to the RHS. Rule A-Co results from pattern A-Co. NAC3 comes from the
PW operation with pattern C-T, NAC2 is equal to RHS, and NAC1 is derived
from a dependency when making S-Deduction with C-T. Rule C-T.A-Co is gen-
erated from a pattern derived from C-T and A-Co through S-Deduction. Its first

NAC comes from a dependency induced by their source patterns. Finally, rule
A-Co.notDupF results from NP-Deduction (see the right of Fig. 5), where NAC1
and NAC2 come from pre-conditions of the patterns from which it is derived,
and NAC3 comes from a dependency. These two last rules have some additional
NACs (not shown), stemming from N-Deduction with pattern notDupF. The
procedure generates a total of 10 rules (see [9]).

4.1 Correctness of the Operational Mechanisms

Now we show the correctness of the generated rules, focussing on forward rules
as a similar reasoning holds for the backwards case. The generated rules: (i)
produce models satisfying the specification, (ii) are confluent, (iii) terminate,
and (iv) transform each source model for which there is a correct target model.
We give an intuition, see [9] for more details.

(i) follows from the construction of the TGG rules. Their LHS is 〈Q|s, C|c, C|t〉 =
C +C|s Q|s = Ps, which is the base graph from which forward satisfaction
is checked (see Fig. 2). As R = Q, morphism m : Q → TrG exists after
the application of the rule. The rule negative pre- and post-conditions are
derived from the negative pre- and post-conditions of the pattern. Thus, the
rule can be applied iff the base morphism ms exists and the negative pre-
and post-conditions of the pattern are satisfied. The additional NAC ∼= R
makes the rule enforce the pattern once. As initially all forbidden graphs
are expressed as N-Patterns, and we have performed N-Deduction, no rule
can produce a forbidden result. Since we start with an empty target graph,
backwards satisfaction is also obtained.

(ii) follows because S-annotation adds dependencies (which are transformed into
NACs) to the initial patterns, and these are appropriately propagated to
their derived patterns in step 5 of the rule generation process. Note, however,
that initially we may have patterns included in others: [P (Q1)]∧[P (Q2)] with
Q1 ↪→ Q2. In this case S-Deduction generates [P (Q1)]∧ [P (Q2)]∧ [P (M) ⇒
P (Q1+M Q2)] (assuming just one MIO), from which we generate three rules.
There is a conflict between the first two rules (i.e. a critical pair). However
in a situation where both the first and the second are applicable (e.g. if
we have Q2|s ↪→ TrG), applying the first and the third is equivalent to
applying the second. Besides, we cannot apply the first and the second due
to the generated NACs. Thus, even in this case, rules are confluent (see [9]).
Example. Consider the rules for the patterns C-T and A-Co and the and
their derived pattern (C-T.A-Co see Fig. 8). Assume a situation where both
C-T and A-Co are applicable. If C-T is applied first, then A-Co is disabled,
but C-T.A-Co can be applied. If A-Co is applied first, then no other rule is
applicable. However, in both cases we reach the same result.

(iii) follows from the fact that (a) each rule has its RHS as a NAC, therefore it
can only be applied once for each initial match in the source model; and (b)
a forward rule only changes the target model.

(iv) cannot be achieved for arbitrary M2M specifications. We restrict to what we
call Injective Positive Specifications, which contain enough positive patterns
to produce the operational TGG rules. Next definition introduces the forward
case (FIP), the backwards one is similar.

Def. 15 (FIP Spec.) Specification S =
∧

i=1..n Ti is FIP, iff ∀Ms ∈ L(MMs)
s.t. ∃TrG = 〈Ms, X〉 |= S, ∃ki ∈ N, ∃P i

s ← Sij
uv → P j

s with Pm
s = Cm +Cm|s

Qm|s, u = {1..ki}, v = {1..kj} and Sij
uv � P i

s if i = j, s.t. G is the colimit of
the diagram to the left of Fig. 9 (with all arrows injective) with G ↪→ TrG and
G|t ∼= TrG|t.

Fig. 9. Condition for FIP (left). Non-FIP Specification (center). Invalid Graph (right).

Remark. The definition considers ki occurrences of each pattern Ti. Two occur-
rences of patterns Ti and Tj can overlap, and this is modelled by Sij

uv. We forbid
P i

s be the overlap of two occurrences of the same pattern Qi, as the operational
mechanism minimally enforces each pattern (i.e. rules have a NAC equal to the
RHS). We have made a simplification in the diagram, but each occurrence of Ti

should satisfy its negative pre- and post-conditions.

Fig. 10. FIP Specifica-
tion.

Example. Consider the specification in the center
of Fig. 9, and assume no deduction is performed.
There is a valid triple graph TrG with two As in its
source, but the rules generated without deduction
cannot create such graph, as they would produce
two Bs.

NP-Deduction can turn some non-FIP specifica-
tions into FIP, because it creates a new pattern that
reuses an already created structure. The right of
Fig. 9 shows that if NP-Deduction is not applied, we
cannot handle a graph with two As. Fig. 10 shows
that after NP-Deduction the resulting pattern can
handle such graph as it reuses a B and is applied
twice. It is up to future work to determine further
deduction rules to cover additional non FIP-specifications.

5 Related Work

Some declarative approaches to M2M transformation use a textual syntax, e.g.
PMT [12] or Tefkat [13]. These two particular notations are uni-directional,
whereas we generate forward and backward transformations.

Among the visual declarative approaches, a prominent example is the QVT-
relational language [1]. The relations may include when and where clauses that
identify pre- and post-conditions and can refer to other relations. From this spec-
ification, executable QVT-core is generated that performs forward/backward
transformations. This approach is similar to ours, but we compile our patterns
to TGG rules, allowing the analysis of the generated transformation [4]. Besides,
we can analyse at a higher-level (i.e. pattern level) as our patterns have a formal
foundation [9]. Moreover, we automatically detect pattern dependencies and per-
form pattern inference. In QVT-relations dependencies must be made explicit
in the when and where clauses, and there is no equivalent to our N-Patterns. An
attempt to formalize QVT-core is found in [14].

In [15], transformations are expressed through positive patterns that rely on
OCL constraints, but no operational mechanism is given. In BOTL [16], the
mapping rules use a UML-based notation that allows reasoning about applica-
bility or meta-model conformance. We can reason both at the specification and
operational levels.

TGGs [3] formalize the synchronized evolution of two graphs through declar-
ative rules. From this specification, low-level operational TGG rules are derived
to perform forward and backward transformations, as well as to relate two exist-
ing graphs. We also generate these operational rules from our patterns. However,
whereas in declarative TGG rules dependencies must be made explicit (i.e. we
must say which elements should exist and which ones are created), in our pat-
terns this information is derived. For instance, in TGGs, a rule like pattern
C-T.A-Co has to be specified, it is not enough to give C-T and A-Co.

Although inspired by TGGs, our patterns are a different approach: patterns
specify relations, not rules. Similar to graph constraints [8, 17], a M2M specifi-
cation by patterns describes a language of valid triple graphs. Moreover, TGGs
have some limitations. First, they allow neither specifying negative information,
nor deriving positive information from negative one (like NP-Deduction). In [5],
the lack of negation is alleviated by assigning execution priorities to rules. How-
ever, this is insufficient to simulate general application conditions, it has an
operational nature, and implies knowing the rule generation mechanism and ex-
ecution engine. Second, a control mechanism is needed to guide the execution of
the operational rules, such as priorities [5] or their coupling to editing rules [2].
One can see TGGs as a subset of our approach, where a TGG rule is a pattern
of the form

←−
P (L) ⇒ P (R) without negative conditions or deduction techniques.

In [18], an algorithm is given for the derivation of declarative TGGs from
example pairs of models. Interestingly, the user does not have to specify the
correspondence nodes in these pairs. The employed techniques resemble our use
of MIOs, but our patterns are richer, allowing negative pre- and post-conditions,
and our theory supports further derivation techniques (e.g. NP-Deduction).

With respect to graphical patterns, in [17] a logic of constraints is proposed,
in which constraints are existentially satisfied, while ours are universal. More-
over, we provide deduction techniques specially tailored for M2M specifications
and triple patterns. In [19] we presented a simpler notion of pattern and used
it to extend normal rules to synchronous TGGs. We applied it to the synchro-
nization of the concrete and abstract syntax of visual models. The patterns were
restricted to work with positive information, and the execution of the derived
rules was associated to editing rules (like traditional TGGs). Here we present a
new concept of pattern, which allows expressing negative conditions, introduce
deduction rules and present a new algorithm for TGG rule derivation that is
suitable for M2M transformation and does not need a normal rule to start with.

6 Conclusions and Future Work

In this paper we have presented a new formal approach to declarative M2M
transformation. Relations between source and target models are expressed as
different kinds of patterns, from which operational TGG rules are derived im-
plementing forward/backwards transformations and taking into account pattern
interactions. This is done by deduction mechanisms that detect interdependen-
cies and produce new patterns that reuse structures created by other patterns.
This is one of the strengths of the present work: pattern dependencies are auto-
matically calculated and not explicitly given by the designer such as with QVT
and TGGs.

We have already identified analysis properties, both at the specification (e.g.
language covering, pattern conflicts) and operational levels (e.g. hippocratic
transformations [10]). We have omitted them by lack of space (see [9]).

Although we generate operational TGG rules from a pattern specification,
other target formalisms could be used as well (e.g. OCL, Alloy). In fact, one of
our next goals is expressing a specification in terms of a constraint satisfaction
problem, in the lines of [11]. This would eliminate some problems of the compi-
lation into rules, such as the restriction to handle FIP specifications only. Note
that with the theory presented so far we can handle attributes, but not attribute
conditions or computations. Our aim is to use OCL and the analysis techniques
we proposed in [11].

It would be interesting to extend the set of derived operational rules to handle
incremental synchronization and change propagation. More complex patterns
able to deal with recursion or having parameters are also under consideration.
Finally, we aim to formalize a part of QVT using this technique.

Acknowledgements. We thank the reviewers for their useful comments.
Work supported by the Spanish Ministry of Education and Science, projects
TSI2005-08225-C07-06 and TIN2006-09678.

References

1. QVT. http://www.omg.org/docs/ptc/05-11-01.pdf (2005)

2. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: FASE’07. Volume 4422 of LNCS., Springer
(2007) 72–86

3. Schürr, A.: Specification of graph translators with triple graph grammars. In:
WG’94. Volume 903 of LNCS., Springer (1994) 151–163

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer-Verlag (2006)

5. Königs, A.: Model transformation with Triple Graph Grammars. In: MTiP’05.
(2005)

6. Guerra, E., de Lara, J.: Event-driven grammars: Relating abstract and concrete
levels of visual languages. SoSyM, special section on ICGT’04 (2007) 317–347

7. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed
graph transformation with node type inheritance. TCS 376(3) (2007) 139–163

8. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a
constructive approach. ENTCS 2 (1995)

9. de Lara, J., Guerra, E.: Pattern-based model-to-model transformation: Long ver-
sion. arXiv:0804.4745v1 [cs.SE], http://arxiv.org/abs/0805.4745v1 (2008)

10. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and
open questions. In: MoDELS’07. Volume 4735 of LNCS., Springer (2007) 1–15

11. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Analysing graph transformation
rules through OCL. In: To appear in Proc. ICMT’08. LNCS, Springer (2008)

12. Tratt, L.: A change propagating model transformation language. JOT 7(3) (2008)
107–126

13. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In:
MoDELS Satellite Events. Volume 3844 of LNCS., Springer (2005) 139–150

14. Greenyer, J.: A study of model transformation technologies: Reconciling TGGs
with QVT. Master’s thesis, University of Paderborn (2006)

15. Akehurst, D.H., Kent, S.: A relational approach to defining transformations in a
metamodel. In: UML’02. Volume 2460 of LNCS., Springer (2002) 243–258

16. Braun, P., Marschall, F.: Transforming object oriented models with BOTL.
ENTCS 72(3) (2003)

17. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints. In: FASE’08.
Volume 4961 of LNCS., Springer (2008) 179–198

18. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implemen-
tations and application scenarios. Tech. Rep. TR-RI-07-284, U. Paderborn (2007)

19. de Lara, J., Guerra, E., Bottoni, P.: Triple patterns: Compact specifications for the
generation of operational triple graph grammar rules. In: GT-VMT’07. Volume 6
of Electronic Communications of the EASST. (2007)

